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Language network lateralization is reflected
throughout the macroscale functional
organization of cortex

Loïc Labache 1 , Tian Ge2,3,4, B. T. Thomas Yeo 5,6,7,8,9 &
Avram J. Holmes 1,10,11,12

Hemispheric specialization is a fundamental feature of human brain organi-
zation. However, it is not yet clear to what extent the lateralization of specific
cognitive processes may be evident throughout the broad functional archi-
tecture of cortex. While the majority of people exhibit left-hemispheric lan-
guage dominance, a substantial minority of the population shows reverse
lateralization. Using twin and family data from the Human Connectome Pro-
ject, we provide evidence that atypical language dominance is associated with
global shifts in cortical organization. Individuals with atypical language orga-
nization exhibit corresponding hemispheric differences in the macroscale
functional gradients that situate discrete large-scale networks along a con-
tinuous spectrum, extending from unimodal through association territories.
Analyses reveal that both language lateralization and gradient asymmetries
are, in part, driven by genetic factors. These findings pave theway for a deeper
understanding of the origins and relationships linking population-level varia-
bility in hemispheric specialization and global properties of cortical
organization.

A primary architectural feature of the human brain is its homotopy,
with each hemisphere exhibiting broadly comparable spatial organi-
zation in terms of cytoarchitecture, macroscopic anatomy, and asso-
ciated large-scale functional systems1–5. Despite this fundamentally
symmetrical plan, common to the vast clade of animals known as the
bilateria6, the presence of functional asymmetries have been a leading
principle of human evolution7 and, more broadly, the organization of
the metazoan nervous system6. The hemispheric specialization of a
range of specific functions has been well characterized. One of the

most widely investigated is the left-lateralized high-order language
network encompassing aspects of the anterior and posterior cortices8.
However, while the lateralization of brain functions and associated
behaviors has fascinated neuroscientists for over a century9,10, the
origins, mechanisms, and consequences of hemispheric specialization
are still largely unknown11–15. In this regard, the extent to which the
asymmetrical organization of discrete processes may be evident
throughout the macroscale functional organization of the cortical
sheet remains an open question16.
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The detailed anatomical study of the brain systems supporting
language began through the post-mortem examination of patients
with acquired brain injuries and aphasias. These seminal studies
revealed a set of interconnected regions in the anterior and posterior
cortices of the left hemisphere that underpin healthy language
functioning17, including Broca’s area within the inferior frontal gyrus
adjacent to the somato/motor network andWernicke’s area within the
posterior superior temporal cortex. The presence of this left later-
alized systemhas been supported by converging evidence from in vivo
imaging studies of language function in healthy populations18 and,
more recently, data-driven algorithms that parcelate cortex into dis-
crete functional networks across a variety of task contexts8,19. Critically,
however, the left-hemispheric dominance of the language system is
not fixed across development or ubiquitous in the general popula-
tions, where atypical organization has been observed20–22. Although
some anatomical and functional hemispheric asymmetries appear
early in human development23, language is distributed symmetrically
in children, with lesions to either hemisphere resulting in an equal
likelihoodof associateddeficits24. Fromearly to late adolescence, there
is a gradual transition to left-hemisphere dominance in themajority of
the population14, with atypical language organization evident in ~10
percent of individuals25,26. This flipped profile of a right hemisphere
language system is more likely to be observed in left-handed
individuals27, although not specific to this group. In right-handed
adults, 2% to 8% show a dominance reversal28. However, the exact
mechanisms of brain lateralization are still largely unknown, as are the
associated consequences on broader properties of brain organization.

The cerebral cortex is comprised of a dense tapestry of areal units
embedded in corresponding processing streams and housed within
associated large-scale functional networks29,30. The topographic orga-
nization of this complex interdigitated architecture is evident in the
presence of functional gradients that situate discrete networks along
continuous spectra31. The spatial arrangement of areal parcels along
these global gradients, for instance, along a principal gradient anchored
on one end by the unimodal (somatosensory/motor and visual) regions
and the other by the cortical association areas that underpin complex
cognition32, reflect a fundamental property of brain organization33,34.
Converging evidence for these macroscale gradients has been estab-
lished through in vivo imaging measures of function, anatomy35, and
areal allometric scaling36, as well as histology-derived assessments of
cytoarchitecture37,38 and cortical gene transcription39–41 (for review see
ref. 33). Intriguingly, there is a strong correspondence between the
relative positions of parcels along these gradients and the extent to
which they share common cortical microstructure, connectivity, and
profiles of gene expression, while the organization of cortical gradients
differs between the two hemispheres42–44. Building upon these dis-
coveries, a core goal of the present work is to characterize the organi-
zation and lateralization of the language network in relation to the
mosaic of functionally distinct large-scale networks and associated
macroscale connectivity gradients that span the cortical sheet.

Here, using a recently developed higher-order language atlas8, we
worked to determine the extent to which typical and atypical language
lateralization is reflected across the functional architecture of the
cerebral cortex. First, through a combination of resting-state func-
tional MRI (fMRI) and task activation studies of language, we establish
the presence of typical (92% of sample) and atypical (8% of sample)
individuals within the Human Connectome Project (HCP) database45.
Second, we provide evidence that atypical language lateralization is
associated with global shifts in cortical organization. To do so, we
applied the dimensionality reduction approach of diffusion map
embedding31 to resting-state data to extract a global framework that
accounts for the dominant connectome-level connectivity patterns
within each hemisphere. Individuals with atypical language organiza-
tion exhibited corresponding hemispheric differences in the macro-
scale functional gradients. This pattern was preferential to functional

networks within association cortex. Third, twin-based heritability
analyses revealed that both language lateralization and gradient
asymmetries are, in part, driven by genetic factors. In doing so, our
analyses reveal evidence linking the lateralization of language with
broad changes in the functional organization of the cortical sheet.

