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Dynamic chromatin architecture of the
porcine adipose tissues with weight gain
and loss
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Yu Jiang 8, Guisen Li 9, Yu Zhang1, Jingyi Bai1, Xiaokai Li1, Jing Li 1,2, Lu Lu1,2,
Fanli Kong1, Xun Wang1, Hua Li6, Zhiqing Huang 10, Jideng Ma1,2, Xiaolan Fan1,2,
Linyuan Shen1,2, Li Zhu1,2, Yanzhi Jiang 1, Guoqing Tang1,2, Bin Feng 10,
Bo Zeng1,11, LiangpengGe12, Xuewei Li1,2, Qianzi Tang 1,2, Zhihua Zhang 3,4 &
Mingzhou Li 1,2

Using an adult female miniature pig model with diet-induced weight gain/
weight loss, we investigated the regulatory mechanisms of three-dimensional
(3D) genome architecture in adipose tissues (ATs) associated with obesity. We
generated 249 high-resolution in situ Hi-C chromatin contact maps of sub-
cutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin
architectural changes under different nutritional treatments. We find that
chromatin architecture remodeling underpins transcriptomic divergence in
ATs, potentially linked to metabolic risks in obesity development. Analysis of
chromatin architecture among subcutaneous ATs of different mammals sug-
gests the presence of transcriptional regulatory divergence that could explain
phenotypic, physiological, and functional differences in ATs. Regulatory ele-
ment conservation analysis in pigs and humans reveals similarities in the
regulatory circuitry of genes responsible for the obesity phenotype and
identified non-conserved elements in species-specific gene sets that underpin
AT specialization. This work provides a data-rich tool for discovering obesity-
related regulatory elements in humans and pigs.

The global obesity epidemic poses a major threat to human quality of
life and modern healthcare systems worldwide1,2. As much as 58% of
the world’s adult population is predicted to be overweight or obese by
20302. The metabolic risk factors for obesity are more closely related
to adipose distribution than to total adiposemass3, which couldbedue
to substantial differences in the contributions of anatomically distinct
adipose tissues (ATs) to energy balance and nutrient homeostasis, as
well asdifferences in themechanismsbywhichdistinct ATpopulations
expand during obesity development. Individuals with obesity who
display preferential expansion of visceral ATs (VATs) are at a greater
risk for diabetes and cardiovascular disease than equally individuals

with obesity who store excess energy in subcutaneous ATs (SATs)4. In
fact, the expansion of SATs can protect against metabolic complica-
tions related to high-energy feeding3.

In recent decades, diverse animal models have been used to
investigate obesity and its comorbidities, including small rodents,
large animals (typically dogs and pigs), and non-human primates5.
Due to profound similarities with humans in terms of their anato-
mical, physiological, and metabolic traits, domestic pig (Sus scrofa)
models have enabled several major advances in metabolism
research5. In particular, pigs have regional differences between ana-
tomically distinct adipose depots (e.g., SATs and VATs), which are
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highly similar to humans. This highlights the value of using pigs as
obesity models6.

Three-dimensional (3D) chromatin architecture is a fundamental
regulator of transcription7, and is organized in multi-scale hierarchical
layers, including chromosome territories, compartments8, topologi-
cally associating domains (TADs)9, chromatin loops10, and long-range
interactions between promoters and enhancers (PEIs)11. An earlier
study of chromatin architecture in adipose tissues provided early clues
highlighting the regulatory importance of chromatin organization in
adipogenesis12. Nonetheless, a panoramic view does not illustrate the
dynamic changes in chromatin architecture that underpin tran-
scriptomic divergence in ATs that are potentially linked to progressive
metabolic risks in obesity development and dietary interventions.

To identify dynamic shifts in chromatin architecture related to
obesity development, we used a miniature pig model of weight gain/
weight loss (WGWL) to generate a total of 249 high-resolution chro-
matin contact maps using in situ high-throughput chromatin con-
formation capture (Hi-C) sequencing and transcriptomes for four
anatomically distinct ATs (one SAT and three VATs). In this WGWL
model, the pigs were subjected to different nutritional conditions,
including healthy pigs fed with a normal diet, obese pigs induced by a
high-fat diet, and pigs subjected to dietary restrictions13. This relatively
large-scale experiment enabled integrated analysis of the multi-scale
reorganization of chromatin architecture and how it affects gene
expression. Additionally, we comprehensively compared PEI organi-
zation in human and pig genomes across the four homologous ATs to
characterize evolutionary divergence in their spatial regulatory cir-
cuitry and identify how that spatial rewiring could affect species-
specific AT biology, such as the absence of brown AT in pigs. In addi-
tion to providing several insights into the functional divergence of ATs
and the relative conservation of their 3D genomic regulatory
mechanisms that support further exploration in pig models, this work
also provides an important resource for future comparative metabolic
research in humans and pigs.

Results
Transcriptome and chromatin architecture experiences altera-
tions during WGWL in distinct ATs
We collected a total of 272 distinct AT samples from 68 adult female
pigs across three nutritional condition groups. The normal condition
(NC, n = 12) group served as the control group for healthy pigs fed a
normal diet14. The weight-gain (WG, n = 46) group, fed with a high-fat
diet for 22 weeks, exhibited a ~1.94-fold increase in body weight
compared to the normal group, while the weight-loss (WL, n = 10)
group (comprised of a subset of WG pigs subjected to a nutritional
regimen of 10% of normal group caloric intake for 12 weeks) exhibited
an average ~32.28% loss in body weight compared to the WG group at
22 weeks (Fig. 1a–d and see “Method” for details). The upper layer of
backfat (ULB) at subcutaneous, and three abdominal VATs, i.e., greater
omentum (GOM), mesenteric adipose (MAD), and retroperitoneal
adipose (RAD), were collected (Fig. 1e). Analysis of ten representative
metabolic indicators in serum samples revealed dysfunction in the
metabolism15,16 of WG pigs compared with NC animals, while these
indicators were lower in the WL group than in the control group (i.e.,
the initial beneficial changes) (Supplementary Fig. 1a). Providing evi-
dence for reports of higher plasticity in VAT size than in SAT size under
variable nutrient intake17,18, we observed a higher degree of hyper-
trophy in the adipocytes of three VATs between theNCandWGgroups
compared with the subcutaneous ULB adipocytes. In contrast, VATs in
the WL group showed a greater degree of atrophy compared to ULB
adipocytes (Fig. 1f and Supplementary Fig. 1b).

Examination of hierarchical 3D genome architecture with tran-
scriptomic analysis revealed alterations in the WG and WL groups
compared with the NC group. In situ Hi-C assays of all 249 AT samples
generated a total of ~73.33 billion valid contacts (~294.52 million [M]

contacts per sample, reaching a maximum intra-chromosomal resolu-
tion of ~8 kb) (Supplementary Fig. 2, Supplementary Data 1 and Sup-
plementary Note 1). Total RNA-seq for the corresponding AT samples
indicated that the transcription, compartmental rearrangements, and
local spatial context (reflected by insulation scores [IS]) diverged in the
WG and WL groups compared to the NC group (Fig. 1g–l), suggesting
that both excess and insufficient caloric intake can reshape chromatin
architecture and transcriptomic patterns in ATs19,20. In particular,
inflammation-related genes were differentially up-regulated in each AT
type of the WG group, while metabolism-related genes were down-
regulated in eachWL groupAT (Supplementary Note 1, Supplementary
Fig. 3 and Supplementary Data 2). Notably, compartmentalization
status showed that ten genes related to VAT hypertrophy21 were in the
more active compartment (i.e., more accessible) in WG compared to
NC (Supplementary Fig. 4a), reflecting the enhanced absorption of free
fatty acids and triglycerides in hypertrophic adipocytes after weight
gain17. For example, increased expression of the tetraspanin family
protein TM4SF1was previously reported in larger adipocytes of human
subjects with obesity compared to its expression in smaller, non-obese
subjects21 (Supplementary Fig. 4b, c).

The t-SNE analysis found that transcriptomic profiles (Fig. 1g) and
chromatin architecture, i.e., compartmentalization (Fig. 1h) and TAD
organization (Fig. 1i) within ATs were more similar among groups,
regardless of diet-induced alterations, than they were between ATs.
This was especially true between ULB and VATs. Moreover, t-SNE plots
comparing Hi-C and RNA-seq data for all groups showed distinct
clustering of ATs, with a consistent order of similarity following ULB to
RAD to MAD to GOM, while no such pattern appeared for the three
nutritional conditions (Fig. 1g–i and Supplementary Figs. 5 and 6). This
finding aligns with intrinsic functional and metabolic differences
among ATs (Supplementary Fig. 7).

