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Global forest fragmentation change from
2000 to 2020

Jun Ma 1,2 , Jiawei Li 1,2, Wanben Wu 1 & Jiajia Liu 1

A comprehensive quantification of global forest fragmentation is urgently
required to guide forest protection, restoration and reforestation policies.
Previous efforts focused on the static distribution patterns of forest remnants,
potentially neglecting dynamic changes in forest landscapes. Here, we map
global distribution of forest fragments and their temporal changes between
2000 and 2020. We find that forest landscapes in the tropics were relatively
intact, yet these areas experienced the most severe fragmentation over the
past two decades. In contrast, 75.1% of the world’s forests experienced a
decrease in fragmentation, and forest fragmentation in most fragmented
temperate and subtropical regions, mainly in northern Eurasia and South
China, declined between 2000 and 2020. We also identify eight modes of
fragmentation that indicate different recovery or degradation states. Our
findings underscore the need to curb deforestation and increase connectivity
among forest fragments, especially in tropical areas.

Forest fragmentation is a major driver of global biodiversity loss and
ecosystem degradation1–4. Identifying which areas have the most
severe forest fragmentation is a fundamental task in ecology, but the
findings from investigations into the patterns of global forest frag-
mentation have been inconsistent5–7. Forests in tropical regions are
regarded as more contiguous than those in other regions5,8 and Mor-
reale et al.9 concluded that temperate forests are 1.5 times more
fragmented than tropical forests. In contrast, other studies implied
that tropical forests are undergoing the most severe forest fragmen-
tation because of an acceleration in deforestation in these regions10–12.
For example, the fraction of forest edge area to total forest area in the
tropics increased from 27% in 2000 to 31% in 201012, and there was a
net loss of forest cover in the tropics in the same period, while many
countries in temperate regions achieved net forest gains13,14. These
contrasting findings may have been due to a variation in how forest
fragmentation was defined on different temporal scales. To gain a
better understanding of the consequences of forest fragmentation, a
comprehensive quantification of global forest fragmentation is
urgently needed.

Forest fragmentation is a landscape-level process of forest change,
and mainly occurs over time as decreased patch size, increased patch

number of patches, andmore forest edges15. Accurate assessments and
maps of forest fragmentation are crucial for exploring its effects on
biodiversity and ecosystem functions. However, previous studies on
global forest fragmentation mapping have relied on evaluating static
landscape patterns5,6,8 and have ignored the fact that forest fragmen-
tation is a dynamic process over time. Moreover, although the effects
of forest fragmentation can persist for up to a century16, the effects are
mostly immediate and obvious for only the first several decades after
formation17,18. Therefore, accurate quantification of the current pat-
terns and dynamics of forest fragmentation is key to preventing future
biodiversity loss and ecosystem degradation. However, the lack of
quantification of global forest fragmentation over recent decades from
a dynamic perspective, represents an important knowledge gap.

Over the past several decades, the assessment of forest frag-
mentation has become increasingly complex because deforestation
and afforestation is highly dynamic. Forest fragmentation is generally
thought to be associated with forest loss5,15, and it is thus generally
assessed in termsof deforested area. As such,most previous studies on
forest fragmentation dynamics focused on tropical forests with high
deforestation rates6,11,12. However, forest fragmentation and forest
cover changes are relatively independent anddonot always proceed in
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the same direction7. Many temperate and subtropical countries have
gained forest cover19, yet forest cover gains do not reverse the trend of
forest fragmentation7. Consequently, the credibility of large-scale
estimates of forest landscape pattern dynamics will be reduced when
considering only either fragmentation or coverage. Thus, there is an
urgent need to effectively integrate and analyze changes in forest
cover and fragmentation patterns to inform forest management
decisions.

Here, we constructed a synthetic forest fragmentation index (FFI)
to represent themain characteristicsof forest fragmentation, including
edge, isolation, and patch size effects. We used the FFIs in 2000 and
2020 and their differences (ΔFFI) to determine the static and dynamic
patterns of global forest fragmentation. These two indexes were
compared amongvarious regions globally to explorewhich indexmore
effectively and accurately reflects the fragmentation status. We also
analyzed key processes and potential causes for some global hotspots
of forest fragmentation, and combined changes in forest coverage
(ΔFC) and fragmentation to derive a two-dimensional framework for
the assessmentof forest landscapedynamicpatterns.Our study reveals
that 75.1% the world’s forest landscapes experienced decreased frag-
mentation but those in tropical regions experienced increased frag-
mentation during the first two decades of the 21st century.

Results
Differences in static and dynamic forest fragmentation index
values
We calculated the static FFI using the average weighted values of
normalized edgedensity (ED), patchdensity (PD), andmeanpatcharea
(MPA, using 1-normalized MPA) for 2000 and 2020 (Fig. 1), while the
values for the individual normalized ED, PD, andMPA layers are shown
in Supplementary Fig. 1. Forest landscapes with low static fragmenta-
tion (FFI < 0.2) were mainly in the tropics, western Canada, western
Siberia, and Far East Russia, while forests with high static fragmenta-
tion (FFI > 0.8) were mainly in eastern North America, southern Eur-
ope, central and South China, and along the edges of tropical forests.

