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Phylodynamic of SARS-CoV-2 during the
second wave of COVID-19 in Peru

Santiago Justo Arevalo 1,2,3 , Carmen Sofia Uribe Calampa1,
Cinthy Jimenez Silva 4, Mauro Quiñones Aguilar1, Remco Bouckaert5 &
Joao Renato Rebello Pinho 2,6

At over 0.6% of the population, Peru has one of the highest SARS-CoV-2
mortality rate in theworld.Much effort to sequence genomes has beendone in
this country sincemid-2020.However, an adequate analysis of thedynamics of
the variants of concern and interest (VOCIs) is missing. We investigated the
dynamics of the COVID-19 pandemic in Peru with a focus on the second wave,
which had the greatest case fatality rate. The second wave in Peru was domi-
nated by Lambda and Gamma. Analysis of the origin of Lambda shows that it
most likely emerged in Peru before the second wave (June–November, 2020).
After its emergence it reached Argentina and Chile from Peru where it was
locally transmitted. During the second wave in Peru, we identify the coex-
istence of two Lambda and three Gamma sublineages. Lambda sublineages
emerged in the center of Peru whereas the Gamma sublineages more likely
originated in the north-east and mid-east. Importantly, it is observed that the
center of Peru played a prominent role in transmitting SARS-CoV-2 to other
regions within Peru.

More than 2 years have passed since the first cases of unexplained viral
pneumonia were reported in the city of Wuhan. On March 11th, 2020,
the World Health Organization (WHO) officially declared SARS-CoV-2
as a pandemic. On April 12th, 2023, there were 762 million confirmed
cases worldwide1.

The first confirmed case of COVID-19 in Peru was on March 6th,
2020, in a 25-year-oldmancoming fromEurope. After this, threewaves
were reported in Peru (during the writing of thismanuscript the fourth
and fifth waves hit Peru). The first wave ranged from April, 2020, to
November, 2020. A devastating second wave from January to June,
2021, caused >980,485 reported cases and 98,837 confirmed deaths1.
Then, a third wave hit Peru causing the highest number of reported
cases per day (up to ~50,000 cases per day), but the number of deaths
weremuch less compared to the first and second waves. By November
30th, 2022, Peru had around 4.23 million of COVID-19 reported cases
with 217,000 confirmed deaths1.

Peru is among the countriesmost affectedby the pandemic. In the
first 90 days of the pandemic, the highest accumulated incidence rate
in Latin America and the Caribbean was observed in Peru (5 426.3
cases/million), followed by Chile, Panama, Ecuador, and Brazil2. As of
November, 2022, Peru still has the highest mortality rate in the world
(6590 deaths/million)1.

During the COVID-19 pandemic, several lineages appeared
worldwide, but just some of them reached high global prevalence. The
most important lineages, due to their relative frequencies and their
apparently improved capacity of transmission3–12 were designated as
Variants of Concern (VOCs) or Variants of Interest (VOIs) by theWorld
Health Organization13. Five SARS-CoV-2 variants were classified as
VOCs (Alpha, Beta, Gamma, Delta, and Omicron) and some others
as VOIs, such as Lambda and Mu that, together with the Gamma
VOC, were the most prevalent in South America according to
Nextstrain14,15.
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Since the secondwave of COVID-19 cases in Peru, there has been a
significant effort to sequencegenomes16,17, resulting in the reporting of
~300 genomes per week17. Thanks to this, the presence of six of the
VOCs or VOIs (Alpha, Gamma, Delta, Lambda, Mu, and Omicron) were
reported at the time in Peru16–18. From the VOIs and VOCs reported in
Peru, Lambda was of particular interest due to its predominance dur-
ing the deadliest secondwave in Peru and because it was hypothesized
that this VOI emerged in Peru.

Previous estimates of the origin of Lambda lineage put its MRCA
between September andNovember, 202018, or around July 12th, 20207.
However, the location of origin for the Lambda lineage, as well as the
date of its emergence, need tobe carefully reevaluated considering the
presence of Lambda genomes in countries beyond Peru.

Here, we investigated the dynamics of the COVID-19 pandemic in
Peru with focus in the second wave. We use epidemiological data and
Bayesian phylogenetics to estimate the date and country of origin of
VOCI Lambda and to reveal the dynamics of the VOCIs Lambda and
Gamma that dominated the second wave of COVID-19 in Peru.

