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Profiling of basal and ligand-dependent
GPCR activities by means of a polyvalent
cell-based high-throughput platform

Manel Zeghal 1, Geneviève Laroche 1, Julia Douglas Freitas 1,
Rebecca Wang1 & Patrick M. Giguère 1,2

Representing the most attractive and successful druggable receptors of the
proteome, GPCRs regulate a myriad of physiological and pathophysiological
functions. Although over half of present pharmaceuticals target GPCRs, the
advancement of drug discovery is hampered by a lack of adequate screening
tools, the majority of which are limited to probing agonist-induced G-protein
and β-arrestin-2-mediated events as ameasure of receptor activation. Here, we
develop Tango-Trio, a comprehensive cell-based high-throughput platform
comprising cumate-inducible expression of transducers, capable of the par-
allelized profiling of both basal and agonist-dependent GPCR activities. We
capture the functional diversity of GPCRs, reporting β-arrestin-1/2 couplings,
selectivities, and receptor internalization signatures across the GPCRome.
Moreover, we present the construction of cumate-induced basal activation
curves at approximately 200 receptors, including over 50 orphans. Overall,
Tango-Trio’s robustness is well-suited for the functional characterization and
screening of GPCRs, especially for parallel interrogation, and is a valuable
addition to the pharmacological toolbox.

As central orchestrators of cellular and physiological processes, G
protein-coupled receptors (GPCRs) mediate the transduction of
extracellular stimuli into conformationally-driven intracellular signals.
Comprised of more than 800 members in the human genome, the
diversity of this superfamily of membrane proteins is shaped by both
the multiplicity of ligands they respond to, as well as the diverse array
of signaling pathways they coordinate1–3. Moreover, GPCRs function in
conjunctionwith protein interactors,whose identities and abundances
vary by virtue of tissue- and/or cellular-specific expression4.

The dynamism of GPCR signaling events is due to the receptors’
conformational and locational changes throughout their life cycle,
including activation, desensitization, internalization and resensitiza-
tion. Although there is great diversity of ligands among them, GPCRs
share a common fundamental mechanism of receptor activation.
GPCRs in their inactive conformation are coupled to a heterotrimeric
G-proteins complex, formed of a Gα subunit bound to GDP and Gβγ

dimer stabilizing the inactive conformation of the heterotrimer. Acti-
vation of theGPCR results in conformational changeswhichenable the
exchange of bound GDP by Gα for GTP, resulting in the dissociation of
Gα-GTP and Gβγ-subunits from the receptor, which transduce differ-
ent downstream signaling cascades depending on the nature of the
GPCR and the subclasses of the G-protein subunits, composing the
basis of G-protein dependent signaling5,6. This classical paradigm
posits that activation can be induced not only by agonist binding, but
also by virtue of GPCRs’ ability to spontaneously adopt active con-
formations in the absence of agonist, termed constitutive activity7.
Although it is now widely recognized that all GPCRs exhibit sponta-
neous activation, albeit at varying degrees, a large-scale quantification
of constitutive activity across the GPCRome, including druggable and
orphan receptors, has yet to be conducted.

To prevent overstimulation, active GPCRs can be desensitized,
wherein kinases such as GRKs phosphorylate the receptor at specific
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serine/threonine residues, typically C-terminal or intracellular loop 3
(IL3) sites5. Phosphorylation in turn leads to the recruitment of
arrestins, the most well-known and characterized scaffold proteins
comprising four isoforms, the two visual arrestins, arrestin-1 and
arrestin-4, that are confined to retinal cones and rods, and the ubi-
quitously expressed nonvisual arrestins, β-arrestin-1 and −28. While
nonvisual arrestins have been shown to bind to hundreds of different
GPCR members, the vast majority of demonstrations have been
conducted with β-arrestin-2, with few studies addressing the con-
tributions of the relevant but often forgotten β-arrestin-1 isoform9.
Besides inducing receptor desensitization through steric hindrance of
the G-protein binding site, arrestins also redirect GPCR signaling
to alternative G-protein independent pathways such as MAPKs, JNKs,
and Src10. Additionally, the engagement of arrestin initiates receptor
internalization via dynamin- and clathrin-dependent endocytosis11.
Besides canonical arrestin-mediated endocytosis, increasing
evidence has emerged describing GPCRs internalizing independently
of arrestins12.

Herein, we describe a comprehensive screening and interroga-
tion platform evolved from the PRESTO-Tango, capable of the
simultaneous interrogation of β-arrestin-2 recruitment at ~300 non-
olfactory druggable GPCRs13. The reconstruction of this system was
sought in part to increase the dynamic range and sensitivity of the
original system, specifically improving the TRE promoter and TEV
protease elements, and to expand its versatility beyond monitoring
β-arrestin-2. Indeed, our platform, named Tango-Trio, includes
monoclonal cell lines expressing trackers of β-arrestin-2, β-arrestin-1,
and FYVE domain for internalization, all sharing the common luci-
ferase reporter lineage. Moreover, their cumate-inducible nature
enables the study of the various GPCR state-dependent and inde-
pendent activities. Hereafter, we refer to the following states: the
manifest agonist-induced active state; the constitutive active state,
which represents ligand-independent activated receptor; steady-
state, which refers to state-independent interaction level; and the
basal level, which includes the steady-state plus constitutively active
receptor pool, which cannot be discriminated in most cases. We are
revealing divergent basal versus agonist-dependent β-arrestin-1/2
couplings, selectivities, and receptor endocytosis signatures across
the GPCRome.We report the basal sigmoidal-fitted activities of more
than 200 class A GPCRs, including ~50 orphans. Our findings repre-
sent a step towards uncovering the differences behind the mechan-
isms of constitutive versus agonist-induced activation, as well as
state-independent activity. Moreover, we believe the Tango-Trio
platform could facilitate the development of new GPCR-acting drugs
and deorphanization efforts.

Results
Development of the Tango-Trio and its comparison to the
PRESTO-Tango
The PRESTO-Tango has a number of advantages, including selective
read-out as the response is specific to the target receptor, sensitivity
due to signal integration to produce a read-out, and the ability to study
a multitude of GPCRs as the assay is independent of the G protein
family the receptor signals through13. As such, we exploited these
strategic features to undergird the development of the Tango-Trio
platform, while addressing its original limitations, chiefly the
tetracycline-response element (TRE) promoter and tobacco etch virus
(TEV) protease.

To stringently control gene expression, tTA binding to tetO7
permits transcriptional activation of the luciferase reporter14. How-
ever, the main limitation to the Tet system is the leakiness due to the
strong positional effects on the tetO7minimal promoter15, resulting in
relatively high background transcription. In turn, this would lead to
basal expression that would not be dependent on the tTA, which is
intended to be cleaved from the GPCR by the β-arrestin2-TEV

fusion protein. The second-generation promoter called TRE-Tight
(Clonetech), redesigned tetO7 to remove potential bindings sites of
endogenous transcription factors within the operon such as ISRE and
GATA, renders this promoter virtually silent in the absence of
induction16. As expected, lower RLU counts were obtained with TRE-
Tight, but the induction factor remained higher for the TRE-Tight
promoter (4.5 fold) compared to TRE (2.7 fold) (Fig. 1a); the dopamine
D2 receptor (DRD2) Tango receptor was used as it is a strong
β-arrestin2 recruiter13. Thus, the minimal basal leakage and increased
fold window suggest TRE-Tight to be an improved promoter for
Tango-Trio and reduce potential arrestin-independent modulation of
the reporter activity.

Based on these observations, we generated a monoclonal TRE-
Tight Luciferase reporter cell line for the Tango-Trio platform as an
improvement over the HTL (HEK293T cells stably expressing TRE-Luc)
cells of the original Tango assay (Fig. 1b). Although it is unknown
whether Luc or Luc+was used in creating theHTL cell line, weopted to
clone TRE-Tight upstream the Luc2 gene (Promega), a markedly
improved variant over its predecessors with significantly lower levels
of cryptic transcription from the coding region and codon optimized
expression17. Henceforth referred to as HTTL (HEK293T TRE-Tight-
Luc), our reporter cell line had a comparable level of maximal
expression to HTL but possessed a much lower baseline compared to
its counterpart, resulting in a larger induction factor.

The Tango system involves a protein fusion consisting of
β-arrestin-2 with TEV, which cleaves the engineered GPCR following
β-arrestin-2 recruitment to the receptor to release the tTA. However,
one limitation of the WT TEV is that it undergoes self-cleavage,
generating a truncated protease with greatly diminished activity18.
A variant of the WT, S219V-stop (TEV219), carries a stabilizing point
mutation and was truncated to remove the auto-inhibitory C-terminal
tail19. Given previous reports of this variant being 100-foldmore stable
than the full-length TEV and a more efficient catalyst, TEV219 was
tested as a replacement for the WT TEV (Fig. 1c). TEV219 significantly
lowered the baseline while producing maximal induced expression
similar to that observed with the original protease, resulting in a signal
ratio more than double (3.3-fold) that of TEV (1.3-fold).