The area proportion of forest landscapes with different fragmentation
levels remained stable during 2000–2020. There was a slight increase
in the percentage of forest landscapes with low static fragmentation
from 2000 to 2020 (17% to 19%), and the percentage of forest land-
scapes with high static fragmentation also decreased slightly from 17%
in 2000 to 13% in 2020.

However, the dynamic FFI (ΔFFI) for the period from 2000 to
2020 exhibited a dramatically different pattern from the static FFIs.
Approximately 75.1% of global forest landscapes showed a decline in
fragmentation (ΔFFI < 0) especially in thewesternCanada,westernand
the Far East Russia, and central and South China (Fig. 1c). Forest
landscapes with increased fragmentation trends (ΔFFI > 0) were
mainly in tropical areas, especially the southeastern Amazon, the
Congo Basin, Indochina Peninsula, and some regions in western North
America and central Siberia. Meanwhile, fragmentation was relatively
stable (ΔFFI ~ 0) in the centralAmazon, central and eastern Europe, and
the southeastern US.

We then compared the static FFI and ΔFFI across climate zones
(Fig. 1d) and found that the world’s most fragmented forests were
distributed in the subtropics, while the most intact forests were in the
tropics and boreal regions. Forests in the subtropical zone had sig-
nificantly higher static FFI values than those in the other zones in both
years (0.64 ± 0.34 in 2000 and 0.62 ±0.31 in 2020, P <0.001), while
forests in the tropical regions (0.43 ± 0.38, P <0.001) and boreal
regions (0.41 ± 0.20, P < 0.001) had the lowest static FFI values in 2000
and 2020, respectively. However, the mean ΔFFI value in the tropics
(0.01 ± 0.104, P <0.001) was significantly higher than in the other
zones (−0.06 to −0.02). In addition, theΔFFI generally had a significant
negative relationshipwith the FFI2000 across all climatic zones (using a
generalized additive model, P <0.001 for all four zones; Supplemen-
tary Fig. 2). Furthermore, the static FFIs were significantly and posi-
tively correlated with altitude, while there was a significantly negative
correlation between ΔFFI and altitude (Supplementary Fig. 3), indi-
cating lowland forests were relatively intact but experienced more
severe fragmentation during 2000–2020.
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Fig. 1 | Global distributions of the static forest fragmentation index (FFI) and
the dynamic FFI (ΔFFI) for global forest landscapes. a Static FFI in 2000, (b)
static FFI in 2020, (c)ΔFFI from2000 to 2020; and comparisons of (d) FFI values for
2000 and 2020, and (e) ΔFFI values across climatic zones. d, e The bar heights
showed mean value, and error bars showed one standard deviation. The sig-
nificance of the differences in static FFIs and ΔFFI among climatic zones was tested

using the two-side Tukey-HSD test, which adjusted for multiple comparisons, and
letters in each bar showed post-hoc differences in mean static FFIs and ΔFFI with
P <0.001. d The numbers of forest pixels (n) from tropical to boreal zones are
581,649, 381,768, 1,031,907, and 1,384,718 in 2000, and 569,260, 378,518, 1,055,401,
and 1,385,159 in 2020, respectively. e The numbers of forest pixels (n) from tropical
to boreal zones are 553,655, 363,858, 1,021,172, and 1,320,564, respectively.
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Modes and potential causes of forest fragmentation processes
We identified eight modes of forest fragmentation based on the
possible combinations of change (increase or decrease) in the three
individual components of FFI (ED, PD, and MPA) and detected
the area composition proportions of the eight modes for areas with
decreased (ΔFFI < 0) and increased (ΔFFI > 0) forest fragmentation,
respectively. Among the areas with decreased FFI, the
EDdownPDdownMPAup, with an area proportion of 69.8%, was the
most common mode and widely distributed all over the world
(Fig. 2). Other modes, such as EDdownPDdownMPAdown and
EDupPDdownMPAup had area proportions of 15.4% and 8.6% and were
mainly dominant in the central Amazon and eastern Europe,
respectively. In terms of the areas with increased FFI, the
EDupPDupMPAdown was the most common mode and accounted for
53.3% of the total, which occurred mainly in the tropics, western
North America, northern Europe, and central Siberia. The
EDupPDdownMPAdown and EDdownPDdownMPAdown modes had area
proportions of 23.6% and 8.7%, respectively, and were predominant
in the tropics, Russia, and western Africa.

We also detected the changes in individual fragmentation-related
metrics for hotspots in areas with decreased and increased FFI,
respectively. Overall, hotspots where FFI decreased had declines in ED
and PD, and increases inMPA. Specifically, MPA increased significantly
by 73% in western Canada, by 38% in southern Europe, and by 50% in
centralChina from2000 to 2020 (Fig. 2). Conversely, increased ED and
PD played a more important role in hotspots where FFI increased. ED
increased dramatically by 41% in the southeastern Amazon, by 81% in

theCongoBasin, and by 90% in central Siberia, while the increments of
PD in these hotspots were 32%, 186%, and 78%, respectively. However,
MPA decreased slightly (−8% to −31%) in these hotspots where forest
fragmentation increased.

