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grandR: a comprehensive package for
nucleotide conversion RNA-seq data analysis

Teresa Rummel 1,3, Lygeri Sakellaridi 1,3 & Florian Erhard 1,2

Metabolic labeling of RNA is a powerful technique for studying the temporal
dynamics of gene expression. Nucleotide conversion approaches greatly
facilitate the generation of data but introduce challenges for their analysis.
Here we present grandR, a comprehensive package for quality control, dif-
ferential gene expression analysis, kinetic modeling, and visualization of such
data. We compare several existing methods for inference of RNA synthesis
rates and half-lives using progressive labeling time courses. We demonstrate
the need for recalibration of effective labeling times and introduce a Bayesian
approach to study the temporal dynamics of RNAusing snapshot experiments.

The RNA expression level of a gene is governed by the interplayof RNA
synthesis and degradation. While RNA-seq can easily obtain
transcriptome-wide snapshots of gene expression profiles in a single
experiment, it remained difficult to directly measure the temporal
dynamics of gene regulation as consequences of changes in the rates
of RNA synthesis and degradation, e.g. due to external stimuli.

To overcome this limitation, techniques involving metabolic
labeling of RNA have been developed. Metabolic RNA labeling uses
4-thiouridine (4sU) or other nucleoside analogs, which are introduced
into living cells and incorporated into nascent RNA. First approaches
physically separated labeled and unlabeled RNA by thiol-specific bio-
tinylation and affinity purification and sequenced separate libraries of
these fractions. This approachhas beenused to studyRNAprocessing1,
transient RNA expression2, kinetics of RNA polymerases3 or the
dynamics of RNA expression4. Existing protocols for purification of
labeled RNA are highly laborious and require substantial amounts of
RNA5. In addition, contamination with background total RNA in the
labeled RNA fraction must be controlled for4, and normalization is
challenging6.

Recently, several approaches have been proposed that circum-
vent the purification7–9: Before sequencing, RNA is treated with che-
mical agents to specifically convert 4sU into cytosines or cytosine
analogs. Thus, labeled and unlabeled RNAs can in principle be differ-
entiated based on T-to-C mismatches in sequencing reads without the
need to physically purify labeled RNA. A major advantage of the
nucleotide conversion approach, aside from lower requirements of
starting material and a simplified experimental workflow, is that it can

be combined with more specialized protocols, e.g. to profile tran-
scription start sites10 or ribosome occupancy11. Furthermore, we and
others have combined 4sU conversion with single cell RNA-seq to
study the heterogeneity of gene regulation5,12–14.

A limitation of 4sU conversion approaches is that concentrations
of 4sU that are tolerated by cells commonly only replace 1 in 40 uri-
dines by 4sU7. Thus, a considerable number of reads originating from
labeled RNA does not cover any 4sU incorporation site. The percen-
tage of such reads is in the order of 20-80%anddepends on the ratio of
4sU and normal uridine available for incorporation into nascent RNA,
the read length, and the uridine content of RNA. The pioneering stu-
dies employing 4sU conversion exclusively focused on T-to-C reads.
Despite underestimating labeled RNA, T-to-C reads alone can be used
to estimate unbiased RNAhalf-lives in pulse-chase experiments7 and to
detect rapid changes of transcription upon drug treatment or acute
depletion of transcription factors3,15,16.

We previously proposed a statistical solution to quantify labeled
and unlabeled RNA without bias due to limited 4sU incorporation: By
using a binomialmixturemodel, our GRAND-SLAM approach provides
unbiased estimates of the percentage of labeled RNA per gene and its
posterior distribution17. The posterior represents uncertainties in the
quantification, mainly due to the scarcity of 4sU incorporation events,
and has so far been used to filter out genes with inaccurate
quantification12. Importantly, however, our Bayesian framework in
principle allows to take these uncertainties further to downstream
analyses such as estimation of RNA kinetics or gene expression
changes.

Received: 29 September 2022

Accepted: 1 June 2023

Check for updates

1Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078Würzburg, Germany. 2Faculty for Informatics and Data Science,
University of Regensburg, Bajuwarenstr. 4, 93053 Regensburg, Germany. 3These authors contributed equally: Teresa Rummel, Lygeri Sakellaridi.

e-mail: Florian.Erhard@informatik.uni-regensburg.de

Nature Communications |         (2023) 14:3559 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9434-0836
http://orcid.org/0000-0002-9434-0836
http://orcid.org/0000-0002-9434-0836
http://orcid.org/0000-0002-9434-0836
http://orcid.org/0000-0002-9434-0836
http://orcid.org/0000-0002-6109-1626
http://orcid.org/0000-0002-6109-1626
http://orcid.org/0000-0002-6109-1626
http://orcid.org/0000-0002-6109-1626
http://orcid.org/0000-0002-6109-1626
http://orcid.org/0000-0002-3574-6983
http://orcid.org/0000-0002-3574-6983
http://orcid.org/0000-0002-3574-6983
http://orcid.org/0000-0002-3574-6983
http://orcid.org/0000-0002-3574-6983
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39163-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39163-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39163-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39163-4&domain=pdf
mailto:Florian.Erhard@informatik.uni-regensburg.de


GRAND-SLAM is designed for the primary processing of nucleo-
tide conversion RNA-seq data, i.e. to estimate the percentage of
labeled RNA among the total RNA for each gene. Estimating RNA half-
lives3,18 or uncovering short-term gene regulation12,15 require additional
analysis steps. For experiments involving affinity purification of
labeled RNA, several software packages including pulseR19, INSPEcT20

and DRiLL4 have been developed for such downstream analyses.
However, all these packages are designed to work with separate
sequencing libraries corresponding to the labeled and unlabeled
fraction of a sample, and the models implemented in these packages
are blind towards the challenges that come along with nucleotide
conversion approaches. As a notable exception, pulseR has later been
adapted for analyzing nucleotide conversion data by adding an addi-
tional nuisance parameter for the limited labeling efficiency21. How-
ever, none of these methods take advantage of the output of the
mixture modeling approach as implemented in GRAND-SLAM or the
fact that uncertainties of the percentage of labeled RNA can be esti-
mated for nucleotide conversion approaches.

To close this gap, we here present grandR, an R package to facil-
itate analyses of nucleotide conversion RNA-seq experiments and
taking full advantage of the uncertainty estimates. It includes new
methods for quality control and recalibrating labeling times. grandR
implements several methods to estimate RNA synthesis and degrada-
tion rates from progressive labeling experiments that have been
applied previously by us and others3,17–19,22. Here, we compare these
methods and show that the most accurate results are obtained by
directly utilizing the posteriors from GRAND-SLAM to estimate the
kineticmodel. Furthermore, we propose a Bayesianhierarchicalmodel
to dissect themode of gene regulation from snapshot experiments. To
facilitate collaborative work and exploratory data analysis, grandR
provides a comprehensive web-based data visualization and
exploration tool.

Results
grandR overview
grandR is designed as a comprehensive and easy-to-use toolkit for all
types of nucleotide conversion RNA-seq data such as SLAM-seq7,
Timelapse-seq8 or TUC-seq9. The inputs for grandR are in principle
matrices (genes × samples) of (i) total read counts and (ii) information
derived frommetabolic RNA labeling (e.g., read counts of labeled RNA

or the percentage of labeled RNA). grandR includes several functions
to read data into a common internal data structure, and most of the
implemented methods are therefore agnostic how raw data has been
preprocessed. The only exceptions are the Bayesian methods descri-
bed below, as they require the posterior distributions of the percen-
tage of labeled RNA. We thus recommend using grandR after primary
processing by our GRAND-SLAM tool17, which provides these posterior
distributions.We put special emphasis on designing our package to be
usable by non-experts in R programming: All data and metadata
belonging to a project are stored in a single variable, and there are
clearly defined, and expressively named, high-level functions to pro-
ceed with analysis pipelines (Fig. 1a). Our workflow advocates (but
does not enforce) using systematic sample names to encodemetadata
(Fig. 1b). After reading data either from the output of GRAND-SLAM, or
fromcountmatrices of total and labeledRNA, a typicalworkflowwill (i)
filter genes according to user defined criteria, (ii) perform quality
control (PCA, toxicity analysis), (iii) normalize data by one of the
implemented approaches (size factors from all genes or spike-ins,
TPM, FPKM), (iv) perform differential gene expression analysis or
kinetic modeling and (v) visualize results. Each of these five steps is
accomplished by calling grandR functions (Fig. 1a).

Quality control is important to exclude effects of metabolic RNA
labeling on the biology of the cells. Below,wedescribe themethodswe
developed for this and that are all implemented in grandR. For dif-
ferential gene expression, grandR interfaces with DESeq223 and the lfc
package24. P-values and log fold changes canbe estimated in a straight-
forward manner for a single pairwise comparison (e.g., treatment vs.
control), or for multiple pairwise comparisons (e.g., treatment vs.
control over several time points), either for total, labeled or unlabeled
RNA. Testing for more complex designs is also possible based on the
likelihood ratio test. grandR implements all kinetic modeling approa-
ches discussed below (pulseR, linear regression after logarithmizing,
the non-linear least squares and the Bayesian approaches), it supports
both pulse-chase and progressive labeling designs and can alsofit non-
steady state data (Fig. 1c). The Bayesian hierarchical model for snap-
shot designs and the temporal recalibrationsmethodsproposedbelow
are also implemented.

For nucleotide conversion RNA-seq data with single cell
resolution12,14, grandR interfaces with the Seurat package25 and can
integrate the metabolic labeling information by different means as

Fig. 1 | grandR overview. a Coding example of a grandR project. Self-explanatory
high-level commands (blue) load and preprocess data (lines 3-6), and then fit a
kinetic model for each gene (line 8). Finally, the interactive web-based tool is
started (line 10). Code comments (orange) refer to the other panels. b Systematic
sample names. When sample names systematically encode metadata in separate
fields as shown, grandR can extract these automatically by defining the semantics

as shown in lines 3 and 5 in a. cgrandRcanfit kineticmodels of RNAwith orwithout
assuming steady state expression. dWeb-based data visualization. This interactive
graphical user-interface presents a table of analysis results that can be filtered,
searched and exported, and experiment-specific visualizations are displayed for
individual genes.
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described previously5. grandR provides tools for visualizations of
individual genes and summaries of a data set, which can be used
programmatically or via a shiny-based web interface (Fig. 1d). All fig-
ures herewere generated using grandR, andRnotebooks to reproduce
all analyses are provided as Supplementary Software 1. Our package
comes with extensive documentation, several vignettes describing
common workflows and frequently used tasks, and a cheat sheet
summarizing the most important functions.