Results
Identification of atypically lateralized individuals for language
We investigated the functional connectivity architecture of typically
and atypically lateralized language functions in human cortex using
task and resting-state fMRI data acquired at 3 T (n = 995, 110 left-han-
ders) as a part of the Human Connectome Project45. Demographics are
available in the Methods section (HCP participants). Language later-
alization of each participant was assessed using SENSAAS, a higher-
order language atlas8. In brief, two task-induced functional asymme-
tries during a language task46 were obtained. First, at the network level,
averaging across associated parcels, and second, within language
network hubs, corresponding to Broca’s and Wernicke’s areas8. Three
resting-state variables were also used to assess language lateralization.
Two of which characterized the intra-hemispheric organization of the
language network at rest, operationalized as the sum and the asym-
metry of the average language network functional connectivity
strength. The last metric characterized the homotopic inter-
hemispheric connectivity of the language network. Taken together,
these 5 functional metrics revealed the organization of the higher-
order language network (Fig. 1A). The study sample was divided into
groups based on their intra- and inter-hemispheric language network
organization derived through an agglomerative hierarchical clustering
procedure as described by Labache and colleagues26.

Hierarchical classification established the presence of 3 groups: a
strong typical group characterized by a strong leftward asymmetry
during language task performance (n = 480, 36 left-handers), a mild
typical group with moderate leftward asymmetry (n = 433, 48 left-
handers), and atypical individuals showing a rightward asymmetry
(n = 82, 26 left-handers, Fig. 1B), reflecting ~8 percent of the study
population. The associated group demographics are available in Sup-
plementary Table 1.

Wenext examined the extent towhich language lateralizationwas
reflected across each of the 5 features used to derive the higher-order
language network (Fig. 1C). Analysis of covariance allowed us to
replicate previously published results26 conducted on an independent
sample of 287 healthy volunteers from the BIL&GIN database47. Here,
follow-up analyses were conducted to confirm that a single functional
metric did not solely drive the results. Language lateralization was
evident across each of the 5 functional language features included in
the hierarchical classification (see Supplementary Tables 2–6). Task-
induced functional asymmetries confirmed the rightward lateraliza-
tionof atypical individuals both at thenetwork (μnetwork = −0.96 ± 0.18)
and hubs level (μhubs = −1.16 ± 0.26, both corrected p < 10−4), as well as
a more leftward lateralized language network in strong
(μnetwork = 1.74 ± 0.14, pnetwork < 10−4; μhubs = 2.64 ±0.19, phubs < 10−4)
than in mild typical participants (μnetwork = 0.70 ±0.12, pnetwork < 10−4;
μhubs = 1.17 ± 0.17, phubs < 10−4) both at the network and hub
level. Intrinsic functional connectivity strength asymmetry profiles
revealed that atypical individuals possess a bilateral language
network organization (μstrength asym = 9 × 10−3 ± 0.18), in contrast to
strong (μstrength asym = 1.02 ± 0.13, pstrength asym < 10−4) and mild typical
(μstrength asym =0.85 ± 0.12, pstrength asym < 10−4) participants. Strong and
mild individuals showed no differences (pstrength asym =0.12). Finally,
strength sum and inter-hemispheric connectivity displayed a similar
profile across groups, with strong typical (μstrength sum = 12.16 ± 0.39
and μr = 0.61 ± 0.02) and atypical individuals (μstrength sum =
12.06 ±0.53 and μr = 0.61 ± 0.03, all p >0.93) exhibiting a similar pro-
file with significantly larger values than mild individuals
(μstrength sum = 9.40 ±0.35 and μr = 0.49 ± 0.02, all p < 10−4).
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Gradient asymmetries and atypical lateralization
We next examined the extent to which the presence of typical and
atypical language network lateralization may be evident throughout
the functional organization of the cortical sheet. To do so, we took
advantage of recent mathematical modeling of the functional topo-
graphy of the cortex as proposed by Margulies and colleagues31. First,
functional connectivity matrices (384 × 384 AICHA parcels48) across
the full sample were decomposed into components that capture the
maximum variance in connectivity. Consistent with prior work31,49,
diffusion map embedding50 was used to reduce the dimensionality of
the connectivity data through the nonlinear projection of the voxels
into an embedding space. The resulting functional components or
manifolds, here termed gradients, are ordered by the variance they
explain in the initial functional connectivity matrix. The present ana-
lysis focused on the first three gradients, reflecting divergent spatial
patterns of connectivity across the cortex and accounting for 57% of

the total variance in cortical connectivity. The first 3 group-level gra-
dients respectively explained 22%, 21%, and 14% of the total variance in
the initial matrix of cortical connectivity (Fig. 2).

In line with prior work31,51–53, one end of the principal gradient of
connectivity was anchored in unimodal (somato/motor and visual)
regions, while the other end encompassed broad swaths of the asso-
ciation cortex, including aspects of the ventral and dorsal medial
prefrontal, posteromedial/retrosplenial, and inferior parietal cortices,
representing a functional hierarchy that spans fromprimary visual and
somato/motor areas through the default network34 (Fig. 2A), which
underpins self-referential processing and core aspects of mental
simulation54–56. Conversely, the second gradient peaked within unim-
odal networks, revealing a spectrum differentiating the somato/motor
and auditory territories from the visual system (Fig. 2B). Lastly, the
peak values in the third gradient (Fig. 2C) reflected a distinction
between the frontoparietal network, spanning aspects of dorsolateral