Based on the aforementioned findings, β-arrestin-1, β-arrestin-2,
and FYVE, a domain used to probe endocytosis given its high binding
affinity and specificity to phosphatidylinositol 3-phosphate (PI3P)-
enriched early endosomes20, were cloned to the chosen TEV219 pro-
tease. These trackers were subsequently transferred into the pcDH
cumate-inducible destination lentivector, providing robust and
reversible expression of genes, and adjustable expression levels by
titrating the amountof cumate added to cellmedium21. The effect of its
addition in cumate-independent systems was assessed in the PRESTO-
Tango, with negligeable changes to the basal signal in untransfected
HTLA (Supplementary Fig. 1a), as well as at the arbitrary Tango-
receptors tested (Supplementary Fig. 1b); nonetheless, considering
that certain receptors produceweakmaximum signals in Tango-based
platforms, it is recommended that users test to confirm that cumate
does not produce any significant agonistic or antagonistic behavior at
the receptors they are employing. HTTL was used as the host cells
for the subsequent generation of double stable cell lines, ensuring
uniform genetic and reporter background. Monoclonal cell lines for
β-arrestin1-, β-arrestin2-, and FYVE-TEV219, henceforth referred to as
HTTL-B1, HTTL-B2 and HTTL-F respectively, were screened by func-
tional assay and the final selection was based on pharmacological
parameters, including baseline, efficacy, potency, and fold change
(Emax/E0). Seeing as the basal signal varies across the three different
HTTL cell lines in the absence of receptor expression (Supplementary
Fig. 2), the baseline was henceforth defined for each independent
experiment and dose-curve construction, specifically as the mean
luminescence readings of the three lowest drug dilution concentra-
tions. Following selection, the amelioration of Tango-Trio over the
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PRESTO-Tangowas assayedby comparing the originalHTLA (HTL cells
stably expressing β-Arrestin-2-TEV) cell line to our corresponding
HTTL-B2.

While both GATA and ISRE are present in the TRE, the redesign of
TRE-Tight saw the removal of only ISRE, with GATA still present as it is
overlapping with tetO22. Based on previous work revealing that phor-
bol 12-myristate 13-acetate (PMA) activates the ISRE-Luc reporter and
induces JAK-STAT signal transduction23, we postulated that activators
of the Jak/Stat pathway would have an impact on the TRE promoter,
but not TRE-Tight.

Corroborating this hypothesis, stimulation of HTLA and HTTL-
B2 cells with PMA induced a significant response at 5-HT2A- and 5-
HT2B-Tango receptors (2.6 and 8.6 fold, respectively) in the HTLA,
but was absent in the latter, an effect that could be reversed in HTLA
with the addition of Jak Inhibitor I (Fig. 1d–h)24. In the same vein,
confirmation of the higher specificity of HTTL-B2 over HTLA is
exemplified by the lack of activation observed following stimulation
of transfected 5-HT2A-Tango receptor with untreated and heat-
inactivated FBS, as well as with dialyzed FBS, sera with removed
serotonin to prevent nonspecific activity at GPCRs25. This effect was
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Fig. 1 | Optimization of the dynamic range, sensitivity, and specificity of the
Tango-Trio platform. aComparison of TRE andTRE-Tight. Promoterswere cloned
upstream luc2, and expression vectors were transfected in HEK293T cells along
with the β-arrestin2-TEV fusion protein and DRD2. Transfected cells were stimu-
lated with the DRD2 specific agonist quinpirole. b Selection and pharmacological
characterization of the monoclonal reporter cell line HTTL (HEK293T-TRE-Tight-
Luc2) compared to the original HTL (HEK293T-TRE-Luc) cell line. c Comparison of
TEV and TEV219 proteases. β-arrestin2 was cloned to both proteases, and trans-
fected in HTL cells with DRD2. Transfected cells were stimulated with the
DRD2 specific agonist quinpirole. HTTL-B2 and HTLAwere transfectedwithHTR2A
(e), HTR2B (f), HTR1B (g), and F2R (h) and stimulated, along with untransfected
cells (d), with dose-response curve of PMA and in presence/absence of 10 µM JAK

inhibitor I. HTTL-B2 and HTLA dose-response curves at various targets: DRD2 to
quinpirole (i), HTR5A to serotonin (j), CHRM4 to carbachol (k), OPRM1 to DAMGO
(l), ADRB3 to isoproterenol (m), and PTGDR to prostaglandin D2 (n).
o–r Comparison of the specificity of HTTL-B2 and HTLA readouts. Cell lines were
transfected with GPCRs that activate the Jak/STAT Pathway and stimulated with
serial dilutions of untreated FBS (o), heat-inactivated (p), dialyzed (q), and Tet-
System Approved (r) sera. HTTL-B2 was maintained in cumate-containing media
throughout. Dose- response curves were built using XY analysis for non-linear
regression curve and the 3-parameters dose-response stimulation function. Data
are presented as mean values, with error bars representing SD. Data are repre-
sentative of 2 biological replicates, with 3 technical replicates each. Generic
receptor codes refer to the GPCR-Tango constructs.
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also minimally observed with 5-HT2B-Tango, yet absent in the
untransfected cells, and negligeable at 5-HT1B-Tango and at other
GPCRs that activate the Jak/STAT Pathway, such as CXCR4- and F2R-
Tango receptors26; interestingly, this artifactual response in HTLA
was absent following stimulation with Tet-approved FBS (Fig. 1o–r).
We believe that subtraction of external control of the TRE-Tight
promoter compared to the original TRE explains the difference
observed for β-arrestin-2 recruitment at some receptors. Hence,
some factors present in the serum might artificially enhance pro-
moter activity as shown for DRD2-, HTR5A-, CHRM4-, OPRM1-,
ADRB3-, and PTGDR-Tango receptors (Fig. 1i–n).

To validate cumate induction, time-course and dose-response
experiments were conducted on all three of our established cell lines
using prototypical GPCR-Tango receptors covering the main subtypes
of G-protein primary couplings: AVPR2 (Gs), ADRB2 (Gs), DRD2 (Gi),
andCHRM1 (Gq)

27. To confirm the control of gene expressionwasdose-
dependent, monoclonal cell lines were transfected without cumate,
and then stimulated with a cumate concentration-curve starting from
40μg/mL with 2-fold dilutions (Fig. 2a–f). Based on the EC50 values of
tested receptors, maximal activation is achieved at ~10μg/mL, corro-
borating other studies that have also used the cumate switch system28.
Cumate induction was also confirmed to have minimal impact on the
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Fig. 2 | Dose-response and time-course verification of cumate-induced
expression. Validation of fusion protein induction initiated by cumate dose-
responses in HTTL-B1 (a, d), HTTL-B2 (b, e), and HTTL-F (c, f) cell lines. Cells were
transfectedwithAVPR2, ADRB2, DRD2 andCHRM1Tango receptors and stimulated
with a cumate dose-curve starting from 40 µg/mL with 2-fold dilutions. Timing
optimization of fusion protein induction in HTTL-B1 (g–j), HTTL-B2 (k–n), and
HTTL-F (o–r) cell lines. Cells were transfected with AVPR2, ADRB2, DRD2 and
CHRM1 Tango receptors and stimulated with receptor selective agonist. Cumate

(30 µg/mL) was added at the following time points and maintained in the cell
medium thenceforth: I − 5 days; II − 3 days; III − 2 days; IV − 24h; V − 18 h total
cumate exposure. Dose- response curveswere built using XY analysis for non-linear
regression curve and the 3-parameters dose-response stimulation function. Data
are presented as mean values, with error bars representing SD. Data are repre-
sentative of 2 biological replicates, with 3 technical replicates each. Generic
receptor codes refer to the GPCR-Tango constructs.
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basal signals and fold windows of the three HTTL cell lines after
reaching maximal activation, yet a slight decrease was generally
observed for both parameters at the highest tested induction con-
centration (Supplementary Fig. 3). The time-course experiments con-
sisted of adding cumate at the different time points andmaintaining it
in the cell medium from then on, ranging from as long as 5 days total
cumate exposure to a minimum of 18 h throughout (Fig. 2g–r). In
general, the best response was observed following ~3 days of total
cumate exposure, which we expected as the developers of the cumate-
gene switch previously observed a maximal expression after 72 h21.
Overall, Tango-Trio presents greater dynamic range, sensitivity, spe-
cificity, and versatility over the original tried-and-true Tango system.

Tango-Trio generates a compendium of GPCRome basal and
agonist-dependent activities
With our establishedmonoclonal cell lines forming the foundations of
the Tango-Trio HTS platform, parallel interrogations of the GPCRome
were conducted by transfecting a panel of 350 GPCR PRESTO-Tango
constructs in arrayed format, the large majority of which consist of
Class Amembers29. To investigate proximal GPCR-arrestin interactions
and receptor endocytosis at the two possible activated receptor states,
agonist-induced activities were screened for in presence of selective
agonist at ~150 non-orphan GPCRs, while basal activity was probed for
using the presence of cumate. Based on initial hit thresholds set to <−2
and >2 log2, fold-changes (Emax/E0) were visualized as heatmaps to
depict contrasts between the couplings of arrestin isoforms and cor-
responding GPCR internalization efficiencies (Figs. 3a–e and 4a–f).
Based on NC‐IUPHAR classification, heatmaps were constructed for
eachof the four branches of the non-olfactory class Amembers (α, β, γ
and δ), for orphan class Amembers, and one covering a select number
of receptors spanning the B, C, and adhesion classes, illustrating the
diversity within the GPCR superfamily27,30.

