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Pan-cancer and cross-population genome-
wide association studies dissect shared
genetic backgrounds underlying
carcinogenesis

Go Sato1,2, Yuya Shirai1,3,4, Shinichi Namba 1, Ryuya Edahiro1,3,
Kyuto Sonehara1,5,6, Tsuyoshi Hata2, Mamoru Uemura2, the Biobank Japan Pro-
ject*, Koichi Matsuda 7, Yuichiro Doki2, Hidetoshi Eguchi2 &
Yukinori Okada 1,4,5,6

Integrating genomic data of multiple cancers allows de novo cancer grouping
and elucidating the shared genetic basis across cancers. Here, we conduct the
pan-cancer and cross-population genome-wide association study (GWAS)
meta-analysis and replication studies on 13 cancers including 250,015 East
Asians (Biobank Japan) and 377,441 Europeans (UK Biobank). We identify ten
cancer risk variants including five pleiotropic associations (e.g., rs2076295 at
DSP on 6p24 associated with lung cancer and rs2525548 at TRIM4 on 7q22
nominally associated with six cancers). Quantifying shared heritability among
the cancers detects positive genetic correlations between breast and prostate
cancer across populations. Common genetic components increase the statis-
tical power, and the large-scale meta-analysis of 277,896 breast/prostate can-
cer cases and 901,858 controls identifies 91 newly genome-wide significant
loci. Enrichment analysis of pathways and cell types reveals shared genetic
backgrounds across said cancers. Focusing on genetically correlated cancers
can contribute to enhancing our insights into carcinogenesis.

Cancer is a leading cause of death worldwide, it kills 10 million people
every year, and a rapidly growing burden1. As well as environmental
and somatic factors, hereditary components play an important role in
cancer development. Genome-wide association studies (GWAS) have
detected hundreds of genetic variants associated with specific cancer
risk and pleiotropic associations with different cancers, including 2q33
(CASP8-ALS2CR12)2,3, 5p15 (TERT-CLPTM1L)4,5 and 8q246,7. Analyzing

genomic data of multiple cancers to elucidate pleiotropy and genetic
correlations provides opportunities for de novo cancer grouping and
highlighting the common mechanisms underlying cancer etiology8.

A previous cross-cancer GWASmeta-analysis of five cancers using
data from consortia such as the Genetic Associations andMechanisms
in Oncology (GAME-ON) Network, has applied a subset-based
approach9 and identified a pleiotropic association at 1q22 involving
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breast and lung squamous cell carcinoma10. Previous studies have
estimated genetic correlations among cancer pairs and detected
genetically correlated cancer pairs. One study including 13 cancers
found four pairs with marginally significant correlations11. Lindström
et al. found significant correlations between pancreatic and colorectal
cancer, and lung and colorectal cancer12. In another study conducted
by Jiang et al., five cancer pairs showed significant correlations (lung-
head/neck, colorectal-lung, breast-ovarian, breast-lung, and breast-
colorectal)13. A recent study evaluated genetic correlations across 18
cancers from two large cohorts of European ancestry and revealed
shared heritability between 12 cancer pairs, of which only colon and
rectal cancers were genetically correlated after multiple testing
corrections14. While these studies have improved our knowledge of
cancer susceptibility, most of them have been undertaken in Eur-
opeans. Despite the significant differences in the incidence of certain
cancers across populations (for example, the higher incidence of
hepatocellular carcinoma in East Asians1), the geographical distribu-
tion of heritable cancer risk remains unclear. To investigate the global
landscape of human cancer genetics, a large-scale genomic analysis
across cancers and populations is required.

Here, we conducted the pan-cancer and cross-population GWAS
meta-analysis and replication studies on 13 cancers, examining 250,015
East Asians including 61,465 cancer cases from the BioBank Japan
(BBJ)15 and 377,441 Europeans including 43,098 cancer cases from the
UK Biobank (UKB)16. A standard fixed-effects approach detected ten
loci newly satisfying the genome-wide significance threshold
(P < 5.0 × 10−8), of which five showed general associations across can-
cers. We then estimated genetic correlations among the cancers and
identified significant positive genetic correlations between breast and
prostate cancer both in BBJ and UKB. This relationship was indepen-
dently validated in FinnGen17, a Finnish biobank, and the large-scale
meta-analysis including the largest-to-date GWAS datasets of the two
cancers identified 91 newly genome-wide significant loci
(nCase = 277,896, nControl = 901,858). Further enrichment analysis of
pathways and cell types demonstrated shared genetic backgrounds
across both cancers. Our comprehensive genetic study offers further
insights into the complex biology underlying carcinogenesis.