Quality control reveals impact of long-term labeling on
transcription
For nucleotide conversion approaches, sufficient 4sU incorporation
into newly synthesized RNA must be achieved to enable accurate
quantification. However, labeling with high 4sU concentrations or
labeling over extended periods of time affects cell viability7 or RNA
metabolism26 in a cell type specific manner. Thus, as opposed to
standard RNA-seq, nucleotide conversion RNA-seq requires additional
quality control steps in the analysis workflow.

In grandR, testing for effects of 4sU on gene expression estimates
can be performed by comparing 4sU treated samples against equiva-
lent 4sU naïve control samples. To estimate RNA half-lives, Herzog
et al.7 pre-treated mouse embryonic stem cells (mESCs) with low
concentrations of 4sU (100 µM) for a 24 h pulse phase, followed by
washing out 4sU and sequencing at several time points during this
chase phase. Notably, cell viability was assessed to be ~80% after 24 h.
Quality control using grandR revealed that samples treated with 4sU
for 24 h and untreated controls segregate in a principal component
analysis (PCA, Fig. 2a) and that the p53 pathway was significantly up-
regulated, whereas several stress-related pathways were significantly
down-regulated (FDR <0.05, gene set enrichment analysis, Supple-
mentary Fig. 1a). Interestingly, only 447 out of 7215 genes (6.2%) where

significantly (FDR < 5%,DESeq2Wald test23) and strongly (absolute log2
fold change >124) regulated (Supplementary Fig. 1b). Heatmap analysis
of these 447 genes also involving the chase timepoints revealed that at
least a subset of those genes reverted to their expression level in
control cells during the 24 h of 4sU washout (Fig. 2b). Of note, also
among the remaining 6,768 genes there were genes with weaker, but
consistent up- or downregulation and reversal to the original state in
the full time course (Supplementary Fig. 1c, Supplementary Data 1).
This reversal was also observed in a PCA where the chase time points
gradually moved towards the unlabeled controls (Supplementary
Fig. 1d). Heatmap analysis of mESCs with <24h labeling demonstrated
that 4sU induced regulation is virtually absent with 3 h labeling, but
already detectable with 12 h labeling (Supplementary Fig. 1e). Taken
together these results suggest that a subset of all genes was regulated
due to long-term 4sU treatment.

The observed changes in gene expression are due to a change in
RNA synthesis or stability. If they areonly a consequence of a change in
RNA synthesis, monitoring the drop of labeled RNA in the chase phase
provides unbiased half-lives. If the observed up- or downregulation of
a gene is due to an increase or decrease in RNA stability, the estimated
RNA half-life corresponds to the stability under 4sU treatment. If the
expression reverts to the state in 4sU naïve cells during the chase
phase, the estimated RNA half-life is in between the half-lives in 4sU
treated and 4sU naïve cells (see Supplementary Note 1). Thus, if RNA
stability plays a role in the up- and down-regulation of genes in 4sU
labeled cells, the pulse-chase experiment would over- or under-
estimate the RNA half-life in 4sU naïve cells, respectively. However, a
comparison of half-lives estimated from the 4sU-pulse-chase experi-
ment to half-lives estimated from Actinomycin-D treated mESCs did
not show a systematic over- or underestimation of the 447 genes that
were regulated at least 2-fold upon 24 h 4sU treatment (Fig. 2c).

Fig. 2 | Testing for 4sU toxicityusing grandR. aPrincipal component analysis of 3
mouse embryonic stem cell samples treated with 100 µM 4sU for 24 h and 3 sam-
ples without 4sU treatment (no4sU). The percentages of the explained total var-
iance for both principal components shown are indicated. b Heatmap of the 4sU-
pulse chase experiment showing log2 fold changes vs the mean of the three 4sU
naïve control samples (no4sU) of n = 447 genes that were differentially expressed
(>2-fold regulated, 5% FDR, DESeq2 Wald test) between no4sU and the samples
after 24 h labeling (0h 4sU chase). The color scale was chosen to show genes with

<1.3-fold regulation in pure white. c Scatter plot comparing the RNA half-lives
measured using Actinomycin-D (Act-D) chase experiments and using the 4sU-
pulse-chase data for n = 5100 genes. The up- and downregulated genes also shown
inFig. 1b are indicated.d Scatter plots comparing the ranks of the new-to-total RNA
ratios (NTR) of each gene against the log2 fold change of the 4 h (left plot) or 8 h
(right plot) sample vs a 4sU naïve sample (untreated mock samples from ref. 18).
Rank 0 is the minimal, rank 1 the maximal NTR value. The Spearman correlation
coefficients with associated P-values (two-sided approximate t-test) are indicated.
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We concluded that the observed expression changes upon 24 h 4sU
treatment aredue to changes in RNA synthesis, indicating that even for
those genes that were regulated >2-fold, half-life estimates frompulse-
chase experiments were not biased by long-term 4sU treatment.
However, our analyses here demonstrate the importance of assessing
potential 4sU induced effects on transcription or RNA stability for
pulse-chase designs and long-term labeling in general.

The kinetics of RNA degradation can also be analyzed without
chase by monitoring the drop of unlabeled RNA over time. Such a
“progressive labeling” design has been used by several studies1,3,18,22

and provides accurate estimates when timepoints are chosen roughly
in the range of the actual RNA half-lives17,27. Zuckerman et al.18 per-
formed siRNA knock-down of the nuclear export factor NXF1 and used
progressive 4sU labeling for 0 h, 2 h, 4 h and 8 h to show that RNA half-
lives were not altered. Quality control by grandR revealed that after
8 h, but not before, the gene-wise newly synthesized to total RNA ratio
(NTR), which is here equal to the percentage of labeled RNA, was
significantly correlated with the log2 fold change with respect to the
(4sU naïve) 0 h time point (Spearman’s ρ = −0.42, p < 2.2 × 10−16,
Fig. 2d). This observed downregulation of short-lived RNAs in the total
RNA pool upon 4sU treatment can have technical reasons or can be
indicative of a perturbed RNA metabolism in these samples. Impor-
tantly for this study the estimated half-lives were not systematically
different after excluding the 8 h time point from analysis (Supple-
mentary Fig. 1f). The variance in the differences between the RNA half-
lives estimated with and without the 8 h time point, however, was
larger for long-lived RNAs, which is not surprising, since accurately
estimating long RNA half-lives requires long labeling17,27. Thus 4sU
concentrations should be chosen such that 4sU induced effects on
RNA metabolism are minimized also for later time points. Quality
control in grandR can be used to assess such effects and to exclude
samples from further analyses.

In summary, grandR facilitates quality control of 4sU labeling
experiments and allows to identify problematic genes or samples in
the sequencing data by comparing 4sU treated samples with equiva-
lent 4sU naïve controls.

Comparative analysis of kinetic modeling
The commonly used kinetic model of RNA expression goes back to
195228. In this model, the RNA for a gene is produced with a fixed
synthesis rate σ and destroyed with a fixed degradation rate δ. Degra-
dation occurs with first-order kinetics, i.e. the number of degradation
events per time unit is proportional to the number of RNAmolecules. A
direct consequenceof thismodel is thatwith constant ratesσ andδ, the
number of RNA molecules always approaches a steady state level,
where the same number of RNA molecules is produced and destroyed
per timeunit. The speedbywhichnon-steady state levelsmove towards
steady state can be characterized by the RNA half-life t1=2, which is the
time it takes to move half the way towards steady state. The RNA half-
life is independent of the synthesis rate σ, and, thus, the RNA stability
can equivalently be characterized via δ or t1=2.

Different variants of thismodel have beenused to estimate kinetic
parameters usingnucleotide conversiondatawith progressive labeling
designs: (i) Finkel et al.22 focused on log transformed estimates of
unlabeled RNA and inferred RNA half-lives using simple linear regres-
sion (LM). (ii) In Narain et al.3, we used non-linear least squares
regression (NLLS) to fit the full model including σ and δ, which has
been done in a similar manner in Zuckerman et al.18. (iii) Boileau et al.21

adapted their pulseR package19 thatwas originally designed for affinity
purified labeled RNA. (iv) Finally, we have presented a Bayesian
method to estimate the degradation rate δ under steady state directly
from theNTR17. Themaindifference amongmethods (i)-(iv) is the error
model employed, which might result in differing parameter estimates
even though the same kinetic model is used. To compare the accuracy
of the fourmethods,we implemented in-silico simulationof nucleotide

conversion RNA-seq experiments in grandR. This uses a previously
developed method29 to simulate read counts. Furthermore, individual
4sU incorporation and conversion events as well as background mis-
matches as introduced by sequencing errors are simulated for each
read, and GRAND-SLAM17 is used to estimate the NTR for each gene.
The simulations are also subject to biological variability (seeMethods).
All parameters including the read count, overdispersion and half-life
distributions as well as the 4sU incorporation and background T-to-C
mismatch rates are matched to a recent SLAM-seq data set of SARS-
CoV-2 infection22 as reference. Taken together, we designed the
simulation in grandR to mimic real data as closely as possible.

While the estimated RNA half-lives correlated well with the
ground-truth for all methods (R >0.84, p < 2.2 × 10−16 for all methods,
Pearson correlation; Supplementary Fig. 2), the NLLS method (ii) and
the Bayesian NTR method (iv) were significantly more accurate than
the LM (i) and pulseR (iii) approaches for data simulated under steady
state conditions (P < 2.2 × 10−16 for all comparisons, two-sided Kolmo-
gorov-Smirnov test; Fig. 3a). By contrast, non-steady state conditions
resulted in generally more substantial deviations from the ground
truth (Fig. 3b). This analysis also shows that the accuracy of the NTR
approach (iv) suffers most significantly without steady state. The
regression (LM, NLLS) and Bayesian (NTR) approaches report interval
estimates. The regression methods had relatively large confidence
intervals, indicating that the gaussian noise approximation does not
properly model our simulated sequencing data, especially in loga-
rithmic space as done by the LM method (Fig. 3c). The Bayesian NTR
method can compute approximate or exact credible intervals. For
steady state conditions these exact credible intervals were indeed
smaller than the more quickly to compute approximate intervals
(inter-quartile ranges: approximate, [0.37–1.23]; exact, [0.30-0.99];
Fig. 3c). Under non-steady state conditions, all deviations were
underestimated, most notably for the Bayesian credible intervals,
where 88% of the simulated half-lives were outside of the credible
interval (Supplementary Fig. 3a). In summary, the non-linear least
squares (NLLS) regression (ii) and the Bayesian NTR approach (iv)
provided the most accurate estimates under steady state conditions.
The NTRmethod slightly outperformed NLLS, but inherently assumes
steady state. We therefore recommend the non-linear least squares
regression as the default method for estimating RNA kinetics using
progressive metabolic labeling data.

