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Hierarchical entanglement shells of
multichannel Kondo clouds

Jeongmin Shim 1,2,3, Donghoon Kim1,3 & H.-S. Sim 1

Impurities or boundaries often impose nontrivial boundary conditions on a
gapless bulk, resulting in distinct boundary universality classes for a given
bulk, phase transitions, and non-Fermi liquids in diverse systems. The under-
lying boundary states however remain largely unexplored. This is related with
a fundamental issue how a Kondo cloud spatially forms to screen a magnetic
impurity in a metal. Here we predict the quantum-coherent spatial and energy
structure of multichannel Kondo clouds, representative boundary states
involving competing non-Fermi liquids, by studying quantum entanglement
between the impurity and the channels. Entanglement shells of distinct non-
Fermi liquids coexist in the structure, depending on the channels. As tem-
perature increases, the shells become suppressedonebyone from theoutside,
and the remaining outermost shell determines the thermal phase of each
channel. Detection of the entanglement shells is experimentally feasible. Our
findings suggest a guide to studying other boundary states and boundary-bulk
entanglement.

Boundary quantum critical phenomena1,2 appear in gapless systems of
quantum impurities2–11, magnets with surfaces12, edge states of topo-
logical orders13, and qubit dissipation14,15. There, the presence of a
boundary causes various boundary criticalities that affect the bulk,
depending on boundary-bulk coupling. A character of boundaries has
been revealed by the boundary or impurity entropy16–19 that is the
entropy difference between the presence and absence of the bound-
ary. This entropy corresponds to the constant term in the dependence
of the ground-state entanglement entropy on the location of the
entanglement partition18. The entropy is a bulk quantity, as the parti-
tion is placed at long distance from the boundary, and it has been
obtained by using the boundary conformal field theory (BCFT)8–10,20–22,
a standard approach for the criticalities.

While bulk quantities have been understood, boundary states are
yet to be explored23–26. The Kondo singlet23 in the single-channel
Kondoeffect, amany-body stateofmetallic electrons formed to screen
a local impurity spin, implies that quantum entanglement between a
bulk and its boundary is essential for understanding the quantum-
coherent boundary-bulk coupling27–29. The spatial distribution of the
particles forming the boundary-bulk entanglement will be a key

information of boundary quantum criticalities and related many-body
effects. As the partition for the boundary-bulk entanglement is placed
right at the boundary27–30, the entanglement differs from the boundary
entropy. There are difficulties in studying the entanglement. In BCFTs,
the boundary degrees of freedom are absorbed into the bulk as
boundary conditions, and bulk properties at long distance from the
boundary are considered. Experimentally detecting entanglement
typically requires inaccessible multiparticle observables. Under-
standing about the entanglement is desired.

Multichannel Kondo effects, where multiple channels of conduc-
tion electrons compete to screen an impurity spin, serve as a paradigm
of many-body physics and boundary criticalities6–10. For example, in
the k-channel Kondo (kCK) effect, k electron channels compete to
screen an impurity spin 1/2. It is described by the Hamiltonian

HkCK =
Xk
j = 1

JjSimp � Sjð0Þ+
Xk
j = 1

Hj : ð1Þ
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Here, the impurity spin Simp locally couples to the spin Sj(0) of
electrons in the jth channel with strength Jj > 0, and Hj describes free
electrons in the jth channel. In the Affleck-Ludwig BCFT8–10, the
channel-isotropic case of J1 =⋯ = Jk is transformed into a free electron
Hamiltonian with a nontrivial boundary condition, by mapping Hj to a
semi-infinite one dimension, and fusing the impurity with the
boundary of the one dimension. It exhibits a boundary criticality. In
channel-anisotropic cases, the competition between the channels
results in quantum phase transitions2, various non-Fermi liquids
(NFLs)6,8, and fractionalizations31, making the effects rich. Thermal
phases and their renormalization flows of the channel-anisotropic
Kondo effects were experimentally observed by using quantum dots
or metallic islands32–36.