Consistent for both screenings, the similitudes of profiles amongst
receptormembers of the same subfamily varied on a case-by-case basis.
Drawing on examples from the α branch, the Alpha-1 adrenergic-Tango
receptors (ADRA1A, 1B, 1D) all preferentially recruited β-arrestin-1 over
β-arrestin-2 (~2-3 fold difference) at the basal level, whereas in the case
of the Prostaglandin EP-Tango subfamily (PTGER1–4), different basal
arrestin selectivity profiles were observed among members, such as
PTGER2-Tango’s marked selectivity towards β-arrestin-2 and that of
PTGER4-Tango towards β-arrestin-1 (Fig. 4a). These marked differences
in arrestin selectivity profiles between receptor subfamilies could be
due to the differences in their C-terminal tail and intracellular loop
sequences which dictate different phosphorylation codes, influencing
the isoform type and degree of arrestin recruitment. It is also important
to note however that these selectivity findingsmust be interpretedwith
the understanding that all Tango receptors are fused to a “V2 tail”,
originating from the C-terminus of AVPR2. Such a phospho-peptide
addition is also present in other β-arrestin recruitment assays such as
the PathHunter assay31. The V2 tail was originally added given its high
affinity for β-arrestin2 and for its ability to stabilize the interaction
between a given receptor and the recruited arrestin; this addition is
indispensable for those of low-affinity or for transient β-arrestin
recruitment at many GPCRs. The stabilization of the interaction
allows efficient cleavage by the TEV protease but also generates a
detectable basal level, resulting in an increased assay quality (z-factor),
which is strongly affected when RLU are too low; this is particularly
important when performing parallel interrogation or high-throughput
screening.Whenworking on a single or a select set of receptors, the V2-
tail can easily be removed and experimental conditions adjusted to
achieve an acceptable level of RLU counts, if possible. However, for
some receptors, the interaction of β-arrestin is of low affinity or tran-
sient such that it cannot be accurately detected using a protease-
dependent reporter assay. In such cases, the V2 tail should be retained
or an alternative assay such as BRET should be envisaged. To further

compare GPCR-Tango constructs used in Tango-Trio and unmodified
wildtype counterparts, a supplementary table comprising the agonist-
induced β-arrestin-1/2 recruitments observed from the EMTA studies
and our Tango-Trio work was compiled (Supplementary Table 1).
Although a large number of receptors behave similarly toward β-
arrestin-1/2 recruitment, several discrepancies were noted. For exam-
ple, Tango-Trio detects β-arrestin recruitment at HTR1D-, PTGER1-,
GNRGR- and MTNR1B-Tango receptors, while the EMTA biosensors
were unsuccessful, or oppositely, β-arrestin recruitment at F2R, LPAR1,
LPAR2 and VIPR1 was observed with EMTA but not with Tango-Trio.
Moreover, a stronger proclivity for β-arrestin-2 over β-arrestin-1 was
also observed in Tango-Trio for certain receptors, such as AGTR1-,
PTGER4-, HCRTR2-, and AVPR2-Tango receptors. Similarly, another
facet to consider is the influence of the V2-tail on the changes of the
arrestin-independent and dependent internalization patterns of GPCRs.
For example, based on the HTTL-F agonist-dependent screen (Fig. 3),
ADRB1-, 5-HT2A-, ADRA2A-, CHRM3-, CHRM4-Tango receptors all
exhibited significant internalization following agonist stimulation, all of
which have been previously reported to undergo arrestin-independent
internalization; however, other reportedGPCRs exhibiting this behavior
such as DRD3, DRD4, UTS2R, AGTR1, ENDRA, EDNRB and APJ were not
among our hits. It is not surprising to observe a certain degree of
inconsistency between two heterologous systems32. Numerous possi-
bilities could thus contribute to the inconsistency observed, especially
for β-arrestin recruitment, which requires receptor phosphorylation by
endogenous kinases. In addition to endogenous modulators, such as
kinases, the fusion of the receptor and β-arrestins with functionalized
proteins tags can affect the recruitment and/or stability of the com-
plexes. The presence of the phosphopeptide (V2 tail) could also con-
tribute to some divergences, but the significant difference in the
duration of the experiments (<1 vs. 18 h) is probably a major factor,
especially for efficacy, which is strongly dependent on cell surface
receptor abundance. Notwithstanding these discrepancies, we are
confident that comparing EC50 (potency) and Emax (efficacy) to an
internal referencewill provide an accuratedifferentialmeasure, but as is
the case for any artificial system, we cannot rule out that β-arrestin
recruitment is over/underestimated compared to endogenous recruit-
ment in a physiological context. Themain advantage of our Tango-Trio
assay remains the ease of performing parallel high-content or high-
throughput screening.

Across the array of interrogated GPCRs, it is obvious that β-
arrestin-1/2 are quite promiscuous; however, similarly to Avet et al.
who reported that 22% of receptors investigated did not recruit
arrestins beyond their established threshold33, we also observed a
significant pool of receptors which exhibited no β-arrestin-1/2 trans-
location at either basal or agonist-induced states. It should be noted
however that very few GPCRs lacked arrestin interactions at both of
these states. Additionally, as seen in Figs. 3 and 4, there is little overlap
between basal and agonist-induced signatures across the GPCRome;
for example, very strong agonist-induced arrestin recruitment at
SSTR5-Tango did not correspond to high basal activity (Figs. 3c and
4c). This implies that there are different mechanisms at play that
regulate internalization and arrestin activities between an agonist-
stabilized GPCR versus basal activity in the absence of agonist34, as
discussed below.

The representation of our screens as heat maps allows one to
easily identify receptors with the strongest basal activities, such as
CHRM5-, 5-HT1E-, 5-HT5-, NTSR1-, CXCR4-, and MRGPRD-Tango. To
exclude the possibility of cumate addition contributing to marked
increase of receptor expression, an ELISA was conducted to evaluate
receptor surface expression on a select subset of constitutive hits
(Supplementary Fig. 4). No significant differences between non-
treated cells versus those with the addition of saturating cumate
concentration, compared to the drastic fold-differences observed in
the constitutive screen, corroborated that detected hits were a result
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Fig. 3 | Heatmap representationof hits identified fromagonist-dependentHTS.
To analyze agonist-induced activities within the GPCRome, HTTL-B1, HTTL-B2 and
HTTL-F cells were plated in cumate-containing (30 µg/mL)medium and transfected
with a library of 162 non-orphan GPCR Tango constructs. Transfected cells were
stimulated eitherwithHBSS-Hepesbuffer orwith a panel of selective agonists. Log2
fold changes in agonist-dependent arrestin recruitment/dissociation or GPCR

internalization was calculated between the wells in the absence or presence of
agonist and plotted as heat maps, grouping class A α (a), β (b), γ (c), and δ (d)
branches, and class B receptors (e). Log2 values are the means calculated from
quadruplicate conditions, generated from two separate screens (n = 8, 2 biological
measurementswith 4 technical replicates each).Generic receptor codes refer to the
GPCR-Tango constructs.
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Fig. 4 | Heatmap representation of hits identified from basal activity HTS. To
analyze basal activities within the GPCRome, HTTL-B1, HTTL-B2 and HTTL-F cells
were plated alternating rows with or without cumate (30 µg/mL). Cells were
transfected with a library of 350 GPCR Tango constructs, including ~100 orphan
receptors. Log2 fold changes in basal arrestin recruitment/dissociation or GPCR
internalization was calculated between the wells in the absence or presence of

cumate and plotted as heat maps, grouping class A α (a), β (b), γ (c), and δ (d)
branches, class A orphans (e) and class B/C receptors (f). Log2 values are themeans
calculated from quadruplicate conditions, generated from two separate screens
(n = 8, 2 biological measurements with 4 technical replicates each). Generic
receptor codes refer to the GPCR-Tango constructs.
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of bona fide constitutive activities; for example, a modest 1.2-fold
difference in receptor expression was observed in HTTL-B2 cells
transfected with CXCR4-Tango, compared to the 67-fold change in
constitutive β-arrestin-2 recruitment. The lack of correlation between
receptor expression and apparent basal activity was also confirmed
across a larger panel of receptors including a wide range of basal
arrestin recruitment profiles (Supplementary Fig. 5). Finally, absolute
receptor expression levels were not found to affect constitutive
activity, as titrating Tango construct DNA did not generally reduce the
cumate-induced fold change (Supplementary Fig. 6).