Results
Three waves and multiple lineage replacements characterizes
the COVID-19 pandemic in Peru
Until June 2022, the COVID-19 pandemic in Peru was characterized by
three waves (Fig. 1a): (i) The first wave began in April, 2020, and sti-
mulated the implementation of several lockdownmeasures in Peru, as
shown by the high stringency index (SI > 90) reported in the COVID-19
Government Response Tracker (Fig. 1b)19. These measures were pro-
gressively diminished up to July, 2020, when a rise in the number of
cases again encouraged the reimplementation of measures (SI > 80)
(Fig. 1a, b). After the lowering of cases and the end of the first wave of
COVID-19 in October, 2020, the stringency index continued to
decrease until December, 2020, when it reached its lowest value since
the beginning of the pandemic (SI < 60) (Fig. 1a, b). (ii) In January, 2021,
a new rise of cases marked the beginning of the second wave and
encouragedmeasures to be restarted (SI > 80) (Fig. 1a, b). Again, these
measures were progressively diminished until the end of the second
wave in July 2021 (SI < 70) (Fig. 1a, b). During the second wave, in
February, 2021, the vaccination program began in Peru probably
contributing to the decrease of cases and the end of the second wave
(Fig. 1a, b), although the precise contribution of vaccinations needs to
be investigated further. Importantly, the first two waves had a case
fatality rate of ~10% (number of deaths divided by the number of cases)
(Fig. 1a). (iii) In December, 2021, a third wave of COVID-19 cases hit
Peru. But this time, just a modest increase of the stringency index was
observed (SI around 70) (Fig. 1a, b). During this third wave, that spans
up toMarch, 2022, the number of cases per day wasmuch higher than
in the previous waves (Fig. 1a). In contrast, the case fatality rate
decreased to ~0.5%, meaning a reduction of ~95% deaths compared to
the first and second wave (Fig. 1a). This is probably a result of the
vaccination program that at the beginning of the third wave had
around 30 million total vaccinations with ~70% of people with at least
one doses (Fig. 1b)20. Consistently, effects of the vaccinations have
been reported in other regions, showing between 46% to 98% reduc-
tion in deaths21,22.

Five variants were classified as VOCs by the WHO (Alpha, Beta,
Gamma, Delta, Omicron) and some others, including Lambda and Mu,
as VOIs13. All of thementioned VOCIs, except Beta, have been reported
in Peru (Fig. 1c). From them, Lambda, Gamma, Delta, and Omicron
reached prevalence >10% in at least 1month (Fig. 1c). In contrast, Alpha
and Mu were not so successful in Peru (Fig. 1c). During the first wave
none of these variants had a high relative prevalence. On the other
hand, the second wave was marked by the prevalence of Gamma and
Lambda that replaced the pre-existing lineages (Fig. 1c). At the end of
the secondwave, Delta replacedbothGammaand Lambda andhad the
highest prevalence until the beginning of the third wave when

Omicron replaced Delta, marking the third lineage replacement in
Peru (Fig. 1c).

The origin of Lambda and its initial expansion in South America
Gamma and Lambda dominated the second wave in Peru (Fig. 1).
However, although the origin of Gamma and its related lineages has
been extensively studied4,23–26, the origin of Lambda has received less
attention. It hasbeenhypothesized that Lambdahas emerged inPeru18.
However, this hypothesis has been supported only by the fact that
most of the first genomes belonging to this variant were isolated in
Peru (Fig. S1).

To analyse more in-depth the most likely country of origin of
Lambda, we first identified the candidate countries where this variant
could emerge. Based on evidence that Lambda has a comparable
ability to evade the immune response with respect to other con-
temporaneous VOCIs (i.e: Alpha, Gamma)7,27, we defined two criteria
for identifying countries as potential origins of Lambda: (i) Lambda
must have been sampled in at least two cities of the country of origin
before April, 2021 and (ii) in these cities at least 15%of sequenced cases
sampled before April, 2021 must have been classified as Lambda (that
was the time when in Peru the Lambda variant had reached >50%
prevalence, see Fig. 1c). Based on these two considerations, we iden-
tified six countries where Lambda could have originated (Figs. S2 and
S3). Five of the six countries are in South America, giving this region
themost likely regionwhere Lambdaoriginated. It is important to note
that countries and cities in South America could be undersampled,
with some of them without available genomes to include in the ana-
lysis. Thus, we cannot rule out these countries and cities as possible
locations of origin of Lambda.

To determine on which of these six countries was most probable
that Lambdahas emerged,wefirst calculated the relative prevalenceof
Lambda by week in these countries and adjusted the prevalence by
local polynomial regression (LOESS28) (Fig. 2a). Then, using the
adjusted prevalence we estimated the number of Lambda cases by
week in each country (Fig. 2b). This analysis showed that between
November and December, 2020, three countries (Argentina, Chile and
Peru) reached at least 1% prevalence of Lambda (Fig. 2a) and thus
unreported Lambda cases could have already been circulating
(Fig. 2b). On the other hand, the other three countries (Mexico,
Ecuador and Colombia) reached a Lambda prevalence of 1% after
February, 2021 (Fig. 2a). It is unlikely that Lambda prevalence in
Mexico, Colombia, and Ecuador were underestimated because the
number of sequenced genomes and sampling proportion were rela-
tively similar to those in Chile, Peru and Argentina between October,
2020, and April, 2021 (Fig. S4).