We next tested whether visceral RAD exhibits SAT-like metabolic
characteristics22 and found that RAD more actively regulates hyper-
plasia compared to visceral GOM or MAD. The compartmental status
of PPARG, all nine HOXD cluster genes, and 53 hyperplasia-related
genes known to be essential for adipogenesis23, were more active in
RAD than in GOM or MAD but were comparable with ULB under each
nutritional condition (Supplementary Fig. 4d–f). Importantly, mito-
chondrial biogenesis in ATs is enhanced for hyperplasia but weakened
in hypertrophy as obesity developed24. Consistent with that study, we
found that 13 mitochondria-encoded genes were generally up-
regulated in ULB and SAT-like RAD after weight gain, but no such
pattern was evident for GOM and MAD (Supplementary Fig. 4g). The
compartment status of 36paralogous homeobox (HOX) TFs (themajor
regulators of animal morphogenesis and development) in RAD was
more similar to that in SAT, and was clearly distinguishable from their
profiles in GOM and MAD despite their shared physiological location
(Supplementary Fig. 4h). These results highlight thewell-characterized
differences between VATs and SATs, particularly in their respective
metabolically harmful or protective roles17 (Supplementary Fig. 7).

Using the distance between samples in the t-SNE as a metric, we
found that the average distance between replicates was slightly less
than that between treatment groups (Wilcoxon rank-sum test,
p < 1.96 × 10−9), and markedly less than that between pairwise ATs
(Wilcoxon rank-sum test, p < 2.2 × 10−16) (Supplementary Fig. 8), sug-
gesting considerable intra-group heterogeneity.

Population dynamics of compartmentalization and TAD
boundaries between ATs
To quantify the intra-population variability in compartmental status
and TAD boundaries (SupplementaryNote 2 and 3 and Supplementary
Figs. 9–17), we examined the consistency of A/B compartments and
TAD boundaries within populations, which is the frequency in which a
bin was identified in a given compartment or TAD boundary in that
population (“Methods”) (Supplementary Fig. 18a).
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The A/B compartments were roughly classified into three
categories based on their consistency: high (>70%), medium
(30–70%), and low (<30%). This analysis found that most A/B com-
partments were invariable within replicates (Supplementary
Fig. 11a). Moreover, compartmental status remained generally
unchanged across ATs and treatments/groups, with changes (i.e.,

frequency of active compartment A status changed from high to
low, or reversely) observed in an average of 1.31% (1489 bins of 20-
kb length) and 0.29% (327) of bins, respectively (Fig. 2a, b and
Supplementary Data 3).

The common active compartment regions across ATs were more
prone to enrichment with genes, high GC content, housekeeping
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Fig. 1 | Transcriptomic and chromatin architecture dynamics in distinct ATs
associated with body weight in changes. a Schematic overview of the experi-
mental design for dietary treatments. b Body weight of pigs (n = 56) during pro-
gressive weight gain over 22 weeks, observed every 2 weeks (12 time points). Ratio
of weight: relative to theweight at baseline (0weeks). cBodyweight of pigs (n = 10)
during progressive weight loss over 12 weeks (from 23rd to 34th week), observed
every 2 weeks (6 time points). Ratio of weight: relative to the weight at the 22nd
week. d Histogram of body weight at slaughter for NC, WG, and WL groups. WG
weight gain,WLweight loss, NCnormal diet. Data are presented asmeans ± SD (NC,
n = 12; WG, n = 46; WL, n = 10). p values were determined by two-sided Wilcoxon
rank-sum test. e Adipose tissue sources: one SAT (ULB: upper layer of backfat) and
three VATs (GOMgreater omentum,MADmesenteric adipose, RAD retroperitoneal
adipose). SAT subcutaneous adipose tissue, VAT visceral adipose tissue.

f Histogram of adipocyte volumes during weight gain or loss for each adipose
depot (top). Spheres show relative adipocyte volume, with the scale shown on the
right (middle). Fold-changes in adipocyte volume in WG relative to NC (left) and in
WL relative to WG (right) (bottom). Data are presented as mean values ± SD. Sta-
tistical significance was determined using a one-sided Wilcoxon rank-sum test.
g–i Comparison of variation in gene transcription (g), AB compartment (h), and IS
(i) between adipose depots and between groups. t‑distributed stochastic neighbor
embedding (t-SNE) clustering of samples. In t-SNE plots, ellipses indicate AT sam-
ples with similar profiles, constructed at a probability of 0.85. j–l Proportional
distribution of projection distance for t-SNE plots of gene expression in g (j), A-B
index inh (k), and IS in i (l) between each dot and a given line (y = kx, k = −0.3, −1, −5
for gene expression, A-B index and IS, respectively) across groups. Source data for
(b–d, f–l) are provided as a Source Data file.
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genes, short interspersed nuclear elements (SINEs), and evolutionarily
conserved sequence but depleted for long terminal repeat (LTRs)25

(Supplementary Fig. 16). In contrast, genes in compartments that
shifted between ATs or conditions exhibited higher changes in
expression than thosewithin commonbins (Fig. 2e andSupplementary
Note 2). For example, in the NC group, the compartmental status

around the VAT-specific developmental regulator WT126 was com-
monly active in GOM (frequency = 100%) with elevated expression
(TPM= 64.71), but inactive in ULBs (frequency =0) and weakly
expressed (TPM=0.39) (Fig. 2f). In contrast, the compartmental status
around the adipose browning and metabolic activity regulator IRX327

was commonly active in ULBs (frequency = 100%) with elevated
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expression (TPM= 14.37), but inactive in GOMs (frequency =0) and
weakly expressed (TPM=0.73) (Fig. 2g).

Similarly, TAD boundaries could also be classified as either high
(>70%), medium (30–70%), or low (<30%) frequency based on their
consistency (Supplementary Fig. 18b), aminority of which did not vary
between replicates. Moreover, TAD consistency was comparable
across ATs and nutrition groups, only switching 1.01% and 0.18% TAD
(i.e., frequency of TAD boundary changed from high to low, or rever-
sely), respectively (Fig. 2c, d and Supplementary Data 3).

Common TAD boundaries were more prone to enrichment with
CCCTC-binding factor (CTCF) binding site motifs, transposable ele-
ments (TEs), especially recently inserted SINEs with low sequence
divergence and housekeeping genes, and showed markedly stronger
insulation than variable ones between ATs28 (Supplementary Fig. 18c, d
and Supplementary Note 3). Consequently, genes near shifted TAD
boundaries (i.e., within ±100 kb of a boundary) in some of the com-
parisons showed slightly higher (though not significant) changes in
expression than those near the common boundaries29 (Fig. 2h). The
influence of shifted boundaries on gene expression was relatively
milder than that observed in A/B compartments. These differences in
expression could potentially reflect the rewiring of the distal PEI net-
works caused by changes in the chromatin insulation status at these
loci. In one scenario, increased chromatin insulation appeared to block
non-specific PEIs, thereby increasing contact frequency with their
endogenous distal regulators. For instance, the key adipogenic
developmental gene EN130 is adjacent to a common boundary in ULBs,
while this boundary is absent inGOMs. Likewise, EN1 expression inULB
(TPM= 11.35) is higher than in GOM (TPM=0.07) (adjusted
p = 2.46 × 10−13) (Fig. 2i).

Another scenario might be that increased in chromatin insulation
status prevent regulatory contact with external enhancers. For exam-
ple, there is a commonboundary around the pro-inflammatorymarker
TCF2131, which is weakly expressed in ULB (TPM=0.04). However, this
boundary is absent in GOM under NC conditions, and TCF21 expres-
sion is largely increased (TPM=6.22; adjusted p = 2.12 × 10−11; Fig. 2j).
These two examples highlight the presumably distinct roles of TADs in
facilitating or constraining interactions between gene promoters and
regulatory elements28,32,33. Further efforts are required to system-
atically identify the functional and mechanistic roles of TADs across
genomic contexts when governing transcription.

Rewiring of PEIs and associated transcriptional changes and
response to body weight changes in different ATs
To investigate how spatial rewiring of regulatory circuitry could affect
the dynamics of transcriptional programs in ATs during WGWL, we
used the PSYCHIC algorithm34 to compile a 5-kb resolution, genome-
wide catalog of PEIs across four ATs under three nutritional conditions
(Fig. 3a–d and Supplementary Figs. 19 and 20a). This analysis identified
a comparable number of PEIs in each of the 12 groups, with an average

of 42,736 enhancers assigned to 10,602 promoters and a median
bridging distance of ~131 kb (Fig. 3a). PEIs were preferentially located
within TADs (66.5%) (p < 2.2 × 10−16, χ2 test) or CTCF-mediated loops
(49.28%) (p < 2.2 × 10−16, χ2 test) (see Supplementary Note 4 for details)
(Supplementary Figs. 21–25 and Supplementary Data 4).

Supporting the additive effects of multiple enhancers on target
gene transcription, genes engaged in physical contact with multi-
enhancers (~49.82% genes, TPM= 10.39) showed higher transcription
levels than those engaged with a single enhancer (~18.02% genes,
TPM= 5.37) or no enhancer (~45.13% genes, TPM= 3.30) interactions
(Supplementary Fig. 20c).We found that the chromatin interactomeof
PEIs wasmore consistent across the three treatment groups for a given
AT than among different ATs within a single treatment group (Sup-
plementary Fig. 20a, b).