A. Dataset and features

B. Participants classification

C. Groups characterization 

Human Connectome Project (HCP)
(n=995; 527 females; 110 left-handers)

Individual functional features

atypical mild typical strong typical

Hierarchical clustering 

Inter-hemispheric rZβHubs asymmetryβNetwork asymmetry Strength sumStrength asymmetry

Clusters profile

βNetwork asymmetry
0 4-3

Strength sum
186

Strength asymmetry
3-2 0

Inter-hemispheric rz

0.90.3
βHubs asymmetry

0 6-5

Fig. 1 | Identification and characterization of language lateralization in 995
HCP participants. Overview of preprocessing workflow. A The five individual
functional metrics used to derive the sentence-processing supramodal network26.
The average BOLD asymmetries values in the story-math contrast both at the
network level (βNetwork asymmetry) and hubs level (βHubs asymmetry), the average
homotopic inter-hemispheric intrinsic correlation at the network level (inter-
hemispheric rz), and both the asymmetry (strength asymmetry) and the sum
(strength sum) of the average strength at the network level. B Hierarchical clus-
tering resulted in the identification of three populations with varying degrees of
language organization. Consistent with prior work26, the first cluster with strong

leftward asymmetrieswasnamed strong typical (n = 480,36 left-handers, orange in
the dendrogram), the second cluster exhibitingmoderate leftward asymmetrywas
labeled mild typical (n = 433, 48 left-handers, purple in the dendrogram), and the
third with strong rightward asymmetries was named atypical (n = 82, 26 left-han-
ders, blue in the dendrogram). (C) Raincloud plots display the five functional
metrics within each identified group (nstrong typical = 480, nmild typical = 433,
natypical = 82). rZ, Fisher z-transformation correlation. Graphs display the density
and boxplot (lower and upper hinges correspond to the 1st and 3rd quartiles, the
middle line the median) of the five functional metrics values. Source data are
provided as a Source Data file (see Data Availability).
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prefrontal, dorsomedial prefrontal, lateral parietal, and posterior
temporal cortices, and the default network57, placing the brain systems
that underpin internally oriented cognition and those that coordinate
responses to external task states and support complex cognition58,59

along distinct ends of this organizational axis.
For each participant, functional network gradient asymmetry

values correspond to the difference between the normalized gradient
values in the left hemisphere minus the gradient values in the right
hemisphere, averaged across all network parcels. Broadly, within the
mild and strong typical groups, the first gradient showed a leftward
asymmetry for 5 of the 7 canonical networks (average asymmetry values
ranging from µL-R(typical) = 1.11 to µL-R(typical) = 4.09). The somato/motor
network was symmetrical (µL-R(typical) = 0.01, CI95% =0.24). The control
network was strongly right lateralized (µL-R(typical) = −6.21, CI95% =0.59)
which may align with previous results on attention60. Conversely, the
second gradient displayed a more heterogeneous pattern. Here, the
gradient values within the control network (µL-R(typical) = −2.93,
CI95% =0.36) were right lateralized, as well with the somato/motor
(µL-R(typical) = −2.52, CI95% =0.41), limbic (µL-R(typical) = −0.63, CI95% =0.48),
and default networks (µL-R(typical) = −0.54, CI95% =0.26). The visual net-
work was symmetrical (µL-R(typical) = −0.24, CI95% =0.29), and the dorsal
(µL-R(typical) = 0.88, CI95% =0.54) and ventral (µL-R(typical)=1.26,
CI95% =0.45) attention networks were left lateralized. Finally, the third
gradient was primarily right lateralized or symmetrical, with the default
(µL-R(typical) = −1.20, CI95% =0.73), limbic (µL-R(typical) = −2.53, CI95% =0.71)
and salience/ventral attention networks (µL-R(typical) = −4.26,
CI95% =0.63) rightward dominant, and the control (µL-R(typical) = −0.77,
CI95% =0.90), dorsal attention (µL-R(typical)l = −0.61, CI95% =0.67) and
somato/motor networks (µL-R(typical) = 0.34, CI95% =0.34) symmetrical.
The visual network was the only leftward lateralized network for the
third gradient (µL-R(typical) = 0.53, CI95% =0.28). See Supplementary
Table 7 for a complete description of each network’s typical gradient
asymmetry values.

An important unanswered question is whether the broad and
dissociable gradient asymmetries observed in individuals with typical
and atypical language organization are uniformly distributed across
the cortical sheet, or whether they are preferential to specific func-
tional systems. Accordingly, we next tested the extent to which
asymmetric profiles of network connectivity are evident within the
atypical language participants. Here, mild and strong typical groups
weremerged into a single typical group26 (n = 913, 84 left-handers) and
next contrasted with the atypical participants (n = 82, 26 left-handers).
Broadly, with exception of the limbic network, analyses of covariance
revealed a preferential association between language lateralization
and the asymmetric organization of association cortex networks,
relative to unimodal systems across each of the three gradients (Fig. 3).
These data suggest that the lateralization of language functions are
carried throughout the ‘association centres’ originally hypothesized by
Paul Flechsig to underpin higher cortical functions and complex
associative processing in humans61. See Supplementary Tables 8–10
for a full description of all the confound effects on gradient asymme-
tries, and Supplementary Table 7 alongside Supplementary Fig. 1 for a
full description of each network gradient asymmetries values for both
the typical and atypical groups.