The above analysis showed that Peru, Chile, and Argentina could
be the location of origin of the Lambda variant. Thus, to determine the
most likely location of origin, we conducted phylogeographic ana-
lyses. First, to reduce the sampling bias in the dataset of Lambda
genomes we randomly take one Lambda genome per each ~7400
Lambda cases per week of each country (this procedure was repeated
three times to yield three different samples). This sampling procedure
reduces the computational effort required and, most importantly,
allow us to improve the correlation between number of cases and
number of genomes in the dataset (r2 = 0.97 vs r2 = 0.12) (Fig. S5).
However, it is important to recognize that variable percentage of true
cases recorded in each country can also introduce another layer
of bias.

Then, we analysed the percentage of resolved quartets (groups of
four sequences randomly extracted from the alignment with at least
one of the three possible fully resolved tree topologies with a like-
lihood distinguishable from the other two) by likelihood mapping29

and the root-to-tip distance vs. sequence sampling time correlation of
datasets of Lambda genomes in increasing months from January, 2021
to October, 2021 (Fig. S6). Correlations between root-to-tip genetic
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distance vs sampling time showed that samples that covered genomes
from January, 2021 to September, 2021 presented a correlation coef-
ficient (R-value) >0.55 (Fig. S6). Additionally, likelihood mapping
showed that these samples (from January, 2021, to September, 2021)
have >54% resolved quartets, while not optimal, it can be considered
appropriate to perform phylogenetic analysis (Fig. S6). In summary,
three samples with one genome per each ~7400 Lambda cases cov-
ering January, 2021, to September, 2021, from the three countries

consideredwere used to determine themost likely country of origin of
the Lambda variant.

The phylogeographic analysis of the three Lambda samples
showed consistent estimations of thedate of origin (root date) (Fig. 3a)
and substitutions rates in the ranges extensively reported for SARS-
CoV-2 (Fig. S7). Considering all three samples, the overall 95% highest
posterior density (HPD) of the root date puts the origin of Lambda
between May and October, 2020, indicating that Lambda had already
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Fig. 1 | COVID-19 pandemic in Peru was characterized by three waves and
lineage replacements. a The 14-day average of the number of cases or deaths are
shown in black and red, respectively. Three waves of COVID-19 cases can be
observed. b Bars in gray represent the stringency index level (Hale et al. 2021) and

the blue discontinuous lines represent the log of the total vaccinations. c Relative
prevalence of VOCIs in time showing episodes of lineage replacements during the
COVID-19 pandemic in Peru.
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been circulating before the second wave began in Peru and even
during the first wave (Figs. 1a and 3a). Besides this, the ancestral state
reconstruction of the root showed Peru as the most likely country of
origin of Lambda (>50% taking into consideration the three samples),
followed by Argentina (Fig. 3b).

Additionally, we noted that during the sampling procedure some
available genomes from the weeks before Lambda reached 7400
estimated Lambda caseswerenot considered (Fig. S8). These genomes
could be informative about the origin of Lambda. To analyze the effect
of including these genomes in the sample, we took six additional
samples where we add one available genome per week from the weeks
before Lambda reached 7400 estimated Lambda cases (Fig. S9) and

performed phylogeographic analyses with these samples. Although
the inclusion of these genomes affected the correlation between the
number of cases and the number of genomes during the first weeks,
the conclusion that the Lambda variant likely originated in Peru and
the estimated dates of its origin were almost unaffected (Fig. S10). It is
worth nothing that for one sample (sample 3 in Fig. S10), the prob-
abilities of being the origin for the three countries were similar, indi-
cating that this sample did not contain enough information to
differentiate between the three possible location of Lambda variant’s
origin.

We then further explored the Lambdamigrationpatterns between
Peru, Argentina, and Chile, assuming that either Peru or Argentina was
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Fig. 2 | Lambda VOI was already circulating in Argentina, Chile and Peru
betweenNovember andDecember 2020. aWeekly relative prevalenceof Lambda
in six different countries. Each point represents the calculated relative prevalence
of Lambda byweekwith 95% confidence intervals as error bars. Relative prevalence
adjusted by local polynomial regression is shown as lines in each graphic.
b Estimated Lambda cases in the time, estimations were obtained bymultiplication

of the 14-day average number of cases by week with the adjusted relative pre-
valence in a. BetweenNovember andDecember, 2020, In Argentina, Chile and Peru
the estimated Lambda cases is >0. Dashed vertical lines in a and b mark the
beginning of November, 2020, and the end of December, 2020, to improve
visualization.
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the place of origin. Trees from the posterior distribution with Peru as
the root indicated that between early August and early December,
2020, and between early September and mid-December, 2020, (95%
HPD intervals of the first transition between states), Lambda reached
Argentina and Chile from Peru, respectively (Fig. 4a). On the other
hand, trees where Argentina was the root differed in that Lambda
reached Peru from Argentina between late July and mid-November,
2020. But, similarly to the previous hypothesis, Lambda reached Chile
from Peru between September and December, 2020 (Fig. 4b). In both
scenarios, most Lambda genomes from Argentina or Chile are clus-
tered in a single monophyletic group indicating that propagation of
Lambda in both countries wasmainly due to local transmission (Fig. 4).
Lambda, togetherwithGamma, governed the secondwave in the three
countries, reaching relative prevalence of around 25% inArgentina and
Chile, and around 90% in Peru (Fig. 2).

