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Analysis and modeling of cancer drug
responses using cell cycle phase-specific
rate effects

Sean M. Gross1,3, Farnaz Mohammadi 2,3, Crystal Sanchez-Aguila1,
Paulina J. Zhan1, Tiera A. Liby 1, Mark A. Dane 1, Aaron S. Meyer 2,4 &
Laura M. Heiser 1,4

Identifying effective therapeutic treatment strategies is a major challenge to
improving outcomes for patients with breast cancer. To gain a comprehensive
understandingof howclinically relevant anti-cancer agentsmodulate cell cycle
progression, here we use genetically engineered breast cancer cell lines to
track drug-induced changes in cell number and cell cycle phase to reveal drug-
specific cell cycle effects that vary across time.Weuse a linear chain trick (LCT)
computational model, which faithfully captures drug-induced dynamic
responses, correctly infers drug effects, and reproduces influences on specific
cell cycle phases. We use the LCT model to predict the effects of unseen drug
combinations and confirm these in independent validation experiments. Our
integrated experimental andmodeling approachopens avenues to assess drug
responses, predict effective drug combinations, and identify optimal drug
sequencing strategies.

Effective treatment of cancer requires drug combinations1; however,
rational identification of effective combination therapy regimens
remains challenging2–5. Many anti-cancer agents are designed to
impact cell proliferation and viability, which suggests that incorpor-
ating information about how individual drugs modulate cell cycle
behavior can lead to improved predictions about drug combination
effects. Themammaliancell cycle is typically separated into four linked
phases (G1, S, G2, and M) with multiple checkpoints (restriction point,
DNA damage checkpoint, and the spindle assembly checkpoint)6–9,
each relying on distinct molecular programs which results in minimal
correlation between cell cyclephasedurations in individual cells10. This
independence between phases and checkpoints has implications for
cancer treatment because many cancer drugs directly target different
aspects of the cell cycle; for example, CDK4/6 inhibitors block pro-
gression out of G1 phase

11, while the nucleoside analog gemcitabine
activates the DNA damage checkpoint by targeting DNA synthesis
during Sphase12. Together, these findings imply that drug-induced

changes to cell numbers can be achieved through distinct cell cycle-
dependent molecular mechanisms. For example, these observations
suggest that combing two drugs that each reduce the rate of G1 pro-
gression will lead to deeper reductions in the rate of G1 progression,
rather than an increase in cell death. Further, this framework also
predicts dose-dependent impacts, for example: at sub-saturating
doses, G1 effects will add together to reduce cell numbers while at
higher saturating doses the cell number will peak at the maximum
cytostatic effect. This general idea of drug combination efficacy was
recently explored in a study of the multi-drug CHOP protocol, which
showed that the effectiveness of this drug combination for treatment
of non-Hodgkin Lymphoma could be attributed to the fact that each
agent hadnon-overlapping cytotoxic effects13. The effectiveness of the
CHOP protocol also demonstrates the benefit of drug combinations to
improve patient outcomes. Considering both cell cycle and cell death
effects in greater detail, therefore, has the potential to significantly
improve drug combination predictions.
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The classic approach to quantifying drug response assumes that
cells are undergoing exponential growth at the time of drug treatment
and then calculates the number of cells 72H after drug addition6,14–16,
however more recent approaches have used multiple markers to gain
more detailed insights into drug effects17,18. Other approaches to
quantify drug response include compartmental models such as phar-
macokinetic and pharmacodynamic (PK-PD) models that consider
drug uptake and population dynamics19. Recent advances in metho-
dological and quantitative approaches enable assessment of the
impact of therapies on cell growth rates, rather than static cell
counts20, which yields more robust correlations between molecular
features and drug sensitivity20,21. While growth rate approaches sig-
nificantly improve quantification, they provide limited information
about cell cycle effects. A related approach, fractional proliferation,
which models the number of cycling, quiescent, and dying cells in a
drug-treated population, incorporates growth rates and assumes that
cells irreversibly exit the cell cycle into quiescence22; however, recent
studies demonstrate that cells may not irreversibly exit the cell cycle
and instead may extend the duration of a specific cell cycle phase
before restarting progression through the cell cycle23. These prior
findings motivate our interest to deeply assess the influence of drugs
on specific cell cycle phases and progression through the cell cycle.