The boundary states of the Kondo effects involve a Kondo
cloud24–26 formed by the conduction electrons screening the impurity
spin. Theoretically the cloud has been studied17–19,37–39 mostly for
channel-isotropic cases. For anisotropic 2CK effects, a quantity called
the excess charge density was used to study a real-space structure that
indicates spatial regions corresponding to the local moment and
strong coupling phases40. However this quantity may not be suitable
for quantifying the spatial distribution of a Kondo cloud, as it can be
negative at certain distances from the impurity spin and even increase
with the distance. The properties of the cloud, such as its channel-
resolved spatial distribution, its entanglement with the impurity, its
correspondence to the transition or crossover between distinct NFL
phases, and its thermal suppression, are yet to be studied. It also
remains unknown how to detect the clouds in the multichannel cases,
while a cloud was recently observed41,42 in the single-channel case.

The entanglement between an impurity and its Kondo cloud is a
boundary-bulk entanglement27–30. The spatial distribution of the elec-
trons forming this entanglement will characterize how the cloud spa-
tially screens the impurity quantum coherently. In this work, we
proposehow to theoretically quantify and experimentallymeasure the
distribution by applying a perturbation of local symmetry breaking
(LSB) at a distance from the impurity. The distribution is found to
exhibit channel-dependent hierarchical entanglement shells of NFL,
Kondo Fermi liquid (FL), or non-Kondo FL characters in the channel-
anisotropic cases. Each shell is identified by a power-law decay of the

distribution with the distance, whose exponent is determined by the
scaling dimension of the boundary operator describing the character.
As the temperature increases, the shells are suppressed one by one
from the outside, and the remaining outmost shell determines
the thermal phase of each channel. The entanglement shell structure
shows that different NFLs and FLs hierarchically coexist around
the boundary with spatial and energetical separation, reflecting the
renormalization of the quantum-coherent impurity screening (quan-
tified by the entanglement) in the presence of the channel
competition.

Results
Quantifying boundary entanglement distribution
We study the entanglement negativity N �k ρTIk1 � 1 between the
impurity and the channels in the kCK effects. ρ is the density matrix of
the whole system, ∥ ⋅ ∥1 is the trace norm, and TI means the partial
transpose on the impurity. This negativity is twice the conventional
definition43,44 so that its maximum value is 1. It measures quantum
coherence of the screening. The screening happens by the maximal
entanglementN = 1 independent of k in the channel-isotropic cases at
zero temperature30.

To quantify the spatial distribution of the entanglement, we apply
an LSB perturbation breaking the Kondo SU(2) symmetry in a channel
n at distance L from the impurity [Fig. 1a], and study the reduction ρnof
the negativity from the value N 0ðTÞ in the absence of the LSB to
N ðL,T ;nÞ in the presence of the LSB,

ρnðL,TÞ � N 0ðTÞ �N ðL,T ;nÞ, ð2Þ

at temperature T. ρn varies between 0 and 1. Larger ρn implies that at
the distance L there exist more electrons participating in the entan-
glement. Therefore the L dependence of the reduction ρn(L, T) quan-
tifies the spatial distribution of the Kondo cloud in the channel n.

The negativity has a direct relation30 with the impurity magneti-
zation M = 〈Simp〉 at zero temperature (Supplementary Note 1),

N =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

_2

s
, ð3Þ

where Simp is the impurity spin operator. This shows that the magne-
tization is larger as the impurity spin is less screened by, equivalently
less entangled with, conduction electrons. This relation is valid at zero
temperature in general situations of the Kondo effects, and it is a good
approximation at low temperature T≪ TK, where TK is the Kondo
temperature.

For details, we consider a Hamiltonian HkCK +HLSB. The Kondo
HamiltonianHkCK is shown in Eq. (1). Here each channel is described by
free electrons in a semi-infinite one dimensional system and the
impurity spin is located at the boundary of the one dimension. HLSB

describes the LSBby a localmagneticfieldB along x axis coupled to the
spin Sn,x(L) in a channel n at distance L from the impurity,

HLSB =BSn,xðLÞ: ð4Þ

In thepresenceof the LSB,we compute thenegativity between the
impurity and the channels at finite temperature by using the numerical
renormalization group (NRG) method (Supplementary Notes 2-4) that
we have developed29. We also obtain the negativity at zero tempera-
ture by using Eq. (3) and analytically computing the magnetization
based on the BCFT in the presence of the LSB (Supplementary Note 5).