To better understand how this extensive PEI rewiring could con-
tribute to transcriptomic divergence, we calculated a regulatory
potential score (RPS) for eachpromoter (Fig. 3b) and furthermeasured
enhancer activities by analyzing the distribution of H3K27 chromatin
acetylation marks (H3K27ac) (Supplementary Figs. 20d and 26). In
total, ~170 genes with covariation between RPS and gene expression
were identified. Of these, genes with higher RPS values (FC [fold
change] >1.5, Δ > 2) were generally up-regulated (log2 FC > 1, FDR <
0.05) between ATs under the same nutritional conditions (Supple-
mentary Fig. 27a).

Functional enrichment analysis35 showed that these VAT-specific
genes were primarily involved in responses to inflammation and
immunity (e.g., “chemotaxis” and “positive regulation of inflammatory
response”) (Supplementary Fig. 20e). Typically, VAT-enriched inflam-
matory markers had more and spatially closer enhancers (and thus
higher RPS) and generally had enhancers with more intensive activity
(typically, super-enhancers) in VATs than in SAT. This included the
monocyte activation and inflammatory response regulator TGM2,
which is required to clear large, lipid-rich apoptotic adipocytes36

(Fig. 3e and Supplementary Figs. 28a and 29a), and CD28, which acti-
vates lymphocyte and T cells to increase adipose inflammation37

(Supplementary Figs. 20g, 28b and 29b), and CXCR4, CCR2, IL18, and
SUCNR1 (Supplementary Data 5). In contrast with VATs, this enriched
gene set in ULB was primarily related to lipid metabolism (e.g., “reg-
ulation of lipolysis in adipocytes” and “lipid storage”) (Supplementary
Fig. 20e), including two TFs necessary for adipogenesis38 (PPARG and
CEBPA) (Fig. 3f and Supplementary Figs. 20h, 28c, d and 29c, d), and
COL6A3, GCG, GPAM, IGFBP5, MAP4K4, and SFRP4 (Supplementary
Data 5). Remarkably, we detected enhanced regulatory circuitry for
nineHOXDTFs (sequential gene clusters with enhancer-rich regulatory
landscape) in ULB and RAD compared with their network circuitry in
GOM and MAD, supporting their active compartment status and
increased expression in SAT (Fig. 3g and Supplementary Fig. 30).

We identified ~105 genes with covariation between RPS and gene
expression for a given AT between the groups (Supplementary

Fig. 2 | Population-level dynamics of compartmentalization and TAD bound-
aries in distinct ATs across weight gain and loss treatment groups.
a, b Differences in the frequency of A/B compartments in pairwise comparisons of
ATs and treatments. Proportion plot showing stability and variability of compart-
ment shifts across different ATs (a) and groups/treatments (b). Circos plots high-
light changes in compartment status betweenpairwiseATs ineach treatment group
(a) or between treatment groups in each AT (b). Red or blue vectors indicate
changes in frequency from low-to-high or high-to-low, respectively, in pairwise
comparisons between ATs in adjacent rings; vector thickness is proportional to
frequency of the changed compartment. c, d Differences in frequency of TAD
boundaries in pairwise comparisons of ATs and treatments. Proportion plot
showing the stability and variability of TAD boundary shifts across different ATs (c)
and groups/treatments (d). Circos plots highlight changes in TAD boundary fre-
quency. e Box plots of changes in expression level for genes embedded in stable
active compartment regions (red) vs. those that changed (green) between pairwise

ATs. f, g Representative changes in A/B compartment status between ATs. Com-
partment status (A/B) across all individuals in the NC group is shown for the typical
VAT-active geneWT1 and SAT-active gene IRX3. Expression levels (TPM) were also
plotted. h Box plots showing changes in expression levels of genes embedded in
stableTADboundary regions (red) vs. those that changed (green) between pairwise
ATs. In the boxplot in (e) and (h), the internal line indicates the median, box limits
indicate the 25th and 75th quartiles, and whiskers extend to 1.5 × IQR from the
quartiles. The gene number in each category is listed above each box. Statistical
significance was determined by a two-sided Wilcoxon rank-sum test.
i, j Representative TAD boundaries shift between ATs. Chromatin interaction heat
maps are shown for typical replicates of GOM and ULB in the NC group. The black
arrow indicates the position of the shifted boundary. Representative embedded
genes include EN1 (i) and TCF21 (j), which are highly expressed in ULB and GOM,
respectively. Source data are provided as a Source Data file.
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Fig. 27b). Genes with enhanced RPS and expression in the WG group
compared to the NC group were primarily associated with inflamma-
tion and immune response (e.g., “regulation of chemotaxis” and “leu-
kocyte migration”) and fibrosis (e.g., “ECM-receptor interaction”)
(Supplementary Fig. 20f), supporting the elevated inflammation in
obesogenic ATs. Previous studies in humans and mice proposed the

phenomenon of “obesogenic memory”, in which a long-term increase
in AT inflammation and insulin resistance persisted even after
weight loss39. Consistent with this hypothesis, five markers of “obe-
sogenic memory” in mice (TNF, IL6, IL10, CCL2, and CCL3)39 retained
high expression and similar pattern of interactions in promoter-
centered regions (and persistent AT inflammation) following weight
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loss (compared to that in WG group) in our pig model (Supplemen-
tary Fig. 31).

Of 23 known inflammatory genes with concordantly enhanced
RPS and expression during weight gain, 15 (~65.22%) sustained higher
RPS and expression after weight loss (i.e., WL vs. WG groups) (Fig. 3h,
i). In particular, the immune and inflammatory response40 regulator
SHARPIN, the TLR4-independent AT inflammatory factor CD180, the
inflammatory cytokine activator TNFRSF1A, and the macrophage infil-
tration and activation marker41 CLEC7A in GOM, MAD, RAD, and ULB,
respectively (Supplementary Fig. 32). These results strongly suggested
that “obesogenicmemory” affects a proportion of inflammatory genes
in ATs, which retain their inflammatory state despite weight loss39.
Further studies are needed to better understand the stored mechan-
isms of “obesogenic memory”.

Evolutionary divergence of local spatial context in mamma-
lian ATs
Studies using animal models have significantly expanded our under-
standing of the pathogenesis of obesity and its comorbidities in
humans5. Nonetheless, the extensive discrepancy between clinical and
molecular data in humans and that obtained from other mammalian
models prompted us to explore potential evolutionary divergences in
chromatin architecture and related influences on transcription that
could contribute to the AT-specific biology of mammals42. To this end,
we explored the evolutionary patterns of local spatial context in SATs
(reflected by the IS value, with a higher value corresponding to more
open architecture [compartment A status], and thus higher tran-
scriptional activity, Supplementary Fig. 33). This analysis used 29
in situ Hi-C datasets and their corresponding RNA-seq datasets from
pigs, humans and five representative mammalian models (including a
rodent [mouse], a lagomorph [rabbit], two carnivores [dog and cat],
and an artiodactylid [sheep]). Of these, 20were publicly available from
our recent work (Supplementary Data 6). Using the human genome as
a reference, we identified 949.94Mb (or 30.65%) of homologous
regions across sevenmammals in the human genome (Supplementary
Fig. 34a). As expected, evolutionarily closer species shared greater
similarity in their patterns of gene expression and local spatial context
(Fig. 4a–c) (see “Methods” for details).

We identified ~20.88Mb regions that were more accessible and
had increased local interactions in the humangenome using the Phylo-
HMGP model43 (Fig. 4d and Supplementary Fig. 34b, c and Supple-
mentary Data 7, 8 and Supplementary Note 5). These regions were
significantly enriched byAlu elements (Fig. 4d), which represented the
most abundant SINEs, were considered to exhibit continuous pro-
liferation activity throughout human evolution44, and were positively
correlated with chromatin interactions (Supplementary Fig. 35). The
specific increase in Alu contents in those homologous regions with
higher, human-specific, local interactions (indicated by high IS) could
reflect TE contributions to species-specific local chromatin status and
transcription, potentially driving differences in AT biology among
mammals.

These human-specific high IS regions exclusively harbored 14 TF
motifs (including SREBF-1 and -2, TCF-3 and -4, HEY2, and NFKB2)
compared to other non-conserved regions (Fig. 4e, f). In particular,
recognition motifs for the cholesterol uptake and biosynthesis genes
SREBF-1 and -2 45, which are closely associated with long-term energy
storage and are among the thrifty genes that efficiently use limited
energy for AT storage46, showed profound enrichment in human-
specific high IS regions but were absent in other non-conserved
regions. Moreover, the enrichment pattern of these two TFmotifs was
also evident when compared to homologous regions of other species
(SREBF1 enrichment score: human, 1.16 vs. average 1.01 in other spe-
cies; SREBF2: 1.17 vs. 1.00) (Supplementary Fig. 34e). This specifically
active chromatin status related to de novo lipid biosynthesis in
humans supports a hypothetical evolutionary origin of obesity in
which humans evolved a “thrifty mode of fuel utilization” to store
excess nutrients asATs andprepare for cyclical episodes of famine and
surplus after the advent of farming ~10,000years ago45,47. This example
suggests a link between species-specific changes in local spatial
genomic context and cis-regulatory elements, such as unique TF
binding sites.