Choosing number of replicates, time points and sequen-
cing depth
Our simulation also enabled us to assess how many reads, replicates
and time points are required to obtain accurate estimates of kinetic
parameters. We reasoned that a moderate number between 6 and 12
samples per condition should be used. However, it is a priori unclear
whether these should be distributed over many time points, or whe-
ther more replication of the same time points is more beneficial. First,
we asked whether 6 samples should be used tomeasure time points 0,
4 and 8h with two replicates (2 × 0 + 4 + 8 h), or whether single sam-
ples at 6 time points (1 × 0 + 1 + 2 + 4 + 6 + 8 h) provide more accurate
results. Clearly, the “1 × 0 + 1 + 2 + 4 + 6 + 8 h” design resulted in sig-
nificantly less variable half-life estimates for genes having RNA half-
lives <1 h (p = 2.8 × 10−6, Brown-Forsythe test, Supplementary Fig. 3b)
and half-lives between 1 and 2 h (p = 2.4 × 10−8, Brown-Forsythe test).
Poorer performance with time points not matching to the true RNA
half-lives were indeed not unexpected based on previous theoretical
considerations17,27. To investigate the effect of missing time points in
more detail, we simulated a broad range of potential experimental
settings (Fig. 3d). If early (1 h) or late (8 h) time points weremissing, the
estimates for short-lived or long-lived RNAs, respectively, suffered
significantly in general. This became most obvious when we only
simulated a single time point (Supplementary Fig. 3c). Thus, to analyze
the complete landscape of RNA half-lives multiple time-points
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spanning the whole range of RNA half-lives are required. We next
simulated data for a full progressive time course (1 h, 2 h, 4 h and 8h)
with different sequencing depths and numbers of replicates (Supple-
mentary Fig. 3d). Interestingly, increasing the number of replicates per
time point boosted the accuracy stronger than increasing the number
of reads. This likely is an effect of the biological variability that we
simulated. With biological variability the actual RNA half-life is not the
same but varies slightly for a gene among all samples (time points and
replicates). Additional replicates are thus likely important to accu-
rately include the variability into the kinetic model. Importantly,
however, the extent of improvement due to more replicates depends
on the magnitude of biological variation. In general, the reported
accuracies of the estimates depend on the assumptions made for
simulation and the parameters used. We therefore recommend run-
ning custom simulations using the functions implemented in grandR
to come to an informed decision for planning experiments. In con-
clusion, our data show that time points must be carefully chosen and

the costs for sample and library preparation must be weighed against
the sequencing costs to obtain accurate RNA half-lives.

Temporal recalibration improves the model fit
4sU is not available for transcription immediately once the cells are
cultured on 4sU media, but first crosses cell membranes and is then
processed by the pyrimidine salvage pathway before it is available as
substrate for transcription (reviewed in ref. 5). Thus, the concentration
of active 4sU increases until saturation, and RNA that was transcribed
significantly before reaching saturation contains fewer 4sU than RNA
transcribed later. Such an increase in the 4sU concentration has been
described recently30. Therefore, especially for earlier time points, the
effective labeling time is expected to be much shorter than the nom-
inal labeling time. For example, the effective labeling time of a nom-
inally 1 h sample might only by 40min, since during the first 20min,
the concentration of activated 4sU has been too low to induce many
4sU incorporation events.

Fig. 3 | Estimating half-lives using progressive labeling experiments.
a, b Empirical cumulative distributions of log2 fold changes of estimated half-lives
vs. simulated ground-truth (n = 10,835 genes) for the linear model (LM), the non-
linear least squares method (NLLS), the pulseRmethod and the Bayesian approach
(NTR). In a, the ground-truth is simulated under steady state conditions, in b the
simulation starts from an initial value a0≠σ=δ for each gene (see Methods).
c Boxplots showing the sizes of 95% half-life confidence intervals (CI; for LM and
NLLS) or 95% half-life credible intervals (for NTR; center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers).
Simulations were performed under steady state conditions. Distributions for genes
having the ground-truth inside or outside of the estimated CI are shown separately

and thenumbersof these genes are indicated.NTR represents theχ2 approximation
of CIs, NTR (exact) represents exactCIs computednumerically.dBoxplots showing
log2 fold changes of half-lives estimated by theNLLSmethod vs the ground truth of
simulated data under steady state conditions for genes stratified by RNA half-life
(0–1 h, n = 204 genes; 1–2 h, n = 1,417 genes; 2–4 h, n = 2996 genes; 4–8 h, n = 3122
genes; >8 h, n = 3096 genes; center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers). The distributions for
different half-life classes are shown for several experimental settings involving the
indicated number of replicates and time points: For example, 2×0 + 1 + 2 h means
two replicates for each of three time points with 0 h, 1 h and 2 h of labeling. 0 h
timepoints refer to samples without metabolic RNA labeling.
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To test this effect, we used grandR to estimate RNA half-lives for
published data of Calu-3 cells infected with SARS-CoV-2 and mock
infected control cells22. Indeed, the residuals of the model fit were
mostly negative for the 1 h timepoints, andmorebalanced at later time
points (Fig. 4a, b). The effective labeling time for a sample is a global
parameter that is common to all genes. Moreover, the temporal
behavior of new and old RNA for all genes is constrained by the kinetic
model: The new RNA levels from different time points lie on a single
curve (the model fit) that approaches a specific steady state level and
only has twodegrees of freedom.Conceptually, if the effective labeling
time for a 1 h sample actually is 40min, the new RNA level for this
sample for each gene would be below the model fit, and moving this
sample to the 40min time point would correct for that (Fig. 4a). Thus,

we reasoned that it should be possible to estimate effective labeling
times by maximizing the joint likelihood of all gene specific synthesis
and degradation rates and the effective labeling times.

We first tested this temporal recalibration by simulated time
courses where we artificially reduced the nominal labeling times by
20–40min. The recalibrated labeling times were on average within
1.03-fold of the true effective labeling time (Supplementary Fig. 4a),
and estimation of kinetic parameters was completely rescued after
recalibration (Supplementary Fig. 4b). To further test our recalibration
method, we compared RNA half-lives in mESCs that were estimated (i)
by Herzog et al.7 using pulse-chase SLAM-seq data, (ii) by Herzog et al.
using Actinomycin-D (Act-D) chase RNA-seq data, (iii) by grandR using
the same pulse-chase data, (iv) by grandR using progressive labeling

Fig. 4 | Temporal recalibration of SARS-CoV-2 SLAM-seq data. a Progressive
labeling plots of the SMAD3 gene before (left) and after (right) temporal recali-
bration. Points represent the total, new or old read count of SMAD3 at the indi-
cated time after labeling. Dashed lines show the model fit (NLLS method).
Estimated half-lives are indicated. b Boxplots showing relative residuals from the
model fit (NLLS method) before (left) and after (right) temporal recalibration of
n = 9162 genes for all samples (center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers). c Boxplots showing
the distribution of RNA half-lives estimated from different data sources and by
different methods as indicated (n = 6148 genes; center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range). The dotted line

indicates the median of the pulse-chase experiment as estimated by Herzog et al.
For clarity, the x-axis is cut at 10 h. d Spearman correlation coefficients shown for
all three pairwise comparisons of the reference RNA half-lives, and showing the
improvement due to recalibration for all three references. Color codes indicating
the comparisons are the same as in c. e, f Boxplots showing log2 fold changes
(recalibrated vs. uncalibrated) of half-lives for the mock and virus infected (SARS)
samples (e) or of the estimated initial abundances a0 (recalibrated vs. uncali-
brated) for the non-steady state infected samples (f) for n = 9,163 genes. Separate
distributions for genes from different half-life classes are shown (center line,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
points, outliers).
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data without or (v) with recalibration (Fig. 4c, d). The two half-life
estimates from the pulse-chase data were in excellent agreement, both
with respect to correlation (Spearman’s ρ =0.92) and magnitude
(Herzog et al.: median = 3.80 h, grandR, median: 3.69 h). Interestingly,
the Act-D data were well correlated as well (ρ = 0.78 vs pulse-chase
estimated by Herzog et al., ρ =0.82 vs pulse-chase estimated by
grandR), as described7, but showed substantially longer half-lives
(median: 8.19 h). With respect to all three references (i–iii), recalibra-
tion slightly improved the correlation of half-lives estimated from
progressive labeling (difference of ρ > 0.02 for all references, Fig. 4d).
Considering the noisy estimates of RNA half-lives, also these modest
improvements are remarkable, and statistically highly significant
(p < 2.2 × 10−16 for all three references, t-test). More importantly, reca-
libration rectified the magnitude of the estimated half-lives (uncali-
brated: median = 4.63 h; recalibrated: median=3.69 h, Fig. 4c).

We then recalibrated the labeling times for the SARS-CoV-2 data.
Indeed, the residuals became smaller for all samples and were now
symmetric (Fig. 4a, b). Globally, temporal recalibration affected short
half-lives stronger than long half-lives (Fig. 4e), presumably because
early time points are the most informative to estimate short half-lives.
Moreover, for the virus infected samples therewere substantiallymore
gene-specific differences at the 1 h time point, indicating that without
steady state assumption, the first time point is important to estimate
the initial abundance a0. Indeed, the estimates of a0 exhibited the
same gene specific differences like half-life estimates upon calibration
(Fig. 4f). In conclusion, due to the kinetics of 4sU uptake and activa-
tion, the effective labeling timemight differ from the nominal labeling
time, especially for short labeling. For progressive labeling experi-
ments, this can be corrected by temporal recalibration.

Estimating changes in synthesis or degradation from snapshot
experiments
Nucleotide conversion RNA-seq has also applications beyond pro-
gressive labeling time courses. We and others showed that new RNA
from a single “snapshot” timepoint is more sensitive to detect short-
term changes of gene expression than standard RNA-seq without
metabolic RNA labeling, e.g. upon virus infection12, drug treatment, or
acute depletion of transcription factors via degron systems3,16. So far,
analyses of snapshot samples have been performed in an ad-hoc
manner by the application of standard differential gene expression
tools on estimated new or old RNA.