Validation of GPCR internalization, β-arrestin-1/2 coupling and
selectivity profiles
Secondary screening of top potential hits was carried out in a dose-
dependent manner (agonist or cumate, accordingly) to validate our

platform’s high-throughput performance (Figs. 5a–o and 6a–o). With
the primary screen findings in agreement with our concentration-
response profiles, thus confirming the platform’s reproducibility, we
exploitedTango-Trio to performmoredetailed analyses of the arrestin
selectivities and corresponding GPCR endocytosis patterns observed.
This was accomplished by producing the β-arrestin-1/2 and inter-
nalization dose-response curves for ~150 non-orphan GPCRs, andmost
important, presenting for the first-time dose dependent constitutive
activation curves at ~200 receptors, including more than 50 orphans
(Supplementary Figs. 11–26). Many of our high-basal and agonist-
dependent findings are in agreement with previous studies, such as
high constitutive activity at GPR182-Tango receptor (Fig. 6i)35,36.
Moreover, Tango-Trio was able to detect activity at GPCRs that could
not be validated in PRESTO-Tango13, including BAM-22 at MRGRPX2-
Tango (Fig. 5m), and β-Alanine at MRGPRD-Tango (Fig. 5n).
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Fig. 5 | Validation of compiled positive hits from agonist-dependent HTS in
dose-response. a–o HTTL-B1, HTTL-B2 and HTTL-F cells were plated in cumate-
containing (30 µg/mL) medium and transfected with potential GPCR hits identified
from the agonist-dependent HTS. Transfected cells were stimulated with the
receptor specific agonist and dose- response curveswere built usingXY analysis for

non-linear regression curve and the 3-parameters dose-response stimulation
function, followed by baseline correction. Data are presented as mean values, with
error bars representing SEM.Data are representative of 2 biological replicates, with
3 technical replicates each. Generic receptor codes refer to the GPCR-Tango
constructs.
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While HTTL-B1 and HTTL-B2 captures the nuanced differences
between arrestin couplings and selectivities at receptors, our inter-
nalizationmeasures are not as robust. Especially in ourHTTL-F agonist-
dependent screen, very few hits were detected, with the majority of
receptors producing the strongest agonist-induced internalization
belonging to the β branch, such asGPBA-, NMBR-, CCKBR-, GHSR-, and
HCRTR2-Tango receptors (Fig. 5i, j). On the other hand, our HTTL-F is
better-suited for studying constitutive endocytosis, seeing as con-
siderably more receptors had stronger constitutive internalization
profiles, such as GPR126-, GPR87-, and CHRM5-Tango (Fig. 6c, g, k). As
discussed below, the selectivity of FYVE-targeted early endosome
trafficking should be re-evaluated.

Based on our validation of hits from our β-arrestin-1, β-arrestin-2,
and FYVE screens, distinct GPCR selectivity profiles towards the arrestin
isoforms were observed. Regarding constitutive activity, receptors can
be clustered into three distinct functional classes, specifically those that

interact fairly equally with both isoforms, those that preferentially
recruit β-arrestin-1 over β-arrestin-2, and vice versa. Based on con-
stitutive activity curves, it seems that the constitutive internalization at
a given receptor corresponds to the profile of one of the β-arrestin
isoforms, such as those observed at 5-HT1D-, CHRM5-, OXTR-, SCTR-,
and GPRC5A-Tango receptors, amongst others (Fig. 6a, c, e, l, n). This
observation follows the widely accepted classical paradigm of how
arrestins play a central role in GPCR endocytosis via the predominant
clathrin-mediated pathway. However, this is not a uniform correlation,
involving exceptions where either significant constitutive internaliza-
tion is observed in the absence of arrestin activities, for example in the
case of GPR126- and VIPR2-Tango (Fig. 6k, m) or oppositely, strong β-
arrestin-1 and/or β-arrestin-2 recruitment but negligeable receptor
internalization, such as the case of GPR37L1- and MRGPRD-Tango
(Fig. 6f, h). Indeed, these findings confirm that GPCR endocytic path-
ways are more diverse than originally defined, as an increasing number
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Fig. 6 | Validation of compiled positive hits from basal activity HTS in dose-
response. a–oHTTL-B1, HTTL-B2 and HTTL-F cells were transfected with potential
GPCR hits identified from the basal HTS. Transfected cells were stimulated with
cumate, and dose- response curves were built using XY analysis for non-linear

regression curve and the 4-parameters dose-response stimulation function, fol-
lowed by baseline correction. Data are presented as mean values, with error bars
representing SEM. Data are representative of 2 biological replicates, with 3 tech-
nical replicates each. Generic receptor codes refer to the GPCR-Tango constructs.
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of receptors are found to be endocytosed via alternate pathways
besides clathrin-mediated, including the caveolae-dependent and fast
endophilin-mediated endocytosis (FEME) pathways, as well as another
30 known examples of GPCRs have been found to internalize inde-
pendently of arrestins altogether32.

As for agonist-dependent activity, although similar arrestin
selectivity profiles were also observed, the vast majority fell under two
functional classes, equal (e.g., Fig. 5c, d, j) or preferential (e.g., Fig. 5b,
g, m) recruitment of β-arrestin-2 over β-arrestin-1. Our results parallel
those of Oakley et al. who delineated two major classes of receptors
based on the 10 GPCRs that they studied, namely “Class A” receptors
which bound β-arrestin2 with higher affinity than β-arrestin1, and
“Class B” receptors which bound both β-arrestin isoforms with similar
high affinities37. Similar subsets were observed in Avet et al.’s recent
publication profiling the engagement of different G-protein families
at 100 therapeutically relevant GPCRs, including β-arrestin1 and
β-arrestin2 following agonist stimulation33. Orthogonal validation of
GPCRs with pronounced arrestin isoform selectivities was conducted
in BRET2, which revealed discrepancies between the two systems
(Supplementary Fig. 7). For example, β-arrestin1 is recruited at a much
lower efficacy compared to β-arrestin2 at AGTR1 in Tango-Trio
(Fig. 5b). In BRET however, this selectivity is not observed, with very
little difference in recruitment observed between the two isoforms
(Supplementary Fig. 7e). Given that BRET experiments occur over a
short duration, the results obtained are based on the amount of
receptor present at the time of adding the ligand, and thus, other
factors such as receptor internalization, the role of the intracellular
pool, and binding kinetic profiles will have minimal effects, whereas
the Tango-Trio, being a signal amplification system, may dis-
proportionately magnify of efficacies due to the aforementioned fac-
tors. Nonetheless, both systems have different limitations and are
useful in their own respects for the purposes of screening and phar-
macological characterization and should not be interpreted as a
measure of endogenous recruitment, but rather as a pharmacological
tool to compare drug activity towards a refence compound.

Thus, by using Tango-Trio to screen the GPCRome and distin-
guishing functional subsets of GPCRs, this might givemolecular insight
into structural interface positions common among these related
receptors, which could be involved in recruitment and internalization.

Mechanistic insights into basal GPCR activities revealed by
Tango-Trio
Besides the wealth of basal and agonist-induced activation profiles
generated with Tango-Trio, additional explorations of the applications
of this platform were undertaken, including studying inverse agonists
and their relative abilities to subdue constitutive activity versus steady-
state recruitment. Seeing as inverse agonism may appear differently
based on cell phenotypes38, we chose a panel of drugs classified as
either inverse agonists or antagonists to target GPCRs exhibiting high
constitutive β-arrestin-1 and/or β-arrestin-2 recruitment (Fig. 7a–m)39. A
spectrum of inverse agonistic properties was validated, albeit no drug
was able to completely ablate the basal activity observed. For example,
O-1918 reduced the response observed at GPR55-Tango by almost half
in both HTTL-B1 and HTTL-B2 (Fig. 7a, b)40, while at HRH1-Tango, sti-
mulation with Mepyramine reduced constitutive activity only for β-
arrestin-2, unlike its counterpart Cetirizinewhich could inhibit activities
in both cell lines (Fig. 7c, d). Furthermore, certain compounds pre-
viously designated as antagonists/inverse agonists, such as FC-131 at
CXCR4-41 (Fig. 7e, f) and Tolvaptan at AVPR2-Tango (Fig. 7g, h),
increased the constitutive translocation of β-arrestin-1 and β-arrestin-2
in our system. Thus, our platform, nor other arrestin-based assays, are
not entirely suitable for quantifying measurements of inverse agonism
given the range of arrestin activities observed. For instance, in both
PRESTO-Tango and Tango-Trio, Tolvaptan increased arrestin recruit-
ment at AVPR2-Tango, while Pindolol resulted in a depletion of arrestin

recruitment at the 5-HT1B-Tango (Supplementary Fig. 8b, e). To exclude
the possibility of artifacts arising due to endogenous cleavage GPCR-
Tango fusion constructs, the same receptors were co-transfected with
β-arrestin-2 in HTTL, with no arrestin recruitment detected (Supple-
mentary Fig. 9). Thus, although the identification of inverse agonists is
not possible with arrestin-based assays per say, Tango-Trio is valuable
for their characterization, more specifically providing information
about their effects on constitutive arrestin recruitment and receptor
internalization. It seems that G-protein uncoupling using inverse ago-
nist is clearly a different receptor pool or receptor state and cannot be
directly translated toward β-arrestin activity. We cannot rule out that
G-protein uncoupling could result in β-arrestin recruitment for some
receptors, as seen for CXCR4- (FC131-treated) and AVPR2- (Tolvaptan-
treated) Tango receptors.

Tango-Trio HTS produces variegated snapshots of the arrestin
couplings of GPCRs and their corresponding internalization efficacies,
suggesting that the mechanisms of endocytosis among GPCR mem-
bers are more heterogeneous than originally conceived, especially
those of constitutive nature. To further this point, the dominant-
negative dynaminK44A was co-transfected in HTTL-F cells with select
GPCRs exhibiting strong constitutive internalization. As expected,
various degrees of inhibition were observed, from partial inhibition
in the case of 5-HT4-Tango (Fig. 7p), to complete blocking of GPR87-
Tango endocytosis (Fig. 7n), suggesting a greater dynamin-
dependence involved during its constitutive internalization process.
Intriguingly, overexpressing dynaminK44A resulted in a substantial
increase in constitutive CHRM5-Tango endocytosis (Fig. 7o), bringing
to light the possibility of multiple compensatory internalization
mechanisms at play at a given receptor. Expanding this idea, β-arrestin-
1/2 knockdown was performed to evaluate the arrestin dependence at
certain GPCRs with high constitutive internalization, confirming par-
tially arrestin-independent endocytosis at CHRM5- and CD97-Tango
receptors (Supplementary Fig. 10a, e).