Comparison of enhancer regulatory circuitry to identify ortho-
logs in human and pig AT genomes
The above findings in a porcine model supported obesogenic obser-
vations in humans and rodents48,49, leading us to further explore its use
as a biomedical model for humans. We next examined whether the
biologically meaningful effects of a gene’s regulatory target in pigs
could be extrapolated to humans by systematically evaluating diver-
gence in PEI organization between human and pig genomes across the
four ATs in the normal condition group. By combining publicly avail-
able Hi-C and RNA-seq datasets of three human SAT samples, we
obtained a Hi-C dataset containing 7.46 billion total validly aligned
contacts (reaching a maximum resolution of ~2 kb by merging intra-
chromosomal contacts of 5–7 biological replicates for each AT) and 25
total RNA-seq datasets (~12.20Gb of high-quality sequences per sam-
ple) for human ATs (Supplementary Data 9). We identified 34,638
enhancers assigned to 11,861 promoters for each human AT, with a
median bridging size of 161.25 kb (Fig. 5a, b and Supplementary
Fig. 36a–e). The global pattern of higher divergencebetween VATs and
SAT compared to divergence within VATs was obscured by the rela-
tively greater variation among human samples. However, the relatively
higher divergence between inflammatory GOM and metabolic SAT
(i.e., ASA) was still evident in RPS analysis and transcriptomic profiles,
as well as in our analysis of local spatial context (reflected by A-B index
and IS values). Moreover, we also observed that visceral RAD samples
were closer to SAT, distinguishable from the congeneric GOM and
MAD, similar to our findings of ATs in a pig model (Supplemen-
tary Fig. 37).

Evolutionary pressures during speciation and adaptation gen-
erally lead to regulatory innovations by allowing sequence variation in
enhancers to subtly alter transcription at existing or newly adopted

Fig. 3 | Rewiring of PEIs with transcriptional changes between distinct ATs and
the dynamic during different nutritional conditions. a The number of PEIs in
each AT across groups. The numbers of genes/promoters are indicated above each
bar. b Positive correlation between gene expression and RPS. Genes with RPS >0
were divided equally into five percentiles. In the boxplot, the internal line indicates
the median, the box limits indicate the upper and lower quartiles and the whiskers
extend to 1.5 IQR from the quartiles (n = 18). RPS: a regulatory potential score for
each gene. c t-SNE plots of the number of enhancers that interact with each pro-
moter.d t-SNEplots of RPSof genes. Thedivergence in PRSprofiling highlights that
differences in features are more pronounced among ATs than among groups.
e Schematic representation of PEIs for the typical pro-inflammatory gene TGM2,
whichwas abundantly expressed inVATsof theNC group. (left) Promoter-centered
interactions and expression levels for gene examples across four ATs. (middle left)

Interactionmetaplots of promoter-centered regions across fourATs. (middle right)
3D structural models of the corresponding genomic regions. (right) Difference in
PEI intensity between pairwise AT comparisons. f Schematic representation of PEIs
for the typical adipogenesis gene PPARG, which is abundantly expressed in SATs of
the NC group. g Heatmaps of RPS values (top) and expression level (bottom) of
HOXD genes across ATs. h Changes in expression and RPS values of 159 known
inflammatory genes in each AT between the NC and WG groups. Twenty-three
inflammation-related up-regulated genes in each AT of theWG group compared to
NC are shown. i Heatmaps of RPS (left) and expression (right) patterns of 15
inflammation-relatedgenes that are highly expressed in theWGgroup compared to
the NC group and remained stable in the WL group. Differential RPS genes: genes
with changes in RPS FC [fold change] >1.5, |Δ| > 2; Otherwise, Non-differential RPS
genes. Source data are provided as a Source Data file.
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target genes, more often than through changes in protein-coding
sequences50. By mapping the contacts of each AT in pigs (the “query”
species) to the human genome (the “reference” species) (Fig. 5c), we
were able to statistically compare inter-species differences in the
contact frequency of most PEIs in the human genome (~10,781 of
11,861, or ~90.89% of homologous comparable promoters) (Supple-
mentary Fig. 36f).We also assessed enhancer conservation (~31,341 per
AT) by comparing their sequence divergence and functional usage
(i.e., harboring potential acting as a cis-regulatory element) (Fig. 5c)
(see “Methods” for details).

Notably, human enhancers that interacted with 8989 single-copy
orthologs (shared by humans and pigs) were remarkably conserved in
sequence (83.56% of all enhancers) and usage (60.96% of all sequence-
conserved enhancers). This was higher than those interacting with
multi-copy orthologs (sequences: 48.85%; usage: 55.25%) or human-
specific genes (sequences: 59.76%; usage: 57.35%) (Fig. 5d). Similar
results were observed when mapping human contacts to the pig
genome (i.e., swapping “query” and “reference” species) (Supplemen-
tary Fig. 38). For example, the adipogenic TFs CEBPB51 and PPARG23,
homeostasis regulator IGFBP552, inflammatory signal factor IL6ST 53,54,
and the mediator of oxygen and nutrient exchange during fat mass
expansion a VEGFA55, each have over 20 enhancers in human AT gen-
omes, most of which are conserved in both sequence and usage
between humans and pigs (Fig. 5e and Supplementary Data 10 and 11).

Enhancers of single-copy orthologs that were differentially
expressed between humans and pigs harbored enhancers with more
rapidly evolving sequence (72.29%) andusage (48.86%) than thosewith
comparable inter-species expression (sequence: 84.42%, usage:
61.75%) (Fig. 5f and Supplementary Data 12). These differentially

expressedgeneswerebiologically important to coreAT functions such
as lipid localization and insulin signaling (Supplementary Data 13). For
instance, LMO3, a human-specific regulator known to modulate the
activity of the adipogenic master regulator PPARγ56, was more highly
expressed in human ATs (TPM= 35.35) compared to pigs (1.25). This
gene also harbored more species-specific enhancers in the RAD of
humans than in pigs (2 human-specific enhancers vs. 1 enhancer in
pigs). UCP2, which is involved in energy expenditure57, interacted with
~5 specific-usage enhancers and was highly expressed in humans
(TPM= 38.83), but showed relatively low expression (TPM= 4.75) and
had no regulatory enhancers in pigs (Supplementary Data 12).

FMO1 is a regulator of energy homeostasis, the loss of which leads
to triglyceride depletion in white ATs58. FMO1 was abundantly
expressed in the metabolic tissue (especially liver) of pigs and rabbits
but was not expressed in adult humans59. Consistent with this previous
study,we found that FMO1 interactedwith 16 enhancers inporcine SAT
(four were specific to the pig genome, nine had conserved sequence,
and three were conserved in usage), and only contains two enhancers
in human SAT (one of which is human-specific and the other had
conserved sequence). This gene was thus highly expressed in pig
(TPM= 86.50) compared to its expression in human (TPM= 1.73)
(Supplementary Data 12).

In addition to the above examples, the triacylglycerol and gly-
cerophospholipid biosynthetic pathway gene AGPAT260, which is
essential for postnatal development and maintaining both white and
brown ATs61,62 was significantly more highly expressed in human ATs
(TPM= 316.46 on average) compared to pigs (23.60) (Supplementary
Data 12). Notably, only one human-specific enhancer of AGPAT2 was
identified. In addition to these functions, AGPAT2-lacking adipocytes
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show decreased caveolae63 and are reportedly involved in the adaptive
fat mechanism, thus promoting cold tolerance in the sable64. These
results align with accumulating evidence indicating that evolutionary
disruption of the brown adipocytemarkerUCP1 could have caused the
loss of brown AT in pigs (Supplementary Fig. 36g) and may be the
leading cause of cold stress-induced neonatal mortality and increased

adiposity in pigs65–67. Additionally, species-specific enhancers were
generally contacted by human-specific genes, such as MTLN, which is
involved in lipolysis- and mitochondrial β-oxidation-mediated trigly-
ceride clearance from adipocytes68, as well as the neuron apoptosis
inhibitory protein and adipocyte differentiation regulator NAIP 69

(Supplementary Fig. 36g).
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Altogether, these results illustrate the evolutionary similarity
between regulatory circuitry that can determine the obesity pheno-
type and the emergence of other genes harboring non-conserved
elements that could lead to species-specific changes in AT biology70.

Gene duplication accompanied by rapidly evolving enhancers
Gene duplication can be a primary contributor to the acquisition of
new functions and physiology71. Compared with between-species
homologs, within-species homologs that arise through a duplication
event generally exhibit higher similarity in both their expression and
chromatin architecture (local spatial context and RPS). This finding is
consistent with accumulating evidence apparently contradicting the
“ortholog conjecture”72 (Supplementary Fig. 39). Compared to
enhancers that interacted with stable copy number gene families, we
found that enhancers that interacted with expanding, human-specific,
gene families (n = 72) evolved more rapidly, as indicated by lower
nucleotide sequence conservation (phastCons values: 0.103 vs. 0.117,
p =0.0001 and phyloP values: 0.073 vs. 0.085, p =0.0001, Wilcoxon
rank-sum test) and less conservation between human and pig
sequences (16.91% vs. 59.83%) and usage (34.46% vs. 57.49%) (Fig. 6).