In this work, we quantify and incorporate cell cycle phase effects
in an analysis of drug responses. We use live-cell imaging of a panel of
molecularly diverse breast cancer cells engineered to express a cell
cycle reporter and track the dynamics of cell number and cell cycle
phase in response to single drugs and drug combinations. Across
single drugs, we observe distinct cell cycle effects that lead to similar
final cell numbers, with phase-specific responses that are oscillatory
over time due to their temporal impacts on the cell cycle. To describe
these responses, we develop a computational model that uses a linear
chain trick (LCT) to account for the delay from cell cycle phase transit
time upon drug treatment. The LCTmodel correctly infers single drug
responses across time as well as the drug-induced oscillatory cell cycle
dynamics. We use this model to predict the effect of unseen combi-
nations of drugs that impact different aspects of the cell cycle.
Experimentally testing several drug combinations validates that
responses are primarily determined by the specific cell cycle effects of
each drug pair. These studies reveal the complexity of cell behavior
underlying drug responses, provide mechanistic insights into how
individual drugs modulate cell numbers, and yield a framework to
rationally model and predict drug combinations.

Results
Drug treatments induce distinct changes in cell number and cell
cycle phasing
To track drug responses in individual cells, we genetically engineered
HER2+AU565 breast cancer cells to stably express the HDHB cell cycle
reporter23 and a nuclear-localized red fluorescent protein (Fig. 1A, B).
Cells were treated with escalating doses of five clinically relevant
breast cancer drugs, each targeting different cell cycle phases (Fig. 1C).
Cells were imaged every 30minutes for 96H and the number of cells in
each cell cycle phase and total cell numberswere quantified. Eachdrug
effectively reduced cell numbers in a dose-dependentmanner (Fig. 1D,
Supplementary Fig. 1). As expected, paclitaxel, gemcitabine, and dox-
orubicin led to cytotoxic effects indicated by the final cell numbers
dropping below the starting cell numbers (Fig. 1D)24,25. In contrast, at
the highest doses of palbociclib and lapatinib, final cell numbers were
approximately equal to the starting cell numbers, suggesting cyto-
static effects. For each drug, the pattern of cell counts varied across
time; at high doses responses tended to reach a peak and then decline
as the duration of drug exposure increased—an effectmostmarked for
30 nM gemcitabine where the relative cell number declined from 1.1 at
48H to 0.5 at 96H (Fig. 1D)20,21. The fraction of S-G2 cells varied over
time and showed both drug- and dose-specific effects (Fig. 1E, F).

For example, lapatinib and palbociclib initially reduced the fraction of
cells in S-G2 phase in a dose-dependent manner, whereas gemcitabine
and doxorubicin initially increased this fraction. Of note, intermediate
doses of lapatinib (50nM) andpaclitaxel (3 nM) inducedoscillating cell
cycle responses, with an initial S-G2 reduction near 30H, followed by a
second S-G2 reduction at 84H. In sum, this approach revealed drug-
specific cell cycle changes across time,whichconfirms that thesedrugs
yield similar final numbers through distinct impacts on the cell cycle.

A dynamical model captures drug-induced changes to cell cycle
behavior
A common approach to model drug effects assumes exponential
growth that varies as a function of drug dose26. This approach,
although informative, cannot explain the cell cycle dynamics descri-
bed above and motivated the development of a dynamical model to
capture the observed behavior. As an initial model, we defined a sys-
tem of ordinary differential equations (ODEs) with transitions between
G1 and S-G2. The parameters of the ODE model were the cell cycle
phaseprogression anddeath rates,whichwereassumed to followaHill
function with respect to drug concentration (Supplementary Table 1).
This model failed to fit the experimental data of G1 and S-G2 cell
numbers (Supplementary Fig. 2); furthermore, dynamical systems
theory dictates that this model is unable to oscillate under any rea-
sonable parameterization27.