A recent appreciation has grown for GPCR-interacting proteins,
with emerging findings supporting how they modulate GPCR expres-
sion at the cell surface, signal transduction, and receptor endocytosis,
amongst others42. Of particular note are the protein kinases that
phosphorylate specific sites on the intracellular loops and C-terminal
tail of GPCRs, inducing specific arrestin roles and varying functional
consequences for the modified receptors43. Given limited literature
exploring the distinct functions of kinases and their contributions to
constitutive activity, we examined the HPA consensus tissue-specific
expression levels of serine/threonine-specific protein kinases (ST
kinases) previously reported to phosphorylate GPCRs, such as GRKs,
PKAs, and PKCs amongst other43, as well as the expression levels of β-
arrestin-1/2 andof select receptorswith high constitutive selectivity for
one arrestin isoformover theother.Wepostulated that the kinases and
receptors of similar tissue expression profiles may have overlapping
activities. Our generated PCA plots revealed varying signatures for
each of ST kinase families, some of which forming clusters with our
constitutively active GPCRs based on shared expression patterns
(Fig. 8). Based on the GRK plot, it seems that GRK2, GRK6 and
β-arrestin-2 might share a functional network44, especially at CXCR445

and PTGER2, whichwere found to be highly selective for β-arrestin-2 at
constitutively active receptors (Fig. 8a). A dense cluster including
GRK5 also leads us to speculate a greater involvement of this GRK at
constitutively active receptors selective for β-arrestin-1, such as
AGTR2, ADRA2A, PTGER3, and SUNCR1. The restricted expression
profile of GRK4 also suggests that this might be the predominant GRK
acting at receptors such as MC1R. Despite a lack of research into the
lesser-reported kinases capable of phosphorylating GPCRs, certain
interactions could be confirmed from past studies, such as the role of
PIMs at CRCR4 (Fig. 8e)46,47. Thus, our analyses may also reveal func-
tions at these STkinasesGPCRs; for example, wehypothesize thatCa2+/
calmodulin-dependent kinases, includingCAMKI,CAMKII andCAMKIV
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complexes, might significantly contribute to the phosphorylation and
subsequent recruitment of β-arrestin-1 to GPCRs, although this has yet
to be experimentally investigated (Fig. 8h).

Discussion
The functional heterogeneity of GPCRs is attributed in part to their
spectral activation states, desensitization, and internalization,
accounting for their multifaceted signaling processes. Towards estab-
lishing accurate and comprehensive functional profiles, this study
developed Tango-Trio, a polyvalent screening platform consisting of a
triad of stable cell lines, capable of interrogating constitutive and

agonist-activated GPCRome activities. The foundation of the platform,
the HTTL reporter cell line, stably expresses a luciferase gene under the
control of an improved low-background and sensitive TRE-Tight pro-
moter compared to the original PRESTO-Tango16. To increase the ver-
satility of this system, Tango-Trio monitors the translocation of β-
arrestin1, β-arrestin2, andGPCR internalization using a FYVE domain, all
ofwhichwere cloned to the truncatedTEV219protease for its enhanced
signal-noise ratio19; these chosen elements provide valuable insight into
crucial stages in the GPCR life cycle. Despite sharing a high degree of
structural and sequence similarity, the non-visual arrestin isoformshave
been reported to accomplish disparate roles9. For example, one study
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Fig. 7 | Applications and further investigations into basal activities revealed by
Tango-Trio.HTTL-B1 and HTTL-B2 were transfected with GPCRs exhibiting strong
basal arrestin recruitment. Transfected cells were stimulated as cumate dose-
response in the presence or absence of the following inverse agonists/antagonists
at saturating (EC80) concentrations: O-1918 at GPR55 (a, b), Cetirizine and
Mepyramine at HRH1 (c, d), FC131 at CXCR4 (e, f), Tolvaptan at AVPR2 (g, h),
Fluspirelene and Thioridazine at HTR1E (i, j), Pindolol, Alprenolol and Spiperone at
HTR1B (k), Spiperone and Fluspirelene at HTR1D (l), and Clozapine, Thiothexene,
Thioridazine and Fluspirelene at HTR5A (m). Dynamin-dependence of high basal

internalization was tested by co-transfecting HTTL-F cells with GPR87 (n), CHRM5
(o), andHTR4 (p) with/without dynaminK44A. Transfected cells were stimulated as
a cumate dose-response, and stimulation curves were built using XY analysis for
non-linear regression curve and the 4-parameters dose-response stimulation
function, followed by baseline correction. Data are presented as mean values, with
error bars representing SEM.Data are representative of 2 biological replicates, with
3 technical replicates each. Generic receptor codes refer to the GPCR-Tango
constructs.
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demonstrated that silencing β-arrestin2 reduced agonist-induced
PAC1R and C3aR receptor internalization, whereas silencing β-
arrestin1 had no effects48,49. Given its implications in signal regulation,
desensitization, resensitization, and ligand scavenging functions of
some receptors, our measurements of GPCR internalization also con-
tribute to our account of the diversity of GPCR-dependent dynamics50.

The scope of our platform is broadened further by the controlling
the expression of these multiple probes using a cumate-controlled
lentiviral vector21, enabling the interrogation of not only at the agonist-

induced state, but alsomonitoring basal activities in a dose-dependent
manner by adjusting the expression level of the fusion proteins, which
is not feasible with existing HTS technologies. Two aspects affect the
magnitude of basal activity, specifically a receptor’s conformational
flexibility from the inactive to active states in the absence of ligand,
and state-independent GPCR-effector coupling. Previous quantifica-
tions of constitutive activity have been extracted based on the latter
factor, specifically constructing receptor-density response curves by
regulating the amount of receptor expression and measure resultant
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Fig. 8 | Visualization of tissue-specific expression levels of select GPCRs with
high basal activities, serine/threonine kinases, β-arrestin-1 and β-arrestin−2.
Human Protein Atlas (HPA) RNA consensus tissue gene data (version 21.0 and
Ensembl version 103.38.) summarizing the expression levels in 55 tissues was
extracted for β-arrestin-1 and −2 (ARRB1 and ARRB2), select receptors with high
constitutive selectivity for one arrestin isoform over the other (GPR182, AGTR2,
ADRA2A, GPR37L1, SCTR, ADRB3, PTGER4, SUNCR1, PTGER3, MRGPRG, NPY5R,

NPY1R, GLP1R, FPR1, MC1R, FPR3, 5-HT5, MRGPRD, GPR87, CXCR4, HRH1, AVPR2,
5-HT4, 5-HT2A, NTSR1, GLP2R, 5-HT1D, CXCR2, 5-HT1B, 5-HT1E, PTGER2, 5-HT2B,
PTGDR), and either and either GRKs (a), PKA (b), PKCs, PKNs, and PKDs (c), PKGs
(d), PIMs (e), AKTs (f), GSK3 (g), CAMKI, CAMKII, and CAMIV (h), CK1s and CK2s (i).
The data was analyzed using principal component analysis; β-arrestin-1 and −2 are
denoted with red, ST kinases with blue, and GPCRs with orange symbols. Generic
receptor codes refer to the GPCR-Tango constructs.
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increases in the basal responses38. Tango-Trio modulates GPCR-
effector coupling stoichiometry not through changing receptor den-
sity, but by tuning the density of cytoplasmic effectors, specifically
β-arrestin1, β-arrestin2, and FYVE, to probe basal activity. Moreover,
seeing as continuous overexpression of engineered proteins could
potentially give rise to spurious GPCR dynamics51, titratable induction
of Tango-Trio fusion proteins enables greater management of the
cellular environment to onemore reflective of the native in vivo setting
if desired, by tuning the intensity of gene expression during profiling
of agonist-stimulated receptors.