For instance, the CEACAM gene family shows substantial expan-
sion in humans, with 18 members in humans and only five in pigs. This
family is essential for maintaining insulin sensitivity in ATs by med-
iating insulin transport through the endothelial cell barrier73,74. Of the

18 human CEACAM genes, only eight promoters had comparable
homologs in pigs, withmost enhancers specific to the human genome.
For example, 1 of 2 CACAM1 enhancers in GOM, 2 of 2 inMAD, 2 of 3 in
RAD, and 2 of 3 enhancers in ULB were not found in the pig genome
(Supplementary Data 14). Additionally, the human-specific and
expanding NBPF gene family, which is associated with brain size and
cognition75,76, has 15 members in humans and six in pigs. Of the 15
humanNBPF genes, only nine promoters had comparable homologs in
pigs. Most enhancers for nine NBPF genes (e.g., ~6 of 6 enhancers in
GOM) were specific to the human genome (Supplementary Data 14).

We also found cases of gene duplication that could potentially
underpin human-specific physiology. The water and glycerol
transport-related AQP7 family (2members in humans compared to 1 in
pigs and three other mammals) is responsible for glycerol use (i.e.,
energy) from adipocytes for energy77,78. This family was hypothesized
to contribute to human-specific metabolic adaptations in endurance
running and thermoregulation by increasing sweating75. The two
copies (AQP7 and AL845331.2) present in humans have comparable
homologous promoters in pigs. Across the four ATs, only two enhan-
cers targeting AQP7 in GOM could be identified, one of which was
specific to the human genome, leaving one with a conserved sequence
comparable to that of pigs. Remarkably, all enhancers targeting
AL845331.2 (ranging from 7 in ULB to 13 in RAD) were specific to the
human genome (Supplementary Data 14).

Fig. 5 | Inter-species conservation of human enhancers connected to orthologs
between humans and pigs in each AT. a Schematic of anatomic locations of AT
depots in humans. b The number of PEIs in each AT. The number of genes/pro-
moters are indicated above each bar. c Example evaluation of enhancer con-
servation in human ATs performed by mapping the contacts of PEIs from humans
to pigs. In this case, PEIs of the IGFBP5 gene in human ASA are shown. According to
the distance-normalized contact frequency (percentile score [PS]) (using
C-intersecture software, see “Methods” for details), three types of enhancer con-
servation, including only sequence conserved (yellow), usage conserved (red), and
sequence-specific (gray), are indicated in themagnified area.d Percent distribution

of enhancers that are conserved in both sequence and usage for different types of
orthologs betweenhumans and pigs in eachAT. The number of enhancers is shown
in each bar. e Typical 1-1 ortholog examples (PPARG, CEBPB, IGFBP5, IL6ST, and
VEGFA) contain enhancers that arehighly conservedbetweenhumans andpigs. The
conservation of enhancers for each gene is shown using humans (left) and pigs
(right) as “reference” species, respectively. f Percentage distribution of enhancer
conservation for 1-1 orthologs with significantly different changes in normalized
expression between humans and pigs (5% confidence intervals) in each AT. The
number of enhancers is shown in each bar. Source data for (b–f) are provided as a
Source Data file.
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These collective results suggest that evolutionarily conserved
genes preferentially interacted with more conserved enhancers. In
contrast, rapidly evolving regulatory elements could arise in species-
specific events, which could play a crucial role in later adaptive phe-
notypes of species.

Discussion
In recent decades, substantial efforts in animal models have sig-
nificantly increased our understanding of the pathogenesis of obe-
sity and its comorbidities in humans5. Although rodent models can
provide important mechanistic insights, they have limited predictive
value for human therapeutic outcomes. Although previous tran-
scriptomic comparisons among different tissues or cell populations
acrossmammalianmodels have suggested that evolutionary changes
in transcription occur at a higher rate in ATs than in other metabo-
lically active tissues6, corresponding tissues in evolutionarily closer
species appear to havemore similar transcriptomic profiles and local
spatial context than tissues within the same species (Supplementary
Note 5). Supporting the extensive discrepancies in clinical and
molecular data between humans and other mammalian models5,
we observed non-trivial divergences in chromatin architecture and
corresponding effects on transcription that could contribute
to phenotypic, physiological, and functional differences in their
respective ATs.

More recently, domestic pigs (and miniature breeds in particular)
have increasingly contributed to metabolic research6. Moreover, a pig
model offers several advantages over other models, including a low
genetic variance and distinct phenotypes within and among breeds
that are useful for studies requiring homogeneous feeding regimens79.
Genetically engineered pig lines generated via gene editing and
somatic cell nuclear transfer have provided usefulmodels for studying
diabetes and dyslipidaemia and can also serve as a potential source for
xenotransplantation80. In this study, we investigated the different roles
of anatomically distinct ATs in the pathogenesis of obesity and its
comorbidities in pigs and found that regional differences in SAT and
VATs are strikingly similar to those in humans, further supporting their
value as an informative model for studying human obesity6. Notably,
many specific AT populations in humans have no precisely correlating
populations in rodents, and vice versa. For example, humans harbor a
large VAT mass in the omentum, which is barely present in rodents.
Conversely, the large epididymal fat pads found in male mice, which
are frequently regarded as representative VAT, are, in fact, absent in
human males81. Moreover, various animals exhibit anatomical differ-
ences in ATs that are related to highly specialized functions82. In sheep,
but not in othermammals, large amounts of fat can be stored in the tail
region as an energy reservoir during migration-associated food
scarcity83. Alternatively, the activation of energy expenditurepathways
(especially in brown ATs) represents one of the most promising areas
of therapeutic development for obesity and metabolic diseases84.
However, neither functional UCP1, a key element in BAT-mediated
adaptive non-shivering thermogenesis, nor brown adipocytes have yet
been identified in pigs65.

We systematically compared PEI organization in four human ATs
with that in pigs to explorewhether the biologicallymeaningful effects
of a given gene target in pigs can be extrapolated to humans. Our
phylogenomic analyses significantly contributed to the current anno-
tation of regulatory DNA elements (i.e., enhancers) in the pig and
human AT genomes. As expected, the DNA sequence variations,
especially non-coding SNPs, that are associated with obesity-related
traits in humans were also significantly enriched in enhancers in
human ATs and in homologous enhancers in the pig genome. This
finding confirmed the evolutionary robustness and functionality of
these regulatory elements and demonstrated that their high con-
servation is a regulatory mechanism related to obesity between
humans and pigs (Supplementary Fig. 40). Additionally, the DNA

contact maps presented in this work can serve as an instrumental
resource for linking obesity-associated variants with target genes,
since these variants often appear in non-coding sequences and control
transcription by physical contact, and can facilitate the discovery of
their functional relevance85,86. To facilitate further metabolic investi-
gationswith this data, we compiled a publicly available online resource
(https://3dgphat.sicau.edu.cn/HPC/front/#/) that integrates gene
expression, data related to the chromatin architecture of the four ATs
for pig and human genomes, and a browser to comparatively explore
pig and human genomes.

In this study, we used a pig model to analyze the multi-scale
structural dynamics of the 3D genome and identify the chromatin
architectural structure of transcriptional programming associated
with progressive metabolic risks accompanying weight gain or weight
loss in anatomically distinct adult AT populations. In designing this
dietary intervention experiment, we considered the relatively long
duration (weight loss over 12 weeks) and the potential time-related
effects on the targeted ATs and body weight. To minimize unwanted
effects, we employed 2-year-old pigs, approximately corresponding to
30-years-old in humans87, as representative of fully mature adult stage
mammals. Given the relatively constant body weight, fat mass, and
phenotypic features of ATs in 2-year-old adult pigs in the absence of
nutritional modification, 12-week difference in age between WG and
WL animals does not significantly affect phenotypic or genomic
functional features of the AT examined in this work. Thus, the cur-
rently observed differences/changes in transcription and chromatin
architecture between WG and WL group are mostly induced by nutri-
tional intervention. These observations of the intrinsic functional and
metabolic differences between SATs and VATs during the develop-
ment of HFD-induced obesity or dietary restriction-induced weight
loss highlight the substantial changes in AT cellular composition that
occur duringWGWL (Supplementary Fig. 41a). However, our bulk Hi-C
data only provide the average features of chromatin architecture in
adipose cell populations, though these results largely confirm the
phenotype and underlying mechanisms of obesity development in
humans and rodents48,49. By limiting our comparative transcriptomic,
A/B compartment, and RPS analyses to a subset of samples with rela-
tively similar cell composition, we could exclude the influence of var-
iation in cell composition (e.g., greater inflammation-related gene
expression due to larger macrophage populations) (Supplementary
Figs. 41b–d and 42). We observed that inflammation-related gene
activity increased in adipose tissues after weight gain, suggesting that
HFD-induced obesity could indeed lead to an elevated inflammatory
transcriptional response and/or chromatin rewiring in adipose cells.
Single-cell resolution is required to determine the extent to which
cellular heterogeneity in ATs contributes to differential signals among
chromatin features.