Isotropic multichannel Kondo clouds
We first consider the channel-isotropic case of J1 = J2 =⋯ = Jk = J. At
T ~ TK, there occurs thermal crossover from the infrared Kondo fixed
point to the ultraviolet localmoment (LM)phase. The Kondophase is a

Fig. 1 | Channel-isotropic Kondo cloud. a An impurity spin couples to three
channels with equal strengths J1 = J2 = J3. A perturbation B breaks the SU(2) spin
symmetry at distance L from the impurity in channel 1. The cloud distribution ρ1(L)
in channel 1 is read out from the L dependence of the entanglementN between the
impurity and the channels. b Schematic cloud distribution. Crossover between the
core and the tail happens around the cloud length ξK. c Numerical renormalization
group (NRG) results of ρ1(L) at zero temperature for the isotropic single-channel
(1CK), two-channel (2CK), and three-channel Kondo (3CK) effects.d Log–logplot of
c. The tail follows the power-law decay L−2Δ in agreement with the boundary con-
formal field theory (BCFT).

Article https://doi.org/10.1038/s41467-023-39234-6

Nature Communications |         (2023) 14:3521 2



FL in the single-channel case4,5 and a NFL in the multichannel cases
of k ≥ 26,8.

In Fig. 1, the spatial distributionρnof the entanglement is obtained
at zero temperature. The distribution extends over the whole space,
having the core and the tail inside and outside the cloud length ξK = ℏv/
(kBTK), where v is the Fermi velocity. ρn is much larger in the core than
in the tail, showing that most electrons forming the cloud lies in the
core. The core does not show any characteristics of the zero-
temperature bulk criticality, strongly “binding” with the impurity.
The core corresponds to the LM phase40. By contrast, the tail slowly
decays, following the universal power law

ρnðLÞ /
ξK
L

� �2Δ

L≫ ξK: ð5Þ

We derive Eq. (5) using the BCFT (Supplementary Note 5), with
focusing on the envelope of the Friedel oscillations in the L depen-
dence of ρn. The power-law exponent is governed by the scaling
dimension Δ of the BCFT operator describing the impurity spin. For
k = 1,Δ = 1,which implies the FLof the 1CK. For k ≥ 2,Δ = 2/(2 + k),which
signifies the NFL of the kCK8. The tail accords with the bulk criticality.
The exponent Δ at each phase is summarized in Table 1.

The core and tail structure of the entanglement distribution ρn is a
visualization of the quantum-coherent Kondo cloud. The LSB is useful
for the visualization.

Entanglement shells of anisotropic multichannel Kondo clouds
We next consider channel-anisotropic cases of k channels. It is known
that there are multiple crossover temperatures6. At T ≳ TK, the LM
phase happens. At T *≲ T≲ TK, the Kondo effect by the k channels
(kCK) occurs, where T * is a crossover temperature determined by the
anisotropy. Below T * there can appear k0-channel Kondo effects with
k0<k. The zero temperature phase is a k″CK with k00 ≤ k0 where k″ is the
number of the channels having the largest coupling. These are shown
in the phase diagrams of Figs. 2a and 3a.

We first discuss the Kondo cloud of the anisotrpic kCKs at zero
temperature. We find that the spatial distribution ρn has the core and
the tail of a shell structure [Figs. 2 and 3a–h]. ρn is much larger in the
core, which appears over L≲ ξK, than in the tail, as in the isotropic case.
The tail has hierarchical multiple shells of distinct entanglement scal-
ing behaviors. In the innermost shell, all the k channels follow the
power-law decay of ρnðLÞ / ðξK=LÞ2Δ with Δ = 2/(2 + k). This shell cor-
responds to the NFL of the isotropic kCK, as identified by Eq. (5) and
shown in Table 1, and appears at ξK≲ L≲ ξ* with ξ* = ℏv/(kBT*). The core
and the innermost shell are identical between the channels, although
the coupling strengths Ji are different.