Using generalized linear models, we further explored the rela-
tionships between ΔFFI and explanatory factors (see Methods) for
the globe and the six hotspots. Although ΔFFI was not significantly
correlated with any explanatory variables at the global scale (Sup-
plementary Fig. 4), we found that anthropogenic activity factors
(nighttime light, nighttime light change, cropland coverage, and
cropland change) dominated the changes in FFI during 2000–2020
in the most developed areas, such as the eastern US, Europe, and
South China (Supplementary Fig. 5). Moreover, wildfire mainly
controlled the ΔFFI of some areas in Canada, Far East Russia, the
southeastern Amazon, tropical Africa, and Australia. In addition, for
hotspots with decreased FFI (Fig. 3a–c), ΔFFI was most strongly
related to wildfire frequency (P < 0.001, standardized coefficient =
0.061) in western Canada, while the most important driving factors
of ΔFFI in southern Europe and central China were mean cropland
coverage (P < 0.001, standardized coefficient = 0.244) and cropland
coverage change (P < 0.001, standardized coefficient = −0.132),
respectively. For hotspots with increased FFI (Fig. 3d–f), wildfire
frequency was the strongest driving factor of ΔFFI in the south-
eastern Amazon (P < 0.001, standardized coefficient = 0.299) and
central Siberia (P < 0.001, standardized coefficient = 0.466), while
ΔFFI in the Congo Basin was significantly affected by all factors
except nighttime light.

Fig. 2 | Spatial distributions and composition proportions of eight forest
fragmentation process modes for forest fragmentation decreased areas (the
upper row) and forest fragmentation increased areas (the below row). ED, PD,
and MPA mean the individual components of the synthetic forest fragmentation
index (FFI). The marks of “up” and “down” after each FFI component represent an
increase and decrease trend during 2000–2020, respectively. The pie charts on the
right represent the area proportions of eight forest fragmentation process modes
in FFI decreased (the number of forest pixels, n = 2,470,511) and increased areas

(n = 820,937). Three hotspots in the most obvious FFI decreased and increased
areas were selected respectively to evaluate the changes in each component of FFI.
Hotspots D1-D3 were in western Canada (n = 7007), southern Europe (n = 3610),
and central China (n = 5180), and hotspots I1-I3 were in the southeastern Amazon
(n = 2710), the Congo Basin (n = 5102), and central Siberia (n = 6640), respectively.
Theboxes ofhotspots display themedianvalue, lower 25% andupper 75%quartiles;
the dots represent themean value; and thewhiskers are extended to the limit of the
1.5-fold interquartile ranges (IQRs).
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A new framework for the assessment of global forest landscape
dynamics
As changes in areas and patterns are two key indicators when assessing
forest landscape dynamics, we developed a two-dimensional frame-
work based on the changes in FC and FFI between 2000 and 2020 to
obtain a comprehensive understanding of forest landscape dynamics.
We found that the forest landscapes with a pattern of FCupFFIdown were
distributed worldwide but were concentrated in the western Canada,
the northeastern US, northern Eurasia and central China (Fig. 4a).
FCupFFIdown generally accounted for the highest forest area percentage
in temperate (50.0%) and boreal (59.2%) regions (Fig. 3b). In contrast,
the percentage of forest landscape area that exhibited the FCdownFFI

up

pattern in tropical regions (39.8%) was much higher than that in sub-
tropical (27.9%), temperate (14.3%) or boreal (10.6%) regions. Forest
landscapes with a pattern of FCdownFFI

up were distributed mostly in
the tropics, northern Europe, and central Siberia. Moreover, forest
landscapes with patterns of FCupFFIup and FCdownFFIdown, which
accounted for 5.7–7.8% and 24.5–34.2% of the total area, were mainly
distributed in northernEurope, the central Amazon, and south tropical
Africa respectively.

We also used this framework to assess forest landscapes dynamic
patterns for forested countries worldwide. Forest landscapes in most
countries generally exhibited the FCupFFIdown (n = 40), FCdownFFI

up

(n = 32) or FCdownFFIdown (n = 54), while those in only five countries
predominantly displayed the FCupFFIup pattern. At the national scale,
the ΔFFI of a country was significantly and negatively correlated with
the ΔFC (R2 = 0.35, P <0.001) (Fig. 3c). In addition, among the 10
countries with the largest forest area, the overall forest landscape
dynamics pattern was exhibited as either FCupFFIdown (Russia, China,
and India), FCdownFFI

up (Brazil, Australia, the Democratic Republic of
the Congo, and Peru), or FCdownFFIdown (Canada, the US, and Indone-
sia) (Table 1). The FCupFFIdown pattern was found for more than half of
the forest landscapes in Russia (59%), Canada (56%), the US (53%) and
China (58%), while a considerable proportionof total forest landscapes
in Brazil (42%), the Democratic Republic of Congo (54%) and Peru
(43%) had a FCdownFFI