Methods
Experimental design and phenotype
Animals. All research involving animals was conducted according to
Regulations for the Administrationof Affairs Concerning Experimental
Animals (Ministry of Science and Technology, China, revised in March
2017), and approved by the animal ethical and welfare committee
(AEWC) of Sichuan Agricultural University under permit No. DKY-
B20161707. A total of 68 2-year-old female adult (physically mature)
Bama pigs (an indigenous Chinese miniature pig breed widely used in
biomedical studies)88,89 with an average body weight of 75.00 ± 7.34 kg
were used in this study. All 68 pigs were fed well-characterized normal
diets, providing 12.90MJ kg−1 of metabolizable energy [ME], 13.46%
crude protein, 2% fat, and 5.5% lysine, according to the nutritional
requirements outlined by the Feeding Standard of Swine (NY/T 65-
2004) and published by theMinistry of Agriculture and Rural Affairs of
the People’s Republic of China. All animals were acclimated to this
normal diet and feeding environment for 1 week.
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Fifty-six pigs were switched to a well-characterized high-fat diet
(provided 15.12MJ kg−1 ME, 11.26% crude protein, 16.8% fat, and 5%
lysine) for 22weeks, while the remaining 12 pigs continued to receive a
normal diet. Animals were fed twice daily on a restricted schedule and
dietary dose (3% of body weight monthly).

At the 22nd week of feeding with the high-fat diet, ten pigs were
randomly selected for inclusion in the weight loss group. These ani-
mals were then restricted to 10% of the daily caloric intake of the
normal diet for 12 weeks.

The animals were allowed access to water ad libitum and lived
under the same controlled conditions (temperature, 18–22 °C; relative
air humidity, 30%–70%). During the experiment, obesity-related phe-
notypes (e.g., body weight, body length, chest perimeter, neck peri-
meter, and abdominal circumference) were measured and recorded
every 2 weeks.

Animals on the high-fat diet (i.e., WG group) became markedly
obese (two-tailed t-test, p < 10−5) throughout the study, with an overall
weight after 22 weeks that was nearly twice that of animals fed the
normal diet (i.e., NC group) (WG vs. NC: 134.96 ± 20.77 vs.
69.57 ± 2.92 kg average weight). The ten obese pigs showed a dramatic
reduction inbodyweights following 12weeks of caloric restriction (i.e.,
WL group) (average weight for WL group, 91.39 ± 4.66 kg).

Circulating indicators ofmetabolism in serum. Venous blood (50ml)
was collected from each fasted pig immediately before they were
euthanized. The whole blood was immediately centrifuged at 1800× g
for 10min at room temperature, and the resultant sera were stored
at −80 °C.

Serumconcentrations of total cholesterol (TC), triglycerides (TG),
high-density lipoprotein (HDL), low-density lipoprotein (LDL), lactate
dehydrogenase (LDH), and glucose (GLU) were individually deter-
mined for each pig using a CL-8000 clinical chemical analyzer (Shi-
madzu) and standard enzymatic procedures.

Consistent with previous studies15,88, obese pigs showed sig-
nificant increases in TC, TG, HDL, LDL, and LDH levels, indicating
metabolic dysfunction. These indicators were markedly reduced to
levels comparable with pigs fed a normal diet after weight loss.

Tissue collection. Animals were humanely killed as needed to reduce
suffering and were not fed the night before they were killed. In total,
each of four adipose tissues (ATs) fromdifferent anatomical sites were
rapidly and manually separated from each carcass, immediately flash
frozen in liquid nitrogen, and stored at −80 °C until RNA and DNA
extraction. The four ATs were divided into two groups, including (1)
one type of subcutaneous AT (SAT; upper layer of backfat [ULB]) and
(2) three types of visceral ATs in the abdominal cavity (VAT; greater
omentum [GOM], mesenteric adipose [MAD], and retroperitoneal
adipose [RAD]).

Histology of adipocytes and measurements of adipocyte volume.
For histological examination, all ATswerefixed in 10%neutral buffered
formalin solution, embedded in paraffin using a TP1020 semi-enclosed
tissue processor (Leica), sliced at a thickness of 6μm using RM2135
rotary microtome (Leica), and stained with hematoxylin and eosin
(H&E). The mean diameter of an adipocyte cell was calculated as the
geometric average of the maximum and minimum diameter, and all
adipocytes (all cells per field; three sections per sample) were mea-
sured for each samplewith a TE2000fluorescencemicroscope (Nikon)
and Image Pro-Plus 7.0 software (Media-Cybernetics). The mean adi-
pocyte volume (V) was obtained according to the following formula:

V =
π
6
×
Xn

i= 1

D3
i

n
ð1Þ

where Di is the diameter of the adipocyte, and n is the number of
adipocytes.

Transcriptional profiling
RNA-seq library generation. Total RNA was extracted using an
RNeasyMini Kit (Qiagen). Samples were depleted for rRNA (Ribo-Zero
kit, Epicentre), and libraries were generated with Illumina TruSeq
stranded RNA-Seq library kits according to the manufacturer’s
instructions. All libraries were quantified using a Qubit dsDNA High
Sensitivity Assay Kit (Invitrogen) and sequenced with the HiSeq X Ten
(Illumina) platform to produce an average of ~11.97Gb high-quality
data for each library.

RNA data analysis. All annotated protein-coding genes (PCGs) in the
reference genome (Sscrofa11.1, release 102), together with long non-
coding RNAs (lncRNA) and transcripts of unknown coding potential
(TUCP) transcript annotations from a previously study6, were used for
comprehensive gene annotation and subsequent transcript quantifi-
cation. The gene symbols for 29 PCGs were manually updated
according to the protocols used by a previous study90 for cases where
the gene symbols were not available in the annotation file but were
available under the gene description on Ensembl, were updated in a
future Ensembl release, or where multiple Ensembl IDs corresponded
to a single gene symbol. Paired-end reads were aligned to reference
genomes using STAR91 (version 2.6.0c) with default parameters. Gene-
level expression was estimated as transcripts per million (TPM) using
the high-speed transcript quantification tool Kallisto92 (version 0.43.0)
with parameters (--bias --rf-stranded). Mapped read counts per gene
were extracted using tximport (version 1.6.0) in the R package
with default parameters. We considered a PCG to be detected/
expressed if it had expression levels greater than 0.5 TPM in at least
one sample. For lncRNA and TUCP, we used a cutoff of 0.1 TPM in at
least one sample.

Differentially expressed genes (DEGs) were identified by edgeR93

(default parameters, version 3.30.3) using filtering thresholds of false
discovery rate (FDR) < 0.05 and fold change >1.5, and were detected in
at least 80% of replicates/samples from at least one group.

Estimating relative cell-type proportions in adipose tissues using
bulk RNA-seq data. We applied CIBERSORTx94 (version 1.05, https://
cibersortx.stanford.edu) to identify cell proportions using RNA-seq
data for all samples. A signature matrix was generated based on tran-
scriptome TPM values of representative genes for three cell types
(adipocytes, M1/M2macrophages, andmicrovascular endothelial cells
[MVEC])95. Default parameters were applied. The proportion of adi-
pose tissue was further measured by deconvoluting gene expression
levels (in TPM) of bulk RNA-seq data based on the above signature
matrix and using S-mode batch effect correction.

3D genome architecture
In situ Hi-C library generation. Hi-C libraries of each AT were gener-
ated according to previously published Hi-C protocols with some
minor modifications96. Briefly, 1 g AT was pulverized, and 37% for-
maldehyde was added to produce a final concentration of 4% for
chromatin cross-linking. The mixtures were incubated at room tem-
perature (20–25 °C) for 30min, and glycine was added to produce a
final concentration of 0.25mol/l to quench the formaldehyde. The
mixtures were then centrifuged at 1500 × g for 10min at room tem-
perature, and lysis buffer was added to the upper layer containing
adipocytes and homogenized. Homogenate was centrifuged at
5000× g for adipocyte sediments. Nuclei of formaldehyde-fixed ATs
were permeabilized, and DNA was digested with 200 units of MboI (a
4-cutter restriction enzyme) for 1 h at 37 °C. The restriction fragment
overhangswere filled and labeled by biotinylated nucleotides and then
ligated in a small volume. After cross-link reversal, ligated DNA was
purified and sheared to a length of 300–500bp, at whichpoint ligation
junctions were pulled down with streptavidin beads and prepped for
Illumina NovaSeq 6000 sequencing.
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Initial processing of Hi-C data. Hi-C reads were processed using the
Juicer pipeline97 (version 1.5.6) with default parameters. Sequence data
were aligned against the pig reference genome (Sscrofa11.1). Contact
reads mapped to sex chromosomes or the mitochondrial genome or
associated with low-quality alignments (defined as one or both reads
failing to meet a threshold MAPQ ≥ 30) were filtered out. For each
autosome, the normalized observed contact matrices were generated
using the Knight-Ruiz algorithm (to remove intrinsic biases within the
matrix) in the Juicer toolkit with quantile normalization conducted
using BNBC (version 1.0.0) (to remove biases between samples), both
set to default parameters98. The correlation between normalized
matrices was calculated using HiCRep99 (version 1.10.0) with default
parameters based on normalized observed contact matrices at 100-kb
resolution. We then transformed the normalized observed contact
matrices into an observed/expected (O/E) matrix by dividing each
normalized observed contact frequency by its corresponding expec-
ted contact frequency (calculated as the average observed contact
frequency for all loci at a certain distance), using the publicly acces-
sible script, generate.oe.matrix.py (https://github.com/JiamanZhang/
Lab_Porcine-Adiposes_paper_codes/tree/main/Lab_OE_matrix).