Results
Pan-cancer and cross-population GWAS meta-analysis
Anoverviewof this study is presented in Fig. 1. Patients diagnosedwith
any of the following 13 cancers including biliary tract, breast, cervical,
colorectal, endometrial, esophageal, gastric, hepatocellular, lung, non-
Hodgkin’s lymphoma, ovarian, pancreatic, and prostate cancer from
the two biobank resources (BBJ for Japanese and UKB for Europeans)
were enrolled in this study. We enrolled control subjects without
cancer from the respective cohorts. In the discovery GWAS/meta-
analysis, the sample sizeswere29,753 cases and 150,462 controls in the
BBJ first cohort (BBJ1) and 43,098 cases and 334,343 controls in UKB.
We used 31,712 cases and 38,088 controls in the BBJ second cohort
(BBJ2) for our replication analysis. The characteristics of each cohort
and results of single cancer GWAS in each ancestry are shown in
Table 1, Supplementary Figs. 1 and 2, and Supplementary Data 1. While
most genome-wide significant loci were previously associated with the
cancer of interest18–22, we identified two novel loci in the single cancer
GWAS in UKB (colorectal: rs143926630 at TULP4 on 6q25, P = 1.3 × 10−8;
non-Hodgkin’s lymphoma: rs370149412 at MEF2B on 19p13,
P = 4.7 × 10−8; Table 2 and Supplementary Fig. 2). Our single cancer
GWAS of East Asians and Europeans replicated 216 and 306 signals,
respectively, among the 495 previously reported cancer risk variants in
GWAS Catalog18 (Supplementary Data 3).

First, to enhance the statistical power and detect novel loci
satisfying the genome-wide significance (P < 5.0 × 10−8), a cross-
population GWAS meta-analysis of each cancer (single cancer meta-
analysis) was conducted (Table 1 and Supplementary Data 2). In each

meta-analysis of breast and lung cancer across BBJ1 and UKB, we
identified one locus newly satisfying the genome-wide significance
threshold (breast: rs2800691 at PADI6 on 1p36, P = 3.6 × 10−8; lung:
rs2076295 at DSP on 6p24, P = 2.6 × 10−8; Table 2 and Supplementary
Fig. 3). Of these, the lead variant associated with breast cancer was
correlated with the previously reported breast cancer risk variant,
rs1924553 at PADI6 (r2 = 0.21 in Europeans; r2 = 0.42 in East Asians), but
the previous study did not detect genome-wide significant associa-
tions at thePADI6 locus (P = 5.4 × 10−7)23. The leadvariant of the two loci
had the same directional effect across ancestries (Table 2). We inves-
tigated the impacts of these cancer-associated variants on the mes-
senger RNA levels in the Genotype-Tissue Expression v8 (GTEx)
database24 of expression quantitative trait loci (eQTL). Of these,
rs2076295, associated with lung cancer, is an intronic variant of DSP;
the risk allele rs2076295-G has been associated with decreased DSP
gene expression in lung (Supplementary Fig. 5a). Further analysis using
the Simple Sum (SS) method implemented in LocusFocus25 supported
strong colocalization between the GWAS and eQTL signals (SS P-
value = 1.0 × 10−8; Supplementary Fig. 6a), indicating the potential
impact of the variant.

We then performed a pan-cancer GWAS meta-analysis (all-cancer
meta-analysis) to detect common genetic factors underlying cancer
etiology (Supplementary Data 2). In the meta-analysis within BBJ1 or
UKB, we identified two novel loci (BBJ1: rs11927381 at IGF2BP2 on 3q27,
P = 2.4 × 10−8; UKB: rs56111229 at PRMT6 on 1p13, P = 2.0 × 10−8; Table 2
and Supplementary Fig. 4a). In addition, the all-cancer meta-analysis
across BBJ1 and UKB found a novel association (rs2525548 at AZGP1 on
7q22, P = 2.5 × 10−9; Table 2 and Supplementary Fig. 4a). Our standard
fixed-effects meta-analysis successfully detected the variants exhibit-
ing general pleiotropy involving five or six cancers at P < 0.05 (Fig. 2).
To account for correlations due to the overlapping subjects, we
employed the Lin–Sullivan method26, which has been applied to the
meta-analysis acrossmultiple traits27. Quantile-quantile (QQ) plots and
lambda values suggested no obvious bias from population stratifica-
tion (Supplementary Fig. 4b).We also conducted aGWASof any cancer
in each cohort (=joint analysis) and then meta-analyzed across popu-
lations (Supplementary Fig. 7). While the joint analysis successfully
detected the PRMT6 locus in the UKB datasets and the AZGP1 locus in
the cross-population meta-analysis, the IGF2BP2 locus did not satisfy
the genome-wide threshold in the joint analysis of the BBJ1 datasets.
The joint analysis did not identify any additional novel locus that the
fixed-effects meta-analysis could not find. The lead variant obtained
from the cross-population all-cancer meta-analysis was found in an
intergenic region and nominally associated with gastric, lung, and
ovarian cancer in BBJ1; and with breast, colorectal, and esophageal
cancer in UKB (Fig. 2). The effect allele of rs2525548-G was suggested
tohave protective effects across cancers.Weperformed colocalization
analysis with the eQTL data; variation in TRIM4 gene expression across
11 cancer-related tissues was potentially responsible for the GWAS
locus (SS P-value: 1.4 × 10−5−5.4 × 10−5, suggested threshold after mul-
tiple testing correction <0.002; Supplementary Fig. 6c). For
rs56111229, the novel variant of the UKB all-cancer meta-analysis, our
colocalization analysis also found that PRMT6 was one of the putative
target genes (Supplementary Fig. 6b). To validate the eQTL effects in
East Asian datasets, we used the ImmuNexUT data28, which is a gene-
regulation atlas of 28 immune cell types from the Japanese subjects.
We confirmed the sameeffects on various immune cell types fromEast
Asians for rs56111229 and rs2525548, which showed the eQTL effects in
whole blood in the GTEx data (Supplementary Fig. 8).