Specifically, in the first gradient, five of the seven networks exhib-
ited a significantmain effect of language lateralization (all p <0.002), of
which 2 of them exhibited a shift in their lateralization from left to right
dominant: the default network (µL-R(atypical) = −1.62, CI95% = 1.00) and the
salience/ventral-attention network (µL-R(atypical) = −1.65, CI95% = 1.05). The
dorsal-attention (µL-R(atypical) = 1.56, CI95% = 1.11) and the visual network
(µL-R(atypical)=0.67, CI95% =0.53) showed a weakened dominance in the
left hemisphere. The control network (µL-R(atypical) = −9.21, CI95% = 1.21)
was characterized by an increase in its dominance in favor of the right
hemisphere. Those alterations in the hemispheric dominance mainly
came froman increaseof the gradient values in the right hemisphere for
all thenetworks impactedby thephenotype, except thedefault network
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Fig. 2 | Average dominant gradients of functional connectivity across the
cortical sheet. The first three components resulting fromdiffusion embedding
of the functional connectomeconnectivitymatrix (asdefinedbyMargulies and
colleagues31, dimension reduction technique = diffusion embedding, kernel =
normalized angle, sparsity = 0.9). A The principal gradient of connectivity tran-
sitioning from the unimodal (blue) to the association cortex (red). The proximity of
colors reflects the similarity of connectivity patterns across cortex. The scale bar

reflects z-transformed principal gradient values42 derived from connectivity
matrices using diffusion map embedding. B The second gradient primarily differ-
entiates the somato/motor and auditory cortex (blue) from the visual system (red).
CThe thirdgradient reflects a network architecture contrasting frontoparietal (red)
from default and somato/motor systems (blue).D Brain organization according to
the 7 canonical networks identified in Yeo et al.139 overlaid on the AICHA atlas
parcels48.
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for which the change came fromadecrease of the gradient values in the
left hemisphere.

Three networks showed a significant impact of language
lateralization within the second gradient (all p < 0.006), the
default (µL-R(atypical) = −1.58, CI95% = 0.53) and control networks
(µL-R(atypical) = −4.26, CI95% = 0.74) exhibited an increase in their
rightward dominance, both coming from a mixed effect of an
increase of their gradient values in the right hemisphere and a
decrease in the left hemisphere. The salience/ventral-attention
network (µL-R(atypical) = −0.17, CI95% = 0.92) showed a symmetrical
pattern in atypical individuals instead of being leftward dominant,
coming from a decrease in its gradient values in the left hemisphere.
Of the four remaining networks, two showed rightward lateraliza-
tion: somato/motor (µL-R(atypical) = −1.28, CI95% = 1.28), and limbic
(µL-R(atypical) = −1.77, CI95% = 0.99), and the two last ones were

symmetrical: dorsal-attention (µL-R(atypical) = 0.52, CI95% = 1.10), and
visual (µL-R(atypical) = 0.29, CI95% = 0.61).

Finally, four of the seven networks for the third gradient sig-
nificantly impacted by the language lateralization phenotype (all cor-
rected p < 10−4) showed an increase in their asymmetry in favor of the
left hemisphere. The default (µL-R(atypical) = 9.05, CI95% = 1.52), control
(µL-R(atypical) = 8.51, CI95% = 1.87), and limbic networks (µL-R(atypical) = 1.57,
CI95% = 1.47) became significantly left asymmetric through an increase
of their gradient values in the left hemisphere and a decrease in
the right. The salience/ventral-attention one showed a bilateralization
(µL-R(atypical) = 1.25, CI95% = 1.31) of its functional architecture coming
from a decrease of its gradient values in the right hemisphere. The 3
remaining networks did not show significant differences compared to
typical organization (all p >0.01) and were all leftward symmetrical:
dorsal-attention (µL-R(atypical) = 1.50, CI95% = 1.39), somato/motor
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Fig. 3 | Language lateralization is evident throughout the macroscale organi-
zation of the cortex. A–C Network-level asymmetry (leftminus right hemisphere)
of the first three gradients for each language lateralization group. Colors reflect
brain organization according to the 7 canonical networks139 averaged across cor-
responding AICHA atlas parcels48. Graphs display the density and boxplot (lower
andupper hinges correspond to the 1st and 3rd quartiles, themiddle line themedian)
of individual gradient asymmetry values for the typical (magenta, n = 913) and
atypical (teal, n = 82) groups. D The 2D grid displays the extent of language

lateralization for each gradient and functional network. Values reflect the post-hoc
t-statistic of the typicality main effect from ANCOVA. Post-hoc analyses were con-
ducted using a two-sided Student’s t-test. Colored cells display significant uncor-
rected effects (p ≤0.05). Cells with a star are significant after Bonferroni correction
for network number (n = 7, p ≤0.007). In these analyses, each individual gradient
has been scaled between 0 and 100. Source data are provided as a Source Data file
(see Data Availability).
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(µL-R(atypical) = 0.84, CI95% = 0.71), and visual (µL-R(atypical) = 1.12,
CI95% = 0.58).

Heritability of language lateralization and gradient asymmetry
Population-based neuroimaging studies have revealed the influence of
genetic factors on the connectivity strength62, size, and spatial
organization63 of large-scale cortical networks. However, although
prior work has begun to catalog the evolution64, development49,65, and
organization66,67 of the brain’s functional architecture, the role of
genetics in sculpting the lateralization of cognitive functions and
associated asymmetries in the macroscale organization of cortex has
remained largely unexplored. Prior work has established the herit-
ability of gradient asymmetries in humans, an aspect of cortical
organization likely present across non-human primates44. Other stu-
dies have highlighted the association between differences in structural
asymmetry in left- and right-handed people and the genetic basis of
their manual preference68, as well as the genetic basis of structural
asymmetries69. Here, to advance our understanding of the biological
bases of hemispheric specialization, weworked to determine heritable
sources of variation that may govern the lateralization of both loca-
lized language functions and functional gradient asymmetries across
the cortical sheet69.