To address these limitations and capture the observed oscillatory
temporal dynamics, we incorporated into the model the observations
that phase durations follow a gamma distribution and are
uncorrelated10 (Supplementary Fig. 3A). Gamma and related distribu-
tions model each cell cycle phase as a series of steps, with the key
feature that they can model processes wherein there is always some
measurable duration before a systemcanmove to the next state (e.g., a
cell progressing through the cell cycle).

The number of steps in each phase were determined by estimat-
ing the shapeparameter of the gammadistributionsfitted to single cell
measurements of G1 and S-G2 phase durations measured in the
untreated control condition28. This resulted in partitioning the G1

phase into 8 steps and S-G2 phase into 20 steps (Fig. 2A). We incor-
porated a linear chain trick (LCT) into our model, which creates
similarly-distributed time delays in the cell cycle phase durations
through a mean-field system of ODEs29. The model was further sim-
plified by sharing parameters that were not drug specific, such as the
number of cell cycle subphases and the initial fraction of cells in G1

phase. We then fit all five drug dose responses, varying the drug-
specific and shared parameters, simultaneously. Incorporation of this
component enabled the model to capture the experimentally
observed oscillatory cell cycle behavior and cell cycle phase-specific
drug effects. We computed the fitting error of the two modeling fra-
meworks by calculating the sum of squared error of the difference
between the data andmodel predictions across all concentrations and
observed that the LCTmodel had lower error terms (Fig. 2B). Thefits to
lapatinib and palbociclib were particularly improved by the model
refinement. Examples of dose-response curves and model fits for
lapatinib and gemcitabine are shown in Fig. 2C–H. Importantly, the
model captured the dose-dependent changes to G1 and S-G2 popula-
tions aswell as theoscillatory dynamics. Estimating the cell cycle phase
progression and death rates also enabled calculation of the accumu-
lated amount of cell death across time using inferred cell counts at
each phase (Fig. 2E,H). The LCTmodel also performed well for each of
the other drugs (Supplementary Fig. 4A–F).

The phase durations and cell death probabilities inferred from the
LCT model varied with drug treatment (Fig. 2I–L). Comparison of
inferred effects at the half maximum concentration (EC50) revealed
that lapatinib and palbociclib treatments lead to longer average G1

phase durations compared to untreated cells (Fig. 2I, J), a 10% higher
chance of cell death in G1 phase for lapatinib treated cells, and a slight
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chance of cell death in S-G2 after palbociclib treatment (Fig. 2K, L). The
model also inferred that gemcitabine induces an increase in S-G2

durations and greater chance of cell death in S-G2 phase as compared
to untreated cells (Fig. 2G, H). Finally, a 10% chance of cell death at
the EC50 concentration (2.4 nM) was inferred in late G2 phase for cells
treated with paclitaxel as compared to untreated controls (Fig. 2J and
Supplementary Fig. 3J).

Analysis of single cell responses confirms model inferences and
reveals drug-specific cell cycle phase effects
We developed model parameters from the average population
response at each timepoint, which facilitates robust model develop-
ment by leveraging information from a large number of cells. Impor-
tantly, as described above, the LCT model infers aspects of drug
responses that can be quantified at the individual cell level—including
cell cycle phase duration and cell cycle-specific death. We therefore
tracked single cells in the image time course data to quantify cell cycle