We have previously shown that steady state half-lives can, in
principle, be estimated from a single snapshot sample based on the
NTR17. Here we show that both synthesis and degradation rates (σ and
δ) can be estimated when not in steady state as long as a “reference”
sample is available from the time point where labeling was initiated, or
from a prior time point (see Methods).

Such estimates of σ and δ might be highly inaccurate due to the
NTR quantification uncertainty, due to a labeling time not matching
the gene specific RNA half-life, or sampling noise due to low numbers
of reads. In addition to these technical factors, σ and δ are also subject
to biological variability among replicate samples. To control these
factors, we developed a Bayesian hierarchical model to estimate the
joint posterior distribution of σ and δ as well as the joint posterior of
log2

σA
σB

and log2
δA
δB

for differential analysis of two samples A and B.
To test our approach, we simulated data for two conditions with

2 h labeling. We left one condition at steady state, for the other we
either perturbed synthesis or degradation rates, or left them unper-
turbed as control. The maximum-a-posteriori log fold change esti-
mates of both σ and δ were unbiased, and much more accurate for σ
(root mean square deviation (RMSD) =0.047; Fig. 5a) than for δ
(RMSD=0.513; Fig. 5b). Estimated changes in σ reflected the true
change in synthesis rates slightly more accurately than new RNA
(RMSD=0.062; Fig. 5c). Counterintuitively, the old RNA fold change
did not correspond to the true fold change of RNA half-lives (Fig. 5d).

Indeed, our model shows that the log fold change of old RNA does not
correspond to a relative change in degradation rates or RNA half-lives,
but there is a more complex relationship between the observed fold
change and the change in RNA stability (see Methods). Previously, an
observed new RNA fold change has been equated with a change in
synthesis rate15. However, ourmodel shows that newRNA fold changes
are also affected by changes in degradation rates, predominantly for
genes with short-lived RNAs. Indeed, we observed significant changes
in newRNAwhenonly the degradation but not the synthesis rateswere
changed, which was restricted to genes with short-lived RNAs (Fig. 5e).
Thus, if synthesis rates are changed, these changes are directly
reflected on the change in newRNA. However, the converse is not true,
since a change in new RNA levels can also be due to a change in RNA
stability especially for short-lived RNAs. Of note the estimated synth-
esis rate changes by our Bayesianmodel were not affected by changes
of RNA stability. For unperturbed controls, estimated changes of δ
exhibited more variance than estimated changes of σ. This effect was
much less pronounced for geneswith short RNA half-lives, or when the
labeling duration was 4 h instead of 2 h (Fig. 5f).

It is important to note that the kinetic model assumes constant
rates of RNA synthesis and degradation during the time of labeling. If
this assumption is not met, the estimated rates represent weighted
averages of these varying rates within the labeling time (Supplemen-
taryNote 1). To test this,we again simulateddata leaving one condition
at steady state (and with constant rates) as control and let either the
synthesis or degradation rate slowly approach a perturbed state over
the time of labeling instead of setting them to a new value at the onset
of labeling. The log fold changes vs control for the synthesis rates again
reflected the true changes more accurately (RMSD=0.087, Fig. 5g)
than for the degradation rates (RMSD= 1.609, Fig. 5h). For both, the
estimated log fold changes had a on average 80% lower magnitude
than the true final rates after 2 h of labeling corresponding to aver-
aging over time for the estimated rates. We concluded that time-
varying synthesis and degradation rates can be estimated using
grandR, and that estimates correspond to weighted averages over the
labeling time.

We then applied our Bayesian model for changes of RNA stability
to the 2 h time point of the SARS-CoV-2 data22, revealing that the
degradation rate changes recapitulated the changes identified by
modeling the full progressive labeling time course (R =0.7,
p < 2.2 × 10−16, Pearson correlation; Fig. 5i).

In summary, in contrast topreviously used fold changesof old and
new RNA, the maximum-a-posteriori estimates of our hierarchical
model provide directly interpretable log fold changes of synthesis and
RNA half-lives from snapshot data.

ROPE analysis of significant changes of σ and δ
We analyzed “regions of practical equivalence” (ROPE)31 to quantify
significant changes of synthesis or degradation using our Bayesian
approach. As a measure of significance, we used the posterior prob-
abilities Pσ or Pδ of the log2 fold change (synthesis or degradation,
respectively) being either <�0:25 or >0:25. As a comparison, we ana-
lyzed Benjamini-Hochberg adjusted P-values qnew and qold computed
by DESeq223 for new and old RNA, respectively.

We first analyzed our simulated data (2 h labeling) where RNA
synthesis rates were perturbed. As expected from overall n = 10,835
genes, virtually none had Pδ>0:9 (n = 127, 1.2%) or qold<0:01 (n =0)
independent of the true change of RNA synthesis (Fig. 6a). Notably, of
the n = 3388 genes simulated to be more than 2-fold up- or down-
regulated, n = 3249 (95.9%) and n = 3174 (93.7%) genes had Pσ>0:9 and
qn<0:01, respectively (Fig. 6a). Thus, ROPE analysis of our Bayesian
model and DESeq2 analysis of new and old RNA showed similar sen-
sitivity and specificity when only RNA synthesis rates are changed.

Next, we focused on simulated data where RNA half-lives were
perturbed. From overall n = 10,835 genes, n = 40 (0.4%) had Pσ>0:9
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Fig. 5 | Estimating changes in synthesis or degradation from snapshot experi-
ments. a–d Scatterplots comparing simulated log2 fold changes againstmaximum-
a-posteriori (MAP) estimates of RNA synthesis log2 fold changes (a),MAP estimates
of RNA half-life log2 fold changes (b), observed new RNA log2 fold changes (c) or
old RNA log2 fold changes (d). Three replicates at 2 h of labeling were simulated
after perturbing synthesis (a, c) or half-lives (b, d) for 2 h and compared against
unperturbed controls. The root mean square deviations (RMSD) over all
n = 10,835 simulated genes are indicated for each comparison. e Boxplots showing
the log2 fold changes of new RNA or of estimated synthesis rates either for the
simulated samples with perturbed RNA half-lives (perturbed HL) or the unper-
turbed samples vs the controls. Separate distributions for genes from different
simulated half-live classes are shown as indicated (0–2 h, n = 1621 genes; 2–4 h,
n = 2996 genes; 4–6 h, n = 1940 genes; 6–8 h, n = 1182 genes; >8 h, n = 3096 genes;
center line, median; box limits, upper and lower quartiles; whiskers, 1.5x inter-
quartile range; points, outliers). f Empirical cumulative distributions showing log2

fold changes of either estimated synthesis rates (yellow) or RNA half-lives (blue).
For each distribution, either unperturbed samples (solid lines), samples with per-
turbed synthesis rates (dashed lines) or samples with perturbed half-lives (dotted
lines) were compared against controls. Distributions are shown for all genes, only
for genes with short RNA half-lives t1/2 < 2 h, and for simulated labeling of 2 h or 4 h,
as indicated. g, h Scatterplots comparing simulated log2 fold changes against MAP
estimates of RNA synthesis log2 fold changes (g) or RNA half-life fold changes (h).
Three replicates at 2 h of labeling were simulated with synthesis rates (g) or
degradation rates (h) slowly approaching a perturbed state during 2 h of labeling.
RMSDs over all n = 10,835 simulated genes are indicated for each comparison.
i Scatterplot comparing log2 fold changes of RNA half-lives estimated from the full
progressive labeling time courses using the NLLS method (x-axis) or the MAP
estimator from our Bayesian model using the 2 h time point only. The Pearson
correlation and the associated P-value (two-sided t-test) are indicated.
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and n = 407 (4.0%) had qnew<0:01 (Fig. 6b). These hundreds of genes
with significant changes in new RNA predominantly had down-
regulated RNA half-lives (n = 302 out of overall 1641 genes with >2-fold
downregulated RNA half-lives, 18.4%). Thus, as shown above, new RNA
for some genes exhibited significant changes when only RNA half-lives
are changed. By contrast, our Bayesian approach can accurately dif-
ferentiate between changes in synthesis and degradation. Moreover,
out ofn = 3390geneswith >2-fold regulated half-lives,n = 1692 (49.9%)
had Pδ>0:9 and n = 1351 (39.8%) had qold<0:01 (Fig. 6b), indicating that
our Bayesian approach is also more sensitive than analyzing old RNA
for detecting changes in RNA stability.

Interestingly, the sensitivities of our Bayesian approach for
detecting changes in RNA stability were asymmetric (65.7% for down-
regulated RNA half-lives and 33.0% for upregulated RNA half-lives;
Fig. 6b). To investigate this further, we stratified genes according to
their unperturbed RNA half-lives. For genes with RNA half-lives of <2 h,
sensitivities indeed were symmetric, but exhibited increasing asym-
metry for longer half-lives (Fig. 6c). This asymmetry can be explained
by the fact that half-lives not matching to the duration of 4sU labeling
cannot be estimated accurately. To corroborate this, we repeated
these analyses with 4 h of simulated 4sU labeling, which resulted in
symmetric sensitivities for average half-lives of 2-4 h. In summary, our
Bayesian approach can accurately differentiate between effects on
RNA synthesis and degradation.

Bayesian analysis indicates target gene specific differences of
regulation by acute BANP depletion
We utilized our Bayesian modeling approach for the analysis of pub-
lished data from cells after degron-mediated depletion of BANP, which
has recently been revealed to bind to unmethylated CGCG motifs in

CpG islands to promote transcription of a set of essential genes16. For
this study, samples frommultiple timepoints (1 h, 2 h, 4 h, 6 h and 20h)
after depletion of BANP were labeled with 4sU prior to sequencing.
Importantly, the samples from the 4 h timepoint and later were labeled
for 2 h, but shorter labeling of 30 and 90min was applied for the 1 h
and 2 h timepoints, respectively. Due to these different labeling times,
new RNA is not directly comparable among the samples and inference
of σ is required to interpret the data. We first recalibrated labeling
times. Of note, the recalibration approach described above requires a
progressive labeling design, and, therefore, cannot be used here. Thus,
wedeveloped a second recalibrationmethod:Weassume that, globally
on average, degradation rates are not changed due to BANP depletion
across the timepoints. Thus, we adapted the effective labeling time
such that the median log fold change of the half-lives resulting from
the adapted labeling time vs the half-lives from the control samples
without BANP depletion was 0 for each sample. Indeed, after this
recalibration by matching the half-life distribution to this reference,
the distribution for RNA half-lives estimated for each timepoint were
largely indistinguishable (Supplementary Fig. 5a), and the same was
also true for RNA synthesis rates (Supplementary Fig. 5b).