Leveraging a twin-based estimate of heritability, our analyses
suggest that both the lateralization of the language network, as
assessed through the hierarchical classification approach (h2 = 11.2%,
SE = 6%, p =0.038), and the hemispheric asymmetries in gradient
organization, reflecting the difference in gradient values between the
left and right hemisphere (Supplementary Table 11, G1: 14.4%, SE = 6%,
p =0.007; G2: 2.0%, SE = 5%, p = 0.36; G3: 24.0%, SE = 6%, p < 10−4), are
under genetic control. Heritability of gradient asymmetry values for
each network was estimated using sequential oligogenic linkage ana-
lysis routines (SOLAR70) and covaried for age, sex, age2, age × sex, age2

× sex, handedness, and FreeSurfer-derived intracranial volume. Prior
work examining connectivity strengths and the network topographies
indicates reduced heritability in the size63 and connectivity strength62

of heteromodal association networks, relative to unimodal sensory/
motor cortex. In contrast, with the exception of the limbic network,
the present analyses revealed the influence of genetic factors on the
gradient asymmetries across each association cortex network.

Notably, genetic factors did not significantly account for the later-
alization of gradient values within somato/motor and visual territories
and heritability was significantly greater (Fig. 4; p < 10−3) within het-
eromodal (h:2 µ = 18.5%, SD = 7.7%) association cortices than within
unimodal networks (h:2 µ = 5.5%, SD = 3.8%). Overall, these data reveal
the substantial influenceof genetic factors on the lateralization of both
specific cognitive functions and the broad functional organization of
the cortex. These results are consistent with the hypothesis that neu-
ronal asymmetries likely developed under phylogenetic pressure, and
therefore possess a genetic basis71.

Discussion
Our present study reveals that asymmetrical language network orga-
nization is broadly reflected throughout the global connectivity
structure of the cerebral cortex. Using task-evoked and resting-state
data, we identify a pattern of atypical language network lateralization
and corresponding alterations in functional coupling across the cor-
tical sheet in ~8 percent of individuals. These group-level changes in
connectivity are preferential to transmodal association cortex and
heritable, providing evidence that both the lateralization of the cor-
tical territories supporting language and the associated functional
processing streams they are embedded within are under genetic
control. Together, this work advances our understanding of the rela-
tionship between the localized hemispheric specialization of specific
behaviors and the hierarchical functional axes that capture the topo-
graphic organization of large-scale cortical networks.

Hemispheric specialization reflects a core property of human
cognition and a marker of successful development. In most indivi-
duals, the left hemisphere is specialized for language and motor con-
trol of their dominant hand, whereas the right hemisphere plays a
preferential role in visuospatial processing72,73. Across development,
the maturation of lateralized functions is associated with improved
visuospatial and language abilities and enhanced cognitive
efficiency74,75. Although the precise timing of these developmental
cascades remains largely unknown14,16, some markers of lateralization
are already apparent during gestation, for instance the leftward
asymmetrical folding of the Sylvian fissure76. At birth, intra-
hemispheric white matter connectivity across the language network
is reduced in favor of strong inter-hemispheric coordination77, an
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organizational property that is consistent with the presence of pro-
minent homotopic intrinsic connectivity from 3 to 6 months of life78.
Suggesting a complex developmental picture that is sensitive to task
state, when newborns are presented with spoken words they exhibit a
left-lateralized asymmetric response, whereas brain connectivity at
rest remains evenly distributed across hemispheres79. Although mul-
tiple factors appear to contribute to the emergence of lateralized
functions80, atypical language organization and more globally atypical
functional lateralization are preferentially evident in individuals with
neurodevelopmental, psychiatric, and/or neurological disorders11,22,81,
such as autism82–85 and schizophrenia86,87. Here, in a population of
healthy young adults, we observed atypical lateralization in a sizable
minority of the study sample. Critically, although individuals with
language and/or cognitive impairments often present with altered
cerebral lateralization, the vast majority of people with atypical lan-
guage lateralization have no corresponding cognitive deficits88,89, or
exhibit slightly lower visuospatial and verbal memory performance
compared to strong leftward lateralized individuals26. As such,
understanding the interactions linking the biological underpinnings of
language lateralization, cognition, and illness risk would have sig-
nificant implications for both developmental biology and cognitive
neuroscience22.

The cerebral cortex is composedof areal parcels, embeddedwithin
a set of distributed large-scale networks, and positioned within corre-
sponding processing streams1,33,34,90. Cortical networks exhibit a parallel
and tightly interdigitated organizational structure. As a result, the lan-
guage system may impinge upon, and be influenced by, putatively
distinct yet spatially adjacent networks91. Extending upon recent evi-
dence indicating that regional anatomical asymmetries are reflected
throughout the entire brain92,93, our analyses revealed a relationship
between the lateralization of language functions and the sweeping
functional gradients that capture the topography of large-scale net-
works across cortex. These results are consistent with mounting evi-
dence suggesting an association between language lateralization and
asymmetry in functional connectivity at rest94,95, with local brain effi-
ciency in atypical individuals96, and with the presence of individual-
specific functional deviations, or “network variants,” that systematically
differ across hemispheres97. Of note, across all three gradients the
observed differences between the typical and atypical groups were
preferential to association networks. Over the course of vertebrate
evolution, the evolutionary enlargement of the cortical mantle in pri-
mates has been preferentially localized within spatially distributed
aspects of association cortex, relative to the primary and secondary
sensory systems, perhaps allowing for the development of novel cap-
abilities independent from the primary senses64,98. The present profile
of results is consistent with literature indicating hemispheric asymme-
tries for both language and attentional allocation as well as theories
suggesting that phylogenetically expanded aspects of cortex, for
example inferior parietal lobule, reflect the cortical territories with the
most prominent structural and functional asymmetries in humans99.
Critically, our analyses cannot establish the specific biological cascades
that influence the emergence of atypical language laterality or corre-
sponding shifts in the broad functional architecture of cortex. Rather,
these data highlight the importance of future work to identify under-
lying processes that contribute to the development of functional
asymmetries throughout the cortical sheet and associated hemispheric
differences in information processing. Across each of the three main
gradients, the lateralization of language appeared to preferentially
reverberate throughout the functional architecture of association cor-
tex. Although speculative, the present analyses suggest that the later-
alization of isolated functions, such as language, may be tightly tied to
the lateralization of a host of other seemingly independent processes.