up pattern. In particular, China (ΔFC = 1.21%,
ΔFFI = −0.07) had relatively high ΔFC and low ΔFFI values, while
Brazil (ΔFC = −3.22%, ΔFFI = 0.014) had relatively low ΔFC and
high ΔFFI values. Moreover, for forest landscapes in the world’s
major forested countries, the FCdownFFIdown pattern occupied high
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Fig. 3 | Standardized correlation coefficients of the dynamic forest fragmen-
tation index (ΔFFI) for six hotspots. Relative effects of anthropogenic activity
(the mean and difference values of cropland coverage and nighttime light, yellow
color), demographic pressure (the mean and difference values of population
density, blue color), and natural disturbance (fire frequency, red color) on
dynamics of ΔFFI in (a–c) forest fragmentation decreased hotspots (D1–D3,

n = 7661, 3663, and 5271 forest pixels) and in (d–f) forest fragmentation increased
hotspots (I1-I3, n = 4044, 5104, and 7689 forest pixels). The dots represent stan-
dardized coefficient estimates with 95% (thin segments, ±1.960 standard errors)
and 90% (thick segments, ±1.645 standard errors) confidence intervals in general-
ized linear models. Locations of the six hotspots can be checked in Fig. 2.
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Fig. 4 | Spatial distributions ofdifferent forest landscape dynamicpatterns and
their area percentages among climatic zones. Landscape dynamic pattern is
defined by the changes in forest fragmentation index (FFI) and forest coverage
(FC), and the marks of “up” and “down” after FFI or FC represent an increase and
decrease trend during 2000–2020, respectively. a Global spatial distribution of

four forest landscape dynamic patterns, (b) relative area percentages of the four-
forest landscape dynamic patterns among climatic zones, and (c) the relationship
between ΔFFI and ΔFC for forest landscapes at national scale using the Pearson’s
linear correlation (n = 131 countries). The statistical significance in (c) was obtained
with a two-side Student’s T-test.

Table 1 | Areas, area percentages, and mean values of the changes in forest coverage and fragmentation of four forest
landscape dynamic patterns in the ten countries with the largest forest area globally

Country Area and area percentages △FC △FFI

FCupFFIdown FCupFFIup FCdownFFIdown FCdownFFIup

105 km2 % 105 km2 % 105 km2 % 105 km2 % Mean Mean

Russian federation 173.6 58.8 18.2 6.2 70.6 23.9 32.6 11.1 0.57 −0.05

Brazil 7.7 16.5 3.1 6.7 16.1 34.5 19.8 42.3 −3.22 0.01

Canada 52.2 56.1 4.8 5.2 26.0 28.0 10.0 10.7 −0.20 −0.07

United States of America 38.3 53.0 4.1 5.6 20.1 27.8 9.9 13.6 −0.43 −0.04

China 24.7 58.5 1.6 3.7 14.1 33.4 1.9 4.4 1.21 −0.07

Australia 4.3 33.0 1.9 14.6 3.3 25.1 3.5 27.3 −0.48 0.03

Democratic Republic of
the Congo

2.9 15.8 1.4 7.8 4.1 22.6 9.8 53.8 −2.35 0.01

Indonesia 4.3 25.6 1.5 8.8 5.8 34.7 5.2 30.9 −1.54 −0.01

Peru 1.2 14.7 0.7 7.9 2.8 34.1 3.6 43.3 −0.97 0.01

India 3.0 37.0 1.1 13.2 2.4 29.8 1.6 20.0 0.12 −0.02

FCupFFIdown: increased coverage and decreased fragmentation, FCupFFIup: increased coverage and increased fragmentation, FCdownFFIdown: decreased coverage and decreased fragmentation, and
FCdownFFI

up decreased coverage and increased fragmentation.
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proportions (23% − 35%) of the forested areas, while FCupFFIup pattern
only accounted for very low proportions (4–15%).

Discussion
We developed an integrated FFI and evaluated the static and dynamic
patterns of forest fragmentation between 2000 and 2020, and the
results identified the world’s most fragmented forests and those that
experienced the most severe fragmentation. Consistent with previous
studies5,20,21, we found that forest landscapes were relatively intact in the
Amazon, the Democratic Republic of the Congo, Borneo, and New
Guinea, which host some of the highest biodiversity in the world22.
However, these areas have also experienced the most severe forest
fragmentation over the last two decades according to their higher
positive ΔFFI values. For example, tropical regions suffered from more
intensive conditions that drove the conversion of intact forests into
fragmented forests7,10–12. In contrast, although forest landscapes in Eur-
ope and South China are highly fragmented, they are recovering as a
result of afforestation and effective protection efforts, which has sig-
nificantly improved forest landscapes. Thesefindingsdemonstrated that
the dynamic FFI, which reflects the nature of fragmentation (changes in
forest distribution pattern), may be more appropriate in evaluating
forest fragmentation than the static FFI. Our approach separates forest
fragmentation from thedistributionof forest fragments,which are often
conflated in forest fragmentation assessments. The static FFI mainly
reveals forest distribution patterns that are the long-term consequence
of climate, topography, and historical land cover changes since the
onset of the Anthropocene23–26, and the dynamic FFI represents
the processes of forest fragmentation more accurately.