For the replication analysis, we selected all the variants satisfying
P < 1.0 × 10−6 from the discovery GWAS/meta-analysis including the
BBJ1 datasets, and evaluated the associations between the variants and
cancer risks using the BBJ2 datasets. First, we evaluated the two var-
iants from the single cancer meta-analysis (rs2800691 and rs2076295
associated with breast and lung cancer, respectively) and the two
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Fig. 1 | The study overview. The pan-cancer and cross-population GWAS meta-
analysis on 13 cancer types followed by the replication analysis examining 250,015
East Asians from the BioBank Japan (BBJ) and 377,441 Europeans from the UK
Biobank (UKB) identified ten loci newly satisfying the genome-wide significance
threshold (upper). We then estimated the heritability and genetic correlations
among the cancers and found significant positive genetic correlations between

breast and prostate cancer both in BBJ and UKB (middle). The breast and prostate
cancer large-scalemeta-analysis including the FinnGen datasets, and the largest-to-
date GWAS datasets of breast (BCAC) and prostate cancer (PRACTICAL) detected
91 newly genome-wide significant loci. Further enrichment analysis of cell types and
pathways demonstrated shared genetic backgrounds between the two cancers
(bottom).
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variants from the all-cancer meta-analysis (rs11927381 and rs2525548).
Of these, two variants (rs2076295 and rs11927381) were replicatedwith
the nominal significance in the same directional effects (P < 0.05;
Table 2). We then conducted the combined meta-analysis across the
discovery and replication datasets. All four variants satisfied the
genome-wide significance again, robustly supporting our findings
(Table 2). In addition, the combined meta-analysis identified three
additional cancer risk variants (rs77753011 at RPH3A on 12q24,
P = 5.5 × 10−15; rs36079339 atAIDA on 1q41, P = 3.9 × 10−10; rs2059904 at
EDNRA on 4q31, P = 1.2 × 10−8; Table 2), of these two were pleiotropic
associations. Our comprehensive GWAS meta-analysis revealed novel
pleiotropic associations enhancing our understanding of shared can-
cer susceptibility and showed the strengths of the pan-cancer and
cross-population approaches.

Pan-cancer heritability estimates and genetic correlations
We evaluated the liability-scale heritability of each cancer from
individual-level data using BOLT-REML29 (Table 1) and estimated
genetic correlations among the 13 cancers (Supplementary Fig. 9).
Among the 78 cancer pairs, 13 and four cancer pairs were genetically
correlated in BBJ1 and UKB at the nominal significance level, respec-
tively (Table 3). In BBJ1, three pairs were positively correlated after
Bonferroni correction (P < 0.05/78 = 6.4 × 10−4): colorectal and gastric
cancer (rg = 0.30, P = 5.8 × 10−6), breast and lung cancer (rg =0.37,
P = 2.1 × 10−5), and breast and prostate cancer (rg =0.21, P = 8.4 × 10−5).
On the other hand, only one pair, colorectal and lung cancer, showed a
significant correlation in UKB (rg =0.32, P = 2.3 × 10−6). While most of
these relationships were observed in either population, only breast
and prostate cancer consistently exhibited positive genetic correla-
tions across East Asian and European ancestry. To validate this positive
relationship, we applied linkage disequilibrium score regression
(LDSC)30 to the GWAS summary statistics of the two cancers from

FinnGen. Breast cancer was positively correlated with prostate cancer
in Finnish populations as well (rg = 0.42, P = 0.0021; Fig. 3a). Thus, we
found consistent genetic correlations between breast and prostate
cancer across populations.

Breast and prostate cancer large-scale meta-analysis
We conducted a breast and prostate cancer large-scale meta-analysis,
as we expected that the shared genetic backgrounds among the two
cancers would boost the statistical power. In addition to the BBJ1, UKB,
and FinnGen datasets, we utilized the summary statistics from the
largest-to-date European ancestry GWAS of breast (BCAC)31 and pros-
tate cancer (PRACTICAL; Supplementary Fig. 10a)32. We performed the
large-scale GWAS meta-analysis within each cancer and the large-scale
meta-analysis across breast and prostate cancer (Supplementary
Fig. 10b and Supplementary Data 4 and 5). The breast cancer meta-
analysis identified 183 loci that exceeded the genome-wide significance,
including 29 loci newly satisfying the genome-wide significance. In
prostate cancer, 177 significantly associated loci including 21 new
associations were found. Of these, 11 breast cancer risk loci and one
prostate cancer risk locus were previously reported with the suggestive
significance (P < 1.0 × 10−6)14,23. Finally, we detected 218 genome-wide
significant variants in the breast and prostate cancer meta-analysis. Of
these, 8 variants were not previously associated with either breast or
prostate cancer (Supplementary Data 6). Our replication meta-analysis
incorporating the BBJ2 datasets showed that all the variants found from
the large-scale meta-analysis met the genome-wide significance
threshold again. In addition, we identified 33 additional novel loci
associated with breast and/or prostate cancer from the replication
meta-analysis (Supplementary Data 6). As expected, the shared herit-
ability among the two cancers increased the statistical power; our large-
scale meta-analysis could identify several novel associations, indicating
genetic commonalities between breast and prostate cancer.