Taken together, our phylogeographic analysis showed that the
most likely hypothesis of Lambda origin is that it emerged in Peru
between May and October, 2020. Then, from Peru, it reached Argen-
tina and Chile. Once in these countries, Lambda propagates inside
these countries mainly by local transmission contributing with several
COVID-19 cases during their respective second waves.

Different Lambda and Gamma sublineages circulated in Peru
Lambda, together with Gamma, dominated the COVID-19 pandemic in
Peru, before being replaced by the Delta VOC (Fig. 1c). Whereas
Lambda reached relative prevalence around 90% representing
>40,000 weekly cases, Gamma reached maximum prevalence around
25% that represented around 5000 weekly cases (Fig. 5a, b, insets).

We began the analysis by determining if we could identify sub-
lineages of Lambda and Gamma. A maximum likelihood phylogeny of
all the available Peruvian Lambda genomes shown two well-supported
sublineages (here named SubL1 and SubL2) (Fig. 5a). Almost all the
SubL2 genomes presented a T in position 28849, whereas most of
SubL1 have a C in this position (Fig. S11). Both were reported in all the
six Peruvian regions that we considered in this manuscript (hereafter
we refer to six Peruvian regions: south, center, north, south-east, mid-
east, north-east. Each of these regions groups one or more Peruvian
states, see Table S1 for information about which states are grouped in
each region) (Fig. 5a). When we analysed the relative prevalence
adjustedbyLOESSof eachof these sublineages by region, weobserved
that both (SubL1 and SubL2) followed similar patterns in all the regions
reaching thepeakofprevalencebetweenMarch and July, 2021 (Fig. 5c).
In all six regions the prevalence of SubL2 was slightly less than SubL1
(Fig. 5c). Interestingly, the sum of the prevalence of the Lambda sub-
lineages in five of the six regions was much >50%; however, in the
north-east this sum did not reach 50% indicating that, opposite to all
the other regions, Lambda was not the most prevalent lineage during
the second wave in the north-east of Peru.

In the case of Gamma, the maximum likelihood tree of all the
Peruvian Gamma genomes shown three sublineages (SubG1, SubG2,
and SubG3), each of themhadat least one reported genome fromeach
Peruvian region indicating that all the sublineages circulated in all the
Peruvian regions (Fig. 5b). The first Gamma genomes reported in Peru
belong to the sublineage SubG2. This sublineage has a combination of
T, C, C, A, T, C in position 3049, 10,116, 22,298, 23,599, 23,604, and
25,613, respectively (Fig. S12). SubG2 caused a peak with most of the
Gamma cases in the center, north, north-east and south-east of Peru
(Fig. 5d). This peak was slightly before in the north-east than in the
other three regions, probably indicating that SubG2 reached the north-
east before the other regions (see below the phylodynamic analyses)
(Fig. 5d). Of note, on the mid-east, SubG2 did not cause most of the
Gamma cases, instead the sublineage SubG3 was responsible for this
(Fig. 5d). SubG3 has three conserved nucleotide substitutions in
respect to SubG2, positions 10116, 22298, and 23604 are T, A, and C,
respectively (Fig. S12). Furthermore, in all the regions except in the

mid-east SubG3 and SubG1 followed similar patterns (in the south, the
three Gamma sublineages followed similar patterns) (Fig. 5d). In the
center and north-east, SubG3 and SubG1 caused considerable peaks of
Gammacases (Fig. 5d). Opposite to SubG3, SubG1 has positions 10,116,
22,298, and 23,604 equals to SubG2 but positions 3049, 23599 and
25613 are A, G, and T, respectively (Fig. S12).

Lineages emerged in the center, north-east and mid-east
To determine the most likely Peruvian region where Gamma and
Lambda sublineages emerged, we performed Bayesian phylogeo-
graphic analyses with Peruvian regions as discrete states. We first
performed andundersampling procedure, similar to the analysis of the
country of origin of Lambda (see above), taking into consideration the
number of cases in each region to reduce sampling bias (Figs. S13 and
S14). The undersampling was done by triplicates. Also, we analysed the
root-to-tip distance vs. sequence sampling time correlation and the
percentage of resolved quartets of these samples (Table S2 and S3).
Sampling based on the number of cases allowed us to obtain a high
correlation between the number of cases and the number of genomes
(R >0.70). However, despite the sampling procedure improving the
correlation, a low number of Gamma sublineage genomes in some
weeks with a relatively high number of cases prevented the correla-
tions from reaching even higher R-values (Fig. S14). Additionally, the
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root-to-tip vs. sequence sampling time showed correlation coefficients
(R-values) >0.5 (Table S1). However, the percentage of resolved quar-
tets was very low in the sample of SubL1 (23%), whereas other sub-
lineages presented at least 44% resolved quartets (Table S2). Because
of this and becauseposition 28849 is only partially conserved in SubL1,
we decided to perform a discrete phylogeographic analysis of each
Gamma sublineage and Lambda, joining SubL1 and SubL2 (named
SubL1 + L2).