A/B compartment determination and analysis. A/B compartments at
20-kb resolution were identified using both principal component
analysis (PCA) and A-B index, as previously described100. PCA was
performed to generate PC1 vectors for each autosome per sample at
100-kb resolution using the “prcomp” function in R (version 3.6.1) with
default parameters. Spearman’s coefficient r was calculated between
PC1 and genomic characteristics, including gene density and GC con-
tent, for each autosome using the “cor” function in R (version 3.6.1)
with default parameters. If autosomes had a positive Spearman’s r
value, the 100-kb bins with positive or negative PC1 were identified as
compartment A or B, and otherwise were identified as compartment B
or A, respectively. The A-B index was then calculated at 20-kb resolu-
tion using the publicly available code, get_ABindex.py (https://github.
com/JiamanZhang/Lab_Porcine-Adiposes_paper_codes/tree/main/Lab_
AB_compartment), as previously described100. A-B index represents the
likelihood of a genomic segment interacting with the A or B com-
partments defined at 100-kb resolution, as described above. The 20-kb
bins with positive or negative A-B indexes were considered A or B
compartments, respectively.

The A/B compartment frequency of each 20-kb bin was identified
as the proportion of that bin found in the A compartment across
replicates/samples in each AT of a given group. The frequency of A/B
compartment status can be roughly classified into three categories:
high frequency (≥70%), low frequency (≤30%), and medium frequency
(30–70%), according to their consistency across replicates/samples.
We initially assessed changes in compartment frequency between
treatment groups or ATs.

To compare the compartment status between groups/ATs in
more detail, we defined A/B switches and A/B variables using the fol-
lowing pipeline: first, we defined a set of common A/B compartments
(with >80% of individuals/replicates exhibiting the same chromatin
status). The compartment status of a bin that exhibited opposite
trends between groups/ATs was defined as an A/B compartment
switch. We then identified regions with the same compartment status
between groups/ATs, but with statistically significant differences in
compartment scores (i.e., the A-B index) between groups/tissues (|ΔAB
index | > 0.75 and q value < 0.05, Student’s t test and adjusted FDR),
which were then designated as A/B variables.

TAD identification and analysis. The deDoc101 (version 1.0.0) program
at default parameters was used to identify TADs in the 20-kb normal-
ized contact matrices (generated by the Knight-Ruiz algorithm and
quantile method) for each autosome. TADs shorter than 100-kb were
removed. To characterize the strength of each TAD structure, we

calculated IS102 (insulation score) using matrix2insulation.pl (version
1.0.0, https://github.com/dekkerlab/cworld-dekker) with the para-
meters (−v -is 260,000 -ids 200,000 -im mean -nt 0.1 -bmoe 0) and
LBS29 (local boundary score) using the get.samples.chr.LBS.value.py
script (https://github.com/JiamanZhang/Lab_Porcine-Adiposes_paper_
codes/tree/main/Lab_TAD_LBS/codes) with default parameters at 20-
kb resolution.

We also measured the concordance of TADs across pairwise
samples using the Jaccard index (a measure of the similarity between
two sets of data), MoC overlap ratio103 (a measure of the overlap
between each pair of TADs that assesses the number of base pairs, and
considers the overall size of both TADs), and VI scores104 (ameasure of
the similarity of all subsets of the two TAD structures using a dynamic
programming algorithm to compute the VI metrics).

TAD boundary frequency. To identify non-redundant boundaries to
compare between ATs and between groups, we collapsed TAD
boundaries with proximal genomic locations and reconstituted
aggregated sets of non-redundant TAD boundary-enriched regions
(200-kb regions bookended by TAD boundaries), as previously
described with minor modifications105. We first calculated average
insulation scores (IS) across each group for TAD boundaries, con-
catenated TAD boundaries from all replicates within a given compar-
ison, and sorted them by there is in ascending order. Next, we picked
one boundary from the top of the list and removed any remaining
boundary within ±100 kb of the top boundary. The next boundary on
the list and the process were then repeated until the entire list was
complete.

Non-redundant boundaries were used as boundary centers to
calculate/quantify frequencies based on the number of replicates in
which they were observed in these boundary-enriched regions
(±100 kb regions) for each treatment group (Supplementary Fig. 18a).
TAD boundaries were also classified as high frequency (≥70%); low
frequency (<30%); or medium frequency (30–70%).

Features of variable or stable A/B compartments and TAD bound-
ary regions. We also characterized sequence elements embedded in
regions of variable or stable A/B compartments or TAD boundaries,
including CTCF motifs that were identified by FIMO106 (version 5.1.1)
with default parameters; phastCons and phyloP of pig were obtained
by liftovering the corresponding values for the humangenomeversion
hg38 (downloaded fromUCSC, http://www.genome.ucsc.edu)with pig
reference genome Sscrofa11.1 using the UCSC LiftOver tool (version
linux.x86_64); housekeeping genes and transposon elements (TE)
downloaded from the previous study6.

Transposon element (TE) analysis. Repeat Masker data of Sscrofa11.1
was downloaded from UCSC (https://hgdownload.soe.ucsc.edu/
goldenPath/susScr11/bigZips/). For further analysis, we only retained
four types of TEs (short interspersed nuclear elements [SINE], long
interspersed nuclear element (LINE), long terminal repeat (LTR), DNA)
[DNA transposons]. The sequence diversity of TEs was used to char-
acterize the age of the boundaries.

Ultra-deepHi-Cdata pooling. To further explorefine-scale chromatin
structures at a high resolution, including CCCTC-binding factor
[CTCF]-mediated loops and promoter-enhancer interactions (PEIs) for
each AT across NC, WG, and WL groups, Hi-C reads obtained from
replicates withinNC andWL groupwere pooled. For theWGgroup, we
defined sub-groups based on the similarity of their cell composition
(including adipocytes, macrophages [M1 and M2 combined], and
MVECs) across all 157 samples using K-means clustering. We empiri-
cally defined 2–3 sub-groups for a given AT in the WG group (sub-
groups with 7 or more biological replicates were retained), and repli-
cateswithin eachWG sub-groupwere pooled. To ensure balance in the
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pooling, the pooled data were down-sampled to about 2 billion read
pairs, which generated contact matrices that reached a 1.5-kb
resolution.

Analysis of CTCF-mediated loops. We used Fithic2 software107,108

(version 2.0.7) with default parameters to identify loops at a 5 kb
resolution, using q value < 0.01 as a cut-off. Loops with both anchors
overlapping a CTCF motif and in the genomic range of 30-kb to 2-Mb
were retained for further analysis. We next merged redundant paired-
end loops within a neighboring genomic distance (distances between
both anchor pairs less than a 5-kb bin) following protocols used in
previous work, withminormodifications10. We first ranked all loops by
their chromosome position and subsequently divided them into two
groups based on whether they had even or odd ranks. We then used
the pair-to-pair command in bedtools (version v2.25.0) to investigate
overlaps in the boundaries between any paired loops from the two
sets. Both anchors of loops in one set that overlapped or neighbored
with anchors of loops in the other set weremerged to form new loops
with unified anchor regions. Loops having no overlap with any other
loops were retained. The merged and retained loops were used as
inputs for the next iteration. Iterations continued until the algorithm
converged and no other paired-end loops could be merged.

ChIP-seq library preparation and sequencing. We performed ChIP-
seq using antibodies against H3K27ac (a canonical histone mark of
active enhancers) as previously described109. In brief, AT samples were
fixed with 1% formaldehyde. The samples were then lysed, and chro-
matin was isolated on ice. Samples were sonicated to obtain soluble,
sheared chromatin with an average DNA length of 200–500bp. The
20μl soluble chromatin was stored at −20 °C for sequencing as input
DNA, while the 100μl soluble chromatin was used for immunopreci-
pitation with the 5μg H3K27ac (ab4729, Abcam) antibodies. For both
input DNA and immunoprecipitated DNA, each ChIP-seq library was
sequenced on the Illumina HiSeq X Ten platform to generate 150 bp
paired-end reads.

ChIP-seq data analysis. H3K27ac ChIP-seq reads were mapped to the
pig reference genome (Sscrofa 11.1) using BWA110 (version 0.7.15). Next,
PCR duplicates were removed using Samtools111 (version 1.3.1). Peaks
were called using the SICER112 tool (version 0.1.1) with parameters
(--windowSize 200 --gapSize 3 --mapq 0 --fragSize 250 --FDR 0.05). We
performed the peak calling step for each sample bam file, and group
bam files were pulled from all replicates. Peaks called from group bam
files were retained if the peak was observed in at least 50% of all
replicates and the overlap length was at least 50% of both pairwise
peaks. Highly and moderately active enhancers were identified by the
standard ROSE algorithm113,114 (version 0.1) with parameters (-s 12500 -t
2000). Briefly, neighboring enhancer elements (within 12.5 kb) were
defined by H3K27ac ChIP-seq peaks that were merged and ranked by
theH3K27ac signal to identify an inflection point. Enhancers above the
inflection point were considered highly active enhancer peaks, while
those below the inflection point were considered moderately active
enhancer peaks. Fold enrichment over control signal tracks was
determined using the bdgcmp command in MACS2 (version
2.1.1.20160309) with default parameters.