Table 1 | Summary of the single cancer GWAS and cross-population single cancer meta-analysis

Cancer type Discovery Replication

BioBank Japan 1
(BBJ1) Sample size

λGC h2(SE) GWAS
loci

UK Biobank (UKB)
Sample size

λGC h2(SE) GWA-
S loci

New
loci

Cross-
population

BioBank Japan 2
(BBJ2)Sample size

Additional
new loci

Case Control Case Control λGC GWAS
loci

New
loci

Case Control

Biliary tract 232 150,462 1.001 0.032
(0.144)

0 525 334,343 1.001 0.119
(0.110)

0 0 1.011 0 0 584 38,088 0

Breast 5,099 70,676 1.005 0.095
(0.009)

7 13,778 183,466 1.030 0.146
(0.007)

25 0 1.056 33 1 4,804 18,138 0

Cervical 567 70,676 1.003 0.110
(0.031)

1 313 183,466 1.003 0.189
(0.102)

0 0 1.007 1 0 1,358 18,138 0

Colorectal 6,075 150,462 1.020 0.140
(0.011)

14 7,194 334,343 1.022 0.174
(0.015)

10 1 1.048 23 0 7,382 38,088 0

Endometrial 948 70,676 1.010 0.081
(0.027)

0 1,892 183,466 1.009 0.062
(0.026)

1 0 1.016 0 0 1,012 18,138 0

Esophageal 1,159 150,462 0.997 0.206
(0.027)

2 1,387 334,343 1.016 0.206
(0.044)

0 0 1.005 3 0 1,018 38,088 0

Gastric 5,775 150,462 1.021 0.095
(0.009)

4 1,023 334,343 0.999 0.013
(0.054)

0 0 1.030 4 0 4,324 38,088 0

Hepatocellular 1,361 150,462 1.011 0.143
(0.036)

1 339 334,343 0.994 0.190
(0.190)

2 0 1.009 3 0 2,180 38,088 1

Lung 3,486 150,462 1.018 0.136
(0.019)

6 4,255 334,343 1.016 0.293
(0.028)

3 0 1.029 7 1 3,477 38,088 0

Non-Hodgkin’s
lymphoma

736 150,462 1.016 0.138
(0.046)

1 1,997 334,343 1.010 0.073
(0.014)

2 1 1.018 5 0 935 38,088 0

Ovarian 685 70,676 1.005 0.023
(0.027)

0 1,446 183,466 1.001 0.006
(0.026)

0 0 1.009 0 0 835 18,138 0

Pancreatic 281 150,462 0.999 0.312
(0.156)

0 1,328 334,343 1.004 0.031
(0.051)

1 0 1.005 1 0 604 38,088 0

Prostate 4,626 79,786 1.024 0.202
(0.009)

20 10,739 150,877 1.021 0.172
(0.007)

39 0 1.051 45 0 6,036 19,950 0

h2 heritability on the liability scale.
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Pathway enrichment analysis across breast and prostate cancer
For further biological insights, we performed the pathway enrichment
analysis using PASCAL33 and assessed the associations between the
three GWAS meta-analysis of breast and prostate cancer mentioned
above and the hallmark gene sets from the Molecular Signature
Database (MsigDB; Fig. 3b and Supplementary Data 7)34. Of these, six
pathways including mitotic spindle, estrogen response early, apopto-
sis, androgen response, myogenesis and hypoxia were shared by both
cancers and satisfied FDR<0.05.

Next, we evaluated the functional characteristics of shared risk
variants associated with both breast and prostate cancer at the nom-
inal significance level (Supplementary Fig. 11).OurGWASmeta-analysis
identified 218 lead variants associated with the two cancers
(P < 5.0 × 10−8). Among them, 118 variants were nominally associated
with both cancers (shared risk variants) and the rest were nominally
associated with either cancer (cancer type-specific variants; Supple-
mentary Fig. 11a). The 118 shared risk variants were relatively more
enriched in intronic/exonic variants and active chromatin regions and
held more eQTL variants compared with the 100 cancer type-specific
variants (Supplementary Fig. 11b). The more stringent the threshold,
themoreapparent these characteristicswere (Supplementary Fig. 11b).
Furthermore, we conducted functional gene mapping using FUMA35

and the gene set enrichment analysis36 with the MsigDB hallmark gene
sets (Supplementary Fig. 11a). While the 100 cancer type-specific var-
iants were associated with only one gene set, the 118 shared risk var-
iants were associated with 10 gene sets including G2M checkpoint, E2F
targets, interferon alpha response, IL2-STAT5 signaling, estrogen
response late, mTORC1 signaling, and cholesterol homeostasis
(FDR <0.05). We conducted the pathway analysis at the genome-wide
and variant-specific levels and detected shared susceptibility pathways
between breast and prostate cancer.