In addition, the two-dimensional assessment framework we
developed based on changes in forest fragmentation and forest cov-
erage further reduced the uncertainties in the evaluation of forest
landscape dynamic patterns due to the inconsistencies between these
two factors. For example, we found that the FFI decreased in some
areas in central Canada and the central Amazon between 2000 and
2020, but forest losses were still found in those areas. These findings
further emphasize the value of our proposed two-dimensional
assessment framework in the evaluation of forest landscape pattern
dynamics, and it also provides reasonable approaches for evaluating
forest fragmentation and its dynamics at regional-national-global
scales. Thus, our approach can be used to link these changes in the
spatiotemporal pattern of forest fragmentation to forestmanagement
policies27,28.

We found that 75.1% of global forests experienced a decline in
fragmentation during the first 20 years of the 21st century, which
suggested that most global forest landscapes were generally improv-
ing. However, forest fragmentation exhibited divergent patterns in
different regions of theworld. On the one hand, we found an extensive
decline in forest fragmentation in the world’s most densely populated
and economically developed regions (the eastern US, Europe, and
South China). On the other hand, the remarkable increase in FFI
and decrease in FC in tropical areas presumably reflected the fact that
forests in these regions are under tremendous pressure from human
beings11,29,30. If these trends continue, forest fragmentation in the tro-
pics will be further exacerbated, and the ecological functions and
values of these forest landscapes will further decline and seriously
undermine the role of these forests in international climate agree-
ments and biodiversity conservation.

In our study, various forest landscape dynamic patterns, gener-
ated by the two-dimensional assessment framework, reflected differ-
ent recovery or degradation states of forests worldwide. In the early
stage of forest degradation, small or irregular forest patches are
cleared first, resulting in an FCdownFFIdown pattern. As forest loss
spreads to large intact patches, more forest edges are created, which
causes the forest to exhibit the FCdownFFI

up pattern and enter a deep
degradation stage. In contrast, in the forest recovery (forest protection

and afforestation) scenario, the introduction of additional small pat-
ches until they are connected into large intact forest patches causes
forests to exhibit FCupFFIup (more forest patches) and FCupFFIdown
(fewer forest patches) patterns, which represent the initial and deep
stages of the forest recovery, respectively.

Our findings indicated that there was a large contrast in the rela-
tionship between forests and human beings globally. The widespread
deep recovery of forests in some subtropical regions (particularly in
South China) and forests with deep degradation in some tropical
regions (particularly in the Brazilian Amazon) were both mainly
attributed to government forest policies (afforestation and
deforestation)31–35. For example, the substantial decrease in FFI and
increase in FC in central and South China since 2000 have beenmainly
attributed to the implementation of various ecological protection
projects36–38. In contrast, the land policy promulgated by the Brazilian
government and its associatedwildfire disturbances led to sharp forest
losses39 and significantly exacerbated forest fragmentation in the
southeastern Amazon. Similarly, large forest losses in southeast Asia
and tropical Africa were driven by increasing human pressures
according to satellite-based evidence14,40–42. However, considering that
the early recovery and early degradation stages accounted for con-
siderable percentages of all global forest landscapes, there is a large
opportunity for society to improve the forest landscape dynamic
patterns by adjusting policies. Particularly in the tropics, timely con-
servation and restoration efforts will prevent further damage and
maintain the important functions of these forests in global biodiversity
conservation and climate change mitigation.

Identifying the distribution and composition of forest fragmen-
tation modes enhances our insights for understanding the forest
fragmentation processes and drivers. We found that the most typical
FFI decrease mode (EDdownPDdownMPAup) and FFI increase mode
(EDupPDupMPAdown) accounted for more than half of the world’s rele-
vant forest landscapes, which indicated that edge, isolation, and patch
size effects changed synergistically with forest cover change for most
global forest landscapes. However, we also found some atypical FFI
changemodes. For example, in the central Amazon, MPA decreased in
some areas where FFI decreased, while PD decreased in some areas
where FFI decreased, which indicated that the processes of forest
fragmentation were extremely complex. Therefore, efforts in detect-
ing the underlying mechanism of forest fragmentation change should
be site-specific, and focus on the relationship between explanatory
factors and forest landscape patterns.

By coupling the changes in individual FFI components, we inves-
tigated ΔFFI and its associations with anthropogenic and natural fac-
tors and identified revealed the possible causes for forest
fragmentation dynamics for some hotspots. For hotspots with
increased FFI in the southeastern Amazon, large intact forest patches
have been converted into multiple small patches under the mixed
pressures from commercial harvest, cropland expansion and fire
disturbances39, causing serious forest losses and an increase in frag-
mentation (Supplementary Fig. 6). In central Siberia, however, forest
losses due to fire disturbances, especially in forest edges, directly
increased forest fragmentation during 2000–2020. For hotspots with
decreased FFI in subtropical regions, especially in central China, the
decrease in fragmentationwas highly related to the implementation of
ecological restoration projects under rapid economic development.
For example, afforestation efforts under the “grain to green” project
increased forest area and connected discrete forest patches43. Also, for
hotspots in western Canada and eastern Europe, the decline of FFI was
mainly attributed to fire disturbances and changes in cropland area,
respectively. These factors increase MPA, reduce ED and PD, and
ultimately reduce forest fragmentation by smoothing forest edges and
reducing small forest patches.