Following establishment of our stable cell lines, we conducted
HTS of the GPCRome to shed light into how β-arrestin1 and β-arrestin2
differ in their couplings and selectivity at GPCRs, and provide insight
on how this arrestin selectivity may play a role in GPCR trafficking
properties. After validating select hits from our primary screen, we
sought to further characterize constitutive and ligand-dependent
dynamics. Given the inability to capture pharmacological parameters
(EC50, Emax/E0, etc.) regarding basal activities in general, as well as the
lack of information regarding ligand-induced β-arrestin1 recruitment
and internalization across the GPCRome, we profiled ~200 GPCRs,
including over 50 orphans, in cumate and/or agonist dose-response
fashion. Interestingly, we observed distinct functional signatures
between basal and agonist-dependent activities observed at GPCRs,
suggesting different mechanisms in play at these different activation
states34. Although the promiscuity of couplings detected for both
isoforms is supported by the fact that these non-visual β-arrestins
are ubiquitously expressed to regulate hundreds of GPCRs within
the human body8, we observed a significantly larger percentage
of receptors which were more selective towards β-arrestin2 over
β-arrestin1 at both basal and agonist-activated states. Froma structural
standpoint, β-arrestin2 has less defined secondary structure within its
C-terminal basket, resulting in increased flexibility and adaptability to
the structural differences of GPCRs52, whichmay attribute why it is less
selective and couples preferentially to more receptors compared to
β-arrestin1. Thus, Tango-Trio may be useful for future development
and testing of arrestin-isoformbiased compounds, if there are positive
functional outcomes that are shown to emerge from favouring
β-arrestin1 versus β-arrestin2 recruitment; although few reports of this
nature of functional selectivity have been explored, a couple of exist-
ing agonists have been demonstrated to favor one arrestin isoform
over another, such as 2-arachidonoylglycerol and anandamide53.
Addedly, the original PRESTO-Tango platform interrogates only the
recruitment of β-arrestin2, one of the two non-visual arrestins
expressed in vertebrates. While it has been previously demonstrated
that β-arrestin1 is themost prevalent isoform inmost cells, comprising
more than 90% of the total arrestin complement54, few studies have
investigated its recruitment to GPCRs on a larger scale; Tango-Trio
enables such an interrogation, and simultaneous comparison to β-
arrestin2 selectivity. Finally, some receptors lacked interactions with
either isoform, which has been typically attributed to the lack of
consensus sequences for GRKs55. Nonetheless, a growing body of evi-
dence has indicated that arrestin recruitment is not entirely dependent
on phosphorylation by GRKs specifically, but also by other serine/
threonine kinases43, as we explored later on. Moreover, arrestin
recruitment is a biphasic process that involves the partial engagement
of the phosphorylated GPCR’s C-tail with arrestin and a fully engaged
complex where the receptor core interacts with the arrestin finger
loops56. As a highly sensitive reporter assay, we cannot exclude that
Tango-Trio can detect partially engaged complexes to phosphorylated
and non-phosphorylated receptors. Given that interaction with the
receptor core requires complete activation of the receptor and
G-protein dissociation, the constitutive interaction observed is prob-
ably highly dependent on receptor C-tail phosphorylation and
thus highly dependent on kinases present within the cellular system
used57. It will be interesting in futures studies to measure the changes

in this receptor constitutive distribution while overexpressing a spe-
cific kinase.

Unfortunately, one caveat to Tango-Trio is that the dynamic
window of GPCR internalization is smaller than that observed with
arrestin activity. This could be attributed to multiple reasons but we
believe that the range of observed internalization across theGPCRome
is not as expansive as the range of arrestin activities. Moreover, the
transit of the receptor to early endosomes could be too fast for effi-
cient TEV cleavage or may lead to weak tTA translocation into the
nucleus. Another potential pitfall of using the FYVE domain to track
GPCR internalization is the known PI3K activation by some GPCRs,
which in turn will increase phosphatidylinositol 3-phosphate (PIP3) at
the cell membrane and endosomes, possibly contributing to biased
results. Another important distinction is that for HTTL-B1 and HTTL-
B2, it is the expression of arrestin effector proteins that is affected by
cumate induction, hence tuning the process of GPCR-arrestin coupling
itself, whereas for HTTL-F, titratable cumate addition does not influ-
ence the process of receptor internalization, but rather only changes
the expression of the FYVE probe that tracks it. Finally, the FYVE
domain directly interacts with the inositol polar heads of PIP3, which is
present on the surface of the endosome but also at the plasma mem-
brane. It has been proposed that dimerization of FYVE-domain con-
taining protein amplifies theweakbinding of individual FYVE fingers to
the phospholipid. We cannot exclude that the TEV219 fusion disrupts
dimerization, nor that the expression of only the FYVE-domain has a
very low affinity, thus reducing sensitivity. We do not exclude to test
other fusionproteins such asEEA1 containing the FYVEdomain and the
adjacent dimerization coiled-coil region58. Overall, the use of FYVE
domain fusion protein for tracking GPCR internalization should be
used with caution; nonetheless, the variety of responses observed in
our GPCRome screening highlights some interesting observations that
will require further investigation.

Tango-Trio is especially valuable for studying orphan receptors,
whose lack of identified endogenous ligands presents a challenge to
studying said receptors59. Seeing as existing tools have focused on
detecting classical G-protein signaling, Tango-Trio’s ability to quantify
activity independent of G-proteins is a suitable tool for deorphaniza-
tion efforts60. By using theTango-Trio to investigate the internalization
profiles and potential biases of orphan receptors towards different
isoforms of β-arrestin, we hope our platform can identify ligands for
orphans that would not be detected by G-protein dependent changes,
especially given that Tango-Trio represents an assay which is able to
concurrently quantify and compare the degree of constitutive β-
arrestin1/2 translocation and internalization at a GPCRome-wide level,
and is also capable of profiling orphan activity in a dose-dependent
manner.

Interestingly, none of the inverse agonists tested in our study was
able to completely block the basal arrestin recruitment. For this rea-
son, wedefined the basal activity as the summation of state-dependent
constitutive activity and state-independent activity (steady-state). We
cannot exclude that amplification systems, including the Tango assay,
fail to accurately detect constitutive activity, which represent a small
percentage within the ensemble of a receptor’s conformational
landscape61. Given that basal activity is highly cell-dependent as it
influenced by the basal phosphorylation of GPCRs57, it is difficult to
discriminate between basal and constitutive activity in our system
apart fromusing inverse agonists. Thus, the partial decrease in arrestin
recruitment observed for certain compounds, such as O-1918, Cetir-
izine, and Thiothixene, could be attributed to their effects on the small
population of constitutively active receptors, but they cannot blunt
the level of basal arrestin recruitment. Nonetheless, if this were the
case, further studies would be warranted to explain why a significant
enhancement in arrestin recruitment was observed for other inverse
agonists, such as FC131 and Fluspirilene. It is becoming more evident
that receptor activation follows amultistatemodel in whichG-proteins
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and arrestins stabilize specific conformations. Each of these con-
formations can be further stabilized by different ligands, leading to a
broad intrinsic efficacy landscape, which in certain cases, can be
opposite to each other when comparing two signaling pathways62.
Finally, for some receptors, the uncoupling of G-proteins with an
inverse agonist could facilitate β-arrestin recruitment. Another
important consideration is that in vitro assays may fail to capture the
true potency and efficacy of certain drugs with slow on-rates63.

While Tango-Trio’s ability to measure basal activity supports the
discovery and study of inverse agonists in vitro, whose properties can
be assessed based on the depression of constitutive arrestin translo-
cation, it should be complemented with G-protein dependent profil-
ing, especially since constitutive activity, by definition, is observed due
to spontaneous G-protein activation7. Indeed, several inverse agonists
profiled in our study produced either no change or an enhancement in
constitutive arrestin recruitment, and a previous study saw no arrestin
recruitment occurring in the presence of the GHSR inverse agonist
SPA61. Therefore, given the diversity of responses we observed based
on the type of inverse agonist tested, arrestin activities should not be
the sole measure of the inverse agonistic properties of a compound.
Although assays such as BRET will capture the direct effect of most
drugs onto the conformational landscape of the receptors, some
have a more complex pharmacology, acting as allosteric modulators,
bitopic ligands, protean agonists, pharmacochaperones, or even a
mixed pharmacological profile depending on receptor subpopulation.
Moreover, the overall resultant activity, when used in vivo, is a sum-
mation of all effects of the drug toward the receptor when used for an
extended period and thus, must also include its impact on receptor
abundance and receptor post-translational modification. These effects
are rather slow and require prolonged incubation of the drug onto the
cell expressing the target receptor. In those cases, a reporter system
such as the Tango-Trio, which involves incubation with drugs for
>8 hrs, may capture pharmacological behavior not detectedwith short
term incubation (<1 h).

By using the dynaminK44A loss-of-function mutant, we were also
able to determine the extent of dynamin dependence during
internalization64. However, given the numerous dynamin-dependent
(e.g., clathrin-mediated, FEME,) and -independent pathways (e.g.,
CLIC/GEEC, micropinocytosis), further investigations into the other
mediators of endocytosis are needed to elucidate the specific type of
endocytosis mechanism employed at a given receptor. Of notable
distinction is FEME, which has been shown to cargo several amine
GPCRs, including ADRB1, ADRA2A, DRD4, and CHRM4, caveolae
mechanisms observed for ADRB2, AGTR1, ENDRA, and GLP2R, and of
course, the canonical clathrin-dependent endocytosis such as at APJ,
DRD3, and CHRM332,65. Arrestin-dependence of either isoform during
the internalization of a given GPCR can also be orthogonally assayed
used dominant negative arrestins66.