Cell type-specific analysis of breast and prostate cancer
To acquire further insights into the common genetic basis between
breast and prostate cancer, we conducted the cell type-specific ana-
lysis at single-cell resolution. Using scDRS37, we assessed cell type
enrichment in single-cell RNA sequence (scRNA-seq) datasets of breast
and prostate cancer38,39. First, we selected the top 2000 genes repre-
senting the polygenic cancer risk from the three large-scale meta-
analysis mentioned above. We calculated a disease score for each cell
in the scRNA-seq datasets using each of the three gene sets. We then
evaluated the associations between the three gene sets and nine or five
cell types in the scRNA-seq data of the two cancers, respectively. In the
breast cancer scRNA-seq data, cells annotated as cancer/normal epi-
thelial showed higher disease scores than other cell types across all
gene sets; all gene sets were associated with cancer/normal epithelial
cells (Fig. 3c and Supplementary Data 8). For some known genes
related to breast cancer (e.g., MYC, IGFBP5, CCND1, ESR1), we con-
firmed epithelial cells showed higher expression levels (Supplemen-
tary Fig. 12). We observed similar associations in the prostate cancer
scRNA-seq data (Fig. 3c). In addition, the breast cancer gene set was
uniquely associated with cancer-associated fibroblasts (CAF) and
perivascular-like cells (PVL) in the breast cancer scRNA-seq data. Our
cell type-specific analysis at a single-cell level demonstrated distinct
and common genetic components among breast and prostate cancer.

Discussion
In this study, we performed the pan-cancer and cross-population
GWAS meta-analysis on the 13 cancers and identified ten loci newly
satisfying the genome-wide significance. The single cancer GWAS/
meta-analysis found five risk variants of the specific individual cancers
across East Asians and Europeans (e.g., PADI6 on 1p36 and DSP on
6p24). On the other hand, five pleiotropic loci were detected in the all-
cancermeta-analysis (e.g., IGF2BP2on 3q27, PRMT6on 1p13, andTRIM4
on 7q22). With increasing use of biobank resources, the time-to-eventTa
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data analysis is becoming informative to detect genetic variants pre-
dicting the disease prognosis. Using SPACox40 and the survival data in
BBJ, we investigated the survival impacts of the variants identified in
the single/all cancer GWAS/meta-analysis. We did not find any sig-
nificant associations between the cancer risk variants and survival
(Supplementary Data 9). We then found positive genetic correlations
between breast and prostate cancer across populations. Further, our
large-scale meta-analysis of breast and prostate cancer identified 91
loci newly satisfying the genome-wide significance threshold. The
downstream analysis showed common pathways including apoptosis
and the associations between the polygenic risk of both cancers and
epithelial cells.

The novel risk variant of lung cancer is an intronic DSP variant
previously associated with interstitial lung disease41 or lung
function42. DSP is a structural component of desmosomes43. In
human non-small cell lung cancer, DSP has been reported to function
as a tumor suppressor through inhibition of the Wnt/β-catenin sig-
naling pathway44. In addition, in the all-cancer meta-analysis, we
identified a novel variant near TRIM4. TRIM family proteins are
involved in various cellular processes such as cell cycle and
apoptosis45; particularly, TRIM4 has been reported to sensitize cells
to oxidative stress induced cell death46. GWAS have offered genetic
evidence highlighting targets of drug discovery and repositioning8.
Our all-cancer meta-analysis within UKB detected an association
within the PRMT6 region. PRMT6 is involved in epigenetic regulation
through methylation and plays different roles in various cancers47.

The study of PRMT6 inhibitors has been increasing to explore their
efficacy as potential cancer therapy for various cancers48. Especially
for the pleiotropic loci from our study, the downstream analysis
investigating the functional roles of the putative target genes across
multiple cancers is warranted. We anticipate that further research
based on our findings can become a steppingstone to anticancer
therapy across cancers and contribute to a better understanding of
common cancer susceptibility.

In our analysis of shared heritability among the cancers, several
cancer pairs in the UKB datasets showed similar genetic correlations
with the previous reports: esophagus/stomach and lung cancer
(rg = 0.44, P =0.0035)14 and colorectal and lung cancer (rg =0.28,
P = 6.6 × 10−7)13. We confirmed the positive genetic correlations
between breast and prostate cancer across populations. A previous
study showed a nominal genome-wide correlation (rg =0.07, P =0.012)
and significant local correlations (9p21: rg = 4.6 × 10−4, P = 1.0 × 10−6;
10q26: rg = −9.8 × 10−4, P = 1.0 × 10−7) between the twocancers using the
summary statistics of BCAC and PRACTICAL13. Another epidemiologi-
cal study reported that a prostate cancer family history in afirst-degree
relative was associated with a higher incidence rate of breast cancer
and vice versa49. Considering these findings, the two cancers appear to
share substantial heritable risk.