Although climate change is unlikely to cause changes in forest
distribution on a 20-year timescale in most regions of the world, it is
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possible that climate may still have certain impacts on forest frag-
mentation dynamics in some regions. For example, the decrease in FFI
in northern Eurasia between 2000 and 2020may also be attributed to
forest expansion caused by climate warming at high latitudes44, which
caused the conversion of small patches into large patches and reduced
forest fragmentation. In contrast, more frequent fires, caused by cli-
mate change in Canada, Far East Russia, the Brazilian Amazon, tropical
Africa and coastal Australia (Supplementary Fig. 5) have resulted in
remarkable forest losses and intensified forest fragmentation45–48.

However, the complexities of forest fragmentation processes and
the causes also remind us that forest fragmentation studies should be
targeted and localized. The availability of precise forest distribution
data and a thorough understanding of forest landscape dynamic dri-
vers, including landpolicy, climate change, and international trade, are
essential conditions for research on the patterns, causes, ecological
consequences, and coping strategies of forest fragmentation. More-
over, it should be noted that the use of bi-temporal forest cover data
also makes it impossible to fully assess the continuous dynamics,
especially in some areas of sub-tropical forestry or humid tropical
shifting cultivation. Therefore, more comprehensive analyses should
be conducted that consider specific species characteristics, vegetation
types, and multi-temporal forest cover data in the detection of the
causes of forest fragmentation dynamics. These analyses also form the
basis for applying the assessment of patterns and causes of forest
fragmentation to biodiversity conservation and carbon cycle feedback
mechanisms.

By coupling landscape changes and multiple features of frag-
mentation, our approach overcomes the problem of considering only
the static state of fragmentation insteadof dynamic change, and thus it
improves our understanding of the patterns of global forest frag-
mentation. It also more effectively reflects the reality of forest land-
scape changes and is valuable for the timely formulation and
adjustment of relevant policies.

In addition, negative states of forests exist for most of the 10
countries with the largest forest areas, which demonstrates remark-
able agricultural land expansion, timber harvest and forest fire dis-
turbance in recent years, as well as an overall increase in other
disturbances. These changes result in the further loss of forest area,
the intensification of fragmentation, and the degradation of ecosystem
functions28,49,50. However, the significant negative relationshipbetween
ΔFFI and ΔFC at the national scale suggested that efforts that aimed to
increase forest area were still effective in mitigating fragmentation.
Targeted afforestation and protection measures are important
approaches to prevent further deterioration of fragmentation globally.
Our findings highlight that an understanding of deforestation and
fragmentation dynamics needs to be incorporated into the policy-
making process in these countries to minimize irreversible damage to
vital forest ecosystems and to redirect the course of development
toward sustainability.

Methods
Datasets
Global forest cover maps. High-resolution (30m) global forest cover
data for 2000 and 2020 were obtained from the global land cover and
land use (GLCLU) change dataset51. The GLULC forest cover data
defines a pixel with tree height ≥5m at the Landsat pixel scale as a
forest pixel, which agrees with the definition of forest by the Food and
AgricultureOrganization of the United Nations (FAO). The 30m forest
cover data were processed into binary forest maps for 2000 and 2020
and were used to calculate three fragmentation-related landscape
metrics based on the global 5000m grid (see calculation details
below). The 5000mgridwas alsoused to calculate the forest coverage
(FC, the percentage of forest area to total area in a particular space) in
each grid cell and to generate 5000m resolution FC maps for 2000
and 2020.

Climatic zones. The climate zones data were from the world climate
regions (WCR)mapproduced in 2020 (Supplementary Fig. 7a)52, with a
spatial resolution of 250m. We considered global forests to occur in
one of four zones: tropical, subtropical, temperate or boreal, which
represent the major climatic zones of relevance to forest distribution
and spatial patterns of forest fragmentation.

Digital elevationmodel (DEM). Raster-based global altitude data were
obtained from the Global Land One-kilometer Base Elevation (GLOBE)
dataset (Supplementary Fig. 7b)53. GLOBE is a global digital elevation
model (DEM) with a latitude-longitude grid spacing of 30 arc-seconds.
The GLOBE DEM dataset was aggregated to a spatial resolution of
5000m to match the FFI and FC data, and the continuous DEM data
were divided into 12 altitudinal categories (<0, 0–100m, 100–200m,
200–300m, 300–400m, 400–500m, 500–600m, 600–700m,
700–800m, 800–900m, 900–1000m, and >1000m) to analyze the
relationship between forest fragmentation and altitude.

Estimates of global forest fragmentation
Global grid extent. We developed a series of grids, 5000m × 5000m
in size, for 2000 and 2020 to cover the global forest area. For eachgrid
cell, the fragmentation-related landscape pattern metrics were calcu-
lated based on the forest/non-forest binary maps. In total 3,413,077
and 3,422,375 grid cells were considered for 2000 and 2020, respec-
tively, whichmainly covered all forest landscapes worldwide. The total
area of forest landscapes was larger than the actual global forest area,
because each forest landscape contains a certain proportion of non-
forest areas. The overlaid parts of the grids were ultimately used in this
study to analyze the changes in forest fragmentation.