On the other hand, the other shells are channel dependent. In the
outermost shell, the k″ channels having the samecoupling strengthbut
larger than the others show different behavior from the others. These
largest-coupling channels exhibit the distribution ρn(L) of the power-
law decay with Δ = 1 for k″ = 1 (namely when one channel has stronger
coupling than all the others) and Δ = 2/(2 + k″) for k″ ≥ 2. These chan-
nels in the shell exhibit the zero-temperaturek″CKphase, as impliedby
Eq. (5) (see also Table 1). The other k − k″ channels of weaker coupling
in this shell also have nonzero distribution ρn, albeit smaller than that
of the k″ channels. They follow the power-law decay of ρn(L) with Δ = 1,
showing a non-Kondo FL that does not show the Kondo effect as dis-
cussed below. Hence the outermost shell of the Kondo cloud is com-
posed of the NFL (resp. FL) of the k″CK in the k″ channels of the
strongest coupling for k″ ≥ 2 (resp. k″ = 1) and the non-Kondo FL in the
other channels.

We discuss about the non-Kondo FL behavior in the k − k″ chan-
nels of weaker coupling. The value of Δ = 1 implies that these channels
are Fermi liquids. Although the value is identical to that of the 1CK case
(see Table 1), these channels of weaker coupling do not exhibit Kondo
behaviors. For example, in ananisotropic 2CKmodel4,5,45,46, the channel
of stronger coupling exhibits the π scattering phase shift as in the 1CK
case, while the weaker-coupling channel does not. It is interesting that
a spin cloud, having an algebraic tail (indicated by the non-vanishing
entanglement between the impurity and the channels), is developed in
these weaker-coupling channels. A recent work26 reported a similar
finding that a spin cloud appears in a non-Kondo phase of a super-
conductor coupled with a magnetic impurity.

In Figs. 2 and3a–h, these features of theoutermost shell are shown
for the 2CK of J1 = J + δJ and J2 = J − δJ, and the 3CK of J1,2 = J + (δJ)/2 and
J3 = J − δJ. The shell appears at L ≳ ξ *, where ξ * / ∣δJ∣�2T�1

K for the 2CK
and ξ * / ∣δJ∣�5=2T�1

K for the 3CK35. At L ≳ ξ * in the 2CK, the channel 1 of
stronger coupling has the 1CK FL, while the channel 2 has a non-Kondo
FL. We find, using the bosonization47,48 (Supplementary Note 6), that
the channel 2 shows nonzero distribution ρ2 smaller than the channel 1,

Table 1 | Scaling exponent of cloud shells

shell 1CK 2CK 3CK k(≥4)CK non-Kondo FL

Δ 1 1/2 2/5 2/(k + 2) 1

Scaling exponent Δ of the cloud distribution ρn of channel n in the single-channel Kondo (1CK),
two-channel Kondo (2CK), three-channel Kondo (3CK), k-channel Kondo (kCK; k is number of
channels), and non-Kondo Fermi liquid (FL) shells.

Fig. 2 | Channel-anisotropic two-channel cloud shells. a Two-channel Kondo
(2CK) phase diagram. It consists of the local moment (LM), single-channel Kondo
(1CK), and two-channel Kondo (2CK) phases. δJ is the channel anisotropy, T is the
temperature, TK is the Kondo temperature, and T * is the crossover temperature.
b Cloud distribution at a point marked by the red star in the 1CK domain of the
phase diagram of a. The coupling strengths are J1 = J + δJ and J2 = J − δJ. The cloud

distribution has the core, 1CK, 2CK and non-KondoFermi liquid (FL) shells. ξK is the
Kondo length and ξ * is the crossover length. c, d Log–log plots of the distribution
ρi(L) in channel i = 1, 2 at zero temperature. Cloud shells are identified by their
power-law decay. e Ratio ρ2/ρ1 at L≫ ξ *. Here, ν is the local density of states. The
numerical renormalization group (NRG) results (dots) agree with the bosonization
prediction (solid curve).
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following ρ2=ρ1 ffi T *=νT2
K at L≫ ξ * [Fig. 2e]. ν is the density of states. In

the 3CK with δJ >0, the channels 1 and 2 having the largest coupling
exhibit the 2CKNFL in the outermost shell, while the channel 3 shows a
non-Kondo FL. In the 3CK with δJ <0, the channel 3 of the largest
coupling shows the 1CK FL in the outermost shell, while the other
channels exhibit a non-Kondo FL.