The genetic origin of language capacities100, and other properties
of hemispheric specialization reflect a fundamental question in cog-
nitive neuroscience with clear relevance for the study of both health

and disease12. Prior work indicates that intrinsic connectivity between
language related regions101, as well as evoked brain activations during
language tasks102, are heritable. Our present analyses indicate a clear
genetic basis for population-level patterns of language lateralization
and corresponding features of cortical organization. These results are
consistentwith recentworkhighlighting that the genetic contributions
to variation in handedness are complex andpolygenic103,104, suggesting
diverse biological pathways may converge in the atypical
phenotype105,106. Here, the heritability of gradient asymmetries were
evident across the cortical sheet, preferential to functional networks
within association territories. Prior work has revealed core principles
that govern the evolution, development, and organization of large-
scale brain networks. Broadly, in contrast to our present analyses,
these data have suggested relaxed genetic control of association cor-
tices relative to primary sensory/motor regions63. A profile of herit-
ability that is consistent with the presence of increased population-
level variability in functional connectivity107, relative network sizes, and
topographic network similarity in association relative to unimodal
cortex63,108–110. The discovery of the increased influence of genetic
factors on the gradient asymmetries across each association cortex
network raises the possibility that, despite the broadly reduced herit-
ability of association cortex functions, features of brain lateralization
remain preferentially influenced by genetics. One speculation is that
our present results reflect two partially distinct developmental paths,
first an initial genetically mediated developmental cascade biasing
fundamental aspects of brain lateralization. Second, once the geneti-
cally mediated plan is laid out, the subsequent protracted develop-
ment of association cortex functions provides for a period of
prolonged plasticity and increased sensitivity to environmental
inputs111,112.

Although the present results provide evidence that atypical lan-
guage network organization is linked to widespread properties of
cortical organization, there are several limitations with our approach.
First, the causal pathways linking the lateralization of the putatively
distinct cognitive processes with broad features of brain functioning
remain to be established. We are unable, for instance, to examine
atypicalities in the lateralization of attentional processes. Additionally,
given the cross sectional nature of the study data, we are not able to
establish the developmental course linking atypicality in language
lateralization with the development of global brain architecture. As
such, the manner through which lateralized functions impinge upon,
and are in turn influenced by, other properties of brain organization
across development remains an open question. From a methodologi-
cal perspective, the HCP database contains only one language com-
prehension task46. Of note, brain responses to language
comprehension have been shown to share consistent lateralization
patterns with other language tasks113. Additionally, although an audi-
tory task exhibits less lateralization than a production task (which is
themost lateralized task) or a reading task, it still significantly activates
and lateralizes the language network in the left hemisphere8. In line
with this, asymmetries observed during language tasks, compared to a
high reference condition, serve as a suitable marker for determining
language dominance114. Furthermore, incorporating asymmetries at
the hubs (Broca’s and Wernicke’s areas) increases the amplitude of
asymmetries in the comprehension task. Finally, our prior work
showed that combining resting and task metrics is essential to accu-
rately identify atypical individuals26. Additionally, from a clinical per-
spective, the potential relationships linking aphasias with
corresponding shifts in the global functional architecture of cortex
have yet to be established and warrant further study115,116.

The extent to which the lateralization of specific cognitive func-
tions may be evident across the macroscale organizational properties
of the cortical sheet is a central question across the brain sciences. The
present results demonstrate that asymmetric language network orga-
nization is carried throughout the association cortex. While the exact
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determinants of lateralization mechanisms are still unknown, both the
hemispheric specialization of language and corresponding asymme-
tries across the sweeping functional gradients that span cerebral cor-
tex were found to be heritable. Here, the lateralization of heteromodal
association cortex networks under increased genetic control, relative
unimodal networks. The further study of this entangled relationship
between language lateralization and broader properties of functional
network organization has the potential to shed light on the phenom-
enon of cerebral dominance thought to underpin sophisticated cog-
nition in humans117 as well as neuropsychiatric and neurological
disorders with known alterations in brain laterality118,119.

Methods
HCP participants
The study sample was part of the S1200Release (updated April 2018)
of the WU-Minn Human Connectome Project (HCP) database that
has been fully described elsewhere45. From 1206 healthy partici-
pants, participants with fully completed 3 T language and 3 T
resting-state fMRI protocols were selected, resulting in a total of 995
participants (477 women). The mean educational level of partici-
pants was 14.97 years (SD = 1.77 years). The sample mean age was
28.70 years (SD = 3.71 years). Participants’ handedness was defined
based on the manual preference strength assessed with the Edin-
burgh inventory:120 participants with a score below 30 were con-
sidered left-handers121,122, right-handers otherwise. The values for
Edinburg Inventory (EHI) scores can be found in the HCP database’s
restricted demographic file under the variable name “Handedness”,
which is accessible only to authorized users. It is worth noting that
the HCP’s EHI score includes one foot-related item among its ten
items. As a result, it does not solely measure manual preference.
Analyses using a corrected EHI score123 that excludes the foot-related
item yield consistent results (see supplementary material: Replica-
tion of results using a different Edinburgh score section). The sample
contained 110 left-handed participants (50 women), leading to a
sample broadly representative of the general population122,124. Data
collection was approved by a consortium of institutions institutional
review boards (IRBs) in the United States and Europe, led by
Washington University (St Louis) and the University of Minnesota
(WU-Minn HCP Consortium). The current study was approved by the
Yale University IRB.