Forest landscape metrics related to fragmentation. Edge effect,
isolation effect, and patch size effect were themost important features
of forest fragmentation5, and they canbequantifiedby three landscape
pattern metrics, including edge density (ED), patch density (PD) and
mean patch area (MPA), respectively. The three landscape pattern
metrics were used to assemble a synthetic forest fragmentation index
in our study. These metrics were calculated as follows:

ED=
Pm

k = 1eik
A

� 10,000 ð1Þ

PD=
ni
A

� 10000 � 100 ð2Þ

MPA=mean AREA patchij

h i� �
ð3Þ

where eik is the total edge length in meters, ni is the number of pat-
ches, A is the total landscape (a grid cell was regarded as a landscape)
area in square meters, and AREA [patchij] is the area of each patch in
hectares.

These three landscape patternmetricswere calculated at the class
level (class 0: non-forest, class 1: forest) using the “landscapemetrics”
package54 in R software based on the two binary maps described
above, and the values were converted into raster layers for subsequent
analysis.

Static and dynamic forest fragmentation indexes. To obtain a
comprehensive understanding of the multiple dimensions of frag-
mentation, we constructed a synthesized forest fragmentation index
(FFI) using the normalized single fragmentation metrics in ArcGIS
software. During the normalization of ED, PD, and MPA, both the
directions of the three metrics in reflecting forest fragmentation and
the comparability of the FFI in different years were considered (Sup-
plementary Note 1 in Supplementary Information). We used the
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difference in the FFI between 2020 and 2000 to construct the dynamic
forest fragmentation index (ΔFFI) using the follow equation:

4FFI = FFI2020 � FFI2000 ð4Þ

where the range ofΔFFI is−1-1. The negative andpositive values ofΔFFI
indicated decreased and increased fragmentation, respectively.

Spatial patterns of forest fragmentation. To evaluate the spatial
patterns of the static FFI and ΔFFI values, we compared the FFI2000,
FFI2020, and ΔFFI among the different climatic zones and altitudinal
categories defined previously. One-way ANOVA was used to test for
significant differences in FFI2000, FFI2020, and ΔFFI values, and the LSD
test was used for pairwise comparisons (Fig. 1d). Moreover, a gen-
eralized additive model (GAM) was used to detect the relationships
between ΔFFI and FFI2000 for the different climatic zones (Supple-
mentary Fig. 2). Linear correlations were used to explore the rela-
tionships between altitude and FFI2000, FFI2020, and ΔFFI, and the
correlation coefficient and the slope of the regression line were both
used to assess the strength of these relationships.

Spatial patterns of the modes of fragmentation processes
Since the ΔFFI was calculated by combining ED, PD and MPA, the
directions of change in these metrics can reflect the different pro-
cesses forest fragmentation can proceed. Therefore, we identified
eight modes of forest fragmentation processes (EDupPDupMPAdown,
EDdownPD

upMPAdown, EDupPDdownMPAdown, EDdownPDdownMPAdown,
EDupPDupMPAup, EDdownPD

upMPAup, EDupPDdownMPAup, and
EDdownPDdownMPAup) by considering all possible combinations of an
increase or decrease in the ED, PD and MPA between 2000 and 2020
(Fig. 2). Moreover, to characterize the forest fragmentation processes
that occurred in areas where fragmentation decreased or increased,
we evaluated the global spatial distributions and composition pro-
portions of the different fragmentation processmodes where the ΔFFI
values were negative or positive, respectively.

To better analyze the processes driving changes in forest frag-
mentation, we selected three hotspots (western Canada, southern
Europe, and central China) where fragmentation was remarkably
decreased and three hotspots (the southeastern Amazon, the Congo
Basin, and central Siberia) where fragmentation was obviously
increased. For eachhotspot, we analyzed the compositionproportions
of the eightmodes of fragmentation processes (Fig. 2).We then used a
T-test to compare the values of EDnor, PDnor andMPAnor between 2000
and 2020, and the percentages of increase or decrease for each of
these values were used to reflect their contributions to the changes in
the FFI.

Drivers of forest fragmentation processes for the globe and
hotspots
Explanatory variables. Anthropogenic activities, demographic pres-
sure, and natural disturbances are considered as the main drivers of
global forest loss39. Considering the relationship between human and
forest cover, anthropogenic activities were further divided into agri-
cultural activity and socio-economic intensity. Therefore, factors
regarding agricultural activity (mean cropland coverage and cropland
coverage change), socio-economic intensity (meannighttime light and
nighttime light change), demographic pressure (mean population
density and population density change), and natural disturbance (fire
frequency) were adopted in our study to explain the dynamics of FFI
for six hotspots and the globe. Agricultural activity and natural dis-
turbance are direct influencing factors for the changes in forest dis-
tribution and forest fragmentation, while socio-economic intensity
and demographic pressure affect forest cover and forest fragmenta-
tion by indirect pathway.