In general anisotropic kCKs, there appear intermediate shells
corresponding to a q1CK, a q2CK,⋯ (from outer to inner) between the
innermost and outermost shells, with the hierarchy k″ < q1 < q2 <⋯ < k
determined by the coupling strengths Jn=1,2,⋯ ,k. In the shell of the qiCK,
the qi channels having larger coupling than the others exhibit the qiCK
NFL, while the other k − qi channels show a non-Kondo FL. For exam-
ple, we find that in the most general case of the 3CK with J1 > J2 > J3, the
Kondo cloud is composed of the core, the innermost 3CK shell, the
intermediate 2CK shell (having the 2CK NFL in two channels of larger

coupling and a non-Kondo FL in the other), and the outermost 1CK
shell (having the 1CK FL in the channel of the largest coupling and a
non-Kondo FL in the others) at zero temperature (Supplemen-
tary Note 4).

Thermal evaporation of entanglement shells
To examine the thermal decoherence of the entanglement shells and
hence the Kondo cloud, we compute ρn(L, T) in Eq. (2) at finite tem-
peratures, using the NRG. ρnðL,TÞ=N 0ðTÞ �N ðL,T ;nÞ quantifies the
difference of the entanglement between the absence and presence of
the LSB at temperature T; N 0ðTÞ measures the entanglement that
survives against thermal fluctuations at T, while N ðL,T ;nÞ measures
the entanglement at T further reduced by the LSB at distance L in
channel n. More reduction occurs as the impurity spin is more
entangled with (i.e., more screened by) electrons at L. Hence, ρn(L, T)

Fig. 3 | Three-channel cloud shells and their thermal evaporation. The three-
channel Kondo (3CK) model of couplings J1,2 = J + (δJ)/2 and J3 = J − δJ is considered.
δJ is the channel anisotropy. a–d The phase diagram of the model, shown in a, is
composed of the local moment (LM), single-channel Kondo (1CK), two-channel
Kondo (2CK), and three-channel Kondo (3CK) phases. At a point of δJ <0 and zero
temperature T =0 marked by the red star in the phase diagram a, the cloud dis-
tribution is drawn in b, the log–log plot of numerical renormalization group (NRG)

results of the distribution ρ1(L) is in c, and the log–log plot of ρ3(L) is in d. ρ2 is
identical to ρ1. In b, the core, 1CK, 3CK, and non-Kondo Fermi liquid (FL) shells are
identified. TK is the Kondo temperature, T* is the crossover temperature, ξK is the
Kondo length, and ξ* is the crossover length. e–h The same plots, but at a point of
δJ >0 andT =0. i–l The sameplots, but at a point of δJ >0 and T = T*.m–pThe same
plots, but at a point of δJ >0 and T = TK. As temperature increases, the outer shells
disappear one by one.
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quantifies the entanglement distribution at Twith varying L. Note that
in the absence of the LSB, the entanglement algebraically decays
thermally30, N 0ðTÞ= 1� akðT=TKÞ2Δ at T≪ TK, where ak > 0 is a
constant.

For the 3CK with δJ > 0, Fig. 3e–p show the temperature depen-
dence of the entanglement shells. Thermalfluctuations suppress shells
outside the thermal length ℏv/(kBT), while it does almost not affect
shells inside. So theouter shells are thermally “evaporated”onebyone.
At T≪ T *, the outermost shell, located at L > ξ *, shows the 2CK NFL in
the channels 1 and 2, as discussed above. At T *≲ T≲ TK, the outermost
shell is almost suppressed. Then the remaining inner shell at ξK≲ L≲ ξ *,
whose character is the 3CK NFL, determines the thermal phase. When
the temperature further increases to T ≳ TK, only the core at L≲ ξK
survives and represents the LM thermal phase.

This clearly shows that the hierarchical shells of the boundary
entanglement at zero temperature is the manifestation of the renor-
malization group flow in the development of the Kondo effects. Inner
shells are “bound” more strongly with, namely more entangled with,
the impurity, being more robust against thermal fluctuations. Namely,
inner shells cause the boundary condition of the bulk conduction
electrons of higher energies, hence, determining phases at higher
temperature. Note that a related temperature dependence of a single-
channel Anderson impurity model was discussed in ref. 40.