MRI data preprocessing
HCP datasets used include two main imaging sessions. Data were
acquired using multiband echo-planar imaging (EPI) on a custo-
mized Siemens 3 T MRI scanner (Skyra system). Structural data
consisted of one 0.7mm isotropic scan. (1) Two sessions (REST1 and
REST2) of resting-state fMRI (rs-fMRI), where each session com-
prised two runs (left-to-right, and right-to-left, phase encoding) of
14min and 33 s each (repetition time (TR) = 720ms, echo time
(TE) = 33.1 ms, voxel dimension: 2mm isotropic). Details on rs-fMRI
can be found elsewhere125. (2) Task fMRI (t-fMRI) data were acquired
using the identical multiband EPI sequence as the rs-fMRI session.
Among the 7 contrasts, only the StoryminusMath contrast was used.
Details on the protocol are available elsewhere46. The language-
related protocol was developed by Binder and colleagues126. Briefly,
the contrast consisted of comparing comprehension of brief narra-
tives (Story task) with a semantically shallow control task involving
serial arithmetic (Math task). Two runs were performed each con-
sisting of 4 blocks of a Story interleaved with 4 blocks of aMath task.
Each run was 3.8min long.

Minimally preprocessed volumetric rs- and t-fMRI data were
sourced from the online HCP repository through Amazon Web Ser-
vices (AWS). Details of the minimal preprocessing pipeline can be
foundelsewhere127. TheR libraryneurohcp128 wasused to interfaceAWS
S3 bucket (R package version: 0.9.0). The R library RNifti129 (R package

version: 1.3.1) and oro.nifti130 (R package version: 0.11.4) were used to
read and handle the fMRI data.

The 995 individuals have been coregistered using MSM-All pipe-
line. t-fMRI data are represented in the HCP 32k_LR MNI surface
space131, since volume-smoothed level 2 t-fMRI analysis results are no
longer being distributed. rs-fMRI data are represented in the MNI
volumetric space.

Language atlas statistics
Preprocessed data were analyzed to compute 5 functional features
characterizing the high-order language network. These 5 features have
been previously shown to accurately determine the language network
typicality26.

The high-order language atlas (SENSAAS) has been fully described
elsewhere8. Briefly, 18 regions of interest corresponding to the core
language network have been selected from the language atlas. The
core language network corresponded to a set of heteromodal brain
regions significantly involved, leftward asymmetrical across 3 lan-
guage contrasts (listening to, reading, and producing sentences), and
intrinsically connected. It should be noted that the language atlas was
based on the AICHA atlas, a functional brain atlas optimized for the
study of functional brain asymmetries48.

First, two of the 5 features were computed from the t-fMRI data.
For each individual, the native volumetric language atlas has been
mapped to the closest mid-thickness surface vertex using tools from
the HCP workbench132. The surface language atlas was then used as a
binarymask to estimate the average BOLD signal variation of language
networks in both hemispheres for the StoryminusMath contrast. The
average asymmetry of activations was then measured by computing
the difference between the left and right hemispheres (left-right). The
same process has been repeated to estimate the average asymmetry at
the hub level. A description of language hubs can be found in Labache
and colleagues8. Briefly, the language network hubs corresponded to
the inferior frontal gyrus (Broca’s area) and to the posterior aspect of
the superior temporal sulcus (corresponding to Wernicke’s area).

Second, the 3 other features were computed from the rs-fMRI
data. For each of 4 rs-fMRI scans, each individual and each of 18 lan-
guage regions, an individual BOLD rs-fMRI time series was computed
by averaging the BOLD fMRI time series of all voxels locatedwithin the
region’s volume. An intrinsic connectivity matrix was then calculated
for each of 995 individuals and scans. The intrinsic connectivity matrix
off-diagonal elements were the Pearson correlation coefficients
between the rs-fMRI time series of regionpairs. For each individual, the
4 connectivity matrices were z-transformed prior to being averaged
and r-transformed with a hyperbolic tangent function. The 4 scans
were averaged to increase the signal-to-noise ratio and reliability for
generating individual functional connectivity matrices133. For each
individual and each region, the strength, or centrality degree, was
computed in each hemisphere. The strength was calculated as the sum
of the correlations existing between one region and all the 18 others.
Strength values were then averaged across the 18 regions of the same
hemisphere and the resulting left and right averaged strength values
were summed. The left minus right differences were also computed.
Finally, the inter-hemispheric connectivity strength was estimated in
each individual by averaging across the 18 region pairs of the z-trans-
formed intrinsic correlation coefficient between homotopic regions.

Connectivity embedding
For each participant, values were obtained for the first 3 functional
gradients. The gradients reflect participant connectivity matrices,
reduced in their dimensionality through the approach of Margulies
and colleagues31. Functional gradients reflect the topographical orga-
nization of cortex in terms of sensory integration flow as described by
Mesulam134. Gradientswere computed using Python135 (Python version:
3.8.10) and the BrainSpace library136 (Python library version: 0.1.3).
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Gradients computed at both the regional and vertex level showed
similar performance136.