These analyses showed that the MRCA of SubL1 + L2 most likely
existed in the center between September and November, 2020
(Fig. 6a, b). The origin of the Gamma sublineages, SubG1 and SubG3,
was confidently traced to the north-east and mid-east, respectively,
with their dates between March and April, 2021, and December and
February, 2021, respectively (Fig. 6a, b). In the case of SubG2, estima-
tions of theMRCAweremore uncertainwith its date ranging from June
to November, 2020, and its locationwith similar probabilities between
the center and the north-east (both ~37.5%) (Fig. 6a, b). The results
from the three samples were consistent, except for the third sample of
SubG2, which showed similar probabilities for the mid-east and north-
east as the origin (Fig. S15). It remains and open question whether the
Gamma sublineages emerged in Peru orwere introduced fromanother
country such as Brazil.

The center was the main exporter of lineages to other Peruvian
regions during the second wave
After determining the most likely origins of the sublineages, our next
stepwas to better understand the dynamics between Peruvian regions.
We performed these analyses on three different samples, which pro-
duced consistent results (Fig. S16). These samples were combined, and
the resulting distributions are presented in the following text.

Regarding SubL1 + L2, the center was the origin of most of the
transitions between regions with a median of 65 transitions per tree
(95% interval of transitions: 51–76) from a median of total transi-
tions per tree of 73 (95% interval of transitions: 62–84) (Fig. 6c). The
north represented the destination of most of transitions where the
center was the origin with a median of 26 transitions per tree (95%
interval of transitions: 18–35) followed by the south-east, south and
mid-east (12–21, 9–16, and 3–11, 95% interval of transitions per tree,
respectively) (Fig. 6c). These results suggest that the center was the
main exporter of the Lambda lineage to other Peruvian regions.

In the case of SubG1, the median of total transitions per tree was
33 (95% interval transitions: 24–55) (Fig. 6c). As shown in Fig. 6a, the
SubG1 most likely emerged in the north-east of Peru. Most of the
transitions where north-east was the origin had the center as the des-
tination with a median of 11 transitions per tree (95% interval
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transitions: 5–26) (Fig. 6c). Furthermore, the center was the likely
origin of other transitions of SubG1 to the other regions, especially to
the north and the south,with amedian of 7 and 3 transitions per tree to
thenorth and south, respectively (2–11 and 1–3, 95% interval transitions
per tree, respectively) (Fig. 6c). Thus, it was likely that after the tran-
sition of SubG1 fromnorth-east to the center, SubG1 reached the other
regions from the center.

As previously mentioned, SubG2 could have emerged in the
center, north-east or even in themid-east (Fig. 6a, S15). This sublineage
had a median of 56 transitions per tree (95% interval of transitions:
45–71) (Fig. 6c). The center and the north-east had the highest con-
centration of estimated transitions for this sublineage, with the center
and north-east being the origin of amedian of 21 and 25 transitions per

tree, respectively (7–36 and 5–49, 95% interval transitions per tree,
respectively) (Fig. 6c). Interestingly, transitions from the north-east to
the center were estimated to be between 4 and 26 transitions per tree
raising the possibility that if the north-east waswhere SubG2 emerged,
then it moves at least four times to the center and from here SubG2
could reached the other Peruvian regions, mainly the north (95%
interval of transitions: 1–13) (Fig. 6c).

Finally, SubG3 exhibited a median of 53 transitions per tree (95%
interval transitions: 39–67) (Fig. 6c). In contrast to the other sub-
lineages, where the center played a central role as an exporter, SubG3
had the mid-east as its main source region, with a median of 26 tran-
sitions per tree (95% interval of transitions: 15–39) (Fig. 6c). SubG3,
which likely originated in the mid-east was mainly transferred to the
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Fig. 5 | Lambda and Gamma sublineages circulated during the second wave of
COVID-19 in Peru. Maximum likelihood trees of Lambda (n = 3461) (a) or Gamma
(n = 1674) (b) genomes fromPeru showing two (Lambda) and three (Gamma) clades
with high support (SH-aLRT/bootstrap) representing sublineages. Tips points are
colored according to the region where the genomewas collected. At the left, insets
are showing the overall prevalence and estimated cases of Lambda or Gamma by

week in Peru. Error bars in relative prevalence indicate the 95% confidence interval.
c, d are showing the weekly relative prevalence (above) and estimated number of
cases (below) of each sublineage in each peruvian region. In the relative prevalence
graphics, points represent the calculated relative prevalence byweek and the error
bars represent the 95% confidence intervals, lines represent the adjusted relative
prevalence by local polynomial regression (LOESS).
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Fig. 6 | Phylodynamics of Lambda and Gamma sublineages between Peruvian
regions. a Location probability of the root that represents the MRCA of the sub-
lineage. Bars are colored according to the Peruvian region. b Lines represent the
highposterior density 95%of the root datewhich represent the timeof originof the
sublineage. Transparent circles and small filled points represent the mean and the
median of the posterior distribution, respectively. c Matrices of the 2.5% to 97.5%
fraction of the distribution of transitions per tree between Peruvian regions. In the
y-axis is depicted the region of origin of the transition and the x-axis showed the
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center, with a median of 15 transitions per tree (95% interval of tran-
sitions: 8–23) (Fig. 6c). The nextmost common transitionwas from the
mid-east to the north-east, with amedian of 6 transitions per tree (95%
interval of transitions: 2–11).