For each timepoint, the RNA synthesis log fold changes for BANP
targets determined by ChIP-seq16 were significantly and consistently
shifted towards negative values compared to non-targets (Fig. 7a). This
is remarkable especially for the 1 h timepoint, where 4sU labeling only
was 30min, and suggests that synthesis rates were reduced immedi-
ately once BANPwas depleted from cells, and then stayed constant for
at least 20 h. To further investigate this, we analyzed the synthesis log
fold change posterior distributions for individual genes. This revealed
that there were substantial gene specific differences, with some BANP
targets like Taf1d showing gradually decreasing synthesis rates with

Fig. 6 | Region of practical equivalence analysis of simulated data. Line plots
comparing two criteria for differential regulation of synthesis rates (a) or half-lives
(b, c) are shown. For a, the two criteria are the ROPE probability for synthesis
Pσ>0:9 and theDESeq2 P-value (two-sidedWald test, Benjamini-Hochbergmultiple
testing adjusted) for new RNA qn<0:01. For b and c, the two criteria are the ROPE
probability for degradation Pδ>0:9 and the DESeq2 P-value (two-sided Wald test,
Benjamini-Hochberg multiple testing adjusted) for old RNA qo<0:01. The x axis

represents rolling statistics (bin width 200 genes) over the log2 fold change of
synthesis rates (a) or RNAhalf-lives (b) for the simulationswith perturbed synthesis
and half-lives vs. control, respectively. The different lines show the percentage of
genes in a bin with detected regulation in synthesis, half-life, both or none. a and
b show all genes for 2 h of 4sU labeling. c shows genes of different half-life classes
and for 2 h or 4 h of 4sU labeling, as indicated.
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efficient downregulation only later than the 1 h timepoint (Fig. 7b) and
for others like Herc1 (Fig. 7c) or Tupgcp5 (Fig. 7d) synthesis rates
dropped early and rose again later suggesting negative feedback
loops. In conclusion, the Bayesian hierarchical model implemented in
grandR can be used to uncover detailed information about gene reg-
ulation fromsnapshot experiments reflecting genome-wide trends and
to generate testable hypotheses of individual genes.

Discussion
Nucleotide conversion RNA-seq is now widely used to infer kinetic
parameters of RNA expression but there is still a lack of computational
tools for data analysis. Our goal for developing grandR was to provide
a comprehensive and easy-to-use toolkit to facilitate a broad range of
different analysis steps for such data.

All so far available packages for analyzing experiments involving
metabolic RNA labeling have been designed to work with two (or
three) fractions per sample, one sequenced library of purified labeled
RNA, and one of total (and/or unlabeled) RNA. In principle, these
packages can also be used for nucleotide conversion data after split-
ting labeled and unlabeled RNA by extracting reads containing T-to-C
mismatches. This bioinformatic separation comes with disadvantages:

The error models used by previous packages are not designed to
handle the enormous biasof underestimating labeledRNAby counting
reads with mismatches. The pulseR package, as a notable exception,
has been adapted to include an additional nuisance parameter for
this21. In theory, and as empirically shown by our simulation study,
estimated parameters are more accurate when (i) bias due to limited
labeling (the LM, NLLS and NTR models) and (ii) the inherent quanti-
fication uncertainty (the NTR model) are directly taken into account.
Another disadvantage of adapting methods that have been developed
for the affinity purification approach is that they are agnostic of the
highly variable number of uridines across the reads, which impacts on
the likelihood of observing one of the infrequent 4sU incorporation
events. Notably, this is a different, and more severe, issue than the
differences in uridine content among full length RNAs (“uridine bias”)
that is relevant to purification approaches and taken into account by
some of the previous tools19.

It is well described in the literature that nucleoside concentrations
must be optimized for specific cell types and desired labeling
times6,7,26. Toxicity of too highly concentrated 4sUhas previously been
assessed by testing for cell viability. However, here we show that
expression estimates can be affected before cell viability suffers. We
therefore advocate that all studies employing metabolic RNA labeling
must report the extent of any effect of 4sU on expression. Since levels
of short-lived RNAs quickly decline when transcription is globally
inhibited, a correlation of the fold changes for 4sU treated samples vs.
corresponding 4sU naïve controls with the NTRs can be used as sur-
rogate marker for transcriptional defects due to 4sU treatment, as
implemented in grandR. However, it is important to note that also
technical effects such as decreased efficiency of reverse transcription
or less accuratemappability of reads withmanymismatches can result
in such a correlation.

RNA degradation rates have previously been estimated using
progressive labeling time courses using different computational
methods. All these approaches employed the kinetic model described
in the Methods section but they differ in their choice of the error
model. Due to noise introduced by the inference of the NTR, the actual
errors of normalized new and old RNA likely are differently distributed
than standard RNA-seq data. Our simulations indicate that the errors
are well approximated by a gaussian distribution. We recommend
using the non-linear least squares fitting procedure as the general tool
for fitting the kinetics of RNA expression. The Bayesian approach
provides slightly more accurate results and better error bounds but
can only be used under steady state conditions.

A major caveat of metabolic RNA labeling experiments is that the
effective labeling time might not correspond to the nominal labeling
time. grandR provides tools to test for this critical issue and recalibrate
labeling times: For progressive labeling time courses, asymmetric
residuals of early time points indicate shorter effective labeling times.
Using the labeling times as additional independent variables when
jointly fitting the kinetics for all genes, as implemented in grandR, can
be used to estimate the effective labeling times. For snapshot experi-
ments, labeling times can be recalibrated based on additional
assumptions, e.g. basedon referenceRNAhalf-lives thatmustbeknown
a-priori. For the BANP data set, we made the assumption that globally,
RNA half-lives are not affected by acute depletion of BANP, and there-
fore used the estimated half-lives of the untreated control sample as a
reference. Testing for effective labeling is critical when samples with
distinct labeling times are compared, and for estimating RNA degra-
dation and, to a lesser extent, synthesis rates in absolute terms.

A limitation of grandR is that it currently does not implement
methods to estimate kinetic parameters beyond RNA synthesis and
half-lives. RNA processing could in principle be analyzed using reads
mapped to intronic regions, as it is implemented in the DRiLL and
INSPEcT packages4,20. However, the amount of intronic RNA among
total RNA is relatively low in comparison to 4sU purified RNA after a

Fig. 7 | Dynamic regulation of synthesis rates upon acute BANP depletion.
a Boxplots showing log2 fold changes of synthesis rates for several experimental
time points vs the 0 h time point. Distributions ofBANP target genes (n = 455 genes,
according to ChIP-seq experiments) are shown separately from non-target genes
(n = 10,641 genes; center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; points, outliers). b–d Estimated posterior den-
sities for Taf1d (b), Herc1 (c) and Tubgcp5 (d) of log2 fold changes of the synthesis
rates of the indicated time points vs. the 0 h time point.
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short labeling pulse. Thus, to obtain accurate parameters of RNA
processing, we recommend affinity purification and the use of either
DRiLL or INSPEcT.Morework is required to explore how intronic reads
in nucleotide conversion RNA-seq can be used to infer parameters
about RNA processing. Another limitation is that the kinetic model
employed by all methods in grandR inherently assumes constant rates
of synthesis and degradation during the time of labeling. This might
not be true in some scenarios. For example, the reduced RNA half-lives
observed for SARS-CoV-2 likely result from the general host shutoff
protein nsp1 encoded by SARS-CoV-232. It is therefore very likely that
degradation of cellular mRNAs depends on the abundance of nsp1,
which increases substantially over the first few hours of infection.
Thus, the degradation rate at 4 h post infection (corresponding to the
1 h labeling time point in the SLAM-seq data from ref. 22) likely is
different at 7 h post infection (the final 4 h labeling time point), and the
estimated RNA half-lives estimated across the progressive labeling
time course represent averages. When multiple snapshots over time
have been measured, grandR can estimate rates for each snapshot. In
such a setting, rates are only assumed to be constant within the time in
between each snapshot and its reference (usually the previous snap-
shot). Thus, dynamically changing rates over time can be detected by
analyzing their posterior distributions using the Bayesian model
implemented in grandR (see Fig. 7b–d). This approach approximates
dynamically changing rate parameters using a piecewise constant
function. grandR currently does not support more sophisticated
approximations such as the piecewise linear functions that are
implemented in INSPEcT20 to analyze non-constant rates. Of note, for
both abrupt changes of rates affecting a single time point and slowly
changing rates, the class of approximating function is of low
importance.

While our manuscript was under review, the bakR package was
published33. This package implements a statistical test to identify
genes with significantly different NTRs using a Bayesian hierarchical
model. This test extends our previously published Bayesian approach
of transformingNTRs into RNAhalf-lives (here calledmodel (iv))17. Due
to this one-to-one correspondence, the test in bakR can be used to
identify significant differences in RNA half-lives, importantly, however,
only under steady state conditions. bakR does not attempt to model
non-steady state conditions, which is an inherent part of the Bayesian
hierarchical model implemented in grandR.

Nucleotide conversion approaches greatly reduced the burden on
the wet-lab side for conducting metabolic RNA labeling experiments
but introduced the need for more sophisticated tools for their com-
putational analysis. Complementing our GRAND-SLAM software for
primary processing of such data, we developed the grandR package as
a general toolkit to aid researchers to further analyze and interpret
such data. Here, we demonstrated that additional quality control
measures are necessary for such data to exclude effects of 4sU on
transcription, and that short labeling times often require recalibration.
For bothmethods, grandRprovides high-level functions. Furthermore,
grandR enables researchers to estimate synthesis and degradation
rates for both progressive labeling as well as snapshot experiments
without requiring steady state assumptions. Finally, grandR provides a
web-based interface for exploratory data analysis.