While Tango-Trio uses modified GPCR constructs, the findings
presented herein demonstrate that the addition of the V2-tail itself
cannot fully account for differences between our Tango-based plat-
form and those that employ unmodifiedWT GPCRs, such as the EMTA
system. With regard to the V2 tail, while its original purpose was to
increase basal β-arrestin2 recruitment and thus may artificially
enhance its detection, seeing as it was added to all the receptors found
in the PRESTO-Tango kit, any artificial increases in the Tango signal
would still be proportional amongst all. Furthermore, PRESTO-Tango
developers tested the effects of removing the V2 tail for some recep-
tors and found variable results; notably, the removal of the V2 tail
decreased the ligand-induced responses of some, e.g., the FFAR2 free
fatty acid receptor, and had little effect on the ligand-induced
responses of others e.g., the LTBR4 leukotriene receptor1. Another
factor that could also contribute to the discrepancies in results
between EMTA and Tango-based methods is the effect of receptor
internalization when β-arrestin1/2 are overexpressed, especially

considering the difference in the duration of the experiments. Over-
expression of β-arrestin1/2 could contribute to increased internaliza-
tion for certain receptors, which could account for the extent of
arrestin recruitment, such as the case with OPRM1; agonists will also
vary in their capacity to induce endocytosis of a given receptor; e.g.,
DAMGO at OPRM1 promotes rapid internalization, as opposed to
morphine67. On the other hand, given that EMTA experiments occur
over a short duration, the result obtained is based on the amount of
receptor present at the time of adding the ligand, and thus, other
factors suchas receptor internalizationwill haveminimal effects unlike
in Tango-based. Finally, one of the biggest factors that limit compar-
isons between systems is that the EMTAmethod, as like other systems
which use unmodified GPCRs, requires overexpression of GRK2 to
examine β-arrestin-1/2 interactions, a limitation which could influence
the cellular context, stoichiometry and levels of expression of GRKs,
possibly leading to potential artifactual downstream signaling/arrestin
recruitment measurements obtained. For example, the EMTA method
found that among the receptors able to recruit β-arrestins, only a very
small number selectively recruited β-arrestin-1 (1.3%) or β-arrestin-2
(6.4%), most of them recruiting both β-arrestins in the presence of
GRK2 (92.3%)33. Tango-Trio does not require the overexpression of
GRKs, so is preferable in that regard, and the level of expression of β-
arrestin-1/2 and Fyve fusion proteins is modifiable using cumate
induction, to be as close to the native environment/context as possi-
ble. If GRK2 or other kinases were overexpressed in Tango-Trio, we
believe that several of the GPCRs with weak/no arrestin signals would
also be detected in our system, and the degree of preferential β-
arrestin isoform recruitment may also shift. In short, it must be
underscored that both systems may artificially increase arrestin
recruitment, either using modified GPCR constructs such as in Tango-
Trio or using WT GPCRs but with the addition of a kinase such as in
EMTA. Nonetheless, based on the intended purpose of an experiment,
thesemethods have their own advantages and disadvantages and thus
one system cannot truly replace the other, but rather both should be
used as a complement.

One limitation to the profiles captured by Tango-Trio is that they
may not be portable from different tissues, as the level of expression
and identities of GPCR interactors directly influence the regulation of
receptor signaling, localization and trafficking4. One study demon-
strated that the constitutive activity of glutamate metabotropic
receptors is depressed in the presence of Homer 3 scaffold protein68.
Another example reports that of the GRK family members, GRK4
exclusively mediates the constitutive phosphorylation of DRD169.
Relevant to Tango-Trio, mRNA expression analysis of endogenously
expressed GPCR-related proteins reveals that while HEK293 cells, the
cell lineage upon which our platform was established, express
numerous isoforms and full repertoires of numerous GPCR-interacting
proteins, such as PKA and PKCs, they also do not express significant
levels of certain essential effectors, such as GRK270, thereby impairing
complete profiling at certain GPCRs dependent on GRK2 phosphor-
ylation. The importance of GRK specificity is epitomized by a study in
which GRK2 and GRK3 phosphorylation of their tested receptors
(ADRB2 andCHRM2)was agonist-dependent, whereasGRK5 andGRK6
were able to phosphorylate in the absence of agonists71. Despite the
challenge introduced by tissue-specific variations, Tango-Trio is a rich
resource of arrestin coupling, selectivity and internalization profiles of
hundreds of GPCRs, which can be confirmed and supplemented using
orthogonal assays.

Studying GPCR activities and differences between signaling
events is crucial for expanding our mechanistic understanding of
GPCR signaling, and in turn, advancing the development of improved
GPCR-targeted therapeutics. Towards these efforts, our wealth of data
will help to functionally characterize GPCRs based on their β-arrestin1
and β-arrestin2 couplings, selectivities, and internalization efficacies.
On a larger scale, the versatility and robustness of our platform is
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well-suited to illuminating the big picture on the elements governing
GPCRome pharmacological activities. We envision Tango-Trio to spur
a transformational change on the study of basal and constitutive GPCR
activities, and to promote research into GPCR constitutive versus
agonist-induced activation mechanisms.

Methods
Cell culture
Human Embryonic Kidney cells (HEK293T) were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5%
fetal bovine serum (FBS), 5% bovine calf serum (BCS), and 100μg/mL
of penicillin-streptomycin at 37 °C in a humidified atmosphere con-
taining 5% CO2.

HTL (HEK293T stably expressing a luciferase reporter gene) and
HTLA cells (HTL cells stably expressing a human β-arrestin-2 fused to
Tobacco Etch Virus protease), both kindly provided by Dr. Richard
Axel, were maintained in DMEM supplemented with 5% FBS, 5% BCS,
100μg/mL of penicillin-streptomycin, 2.5μg/mL of puromycin and
50μg/mL of hygromycin.

HTTL were generated by transfection of HEK293T with modified
pNLCoI1 vector (Promega) containing the luciferase2 (luc2) coding
sequence under the control of the TRE-Tight promoter. Cells were
transfected using PEI transfection method72 and selected with hygro-
mycin at 100μg/mL. Colonies were picked, expanded, eventually
duplicated, and further tested in 6-well format by transient transfec-
tion of a receptor and β-arrestin2-TEV219/pcDNA3.1+. The best clone
was selected based on growth and β-arrestin2 recruitment at different
GPCRs, which were previously validated by PRESTO-Tango13.

HTLL-B1, -B2 and -F were generated by lentiviral infection of
pCDH-CuO-MCS-EF1α-CymR-T2A-Bleo3 SparQ plasmid encoding β-
arrestin2-TEV219, β-arrestin1-TEV219 or FYVE-TEV219 as per supplier
instructions and selected using zeocin at 200μg/mL. Colonies were
picked, expanded, eventually duplicated, and further tested in 6-well
format by transient transfection of a given receptor. The best clone
was selected based on growth and β-arrestin1/2 recruitment or inter-
nalization at previously validated GPCRs.

Tango-Trio cell lines generated herein (HTTL, HTTL-B1, HTTL-B2,
HTTL-F) are maintained continuously on dishes coated with 5μg/mL
collagen (Gibco). Tango-Trio cell lines are readily available and free of
charge from the corresponding author upon request.

Transfection
Cell transfectionswere performedusing amodified polyethyleneimine
(PEI) transfection method72. Briefly, 1.5 × 106 cells were plated in a
collagen-coated well of a 6-well plate with 2mL of complete growth
medium. 2μg of DNA was mixed with 200μL of Opti-MEM medium
followed by addition of 6μL of PEI (Polysciences) reagent stock solu-
tion (1mg/mL, pH 7.0). The mixture was added dropwise to cells after
20min incubation at room temperature. Medium was changed the
next day and replacedwith complete freshmedium. For stable cell line
generation, antibiotics were added 48-hours post-transfection.

Tango β-arrestin recruitment assay
Assays were performed usingmodifications of the original Tango assay,
as detailed below13,29. Cells were plated on collagen-coated dishes and
transfectedby the PEI precipitationmethodasdescribed above. Theday
following transfection, the cells were plated in DMEM supplemented
with 1% dialyzed FBS into collagen-coated 384-well white clear bottom
cell culture plates at a density of 20,000 cells/well (or 16,000 cells/well
for same-day transfection) in a total volume of 40μL. The following day
or the same day 5h after seeding, ligand solutions were prepared in
filtered assay buffer (20mM HEPES, 1× Hanks’ balanced salt solution
(HBSS), pH 7.40) at 3X and added to cells (20μL per well) for overnight
incubation (16–20h). Cumate, at indicated concentrations, was directly
added in the complete medium from a water-soluble stock solution

(10,000X in 95% ethanol). For most experiments, cumate was added at
the time of cell plating (a day before transfection) and kept throughout
the experiment. For time-dependent experiments, cumatewas added as
indicated in the text. The following day, media and drug solutions were
removed, and 20μL per well of homemade luciferase detection reagent
(108mM Tris–HCl; 42mM Tris-Base, 75mM NaCl, 3mM MgCl2, 5mM
Dithiothrei-tol (DTT), 0.2mM Coenzyme A, 0.14mg/ml D-Luciferin,
1.1mM ATP, 0.25% v/v Triton X-100, 2mM Sodium hydrosulfite) was
added. Plates were incubated for 10min at room temperature in
the dark before counting using Synergy Neo2 microplate reader
(BioTek Instruments) and collected using Gen5 software v3.11 (BioTek
Instruments). Datawere subjected tonon-linear least-squares regression
analysis using the sigmoidal dose-response function (3-parameters
modeled using Y =Bottom+ (Top-Bottom)/(1 + 10^((LogEC50-X)));
4-parameters modeled using Y =Bottom+ (X^Hillslope)*(Top-Bottom)/
(X^HillSlope + EC50^HillSlope)) provided in GraphPad Prism v9.5.1. Data
is presented as Relative Luminescence Units (RLU) and was processed
(calculation of mean, SD or SEM, baseline correction as percentage
difference using 100* (Value-Baseline)/Baseline) as indicated in figure
legends. Parallel interrogation was performed as previously published
by us29.