Average region-level functional connectivity matrices of the
4 scans were generated for each individual across the entire cortex (i.e.
384 AICHA brain regions, same process as for the language con-
nectivity matrices). Consistent with prior work, the top 10% connec-
tions of each region were retained, and other elements in the matrix
were set to 0 to enforce sparsity31,49. The normalized angle distance
between any two rows of a matrix was calculated to obtain a symme-
trical similarity matrix. Diffusion map embedding50,137,138 was imple-
mented on the similarity matrix to derive the first 3 gradients. Note
that the individual-level gradients were aligned using Procrustes
rotation (Niterations=10) to the corresponding group-level gradient. This
alignment procedure was used to improve the similarity of the
individual-level gradients to those from the prior literature. Min-max
normalization (0-100) was performed at the individual level for the
whole brain42.

To keep the subsequent analysis circumscribed to large-scale
network brain organization, gradients values have been averaged, for
each participant, according to each of the 7 canonical networks
described by Yeo and colleagues139. Prior to the averaging step, each
AICHA region has been assigned to one of the 7 canonical networks
based on its spatial overlap with a given network. Gradient asymmetry
was then computed for each participant and region. For a given net-
work, gradient asymmetry corresponded to the difference between
the normalized gradient value in the left hemisphere minus the gra-
dient values in the right hemisphere.

Statistical Analyses
Statistical analysis was performed using R140 (R version: 4.1.0). Data
wrangling was performed using the R library dplyr141 (R package ver-
sion: 1.0.10). Brain visualizations were realized using Surf Ice142.

An overview of our experimental workflow is shown in Supple-
mentary Fig. 2.

Language lateralization identification. Using the same methodology
as by Labache and colleagues26, the 995 participants have been clas-
sified using agglomerative hierarchical clustering. Eachparticipantwas
characterized according to their language network organization. Lan-
guage network was described by 5 features: network- and hubs-level
asymmetry during the language task, sum and asymmetry of strength,
and homotopic inter-hemispheric connectivity value at rest.
Hierarchical classification allowed for the identification of language
lateralization for each individual. Briefly, hierarchical agglomerative
clustering143 was performed using Euclidean distance as metric and
Ward’s criterion as linkage criteria144. Each variable was standardized
before classification.

We employed an unsupervised methodology to determine the
optimal number of clusters. Combining results from the R package
NbClust145 (R package version: 3.0.1) and pvclust146 (R package version:
2.2.0), we selected a 3-cluster solution (strong typical,mild typical, and
atypical), whichwas shown to reproduceour previous results26. pvclust
showed that the 3-cluster solution was stable (Approximately
Unbiased p-value = 0.98, CI95% = ±0.002). Furthermore, among the 26
indices used by NbClust to evaluate the stability of different clustering
schemes, the 3-cluster partitionwas the secondmost supported,with 5
indices in its favor. The most supported partition was a 4-cluster
solution with 11 indices. This would have led to the partitioning of the
strong typical group, which was deemed unnecessary as it would not
have provided new insights to the aim of this study. The 3 clusters
defined the language lateralization phenotype.

Using analysis of covariance, the broader relationship between
language lateralization and the 5 features was assessed. Each of the 5
models was specified as follows: the features were the dependant

variable, language lateralization phenotype was the independent
variable, age, intracranial volume (FreeSurfer-derived), gender, and
handedness as covariate, as well as the interaction handedness × lan-
guage lateralization phenotype. Post-hoc analyses were conducted
using Tukey’s range test for multiple comparisons (to account for the
number of language lateralization phenotype: strong typical, mild
typical, and atypical), or Student’s t-test for binary ones. The reported
p-values in the corresponding Results section are corrected for multi-
ple comparisons.

Language Lateralization impact on gradient asymmetry. Analysis of
covariance was used to assess the broader relationship between lan-
guage lateralization and lateralization of large-scale cortical organiza-
tion, modeled by gradient asymmetry. For each gradient and network,
the model was specified as follows: gradient asymmetry for a given
network and a given gradient was the dependant variable, language
lateralization phenotype was the independent variable, age, intracra-
nial volume (FreeSurfer-derived), gender, and handedness as covari-
ate, as well as the interaction handedness × language lateralization
phenotype. Bonferroni correction of significance thresholds was used
to account for 7 independent tests of a given gradient. Post-hoc ana-
lyses were conducted using the Student’s t-test. The reported p-values
in the corresponding Results section are not corrected for multiple
comparisons and are significant if less than 0.007.

Heritability of Gradient Asymmetry and Language Lateralization
Phenotype. Heritability is a statistic indicating to what extent the
variation in a phenotypic trait is accounted for by the combined effects
of genetic variations over the genome of a population. Heritability
estimates range from 0 to 1. The heritability of gradient network
asymmetry was estimated using SOLAR70 (version: 9.0.0) through the
R package solarius147 (R package version: 0.3.2), covarying for age, sex,
age2, age × sex, age2 × sex, handedness, and FreeSurfer-derived intra-
cranial volume. Bonferroni correction of significance thresholds was
used to account for 7 independent tests of heritability. Heritability of
language lateralization phenotype (i.e. being typical or atypical) was
also assessed using the same covariates.

Heritability estimates were conducted on 989 HCP participants,
composed of 130 MZ twins (n = 260), 70 DZ twins (n = 140), non-twin
siblings (n = 479), and unrelated singletons (n = 110).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study used publicly available data from the HCP (https://www.
humanconnectome.org/). Data can be accessed via data use agree-
ments. The language atlas is available here: https://github.com/
loiclabache/SENSAAS_brainAtlas. Source data are provided with this
paper and are also available here: https://github.com/loiclabache/
Labache_2022_AO/tree/main/Data. Source data are provided with
this paper.

Code availability
The code used in theMethod section to process the data from theHCP
and reproduce the results and visualizations can be found here:148

https://github.com/loiclabache/Labache_2022_AO.
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