Methods
SLAM-seq preprocessing
All SLAM-seq data used here were processed using the GRAND-SLAM
pipeline17. Fastq files were downloaded from the SRA database. The
accession number were: GSE99970 for the pulse-chase 4sU labeling
data set in mESCs from ref. 7, GSE99974 (only wt cells) and GSE99972
for the progressive labeling in mESCs7, GSE139151 for the NXF1
knockdown data set from ref. 18, GSE162323 for the SARS-CoV-2 data
set from ref. 22, and GSE155604 for the BANP depletion data set from
ref. 16. Adapter sequences were trimmed using cutadapt (version 3.4)

using parameters “-a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
-A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT” for the SARS-
CoV-2 data. For the other data sets, reads were already pre-trimmed
on SRA. Then, bowtie2 (version 2.3.0) was used tomap read against an
rRNA (NR_046233.2 for mESCs and BANP, and U13369.1 for NXF1 and
SARS-CoV-2) and Mycoplasma database using default parameters.
Remaining reads were mapped against target databases using STAR
(version 2.5.3a) using parameters “–outFilterMismatchNmax
20–outFilterScoreMinOverLread 0.4–outFilterMatchNminOverLread
0.4–alignEndsType Extend5pOfReads12–outSAMattributes nM MD
NH”. We used the murine genome for mESCs and BANP, the human
genome for NXF1, and the combined human and SARS-CoV-2
(NC_045512) genome for SARS-CoV-2. All genome sequences were
taken from the Ensembl database (version 90). Bam files for each data
set were merged and converted into a CIT file using the GEDI toolkit34

and then processed using GRAND-SLAM (version 2.0.7; for the NXF1
data set, GRAND-SLAM 2.0.5 g was used) with parameters “-trim5p 15
-modelall” to generate read counts and NTR values on the gene level,
taking into account all reads that are compatible with at least one
isoform of a gene. For all mESC data sets, we performed a second
GRAND-SLAM runutilizing theRNA3’ end annotationprovided in ref. 7
and setting the parameters -conv 0.025 -err 0.00035 (which are the
global parameters for themixturemodel that were estimated from the
24 h samples alone) since GRAND-SLAM did not estimate these para-
meters for several of the individual samples (e.g. 45min pulse, 12 h
chase) due to extremely low amounts of labelled RNA. These runs
utilizing the custom 3’ end annotation were used for the the analyses
shown in Fig. 2b, c and Supplementary Fig. 1b-d and the comparative
analyses in Fig. 4c, d. For the Actinomycin-D derived half-lives, we
utilized the processed data file provided on GEO with accession
GSE99975.

Statistical analyses
All correlation coefficients were computed using the cor function of R
(version 4.2.1). Wald tests for differential expression and principal
analyses were computed using DESeq2 with default parameters (ver-
sion 1.36) using the PairwiseDESeq2 or PlotPCA functions of grandR,
respectively. The t-test for the differences of correlation coefficients
was computed using the psych package (version 2.2.9).

Read simulation
To simulate a nucleotide conversion RNA-seq experiment for n genes
with relative abundances a1, . . . ,an,

P
iai = 1, overdispersion para-

meters di and total read countN, first n randomnumbers Ci are drawn
from negative binomial distributions NegBinom aiN,di

� �
. We use the

parametrization NegBinom μ,dð Þ such that the mean is μ and the var-
iance is μ+dμ2.

To simulate the “measured” NTR for gene i given the true NTR
ntri, we sampled the number of uridines ur covered by each of the ci
reads from a binomial distribution Binomðrl,puÞ, where rl is the user-
defined read length (used here: 75), and the probability for an uridine
at anypositionpu is sampled fromabeta distributionwith user-defined
average uridine content (used here: 0.25) and standard deviation
thereof (used here: 0.05). For each read r, then the number of con-
versions tcr is sampled from a binomial mixture distribution
BinomMixður ,pe,pc,ntriÞ defined by the probability function

P k;ur ,pe,pc,ntri
� �

= 1� ntri
� �

B k;ur ,pe

� �
+ntriB k;ur ,pc

� �
: ð1Þ

Here, B k;n,pð Þ= ðn
k
Þpk 1� pð Þn�k is the probability function of the

binomial distribution. We used a sequencing error rate of pe = 10
�4

and a T-to-C conversion rate of pc =0:04. Of note, D= ður ,tcr Þ, r 2
f1, . . . , cig for a gene i represent the sufficient statistics for the
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GRAND-SLAM model. Then, GRAND-SLAM is used to obtain the
maximum-a-posteriori (MAP) estimate for the NTR by numerically
maximizing the binomialmixture log likelihood function17, i.e. we used
a uniform prior. In addition, it also computes the Beta approximation
of the posterior distribution of ntri as described

17.
This procedure is implemented in the function SimulateR-

eadsForSample of grandR and simulates the read count Ci and the NTR
Ξi for n genes based in several user-defined parameters as described
above. grandR also provides the higher-level function SimulateTime-
Course. Based on a time point t RNA synthesis rates σi, degradation
rates δi, initial abundances a0i and global synthesis and degradation
variance parameters vσ and vδ (here both were set to 1.05), this func-
tion computes both the relative abundances ai and the new-to-total
RNA ratio ntri, i.e. the parameters to SimulateReadsForSample as fol-
lows: To model biological variability, we define eσi = σi � 2ϵ where ϵ is
gaussian noise. Here, the noise level was chosen such that the 95%
quantile of the gaussian is equal to log2vσ . This way, 90% of all eσi are
expected to be at most vσ -fold less or greater than σi. Equivalently, we

defined eδi. Then, the abundance of new and old RNA at time t is

computed as aðnewÞ
i tð Þ= eσieδi

ð1� e�teδi Þ and aðoldÞ
i tð Þ=a0ie

�teδi , respec-

tively. Thus, ai =a
ðnewÞ
i tð Þ+aðoldÞ

i tð Þ and ntri =a
newð Þ
i tð Þ=ai.

For all simulations here, we used the “mock” samples from the
SARS-CoV-2 data set to compute the relative abundances ai and esti-
mated the overdispersion parameters di using the function estimate-
Dispersions from the DESeq2 package. The reference synthesis rates σi

and degradation rates δi were estimated using the NLLS approach
from the same data set. To simulate perturbed synthesis rates σ0

i,
degradation rates δ0

i or initial abundances a
0
0i (to start fromnon-steady

state conditions), we sampled gaussian noise such that ~5% of all genes
are expected to be perturbed atmost 2-fold. To simulate non-constant
rates, we utilized the saturating function f tð Þ= s � c1�e�td

to compute
the synthesis or degradation rate at time t. To obtain new and old RNA
values for each gene after 2 h of labeling, we numerically solved the
ordinary differential equation for time-varying rates (see Supplemen-
tary Note 1). Here, s is the unperturbed (start) state, c is again gaussian
noise as in the case of constant rate simulation, and we set d = 1:39.
This function approaches s � c for t ! 1, and our particular choice for
d let this function approach saturation with a speed such that half the
way is achieved after 30min. This procedure is implemented in the
function SimulateTimeCourseNonConstant.

Overview of kinetic modeling
The commonly used kinetic model of RNA expression assumes
zero-order kinetics for RNA synthesis and first-order kinetics for
degradation:

da
dt

= σ � δaðtÞ ð2Þ

Here, aðtÞ is the abundance of RNA at time t, and σ and δ are the
rate constants for synthesis and degradation, respectively. A gene is
expressed at steady state if dadt =0, i.e. if a tð Þ= σ

δ. The differential Eq. (2)
can be solved for a 0ð Þ=a0:

a tð Þ= a0 � σ
δ

� �
e�δt +

σ
δ

ð3Þ

Different variants of this model have been used to estimate RNA
stability represented by the degradation rate δ or, equivalently, the
RNA half-life t1=2 = log 2ð Þ=δ: (i) Finkel et al.22 focused on unlabeled RNA
and performed simple linear regression on Eq. (3) after log transfor-
mation and setting σ =0. (ii) In Narain et al.3, we used non-linear least

squares regression (NLLS) tofit the fullmodel inEq. (3), whichhasbeen
done in a similar manner in Zuckermann et al.18. (iii) Boileau et al.21

proposed to fit the full model using their pulseR package19 based on
the raw counts of reads showing T >Cmismatches, and to remove bias
of this approach using an additional nuisance parameter. (iv) Finally,
we have presented aBayesianmethod to estimate the degradation rate
δ under steady state17.

The main difference among methods (i)-(iv) is the error model
employed. While (i) and (ii) assume homoscedastic gaussian errors of
estimated pre-existing and newly synthesized RNA levels, either in log
space (i) or of the levels directly (ii), pulseR models read counts using
a negative binomial distribution assuming a gene specific over-
dispersion parameter that is jointly estimated from all samples. The
Bayesian approach (iv) assumes that all data points are generated from
a single degradation rate constant δ with the only source of error being
the random sampling of T >C conversions.

Kinetic model
Tomodel the abundance of RNA at time t, a tð Þ, we define the following
two functions for the abundances of old and new RNA, respectively,
after labeling for time t based on Eq. (3):

a oldð Þ t;a0,δ
� �

=a0e
�tδ ð4Þ

a newð Þ t;σ,δð Þ= σ
δ

1� e�tδ
� �

ð5Þ

Under steady state assumptions, we have a0 =
σ
δ, and can use the

steady state function instead of Eq. (4):

a oldð Þ t;σ,δð Þ= σ
δ
e�tδ ð6Þ

We have data given in the form of total expression values Ck and
“measured”NTRsΞk for samples taken at timepoints tk . Note that even
if we use the same notation C as for read counts above in “Read
simulation”, here we assume that Ck is a normalized expression mea-
sure. We further index by k to indicate the biological samples where
data were obtained and drop the gene index i for clarity. The NTRs Ξk

actually are not measured but are estimates of the parameter

ntrk =
a newð Þ tkð Þ

a newð Þ tkð Þ +a oldð Þ tkð Þ. We also have the beta approximation of the

posterior distribution of ntrk given by αk and βk , i.e.
ntrk ∣D∼Beta αk ,βk

� �
for data D. We use bold face t = ðt1, . . . ,tmÞ,

α = α1, . . . ,αm

� �
, β= β1, . . . ,βm

� �
, etc. to denote the vector valued

parameters.

Modeling progressive labeling time courses
We define the random variables for old and new RNA as Ok =Ck �
1� Ξk

� �
andNk =Ck � Ξk . The distributions ofNk andOk dependent on

measurement noise from the sequencing experiment, uncertainty in
the estimate Ξk and biological variability. In a “progressive” labeling
experiment each sample is labeled for a duration of tk starting from a
common time point t =0, and σ and δ from Eqs. (2) and (3) remain
constant after time t =0. Then the expected values of Ok and Nk are

E Ok

� �
=a oldð Þ tk ;a0,δ

� � ð7Þ

E Nk

� �
=a newð Þ tk ;σ,δ

� � ð8Þ

Allmethods described below, except for pulseR, can conveniently
beused ingrandRusing the functionFitKinetics, whichwillfit either the
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LM, the NLLS or NTR model for each gene by calling the respective
functions mentioned below.