The large-scale GWAS meta-analysis across the two cancers
identified 15 novel loci. Of these, ten were previously associated with
sex hormone-binding globulin (SHBG) and/or testosterone levels50.
Recent Mendelian randomization (MR) studies indicated potential

Fig. 2 | Novel loci identified in the all-cancermeta-analysis. Regional plots of the
novel loci and forest plots of the lead loci variants identified in the all-cancermeta-
analysis. Purple diamond symbols in the regional plots represent the lead variants
of the loci. In the forest plots, dots indicate the odds ratios of the variant for each

cancer and whiskers represent 95% confidence intervals. The number of cases and
controls in each GWAS are shown in Table 1. All statistical tests are two-sided and
not adjusted for multiple comparisons.
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causal inference of sexual hormone traits on the risk of breast and
prostate cancer50,51. The MR analysis by Ruth et al. revealed potential
causal effects of sex hormones on hormone-sensitive cancers and
indicated that higher bioavailable testosterone levels increased the
risk of prostate cancer and estrogen receptor-positive breast cancer50.
Our GWAS findings supported the impacts of testosterone on both
cancers’ susceptibility and suggested that sexual hormone traits such
as SHBG or testosterone levels may be a key mediator of shared
mechanisms between the two cancers. Our pathway enrichment ana-
lysis also suggested that pathways related to sexual hormone
responses have a significant effect in breast and prostate cancer sus-
ceptibility. Last, weperformed the cell type-specific analysis at a single-
cell level. The transcriptomic examination of individual cells overcame
the limitations of bulk analysis and enabled a more refined dissection
of the cellular basis of cancer52. Our results indicated shared herit-
ability between the two cancers was enriched in epithelial cells. In
breast cancer, germline factors were suggested to affect the tumor
microenvironment including mesenchymal cells. At single-cell resolu-
tion, our cell type-specific analysis showed unique and shared genetic
basis across breast and prostate cancer. In the cross-cancer approach,
focusing on the genetically correlated cancers showed novel potential
to reveal common genetic components underlying carcinogenesis,
which might be shared across multiple cancers. We consider that
future research including larger sample sizes fromdiverse populations
would detect additional correlated cancer pairs. By focusing on such
cancer pairs, de novo cancer grouping can contribute to under-
standing human cancer genetics.

Several limitations need to be acknowledged in this study. Our
analysis covered awide range of 13 cancers, but wedid not include less
common ones due to data unavailability. To maximize the power, we
leveraged two biobank resources. However, the sample size of some
cancerswas limited. Future studies should focus on larger sample sizes
and include rare cancers. The differences of genotyping platforms and
imputation procedures between the cohorts can be potential

limitations. We consider that future studies using various pipelines
would be helpful to validate our findings and accumulate our knowl-
edge of cancer genetics. Since we focused on common variants in this
study, the contribution of rare variants or the interactions between
germline and somatic mutations requires further research.

In summary, our comprehensive and large-scale genomic study
revealed novel pleiotropic associations and highlighted the advan-
tages of the pan-cancer analysis. Using the biobank resources from
East Asians and Europeans, our study contributed to deciphering the
global landscape of heritable cancer risk. Furthermore, our results
demonstrate that focusing on the genetically correlated cancers is a
promising approach to understand the shared genetic backgrounds
underlying carcinogenesis.

Methods
Subjects
In the discovery GWAS/meta-analysis, all the Japanese subjects were
included in BBJ1, a prospective biobank that collaboratively recruited
approximately 200,000 patients with ≥1 of 47 diseases and collected
DNA, serum samples, and clinical information from 12 medical insti-
tutions in Japan between 2003 and 200715,53. The samples for the
replication analysis were registered in BBJ2 between 2013 and 2018,
which included ~80,000 new patients with 38 target diseases. Among
them, the cases diagnosed with any of the following 13 cancers (biliary
tract, breast, cervical, colorectal, endometrial, esophageal, gastric,
hepatocellular, lung, non-Hodgkin’s lymphoma, ovarian, pancreatic,
and prostate cancer) were analyzed. As controls, we used subjects
without cancer. All the participants in BBJ provided written, informed
consent approved by ethics committees of the Institute of Medical
Sciences, the University of Tokyo and RIKEN Center for Integrative
Medical Sciences. For the European subjects, we extracted cancer
cases and controls from UKB, a population-based cohort of ~500,000
people aged 40–69 across the United Kingdom54. We included the
incident cases in UKB, where the last follow-up date was 2021/4/16.
This study was approved by the ethical committee of Osaka University
Graduate School of Medicine.

Genotyping and imputation
We genotyped the Japanese samples in BBJ1 with the Illumina
HumanOmniExpressExome BeadChip or a combination of the Illu-
mina HumanOmniExpress and HumanExome BeadChips. Quality
control of samples and genotypes was conducted as described
elsewhere55. We analyzed subjects of East Asian ancestry identified by
principal component analysis (PCA)-based criteria. Genotype data
were imputed with 1000 Genomes Project Phase 3 (version 5) gen-
otype data and Japanese whole-genome sequencing data using
Minimac321. We genotyped the BBJ2 subjects for replication using
Illumina Asian Screening Array chip and excluded individuals with a
low call rate (<0.98) and outliers from the PCA-based East Asian
cluster. Quality control of the variants was conducted using the fol-
lowing criteria: (i) with a low call rate (<0.99); (ii) with low minor
allele counts (<5); and (iii) with Hardy–Weinberg equilibrium test P
value < 1.0 × 10−10. We imputed dosages with the combined reference
panel of 1000 Genomes Project Phase 3 and Japanese whole-genome
sequencing data using Minimac4. Subjects in UKB were genotyped
using the Applied Biosystems UK BiLEVE Axiom Array or the Applied
Biosystems UK Biobank Axiom Array. After quality control, genotype
data were imputed with the Haplotype Reference Consortium data
and themerged UK10K and 1000 Genomes Project Phase 3 reference
panels using IMPUTE416. We analyzed Caucasian subjects identified
by PCA-based criteria.