Measurement of cell surface expression by ELISA
HTTL-B1, HTTL-B2 and HTTL-F were plated in collagen-coated 6-wells
either with or without 30 µg/mL cumate. 24 h later, cells were trans-
fected with a select number of validated GPCR hits from the con-
stitutive HTS. Transfected cells were subsequently re-plated in 384-
well plates at 30,000 cells/well and fixed for 10min using 20 µL/well of
4% paraformaldehyde. Blocking was performed by incubating cells for
30minwith 20 µL/well of 5%normal goat serum in PBS, followedby the
addition of 20 µL/well of 1/10,000 diluted anti-FLAG-HRP conjugated
antibody (MilliporeSigma) for 1 h and two washes of 80 µL/well PBS.
Supersignal ELISA Femto Substrate (Thermo Fisher Scientific) was
applied per well, and luminescence was subsequently read with
Synergy Neo2 microplate reader (BioTek Instruments).

Principal component analysis and visualization of RNA tissue-
specific expression data
Human Protein Atlas (HPA) RNA consensus tissue gene data (version
21.0 and Ensembl version 103.38., accessed at https://www.proteinatlas.
org/about/download) summarizing the expression levels in 55 tissues
was extracted for β-arrestin-1 and −2 (ARRB1 and ARRB2), for select
receptorswith significant constitutive selectivity for at least one arrestin
isoform (GPR182, AGTR2, ADRA2A, GPR37L1, SCTR, ADRB3, PTGER4,
SUNCR1, PTGER3, MRGPRG, NPY5R, NPY1R, GLP1R, FPR1, MC1R, FPR3,
5-HT5, MRGPRD, GPR87, CXCR4, HRH1, AVPR2, 5-HT4, 5-HT2A, NTSR1,
GLP2R, 5-HT1D, CXCR2, 5-HT1B, 5-HT1E, PTGER2, 5-HT2B, PTGDR),
and the following serine/threonine kinases: GRKs (GRK2, GRK3, GRK5
GRK6), PKA (PRKACA, PRKACB, PRKACC), PKCs, PKNs, and PKDs
(PRKCA, PRKCB, PRKCG, PRKCD, PRKCE, PRKCH, PRKCQ, PRKCI,
PRKCZ, PKN1, PKN2, PKN3, PKD1, PKD2, PKD3), PKGs (PRKG1-2), PIMs
(PIM1-3), AKTs (AKT1-3), GSK3 (GSK3A, GSK3B), CAMKI, CAMKII, and
CAMIV (CAMK1D, CAMK1G, CAMK2A, CAMK2B, CAMK2D, CAMK2G,
CAMK1, CAMK4, PNCK), CK1s and CK2s (CSNK1A1, CSNK1D, CSNK1E,
CSNK1G1, CSNK1G2, CSNK1G3, CSNK2A1, CSNK2A2, CSNK2A3,
CSNK2B). Despite protein levels not always equating to RNA expression
levels, the latter was used as it was more complete than the existing
protein expression data. The data was analyzed using principal com-
ponent analysis (PCA) on our standardized data (Xstandardized =
(Xraw − X̄)/sx, where X̄ is the mean and sx is the standard deviation of
the variable value). The number of PCs were selected using GraphPad
Prism v9.5.1’s Parallel Analysis Approach (n = 1000 Monte Carlo simu-
lations; PC1 and PC2 selected with eigenvalues greater than the 95th
percentile of simulated counterparts), and subsequently visualized as
loading plots.
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Bioluminescence resonance energy transfer (BRET2)
measurements
HEK293T cells were seeded in 6well plates at 1.2 × 106 cells perwell and
were transfected with 0.5 µg of GPRC-RLuc8 construct and 0.5 µg of β-
arrestin1/2-GFP2 using Jetprime (PolyPlus transfection). Following
transfection, cells weredetached and split on PLL-coatedwhite 96-well
assayplates (PerkinElmer). 24 h later, spentmediumwas aspirated and
replaced with 60 µL of 1X HBSS buffer, followed by 30 µL of serial
dilutions of agonist at 3X concentration. Plateswere incubated as 37 °C
for 30min, and 10 µL of Coelenterazine 400a (Nanolight Technolo-
gies) at 50 µMwas added to eachwell, for a final concentration of 5 µM.
Plates were incubated for 10–15min at room temperature to allow the
signal to stabilize, and subsequently read using the Hidex Sense Beta
Plus microplate reader (Gamble Technologies) with 405 nm (RLuc8-
Coelenterazine 400a) and 500 nm (GFP2) emission filters, at 1 s/well
integration times.

shRNA knockdown, RNA isolation and RT-qPCR assay
Lentiviral β-arrestin-1 and −2 shRNA plasmids, obtained from the High-
Throughput Screening Lab at the Children’s Hospital of Eastern
Ontario Research Institute, were transfected in HEK293T cells, along
with psPAX2 and VSV-G vectors. The medium was replaced the fol-
lowing day with complete growth medium, and lentiviral shRNA
mediumwas collected following 48 h transfection. For the knockdown
experiment, HTTL-F cells were seeded ineither completemediumor in
the previously prepared lentiviral β-arrestin-1 and −2 shRNA medium
(combined at a 1:1 ratio), with infection of cells facilitated with poly-
brene at 8μg/mL.

Total RNA was isolated from transduced HTTL-F cells using the
RNeasy Mini Kit (Qiagen) and quantified using the NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific). First strand
cDNA was synthesized with 900ng of extracted RNA using the
TransStart IV Reverse Transcriptase Kit (TransGen) according to the
manufacturer’s protocol. Human Actin (sense: 5’- CATGTACGTT
GCTATCCAGGC-3’; antisense: 5’- CTCCTTAATGTCACGCACGAT-3’),
β-arrestin-1 (sense: 5’- CCTGACCTTTCGCAAGGACC-3’; antisense: 5’-
CAAGCCTTCCCCGTGTCTTC-3’) and β-arrestin-2 (sense: 5’-AAGCT
CACCGTGTACTTGGG-3’; antisense: 5’-AGGGTCACAAACACTACAG
GG-3’) primerswere synthesizedby IDT, Inc.Quantitative real timePCR
experiments were performed with 2 µL of the synthesized cDNA in a
total volumeof 20 µL using the SYBR™Green PCRMasterMix (Thermo
Fisher Scientific), with the following cycling parameters: 95 °C for
10min, followed by 40 cycles of 95 °C for 30 s, 60 °C for 30 s and 72 °C
for 30 s. Data was analyzed using the comparative Ct (ΔΔCT) method,
with the relative degree of response determined by 2−(ΔΔCT).

Molecular biology
TRE-Tight-Luc2 expression plasmid was constructed using the
pNLCoI1[luc2-P2A-NlucP/Hygro] Vector (Promega) asbackbone vector
(Accession no. KM359771), and a stop codon was added
using QuikChange mutagenesis (Agilent) at the end of luc2 gene.
This vector was chosen because it contains a synthetic poly(A) tran-
scription pause site before the promoter, which reduces background
and does not contain any SV40 ori, which is not compatible with the
large T antigen expression in HEK293T. TRE-Tight promoter was PCR
amplified from pTRETightBI-RY-0, which was a gift from Phil Sharp
(Addgene plasmid# 31463) and cloned atNheI-HindIII restriction sites.

Codon optimized β-arrestin1-TEV219was initially synthesized (Bio
Basic) and cloned in pcDNA3.1+ (Thermo Fisher Scientific). β-arrestin2
was PCR amplified from pLX317-β-arrestin2 and the FYVE domain
from pLX317-ZFYVE16 (Endofin) both from the MISSION TRC3 Human
LentiORF Collection (MilliporeSigma). Both were cloned into the β-
arrestin1-TEV219/pcDNA3.1+ at HindIII-BamHI sites. The PURO resis-
tance gene in the all-in-one lentivector pCDH-CuO-MCS-EF1α-CymR-
T2A-PURO SparQ (System Biosciences, QM800A-1) was changed for

the BLEO3 resistance using PCR amplification and restriction site
cloning (EcoRI-SalI). β-arrestin1-TEV219, β-arrestin2-TEV219, and FYVE-
TEV219were PCR amplified from the pcDNA3.1+ plasmid and cloned at
NheI-SwaI restriction sites. Sequence maps for the aforementioned
constructs can be found in the Supplementary Information.

GPCR-RLuc8 constructs for BRET2 experiments were cloned by
PCR amplifying RLuc8 and cloned into Tango constructs at AgeI-XbaI
site. β-arrestin1-GFP2 and β-arrestin2-GFP2 were cloned by PCR
amplifying GFP2 and cloned at BamHI-XbaI sites of β-arrestin1-TEV219
and β-arrestin2-TEV219 in pcDNA3.1+.

The Roth Lab PRESTO-Tango GPCR Kit was from Dr. Bryan Roth
and is available through Addgene [www.addgene.org/kits/roth-gpcr-
presto-tango/].

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors uponrequest. All data generatedor analyzedduring this study,
including data underlying Figs. 1–8 and all Supplementary Figures are
provided as a Source Data file accessible at the Figshare repository
[https://doi.org/10.6084/m9.figshare.22802948]. Human Protein Atlas
(HPA) RNA consensus tissue gene data (version 21.0 and Ensembl
version 103.38.) used for the production of Fig. 8 was accessed at
[https://www.proteinatlas.org/about/]. EMTA data compared in Sup-
plementary Table 1, including Emax (in % of vehicle response) and
absolute pEC50 values, was downloaded from [https://cdn.
elifesciences.org/articles/74101/elife-74101-supp2-v2.xlsx].
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