LM method
For the linearmodel approach (method (i) in the text), we note that we
have a linear function log a oldð Þ t;a0,δ

� �� �
= logða0Þ � δt after log

transforming Eqs. (4) or (6). Thus, δ and a0 can be estimated using
simple linear regression. Under the assumption of steady state, we can
also obtain an estimate of σ =a0 � δ. Note, however, that this assumes
allOk to follow homoscedastic LogNormal distributions.We deem this
model quite unrealistic, as at late time points tl≫t1=2 (where
t1=2 = log 2ð Þ=δ is the half-life), a oldð Þ tl ;a0,δ

� �
quickly approaches 0, and

we therefore expect the residual log a oldð Þ tl ;a0,δ
� �� �� log Ol

� �
to be

far greater than log a oldð Þ te;a0,δ
� �� �� log Oe

� �
at an earlier time point

te<t1=2. This approach is implemented by the FitKineticsGeneLogSpa-
ceLinear function in grandR using the lm function of R. Confidence
intervals are estimated using the confint function.

NLLS method
For the non-linear least squares approach (method (ii) in the text), we
assumeOk andNk to be homoscedastic gaussian. Thus, σ, δ and a0 (or
σ and δ under steady state assumptions) can be estimated using non-
linear least squares regression. This is implemented in grandR by the
function FitKineticsGeneLeastSquares using the nls.lm function from
the minpack.lm package. Confidence intervals are estimated using
confint.nls.lm.

pulseR method
pulseR (method (iii) in the text) originally was developed for 4sU
labeling experiments where labeled and unlabeled RNA was physically
purified and sequenced separately19. It was later adapted to alsohandle
nucleotide conversion RNA-seq data21. pulseR operates on labeled and
unlabeled read counts (i.e. reads with and without observed T-to-C
conversions), and includes additional nuisance parameters to model
reads from unlabeled RNA with T-to-C conversions (e.g., sequencing
errors) and reads from labeled RNA without T-to-C conversions (reads
not covering 4sU incorporation sites). In our notation, the pulseR
model is

a unlabeledð Þ t;a0,δ
� �

=μ1 +a0e
�tδ ð9Þ

a labeledð Þ t;σ,δð Þ=μ2 +
σ
δ

1� e�tδ
� �

ð10Þ

Here, μ1 is the fraction of reads without T-to-C conversion, that indeed
is not derived from old RNA, and μ2 is the fraction of reads with T-to-C
conversions, that indeed is not derived from new RNA. Parameters are
estimated using the counts of reads with and without T-to-C
conversions instead of estimated old and new RNA levels Ok and Nk

assuming reads to follow a negative binomial distribution with
common dispersion parameter for a gene. This is implemented in
grandR in the function FitKineticsPulseR using the code from ref. 21
provided on github (https://github.com/dieterich-lab/ComparisonOf
MetabolicLabeling).

NTR method
For the Bayesian NTR method (method (iv) in the text), we note that
under the assumption of steady state δ = � 1

t log 1� ntrð Þ. Thus, the
posterior distribution of the NTR given data, ntrk ∣D, can be trans-
formed into a distribution on δ17.We assume ntrk ∣D∼Beta αk ,βk

� �
, and

therefore the posterior density of the degradation rate is:

d δ;tk ,αk ,βk

� �
=

t
B αk ,βk

� � 1� e�tδ
� �αk�1

e�tβkδ ð11Þ

By logarithmizing and setting the derivative to 0, we see that the
MAP estimator is

δ̂ = � 1
t
log

βk

αk + βk � 1
ð12Þ

We can also transform the MAP estimator of ntrk ∣D, yielding

eδ = � 1
t
log

βk � 1
αk + βk � 2

ð13Þ

Thus, transforming from the ntr parameter to the degradation
rate δ results in non-invariance of the MAP estimator. Both estima-
tors are implemented in grandR, and we chose to use the trans-
formed NTR MAP estimator eδ by default. With several samples, the
degradation rate is estimated by numerically maximizing the log
posterior

g δð Þ=
X
k

αk � 1
� �

log 1� e�tkδ
� �

� t βk � 1
� �

δ ð14Þ

We use the optimize function built into R. For approximate x%
credible intervals (CIs), we compute the critical drop in the log pos-
terior distribution as c= 1

2 χ
2
1,x from a χ2 distribution with 1 degree of

freedom similar to ref. 21. The rationale here is, that as we use a
uniform prior, the posterior distribution is equal to the likelihood
function. The CI is found by finding the values of δ left and right of
the MAP estimate eδ, where gðeδÞ � g δð Þ= c. For exact CIs, we numeri-
cally integrate g using R’s integrate function and report the x% CI
interval with the MAP as the central point. This is implemented in
grandR’s function FitKineticsGeneNtr. It also provides an estimate
of σ =Ckδ:

Temporal recalibration
grandR implements two ways to recalibrate labeling times. The
first can only be used with progressive labeling data andmakes use
of the fact that our kinetic model poses some constraints on how
the temporal dynamics can behave. For that, we fit the NLLS model
simultaneously for all genes, and consider the labeling time as
additional variables that are jointly optimized. To make this pro-
cedure more efficient and less prone to noise, we first make a
rough estimate of the half-lives using the uncalibrated labeling
times and use the top 200 expressed genes from the following half-
life classes: 0–2 h, 2–4 h, 6–8 h, >8 h. Stratifying by half-life classes
is important as many of the most strongly expressed genes have
very long RNA half-lives. Importantly, however, the n labeling time
parameters can only be estimated up to a constant factor
which corresponds to the time unit of the model. We make
this model identifiable by assuming that the effective labeling
time is equal to the nominal labeling time for the last time
point. This procedure is implemented in the function Cali-
brateEffectiveLabelingTimeKineticFit in grandR.

The secondmethod for temporal recalibration requires reference
half-lives. For each biological sample the observed data can be trans-
formed into half-lives for any labeling time (see below, “Transforming
snapshot data”). We choose the labeling time such that themedian log
fold change between the reference and transformed half-lives across
all genes is 0 by using the uniroot function of R. This procedure is
implemented in the function CalibrateEffectiveLabelingTimeMatch
Halflives in grandR.
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Transforming snapshot data
By solving Eqs. (4) and (5), we obtain

δ = � 1
t
log

a oldð Þ tð Þ
a0

ð15Þ

= � 1
t
logF ð16Þ

σ =a newð Þ tð Þ � δ � 1
1� e�tδ

ð17Þ

= � 1
t
a newð Þ tð Þ logF

1� F
ð18Þ

with F : = a oldð Þ tð Þ
a0

. To compute σ and δ from this, the initial abundance
a0 at time t =0, i.e., at the start of labeling, must be known in addition
to old and new RNA levels. This might not be the case, and only an
abundance a’ at time t0<0 might be known, either by design of the
experiments or because the effective labeling time is shorter than the
nominal labeling time. In this case, the initial abundance can be com-
puted as

a0 =a
0et

0δ +
σ
δ

1� et
0δ

� �
ð19Þ

We use Eq. (5) to get rid of σ:

a0 =a
0et

0δ +a newð Þ tð Þ � 1� et
0δ

1� e�tδ
ð20Þ

Substituting this into Eq. (4):

a oldð Þ tð Þ=a0e t 0�tð Þδ +a newð Þ tð Þ � e
�tδ � e t0�tð Þδ

1� e�tδ
ð21Þ

We solve this numerically for δ by using the R’s uniroot function.
Of note, this assumes σ and δ to be constant throughout the time ½t0,t�.
Transforming snapshot data is implemented in grandR’s TransformS-
napshot function.

Old RNA fold changes
With a common reference sample with abundance a0 and a common
labeling time t, we can use Eq. (4) to derive the function that describes
the change in degradation rates δ and δ0 or RNA half-lives t1=2 and t01=2
for an observed fold change of old RNA f between two conditions with
old RNA levels a and a’:

a0 = f � a ð22Þ

() e�tδ0
= f � e�tδ = e�tδ + logf ð23Þ

() δ0 = δ � logf
t

ð24Þ

() log2
t01=2

=
log2
t1=2

� logf
t

ð25Þ

() t01=2 =
t1=2

1� t1=2
logf
t

ð26Þ

Hierarchical Bayesian modeling of snapshot data
We define snapshot data for a single biological sample k and a single
gene from a nucleotide conversion RNA-seq experiment to be a tuple
Dk = c0k ,ck ,uk,1, . . . ,uk,c,tck,1, . . . ,tck,c

� �
. Here, c0k is the read count at the

start of labeling at time t =0, and ck the read count at time t. For now,
we ignore the need for normalization and assume that ck and c0k are
directly comparable measures of gene expression, i.e. are already
normalized. For ease of notation, we here assume ameasurement c0 at
t =0, but we can adapt our model in principle also to situations, where
the measurement is taken at any time t’ (see above, Transforming
snapshot data). uk,r and tck,r for r 2 1, . . . ,cf g represent the number of
uridines and the number of T-to-C conversions, respectively, for a read
r, i.e. the sufficient statistics for estimation of the ntr parameter. We
will omit the index k if it is not necessary.

We assume that snapshot data D are generated by the following
process:
1. Sample the unobserved parameters a0, σ and δ from unknown

distributions representing the biological variability of the true
initial abundance, the synthesis rate and degradation rate,
respectively; this uniquelydetermines the full temporal kineticsof
the true RNA abundance aðtÞ as well as a newð ÞðtÞ and a oldð ÞðtÞ
and ntr tð Þ= a newð Þ tð Þ

a tð Þ .
2. Sample c and c0 from unknown distributions with mean a tð Þ and

að0Þ, respectively. These distributions represent the technical
noise of the measurement.

3. Sample u1, . . . ,uc from the sequence of the gene. Which sequence
is used depends on the protocol used for library preparation.

4. Sample tcr for r 2 1, . . . ,cf g from a binomial mixture distribu-
tion BinomMixður ,pe,pc,ntrðtÞÞ

Here, we are mainly concerned with snapshot data
DA,B =DA

1 , . . . ,D
A
n ,D

B
1 , . . . ,D

B
m involving several biological replicates from

two conditions A and B, and would like to infer the joint posterior
distributions log2

σA
σB
,log2

δB
δA

� �
∣DA,B = log2

σA
σB
,log2

HLA
HLB

� �
∣DA,B . Note

that for the synthesis rateswe consider the log fold changeA vsB, i.e. B
is the control condition. We prefer to invert the log fold change of the
degradation rates, which then corresponds to the more intuitive log
fold change of the RNA half-lives HLA vs HLB. Unfortunately, this is
analytically intractable, and we found Markov chain Monte Carlo
methods to be too inefficient considering the sheer size of D.