How to detect boundary entanglement shells
Equation (3) implies that the entanglement distribution ρn(L), hence,
the Kondo cloud can be experimentally detected by monitoring the
change of the impuritymagnetization with varying the position L of an
LSB in a channel n. The relation is exact at zero temperature and a very
good approximation at T≪ TK and L≲ ℏv/(kBT) where thermal fluc-
tuations negligibly affect ρn(L) as demonstrated in Fig. 3.

We propose an experiment based on a charge-Kondo circuit34,35

with which multichannel Kondo effects can be manipulated. It has a
metallic dot coupled to k quantumHall edge channels (Fig. 4). Energy-
degenerate charge states ∣Ni and ∣N + 1i of the dot form the pseudos-
pin 1/2, and the excess charge ΔQ ≡Q − (N + 1/2)e of the dot plays the
role of themagnetizationM/ℏ of the pseudospin. HereN andQ denote
the number of electrons and the charge operator for the dot, respec-
tively, and e is the electron charge.

We show that a quantum point contact placed on a channel n at
distance L from the dot results in an LSB breaking the SU(2) pseu-
dospin symmetry (Fig. 4 and Supplementary Note 7). At T =0, the
negativity in the absence of the LSB is N 0ðT =0Þ= 130, while the

negativity in the presence of the LSB is N ðL,T =0;nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4hΔQ=ei2

q
[see Eq. (3)]. These give ρnðL,T =0Þ=N 0ðT =0Þ �N ðL,T =0;nÞ= 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4hΔQ=ei2
q

’ 2hΔQ=ei2 for small 〈ΔQ/e〉≪ 1. At low temperature

T≪ TK where thermal fluctuation on 〈ΔQ/e〉2 is negligible, ρn(L, T) can
be approximated as the zero-temperature value of
ρn(L, T =0)≃ 2〈ΔQ/e〉2. It is possible to measure ΔQ(L), hence ρn(L), by
monitoring electric current through another quantum point contact49

nearby the dot. The entanglement shells in isotropic and anisotropic
kCKs can be experimentally identified with realistic parameters (Sup-
plementary Note 7).

Discussion
Our work demonstrates how a spin cloud screening a local magnetic
impurity in ametal differs at the fundamental level fromacharge cloud
screening an excess charge. For the demonstration, we developed a
theory of the boundary-bulk entanglement in multichannel Kondo
effects. Utilizing an LSB, the spatial distribution and thermal sup-
pression of the entanglement can be computed and experimentally
detected. The distribution is a visualization of the spatial and energy
structure of the quantum-coherent Kondo spin screening cloud.

The boundary-bulk entanglement is applicable to general
boundary quantum critical phenomena as below. The entanglement
quantifies the quantum-coherent coupling between the boundary and
the bulk in boundary criticalities. Its spatial structure will have infor-
mation of competing phases or boundary conditions, as suggested by
the hierarchical shells of Kondo clouds. In spin-1/2 boundary criti-
calities, it is obtained, using the boundarymagnetization and Eq. (3). In
more general cases, it may be calculated with BCFT boundary
operators30.

An LSB that breaks the boundary-bulk coupling symmetry will be
useful for identifying the boundary structure of boundary criticalities.
The spatial structure is estimatedby the changeof the entanglement as
a function of the location of the LSB, while the partition for the
entanglement is placed at the boundary. This differs from the usual
way16 where an entanglement is studiedwith placing the entanglement
partition in the bulk.

The boundary-bulk entanglement will be experimentally acces-
sible. As in Eq. (3), it may have a simple relation with a boundary
observable, when the entanglement has a simple form like Kondo
singlets near a fixed point of boundary criticalities. Such a simple
relation between an entanglement and an observable is rare. It is
another usefulness of the boundary-bulk entanglement.

We anticipate that the boundary-bulk entanglement is an essential
aspect of boundary criticalities and related effects such as Kondo lat-
tices and heavy fermions50–52.

Data availability
All the calculation details are provided in Supplementary Information.
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