Single cancer GWAS
We conducted single cancer GWAS for each cancer in a single ancestry
using a generalized linearmixedmodel (GLMM) implemented inSAIGE

Table 3 | Genetic correlations (rg) calculated via BOLT-REML
for the cancer pairs at P < 0.05

Cancer type 1 Cancer type 2 rg (95% CI) P

BioBank Japan 1 (BBJ1)

Colorectal Gastric 0.30 (0.17–0.43) 5.8 × 10−6

Breast Lung 0.37 (0.20–0.54) 2.1 × 10−5

Breast Prostate 0.21 (0.10–0.31) 8.4 × 10−5

Gastric Lung 0.29 (0.11–0.46) 0.0014

Cervical Lung 0.46 (0.16–0.76) 0.0030

Esophageal Gastric 0.23 (0.06–0.39) 0.0069

Hepatocellular Lung 0.38 (0.10–0.67) 0.0085

Gastric Hepatocellular 0.30 (0.06–0.53) 0.013

Lung Pancreatic −0.47 (−0.90 to −0.05) 0.030

Colorectal Pancreatic 0.36 (0.03–0.68) 0.032

Cervical Esophageal 0.29 (0.02–0.55) 0.033

Endometrial Non-Hodgkin’s
lymphoma

0.57 (0.03–1.00) 0.037

Gastric Non-Hodgkin’s
lymphoma

0.27 (0.01–0.53) 0.046

UK Biobank (UKB)

Colorectal Lung 0.32 (0.19–0.45) 2.3 × 10−6

Breast Endometrial 0.39 (0.15–0.62) 0.0014

Breast Prostate 0.094 (0.03–0.16) 0.0052

Esophageal Lung 0.23 (0.03–0.44) 0.025

P values are uncorrected.Genetic correlations betweenbreast andprostate cancer are shown in
bold.
CI confidence interval
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(v0.43)56 to adjust for case-control imbalance. We included age, sex,
and the top five principal components as covariates and used the
leave-one-chromosome-out scheme to avoid proximal contamination.
We excluded variants with an imputation quality Rsq <0.7 or minor
allele frequency <0.01. We set the genome-wide significant threshold
at P < 5.0 × 10−8. We considered the HLA region (chromosome 6: 26–34
Mbp) as one locus due to its complex and strong linkage dis-
equilibrium (LD) structure57.

GWAS meta-analysis
We applied a standard fixed-effects approach implemented in RE2C58

forGWASmeta-analysis. For the all-cancermeta-analysis,we employed
the Lin-Sullivanmethod26 to account for correlations fromoverlapping
samples. This strategy has been applied to meta-analysis across mul-
tiple traits27. We defined a locus as a genomic region within ±500 Kbp
from the lead variant and considered a locus as novel if the lead variant
and its nearest genewere not previously associatedwith the cancers of
interest (P < 5.0 × 10−8) by querying the GWASCatalog18, PhenoScanner
V219, PheWeb20, PheWeb.jp21, and Open Targets Genetics22. To help
ensure that the identified loci were novel, we confirmed that any var-
iants within ±1Mbp from the lead variants and correlatedwith the lead
variants (r 2 > 0.1) were not previously reported at P < 1.0 × 10−6 using
GWAS Catalog. For the locus previously reported with the suggestive
significance (P < 1.0 × 10−6), we used the descriptions as newly satisfy-
ing the genome-wide significance. Regional plots of novel loci were

createdusing LocusZoom59.Weobtained the functional annotations of
lead variants using ANNOVAR60 and Open Targets Genetics.

Colocalization analysis
We used eQTL data from the GTEx v8 database24 and performed
colocalization analysis with LocusFocus (v1.4.9)25. The Simple Sum
method implemented in LocusFocus is a frequentist colocalization
method to identify themost relevant genes and tissues for a particular
GWAS locus in the presence of high LD and allelic heterogeneity. We
selected 1000Genomes Project European populations to calculate the
LD matrix and obtained SS P-values for gene-tissue pairs. We used a
Bonferroni-corrected threshold for significant colocalization when
assessing ≥2 gene-tissue pairs.