Discussion
In this study, we investigated the origin of the Lambda lineage and
the dynamic of the COVID-19 pandemic during the second wave in
Peru. We showed that Lambda was most likely originated in Peru
before the second wave. After its origin, from Peru it reached
Argentina and Chile where local transmission contributed to a raise
of COVID-19 cases in these two countries. When we analysed more in
depth the second wave in Peru, we determined that at least two and
three sublineages of Lambda and Gamma, respectively, circulated in
Peru. All of these sublineages were reported in all the regions of
Peru. Furthermore, our analyses suggest that Lambda sublineages
emerged in the center of Peru, whereas two and one Gamma sub-
lineage emerged in the north-east and in the mid-east of Peru,
respectively. Finally, we showed that despite the diverse regions
where sublineages could emerge, in most of the cases the center of
Peru was the main exporter of SARS-CoV-2 to other Peruvian regions
during the second wave.

Phylogeographic analyses of the Lambdaorigin showedArgentina
as a second probable country of origin (Fig. 3b). In this hypothesis,
Lambda reached Peru from Argentina between July and November,
2020 (HPD 95% July 12th–November 08th, 2020) (Fig. 4b). This sce-
nario is inconsistent with a Lambda genome collected in Peru on July
21st, 2020, (EPI_ISL_5934936). Therefore, favouring thehypothesis that
Lambda emerge in Peruand thenmove toArgentina andChile (Fig. 4a).
Additionally, our estimation of the date of origin of Lambda is con-
sistent with previous estimations7,18 and with the Lambda genome
collected in July (Fig. 3a). However, the estimation of the MRCA of
Lambda between September and November by Padilla-Rojas et al.,
2021 is inconsistent with the existence of this genome. Nevertheless,
due to the fact that the genome EPI_ISL_5934936 was submitted on
November 5th, 2021 (15months after its annotated collection date) we
cannot rule out the possibility of an incorrectly recorded collection
date for this genome.

Sampling bias in both discrete and continuous phylogeographic
have been extensively studied30–32. Small number of genomes in
countries where the variant of interest could have first emerged can
obscure the real location of origin of this variant. In theworst scenario,
the absence of genomes from those countries impedes formal inclu-
sion in phylogenetic analysis (although if travel connections are
known, they can be included33). In the best scenario, a carefully plan-
ned sampling approach will consider the number of cases in each
regionof interest to sampling each regionproportionally to its number
of cases. Thus, the sample used for the inference will reflect the real
time and space distribution of the lineage32. However, this is difficult to
achieve, and it is even more difficult when the analysis involves dif-
ferent countries. To overcome this, we used an undersampling
approach similar to others described in the literature34–36 to improve
the correlation between the number of cases and number of genomes
by region of interest.

It is also important to note that, even when maintaining the
correlation between the number of cases and number of genomes,
other biases may be present, such as variable percentage of true
cases reported in different regions of interest. Additionally, the
undersampling procedure can be challenging when there is a sig-
nificant difference in the number of sequenced genomesbetween the
regions of interest. For example, if we have two regions of interest
with the same number of cases in a week, but one of them has ten
times fewer genomes than the other, we must downsample the
genomic information of one of the regions by ten times to maintain
the correlation. Therefore, depending on the number of genomes,

this can significantly impact the conclusions that can be extracted
from the available genomes.

Phylogeography together with other sources of information such
as migration rates,mean air traffic, travel information had been shown
to be useful to give more robust results than genomic information
alone32,33,37. However, for several countries, such as Peru, this infor-
mation is not readily available.

Different efforts of sequencing exist not just at the global level.
Even within country, different states are more capable to sequence
genomes than others. In the case of Peru, in the original dataset we
observed absence of correlation between number of estimated cases
of the sublineages and the number of genomes of each sublineage.
Thus, the same undersampling approach help us to increase the cor-
relation that will reduce the sampling bias of the phylodynamic
analyses.

During the secondwave of COVID-19 in Peru Alpha, Gamma and
Lambda were reported in Peru (Fig. 1c). Alpha never reached higher
prevalences. Thus, different to other countries were Alpha sur-
passed the prevalence of pre-existing lineages38–42, in Peru Alpha
maintained low prevalence despite being reported in several
regions (center, mid-east, north, and south-east). Alpha has been
successful in several countries but not in all that it reached. For
example, in Brazil it could not displace Gamma43 and in Nigeria it
was not as successful as Eta44. In this context, if Lambda and Eta had
been reported in a timely manner in South America and Africa,
respectively, they probably would have reached the category of
Variant of Concern.