Identification and analysis of promoter-enhancer interactions
(PEIs). Normalized contact matrices (using Knight-Ruiz algorithm and
quantile method) at a 5-kb resolution were analyzed using the
PSYCHIC34 algorithm (version 2018-01-05, https://github.com/dhkron/
PSYCHIC) with default parameters to identify over-represented inter-
actions in the promoter region. We retained high confidence PEIs with
FDR values < 0.001 and interaction distance ≥40 kb. To explore the
potential for transcriptional regulation by a predicted enhancer,

we calculated a regulatory potential score (RPS) for each gene based
on the hypothesis that an enhancer’s quantitative effect on a gene
could depend on their spatial proximity. The RPS was calculated as:

RPS=
Xn

i = 1
log10ðlnÞ ð2Þ

in which n represents the number of enhancers linked to a gene in the
aforementioned high confidencePEIs and ln represents the normalized
interactions (i.e., the observed contact frequency minus the expected
contact frequency) for eachPEI. Theobserved contact frequencyof PEI
was obtained from KR and quantile normalized contact matrices, and
the expected contact frequency of PEI was obtained from expected
contact matrices calculated by PSYCHIC34. To investigate PEI rewiring,
we compared the RPS between ATs/groups; differential RPS genes
were defined as those genes with FC [fold change] >1.5, |Δ| >2.

We also quantified the activity for putative enhancers (5-kb in
length) involved in PEIs by status annotation identified by ROSE, which
was then classified into three categories, including highly-active
enhancers (covered by the H3K27ac peak), moderately-active enhan-
cers (covered by the H3K27ac peak), and low-active enhancers (not
covered by the H3K27ac peak). We used ROSE with a -t parameter set
to 2000 to exclude promoter regions.

Visualization of 3D chromatin structure. TheminiMDS (version 2018-
09-27, https://github.com/seqcode/miniMDS) program was used to
infer the 3D genome structures at the 5-kb normalized contact matrix
(usingKnight-Ruiz algorithmandquantilemethod)115. Pymol116 (version
2.5.2) was used to visualize 3D coordinates.

Evolutionary patterns of local spatial context across mammals
Local spatial context comparison across species. Evolutionary pat-
terns of local spatial context (i.e., IS) acrossmultiple species (based on
references genomes for pig [Sscrofa11.1], including humans [hg38],
dogs [CanFam3.1], cats [felCat9], mice [mm39], rabbits [OryCun2.0],
and sheep [Oar_v3.1]) were identified using the Phylo-HMGP model43

(version 1, https://github.com/yangymargaret/Phylo-HMGP) with
parameters (--num_states 30 -r 31). To compare expression levels
between multiple species, TPM values were normalized using a pre-
vious published scaling method117.

Transcription factor (TF) binding motif analysis. Genome-wide
motifs were identified by FIMO106 (version 5.1.1) with default para-
meters using the JASPAR 2016 core vertebrate motif database118. TF
motif enrichment across different states was calculated using
HOMER’s findMotifs.pl (version v4.4, http://homer.ucsd.edu/homer/)
separately, with a background of stable anchors119.

Comparative analysis between pigs and humans
Human data collection. We prepared the in situ Hi-C, RNA-seq, and
ChIP-seq libraries for the collected human adipose samples with the
same procedures used for pig samples. We also downloaded publicly
available Hi-C and RNA-seq datasets of three human SAT samples (see
Supplementary Data 9 for details). We performed expression, A/B
compartment, TAD boundary, and PEI analyses for four homologous
ATs with the same analytical pipeline used to assess the pig data.

The collection and sequencing of human clinical samples com-
plied with all relevant regulations regarding the use of human study
participants approved by the Ethics Committee of Sichuan Provincial
People’s Hospital (No. 2018-212), and informed consent was obtained
before the study. All study participants provided written informed
consent in accordance with the Declaration of Helsinki.

Inter-species comparison/mapping of PEIs. We separately mapped
the contacts of fourATs inpigs (“query” species) to thehumangenome
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(“reference” species) using the LiftOver model in the C-InterSecture
tool (version 2020-09-14, https://github.com/NuriddinovMA/C-
InterSecture) and vice versa. We only focused on comparable homo-
logous promoters, with bins (5-kb) where the TSS location of genes
could be lifted over using the UCSC LiftOver tool (version
linux.x86_64) with the parameter “minMatch=0.2” cross Sscrofa11.1 to
hg38, and vice versa. Human and pig homolog files (release 102) were
downloaded from BioMart (https://asia.ensembl.org/index.html).

Inter-species enhancer sequence and usage conservation. The
conservation of enhancers that interacted with homologously com-
parable promoters (i.e., liftover) between human and pig genomeswas
assessed based on their sequence divergence and functional usage
using C-InterSecture120, according to the following criteria: (1) Enhan-
cers that failed to liftover were recognized as sequence-specific.
(2) Enhancers where liftover was successful and whose percentile
scores (PS, calculated by normalized contact frequencies using
C-intersecture120) exceeded 85 were defined as usage-conserved.
(3) The remaining enhancers with successful liftover that had PS
values ≤ 85 were defined as only sequence-conserved.

Enrichment analysis of non-coding SNPs in enhancers. HumanSNPs
were downloaded from the NHGRI-EBI GWAS catalog (https://www.
ebi.ac.uk/gwas/). SNP records related to genome-wide haplotype
association study (GWHAS) and SNP-by-SNP associations were dis-
carded. Pig SNPs were lifted over from human SNPs using the UCSC
LiftOver tool (version linux.x86_64). To investigate SNP enrichment
around enhancers and non-coding regions that did not overlap with
coding sequence regions of PCGs, we calculated enrichment scores121

as follows:

Enrichment score =
Nxsnp

Nall
×
BNall

BNx
ð3Þ

in which, Nxsnp represents the number of SNPs in X type regions (e.g.,
enhancer regions) and Nall is the total number of SNPs on autosomes;
BNx represents the base number of X type regions, and BNall is the base
number of the sum of autosomes.

Identification of expansion and contraction genes. We used five
species (humans, pigs, mice, rats, and cows) to identify expanded or
contracted gene families using CAFE122 (version 4.2.1, https://github.
com/hahnlab/CAFE) with default parameters. A phylogenetic tree of
five species was obtained from the TimeTree database (http://
timetree.org). We obtained homologs (only PCGs) from five species
(release 102) from BioMart using humans as a reference. Homologous
gene networks among the five species were constructed by assessing
the homology relationship between humans and other species. Genes
with copy numbers (the number of gene IDs belonging to specific
species in a family) that were greater (or lower) in humans than the
average of the other four species and “Viterbi p values” less than 0.05
calculated by CAFE122, were considered human expansion (or con-
traction) gene families.

Functional enrichment analysis
Gene Ontology (GO) and KEGG pathway functional enrichment ana-
lyses were performed using Metascape (version 3.5, http://metascape.
org).Genesweremapped to their respective humanorthologs, and the
lists were submitted to Metascape for enrichment analysis based on
the significant overrepresentation of GO biological processes (GO-BP)
and KEGG-pathway categories. In all tests, all the annotated genes in
the genome were used as the enrichment background. Only GO-BP or
KEGG-pathway termswith resulting p values or FDR corrected p values
<0.05 were considered significant and were depicted in the plots.

Data collection for functional gene categories
To further characterize the specialized functions of ATs in this study,
we collectedmultiple a priori functional candidate PCGs and examined
their expression patterns or chromatin status. PCGs involved in the
“hypertrophy genes”, “hyperplasia genes”, and development-related
“HOX genes” and “homeobox family genes”were retrieved frompublic
databases (Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology) and/or collected from the literature.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. The reference genome and gene
annotation file (Sscrofa11.1, release 102) were downloaded from
Ensembl (https://ftp.ensembl.org/pub/release-102/). A phylogenetic
tree of five species was obtained from the TimeTree database (http://
timetree.org). The raw and processed Hi-C, RNA-seq, and ChIP-seq
data of pigs generated in this study are available at Gene Expression
Omnibus (GEO) under the accession code “GSE206539”. The rawHi-C,
RNA-seq, and ChIP-seq data of humans generated in this study are
available at GenomeSequenceArchive forHuman (GSA-Human) under
the accession code “HRA002514”. The public Hi-C and RNA-seq data of
nine adipose samples of pigs were downloaded from Sequence Read
Archive (SRA) under the BioProject accession codes “PRJNA637678”
and “PRJNA733023”. The public Hi-C and RNA-seq data of three adi-
pose samples of humans were downloaded from SRA under the Bio-
Project accession code “PRJNA678123”. The public Hi-C and RNA-seq
data of the other five species for cross-species analysis were down-
loaded fromSRAunder theBioProject accession codes “PRJNA637678”
and “PRJNA817154”. Details are available in Supplementary Data 1, 6
and 9. Source data are provided with this paper.

Code availability
All the code used for data analysis is available at https://github.com/
JiamanZhang/Lab_Porcine-Adiposes_paper_codes and https://doi.org/
10.5281/zenodo.7894973.
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