Heritability and genetic correlation
We estimated the heritability of each cancer explained by the
genotyped SNPs (single nucleotide polymorphisms) and genetic cor-
relations among cancer pairs using BOLT-REML (v2.3.6)29. BOLT-REML
applies variance component analysis and aMonte Carlo algorithm.We
included age, sex, and the top five principal components as covariates.
We reported the heritability on the liability scale adjusted for lifetime
risks of each cancer based on SEER 2015–2017 estimates61. For FinnGen
datasets, we applied LDSC (v1.0.1)30 with the 1000 Genomes Project
European reference panel to estimate the genetic correlation between
breast and prostate cancer. LDSC usedHapMap3 SNPs and the analysis
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Fig. 3 | Breast and prostate cancer analysis. a Forest plot of genetic correlations
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correlations and whiskers represent 95% confidence intervals. b Heatmap
describing the associations between the three GWAS meta-analyses of breast and
prostate cancer and the top-ranking gene sets associated with the meta-analysis
across breast and prostate cancer. The “Meta” column represents themeta-analysis
across breast and prostate cancer. P-values of the heatmap are uncorrected and
reflect two-sided tests. FDR was calculated via the Benjamini-Hochberg method
across all gene sets. c Results of the cell type-specific analysis. UMAP visualizations
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calculated via scDRS (middle). Heatmap describing the associations between the
three GWAS meta-analyses of breast and prostate cancer and the cell types
detected in the scRNA-seq datasets of breast and prostate cancer (down). The
“Meta” column represents the meta-analysis across breast and prostate cancer.
P-values of the heatmap are uncorrected and reflect two-sided tests. FDR was cal-
culated via the Benjamini-Hochbergmethod across all cell types in each scRNA-seq
dataset.
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did not include population specific variants like founder mutations of
BRCA2 or CHEK2 in the Finnish population.

Pathway enrichment analysis
We conducted the pathway enrichment analysis at the genome-wide
level using PASCAL33 and evaluated the associations between the
summary statistics of the breast and prostate cancer large-scale meta-
analysis and theMsigDB (v7.5.1) hallmark gene sets. PASCAL uses 1000
Genomes Project European data to correct for LD structure and
computed pathway enrichment scores. We used empirical scores and
set the threshold for significant pathway enrichment at FDR <0.05. For
the functional characterization of the 218 lead variants found in large-
scale GWAS meta-analysis across breast and prostate cancer, we used
FUMA (v1.3.8)35 to obtain functional, eQTL, and chromatin feature
annotations. We defined an eQTL variant one with ≥1 significant eQTL
effect in theGTEx database and an active chromatin region as themost
common state value ≤7 according to Roadmap’s 15-core chromatin
states across 127 cell or tissue types62. For shared risk variants and
cancer type-specific variants, we conducted functional gene mapping
using FUMA and gene set enrichment analysis (v4.2.3)36 using the
MsigDB hallmark gene sets as in a previous study14.

Cell type-specific analysis
Using scDRS (v1.0.0)37, we assessed the cell type enrichment in the
scRNA-seq datasets of breast and prostate cancer. First, we used
MAGMA (v1.10)63 to calculate the gene P-value and Z-score from the
summary statistics of the breast and prostate cancer large-scale meta-
analysis and selected the top 2000 genes as a set of putative disease
genes. Second, scDRS calculated a disease score of each cell in
the scRNA datasets by aggregating the expression of the putative dis-
ease genes and computed a set of 1,000 Monte Carlo control scores
using a random gene set. Third, scDRS normalized these scores and
calculated a P-value for individual cells. We used the compute_score
function with default parameters and included the number of genes per
cell and clinical subtypes in the breast cancer scRNA-seq dataset as
covariates. Finally, scDRS performed the cell type-level analysis to
associate the putative gene sets with the cell types in the scRNA-seq
datasets using the compute_downstream function with default settings.

Survival analysis
Weused SPACox40 and the survival data in BBJ to assess the association
between survival and the variants found in the single/all cancer GWAS/
meta-analysis including the East Asian datasets. We investigated the
impact of the variants on all-cause death among the samples with each
cancer. The COX proportional hazards model was adjusted for age,
sex, and the top five principal components. We considered a variant
satisfying P <0.0038 (0.05/13) as statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
GWAS genotype data of the BBJ are available at the NBDC Human
Database (research ID: hum0014 and hum0311). All the GWAS sum-
mary statistics of our study are publicly available at the NBDC Human
Database (research ID: hum0197) and PheWeb.jp (https://pheweb.jp/)
without restriction. The UKB analysis was conducted via application
number 47821 (https://www.ukbiobank.ac.uk/). We used the FinnGen
release6data. Summary results canbe accessed through application at
https://www.finngen.fi/en/access_results/. The summary statistics of
BCAC and PRACTICAL are available at http://bcac.ccge.medschl.cam.
ac.uk/ and http://practical.icr.ac.uk/blog/, respectively. The breast
cancer scRNA-seq data are available for download through the Broad
Institute Single Cell portal at https://singlecell.broadinstitute.org/

single_cell/study/SCP1039. The prostate cancer scRNA-seq data have
been deposited in the Gene Expression Omnibus (GEO) under acces-
sion no. GSE141445 and the Genome Sequence Archive for Human
(GSA-Human) under accession HRA000312 and can be accessed at
http://www.pradcellatlas.com/. The GTEx v8 and ImmuNexUT data
were obtained from the GTEx portal (https://gtexportal.org/home/)
and the ImmuNexUT website (https://www.immunexut.org/),
respectively.

Code availability
We used the publicly available software for the analysis. The software
used is described in the Methods section.
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