Most of the Peruvian regions were dominated by Lambda during
the second wave (Fig. 5). However, in the north-east of Peru, Gamma
wasdominatingover Lambda (Fig. 5). ThehigherprevalenceofGamma
on the north-east of Peru and the fact that two of three Gamma sub-
lineages that circulated in Peru likely emerged in the north-east (a third
Gamma sublineage emerged in the mid-east, that is geographically
near to the north-east) (Fig. 6a) raise the possibility that Gamma was
successful in this region due to repeated introductions from the Bra-
zilian border where Gamma dominated23. Additionally, it was shown
that Gamma had a higher transmission rate in a population with high
seroprevalence against other lineages23,26 as it was the north-east of
Peru45,46. A combination of these two facts could be responsible of the
higher prevalence of Gamma in this region.

Our results showed that the center was the main exporter of
lineages to other Peruvian regions during the second wave (Fig. 6c).
Even sublineages that emerged first in regions different to the center
were transported to this region and from this reached other Peruvian
regions. This agrees with the fact that the center of Peru concentrates
30% of the total population in the country47. Thus, during the second
wave the center reported most of the COVID-19 cases (Fig. 5c, d).
Furthermore, during 2021 the center had 63% of both cargo and pas-
senger transport48.

At the final of the second wave, Delta was reported in Peru
(Fig. 1c). Although it did not cause a large peak of cases and deaths,
Delta replaced Lambda and Gamma and dominated the prevalence in
Peru between the second and third waves. Delta was very successful in
replacing pre-existing lineages in several countries49,50 including
Gamma in Brazil43, Beta in South Africa51, and Eta in Nigeria (and West
Africa)44. It has been hypothesized that these replacements occurred
due to its higher transmissibility and its ability to better evade the
immune responses elicited by vaccination52–54. Supporting this, we can
observe a steady increase in Delta´s prevalence despite the increasing
number of vaccinations (Fig. 1).

Methods
Epidemiological dynamics
Analyses of COVID-19 cases, deaths, stringency index and vaccinations
at the country level were done based on the information of “Our
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World in Data”19,20 (https://github.com/owid/covid-19-data/tree/
master/public/data). The number of cases by Peruvian regions were
obtained from the “PlataformaNacional deDatos Abiertos” available in
https://www.datosabiertos.gob.pe/dataset/casos-positivos-por-covid-
19-ministerio-de-salud-minsa. For convenience, the geographical
locations were aggregated as shown in table S3. The relative pre-
valence of VOCIs or sublineages was calculated based on data from
GISAID55 (www.gisaid.org). This data comprises 9 833 385 individual
metadata of genome sequences with collection dates ranged from
2019-12-24 to 2022-04-30. The accession codes of the sequences and
associated metadata for relative prevalence calculations are available
in GISAID’s EpiCoV database under EPI_SET_ID accession numbers EPI_
SET_230526uh, supplementary data 1. Confidence intervals of the
relative prevalence were calculated using the formula for a population
proportion. The relative prevalence was smoothed using Local Poly-
nomial regression28 with the function “loess” in R, with a degree of 1, a
span of 21 divided by the number of total weeks analysed, and other
parameters set to default. The smoothed relative prevalence was used
to estimate the number of reported cases belonging to each VOCI or
sublineage.

Assessment and selection of the genomic dataset
Lambda genomes from Peru, Chile and Argentina, and Gamma gen-
omes fromPeruwere obtained fromGISAID. This data comprises 9266
individual genome sequences and associatedmetadata. The accession
codes of these sequences are available in GISAID’s EpiCoV database
under EPI_SET_ID accession numbers EPI_SET_230526dk, supplemen-
tary data 2. These sequences were aligned using ViralMSA.py56,57

against the reference SARS-CoV-2 genome with GISAID code:
EPI_ISL_406801 from nucleotide 203 to 29 674. After this, sequences
with >290 Ns and/or >2% gaps were removed from the alignment.
Then, the genomes were analyzed using Nextclade14,15 and genomes
classified as “bad” or “mediocre” were discarded. The genomes that
passed the filter were used for subsequent analyses.

Subsampling strategy to determine the origin of Lambda VOI
Since there was no correlation between the number of genomes and
the number of reported cases, and given the large size of the Lambda
dataset, a reliable and full Bayesian inference approach could not be
suitable to determine the country of origin of Lambda. To address this
issue, we took a series of samples with genomes collected from Jan-
uary, 2021 to April, May, June, July, August or September, 2021 based
on the estimated number of Lambda cases by country per week. For
eachmonthly interval, three samples consisting of ~200 genomes each
were taken while maintaining the correlation between the number of
genomes and the estimated number of Lambda cases. Correlations
were estimated by Pearson coefficient. Additionally, to assess the
impact of including genomes from weeks prior to when Lambda
reached 7400 estimated cases, we took additional samples by adding
one genome per week from those earlier weeks to the previously
mentioned samples. Then, with each sample we constructed a max-
imum likelihood phylogeny using IQ-TREE258 with the substitution
model GTR + F + I. These trees were used to evaluate the root-to-tip
distance vs. sequence sampling time correlation using Tempest59 and
the same samples were used to perform likelihoodmapping analyses29

also implemented in IQ-TREE2 using 10000 quartets and the sub-
stitution model GTR + F + I.