However, we show here that we can efficiently draw N samples
σ1,δ1

� �
, . . . , σN ,δN

� �
from the joint posterior σ,δ∣D for a single condi-

tion, with n replicate samples, i.e. D =D1, . . . ,Dn. Hence,

log2
σA,1
σB,1

,log2
δB,1
δA,1

� �
, . . . , log2

σA,N
σB,N

,log2
δB,N
δA,N

� �
is a sample form the joint

log fold change posterior distribution log2
σA
σB
,log2

δB
δA

� �
∣DA,B. To drawa

single sample σj ,δj

� �
from the posterior σ,δ∣D, we consider the fol-

lowing processes separately:
1. Draw a sample a0

j from the posterior distribution a0∣D=a 0ð Þ∣D:
2. Draw a sample aj from the posterior distribution aðtÞ∣D:
3. Draw a sample ntrj from the posterior distribution ntrðtÞ∣D:

We then transform these samples into σ and δ as described above
under “Transforming snapshot data”. Note that the prior distribution
for σ,δ as well as log2

σA
σB
,log2

δB
δA

� �
is thereby implicitly defined by the

priors for a0,a tð Þ,ntrðtÞ.

Sampling from a :ð ÞjD
We assume that read counts c∼NegBinom μ,dð Þ are distributed
according to a negative binomial distribution with mean μ and dis-
persion d. The dispersion parameter is defined as above such that the
variance is μ+dμ2. To enable efficient sampling, we assume d to be
fixed (for a single gene) and use estimateDispersions from the DESeq2
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package for estimation. There is no obvious conjugate prior for μ,
however, we can reparametrize the negative binomial NegBinom’ s,pð Þ
by s = 1

d and p= s
s +μ. Then, μ= 1�p

p�d .
It is easy to see that the Beta distribution is a conjugate prior for p:

Given n samples c = c1, . . . ,cn, the density of the posterior forp for a
NegBinom’ s,pð Þ likelihood and Beta α,βð Þ prior is

π p∣cð Þ /
Y
k

Γ s + ck
� �

Γ sð ÞΓ ck + 1
� �pck 1� pð Þs

 !
� Γ α + βð Þ
Γ αð ÞΓ βð Þp

α�1 1� pð Þβ�1 ð27Þ

p α +
P

ck
� �

�1 1� pð Þ β+nsð Þ�1 ð28Þ

Thus, for the prior p∼Beta α,βð Þ, we have the poster-
ior p∣c1, . . . ,cn ∼Beta α +

P
ck ,β+ns

� �
.

We use the full distribution of all genes to inform the prior dis-
tribution as follows.We first transform the expression value ci for each
gene i to pi =

si
si + ci

with si =
1
di
and use themethod ofmoments to fit the

hyperparameters α and β, which we then use for the whole data set of
all genes.

So far, we have ignored normalization. For practical applications,
this must be taken into account. We do this by the same approach as
DESeq2, i.e. by rescaling read counts using a size factor to obtain
normalized read counts23. This can be achieved in grandR by first
calling the Normalize function, which places the normalized read
counts into the default data slot of the grandR object.

Thus, to sample from a tð Þ∣D1, . . . ,Dn, we draw random numbers
from a Beta α +

P
ck ,β+

n
d

� �
and to sample from a0∣D1, . . . ,Dn, we draw

random numbers from a Beta α +
P

c0k ,β+
n
d

� �
distribution. Here, ck

and c0k are the normalized read count from time t and 0, respectively,
of data setDk , d is the dispersion parameter estimated by DESeq2, and
α and β are the prior hyperparameters. Each of these Beta distributed
values p is then transformed via 1�p

p�d to obtain a sample from
a tð Þ∣D1, . . . ,Dn or a0∣D1, . . . ,Dn.

Sampling from ntrðtÞjD
The number of conversions on a read tcr ∼BinomMixður ,pe,pc,ntrÞ are
distributed according to a binomial mixture distribution as defined
above. The number of uridines ur is fixed, and to enable efficient
sampling, we also assume the parameters pe and pc to be fixed. The
posterior distribution ntr∣tc1, . . . ,tcr for a single biological sample,
which is computed numerically by GRAND-SLAM, can be approxi-
mated by a Beta distribution, and we assume this Beta to be conjugate
with the Beta prior used by GRAND-SLAM to compute the posterior
distribution17. This posterior only quantifies technical variance of
measuring the true ntr for a single biological sample. To handle bio-
logical variability in addition, we introduce an additional hierarchical
layer in our Bayesian model:

For each biological sample k 2 f1, . . . ,ng, we have
ntrk ∣Dk ∼Beta α +αk ,β+βk

� �
. Here, α and β are the parameters of the

prior Beta distribution reflecting biological variability of ntr across
biological replicate samples and αk and βk are the parameters esti-
mated by GRAND-SLAM from the given tck,1, . . . ,tck,r , which reflect
technical noise. The joint density of all ntr = ntr1, . . . ,ntrn

� �
is

π ntr∣α,β,Dð Þ=
Y
k

B α +αk ,β+βk

� ��1 ntrα +αk�1
k 1� ntrk

� �β+βk�1
ð29Þ

Here, B is the beta function. When imposing a prior on α,βð Þ, the
joint posterior of all parameters is

π ntr,α,β∣Dð Þ / π α,βð Þ � f ntr∣α,βð Þ � f D ∣ntrð Þ ð30Þ

/ π α,βð Þ �
Y
k

B α,βð Þ�1ntrα�1
k 1� ntrk
� �β�1

ð31Þ

�
Y
k

Y
r

1� ntrk
� �

B tck,r ;uk,r ,pe

� �
+ntrkB tck,r ;uk,r ,pc

� �
ð32Þ

e/π α,βð Þ �
Y
k

B α,βð Þ�1ntrα�1
k 1� ntrk
� �β�1 �

Y
k

1� ntrk
� �βk ntrαk

j ð33Þ

Here, B k;n,pð Þ= ðn
k
Þpk 1� pð Þn�k , and the last line follows from our

Beta approximation of the mixture model. Thus, the marginal pos-
terior distribution of α,βð Þ is

π α,β∣Dð Þ= π ntr,α,β∣Dð Þ
π ntr∣α,β,Dð Þ / π α,βð Þ �

Y
k

B α +αk ,β+βk

� �
Bðα,βÞ ð34Þ

If themarginal posteriorsntrk ∣Dk overlap significantly, a pointntr
and, therefore, a Beta α,βð Þ prior with infinitesimally small variance or,
equivalently, infinite α + β becomes probable. An appropriate con-
straint can be imposed using the prior distribution π α,βð Þ. We decided
to use the following sigmoid function

f o,sðxÞ=
1

1 + e
x�o
s

ð35Þ

This can be integrated:

Co,s =
Z 1

0
f o,s xð Þdx = s � log 1 + e

o
s

� �
ð36Þ

and thus,

π α,βð Þ= f o,s α,βð Þ � C�1
o,s ð37Þ

is a proper prior. f o,s is almost constant before the offset o and quickly
(depending on s) goes to zero after o, i.e. o represents amaximal α + β,
or, equivalently, minimal variance, that has substantial prior prob-
ability.We set o such that the varianceof thepriorπ α,βð Þ is equal to the
sample variance of α1

α1 + β1
, . . . , αn

αn +βn
. Importantly, as long as (i) themean

α
α +β is unconstrained and (ii) the minimal variance is constrained, the
exact choice of the prior π α,βð Þ only has minor effect on sampling
of ntr∣D.

To sample ntr∣D, i.e. the mean μ= a
α +β from the distribution

π α,β∣Dð Þ, we compute the marginal posterior on a grid of values35.
Since we want to sample μ, it makes sense not to build an α,βð Þ-grid,
but to reparametrize and build the grid with coordinates
ðlog α

β ,log α +βð ÞÞ35. Note that log α
β = logitðμÞ. For each grid point x,yð Þ,

we transform α = ex + y
ex + 1 and β= ey

ex + 1, for which we compute the unnor-
malized posterior density defined in Eq. (34) with prior from Eq. (37),
and, due to our reparametrization, multiply this by the Jacobian
determinant

∣J∣= ∣
ex + y

ex + 1ð Þ2
ex + y
ex + 1

� ex + y

ex + 1ð Þ2
ey

ex + 1

0@ 1A∣ ð38Þ

=
ex + 2y

ex + 1ð Þ3
+

e2x + 2y

ex + 1ð Þ3
ð39Þ

=
ex + 2y

ex � 1ð Þ2
ð40Þ
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For numerical stability, we compute everything in log space, then
subtract the maximal grid value and exponentiate35. To determine the
grid bounds, we first find the maximum using R’s optim function, and
then go into positive and negative x and y directions to see where the
gridwould drop below 1000-fold of themaximal value using R’ uniroot
function. To sample μ, we first sum over the columns of the grid and
normalize to obtain a discrete probability distribution l1, . . . ,lm. Note
that each lj corresponds to a particular value of log α

β. One of these
values is sampled from the distribution l1, . . . ,lm and random uniform
jitter is added to fill the spacing of the grid35. This value x is then
transformed to μ= logit�1 xð Þ.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data sets used in this study are available in the in NCBI’s Gene
Expression Omnibus under GEO series accession codes GSE99970
(mESC pulse-chase data), GSE99972 andGSE99974 (mESC pulse data),
GSE139151 (NXF1 knockdown data), GSE162323 (SARS-CoV-2 data), and
GSE155604 (BANP depletion data). All processed data (GRAND-SLAM
outputs) are available on zenodo under https://doi.org/10.5281/
zenodo. 7612564 (mESC pulse-chase data), https://doi.org/10.5281/
zenodo.7630886 (mESC pulse data), https://doi.org/10.5281/zenodo.
5907183 (NXF1 knockdown data), https://doi.org/10.5281/zenodo.
5834034 (SARS-CoV-2 data), and https://doi.org/10.5281/zenodo.
6976391 (BANP depletion data).

Code availability
The grandR package (version 0.2.2) is available on github (https://
github.com/erhard-lab/grandR) and CRAN (https://CRAN.R-project.
org/package=grandR) as open source (Apache License 2.0). R note-
books for generating all figures are provided in Supplementary Soft-
ware 1. The notebooks and additionally data files containing pre-
computed simulated data sets are also available on zenodo (https://
doi.org/10.5281/zenodo.7843048).
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