For variables of agricultural activity, themean cropland coverage
and cropland coverage change were regarded as two important
indicators that represent the magnitude and variation of cropland
area during 2000–2020. The 30m resolution cropland extent maps
from the Global Land Cover and Land Use Change dataset55 for 2003
and 2019 were adopted in our study and were processed into crop-
land coverage data by calculating the ratio of cropland pixel to total
pixel in a 5000m size grid. Themean and the difference values of the
cropland coverage between 2003 and 2019, respectively, were
directly used as agricultural activity factors. In addition, the 500m
resolution nighttime light data, derived from the global NPP-VIIRS-
like nighttime light dataset56, for 2000 and 2020were directly used to
represent the socio-economic intensity factors. Similarly, the mean
nighttime light and nighttime light change were two important indi-
cators that represent the magnitude and variation of socio-economic
intensity during 2000–2020, respectively, and were calculated by the
mean and difference values of the NPP-VIIRS-like nighttime light
between 2000 and 2020. Furthermore, the mean population density
and the population density change during 2000–2020 reflect the
magnitude and variation of demographic pressure, respectively, and
were used as demographic pressure factors in this study. The
WorldPop global gridded population count datasets57 for 2000 and
2020 with a spatial resolution of 1000m were firstly aggregated into
5000m resolution population density data by calculating the mean
value for each 5000m size grid of the two periods. The two demo-
graphic pressure variables were obtained by the mean and the dif-
ference values of the 5000m resolution gridded population density
layers for 2000 and 2020. Finally, for the natural disturbance variable,
fire frequency during 2000–2020 was selected as an important indi-
cator that represented the total fire disturbance. TheMODISmonthly
global burned area dataset (MCD64A1 version 6) with a spatial reso-
lution of 500m were used in this study, and the fire frequency was
obtained by counting the ratio of burned pixel during 2000–2020 for
5000m size grids during 2000–2020. The resolution of raster layers
of all independent variables was aggregated into 5000m to match
the ΔFFI.

Correlation analysis. The general linear models were used to detect
the relationship between ΔFFI and the seven explanatory factors, and
all dependent and independent variables were standardized into the
range of 0-1 during statistical analysis. The impact of each explanatory
factor on the ΔFFI was quantified by the standardized coefficient
estimates and P values from the standardized multiple linear models,
and the corresponding confidence intervals were also incorporated to
help analyze the drivers of ΔFFI. We performed the general linear
models for each hotspot (Fig. 3) and the globe (Supplementary Fig. 4)
based on dependent and independent variables in their respective
scopes. In addition, we identified themajor driver ofΔFFI, represented
by the factor with the highest absolute value of coefficient estimates,
for a series of 50km× 50 kmgrids and finally generated theΔFFImajor
drivermap (Supplementary Fig. 5) with a spatial resolution of 50 km at
the global scale.

Two-dimensional framework for the assessment of forest land-
scape dynamics
We constructed a two-dimensional assessment framework of global
forest landscape dynamics in which all forest landscapes were cate-
gorized into four types (FCupFFIdown, FCupFFIup, FCdownFFIdown, and
FCdownFFI

up) based on increases (positive values) or decreases (nega-
tive values) in FC andFFI from2000 to 2020. These four types of forest
landscape dynamic patterns represent forest landscapes in the deep
recovery stage, early recovery stage, early degradation stage and deep
degradation stage, respectively. We mapped the spatial distributions
of these different forest landscape dynamic patterns (Fig. 3a) by
overlaying the ΔFFI layer and the ΔFC layer at 5000m resolution.
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We also evaluated the variation in the relative percentages of the
four patterns across climatic zones (Fig. 3b) and the altitudinal gra-
dient (Supplementary Fig. 8). Furthermore, we compared the mean
values ofΔFFI andΔFC among all countriesworldwide (Supplementary
Data 1) and used Pearson’s linear correlations to fit the relationship
(Fig. 3c). Specifically, to evaluate how changes in forest cover and
fragmentation between 2000 and 2020 varied among the ten coun-
tries with the largest forest area worldwide, we calculated the area
percentages representing each pattern and the mean values of ΔFC
andΔFFI (Table 1). The administrative boundaries of eachcountrywere
determined by the FAO (https://data.apps.fao.org/map/catalog/static/
search?format=shapefile).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the analysis are publicly accessible. The global land
cover and land use change dataset is available at https://glad.umd.edu/
dataset/GLCLUC2020 (including forest cover data and cropland cov-
erage data); The global climate zones dataset is available at https://
storymaps.arcgis.com/stories/61a5d4e9494f46c2b520a984b2398f3b;
The global altitude dataset is available at https://ngdc.noaa.gov/mgg/
topo/gltiles.html; The global NPP-VIIRS-like nighttime light dataset is
available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/YGIVCD; The worldPop global gridded population
count dataset is available at https://hub.worldpop.org/project/
categories?id=3; The MODIS monthly global burned area dataset is
available at https://lpdaac.usgs.gov/products/mcd64a1v006/. The
global administrative boundarydataset is available at https://data.apps.
fao.org/map/catalog/static/search?format=shapefile. The Forest
Fragmentation Index (FFI) data generated in this study have been
deposited in the Figshare repository at https://figshare.com/s/
21dbf1f50250aeb7f5a0.

Code availability
The code used to calculate the landscape pattern index in this study
can be found in the Figshare repository at https://figshare.com/s/
21dbf1f50250aeb7f5a0.
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