Bayesian phylogeographic analysis to determine the origin of
Lambda
The time to the most recent common ancestor (MRCA) of each node
and the pattern of SARS-CoV-2 spread in each of the samples from
January to September, 2021were estimatedusing theBayesiandiscrete
phylogeographic model60. We considered possible migrations

between three demes (Peru, Chile and Argentina). We assumed that
the transition rates between locations were reversible. For the ana-
lyses,weused the coalescent treeprior Bayesian integratedCoalescent
Epoch PlotS (BICEPS)61, theGeneralTimeReversible (GTR) substitution
model with 4 gamma categories and a strict clock62 with a uniform
substitution rate prior distribution between 1.0E-4 and 0.01 substitu-
tions per site per year (s/s/y). We assumed one partition during the
analyses.

Phylogenetic analyses of Lambda and Gamma genomes
from Peru
We analysed separately the Gamma and Lambda genomes from Peru.
Each dataset (all the Lambda or Gamma genomes from Peru that
passed thefiltersdescribed in the section “Assessment and selectionof
the genomic dataset”) was used to reconstruct a maximum likelihood
phylogeny using IQ-TREE2 employing the GTR + F + I substitution
model. Branch support was assessed using the ultrafast bootstrap
approximation and the Shimodaira-Hasegawa-like procedure both
with 1000 replicates. Sublineages were identified from these trees
based in the following criteria: (i) ultrafast bootstrap approximation
>70%, (ii) Shimodaira-Hasegawa support >70%, (iii) at least 400 gen-
omes must be contained in these groups. To identify characteristic
mutations in the sublineages, we searched for nucleotides that had
>80% identity in one sublineage and <20% in the other sublineages.

Subsampling strategy for the phylodynamic analysis of Lambda
and sublineages of Gamma inside Peru
Similarly, to the analysis of the Lambda origin, the absence of corre-
lation between number of genomes and the number of reported cases
by Peruvian region increases the risk of bias in phylodynamic analyses.
To reduce sampling bias, we took samples according to the number of
estimated cases of the sublineage to improve the correlation between
the number of genomes and the number of estimated cases by region
per week. Correlations were estimated by Pearson coefficient. Three
samples were taken for each sublineage with each samples being
restricted to around 200 total genomes. Each sample was used to
construct a maximum likelihood phylogeny using IQTREE2 with the
GTR + F + I substitution model. The root-to-tip distance vs. sequence
sampling time correlation was evaluated using Tempest, and like-
lihoodmapping analyseswereperformed to determine thepercentage
of resolved quartets using 10000 quartets and the GTR + F + I
substitution model.

Bayesian phylogeographic analysis to analyse the migration
patterns of sublineages between Peruvian regions
We used the Bayesian discrete phylogeographic model to estimate
the time to the most recent common ancestor (MRCA) of each
sublineage and the pattern of SARS-CoV-2 spread. We considered
possible migrations between each Peruvian region and assumed
reversible transition rates between locations. The analyses were
conducted using the coalescent tree prior Bayesian integrated
Coalescent Epoch PlotS (BICEPS), the General Time Reversible
(GTR) substitution model with 4 gamma categories, and a strict
clock with a uniform substitution rate prior distribution between
1.0E-4 and 0.01 substitutions per site per year (s/s/y). We assumed
one partition during the analyses.

Bayesian and MCMC runs
The analyses were performed using BEAST v2.6 software63 with BEA-
GLE library64 to speed up the run time. Four independent Markov
Chain Monte Carlo were used with between 100–400 million itera-
tions. Samples were diagnosed using Tracer v1.665 until they reached
effective sample sizes of over 200 for all parameters. Maximum clade
credibility trees (MCC) were summarized using the TreeAnotator
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package66. To visualize and analyze trees and outputs, we used R with
packages: ape, ggtree and treeio67–70.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available datasets were analysed in this study. COVID-19
cases, deaths, stringency index and vaccinations at the country level
were done based on the information of “Our World in Data” (https://
github.com/owid/covid-19-data/tree/master/public/data). The num-
ber of cases by Peruvian regions were obtained from the “Plataforma
Nacional de Datos Abiertos” available in https://www.datosabiertos.
gob.pe/dataset/casos-positivos-por-covid-19-ministerio-de-salud-
minsa. Genomic data was obtained fromGISAID (https://www.gisaid.
org). The accession codes of the sequences and associated metadata
for epidemiology and for phylodynamic analyses used in this study
are available in GISAID’s EpiCoV database under EPI_SET_ID accession
numbers EPI_SET_230526uh and EPI_SET_230526dk, respectively.
All relevant output files are available following the instructions
from the GitHub repository: https://github.com/sanjusare/Phylo_
SARSCOV2_Peru.

Code availability
Code is available on GitHub: https://github.com/sanjusare/Phylo_
SARSCOV2_Peru. (https://doi.org/10.5281/zenodo.7976103)71
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