phase durations and also cell death events associated with specific
drug treatments and concentrations (Supplementary Fig. 3B). Quan-
tification of cell death events also enables direct assessment of whe-
ther drug effects are cytotoxic or cytostatic. The first complete cell
cycle was analyzed to examine early drug effects. We also quantified
the relative fate outcomes for the progeny of cells observed at time 0H
(relative to drug addition) that later underwent division, which pro-
vides insights into the influence of drug treatment on G1 and S-G2
durations (Supplementary Fig. 3C). As expected, in the untreated
condition, most cells (93%) present at 0H underwent cell division. In
contrast, at the highest lapatinib and gemcitabine doses, 32% and 61%
of the cells present at time 0H failed to divide. Additionally, of the cells
that did divide in these two conditions, only 10% underwent a second
division. For both drugs, lower doses showed more modest changes
in the fraction of cells that divided as compared to untreated. As
described below, we compared these experimentally-observed drug-
induced cell cycle effects to those inferred by the LCT model.
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Fig. 1 | Drugs induce dose- and time-dependent changes in cell cycle behavior.
A Schematic of reporterwith a bidirectional promoter driving expression of human
DNAHelicase B (HDHB) fused to the green fluorescent protein clover, and a second
transcript coding for NLS-RFP-NLS, a ribosome skipping domain (T2A), and a
puromycin resistance protein. BQuantification of nuclear intensity of the cell cycle
reporter in a cell and its progeny across time. The time of G1-S transition and cell
division are demarcated with black and red circles, respectively.C Schematic of the
five drugs tested and the cell cycle phase they target. D Average growth curves of
AU565 cells tracked every 30min for 96H across an 8-point dose response for

lapatinib, gemcitabine, paclitaxel, palbociclib, and doxorubicin. The null dose is
colored red. Line traces show the average from three independent experiments.
The black triangle indicates the addition of fresh drug and media. All doses in nM.
E Percentage of cells in S-G2 phase of the cell cycle across doses. 50 nM Lapatinib
and 3 nM paclitaxel are colored blue. Color scheme as in 1D. F Representative GFP
images at 39.5H for 250nM lapatinib, 30nM gemcitabine, 3 nM paclitaxel, 250 nM
palbociclib, 20nM doxorubicin from data plotted in D. Each experiment was per-
formed in triplicate and achieved similar results. Source data are provided on
Synapse.
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The model inferred that the predominant lapatinib effect was to
extend G1 durations from 22.3H in the untreated condition to 33.6H
and 47.4H for 25 nM and 50nM lapatinib, respectively (Fig. 3A).
Experimentally, G1 durations increased after lapatinib (mean26.2H and
32.5H with 25 nM and 50nM lapatinib, respectively) (Fig. 3A, B). We
also observed that as the dose of lapatinib was increased, there was a
corresponding increase in the variance of G1 duration, indicating that
cells showed greater variability in their response to lapatinib at higher
doses (Fig. 3B). The model inferred only modest changes to S-G2

durations or cell death, which was consistent with experimentally
observed S-G2 durations and cell death associated with lapatinib
treatment (Fig. 3C,D).

The model inferred that oscillations in the percentage of G1 cells
after lapatinib treatment arise from the durations it takes to pass

through the cell cycle (see Fig. 2). To explore themechanismunderlying
this behavior, we quantified cell cycle dynamics in individual cells. The
relative fraction of cells undergoing cell division was reduced after
lapatinib treatment, with effects emerging ~24H after treatment
(Fig. 3E). This observation, together with the lengthening of the sub-
sequent G1 duration following cell division (Fig. 3B), can explain the cell
cycle synchronization observed in the experimental data (see Fig. 1) and
in the LCTmodel. At the start of the assay, cells in G1 are delayed in their
time to division, while cells in S-G2 only become delayed at the onset of
G1 following division. In effect, this creates two populations of cells with
distinct timing in the induction of drug effects. We observed a similar
effect after treatment with palbociclib (Supplementary Fig. 3D).

For gemcitabine, the model inferred a slight acceleration of G1

phases, which was recapitulated experimentally (Fig. 3A,F). Themodel
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Fig. 2 | A computational model of the cell cycle captures the dynamics of drug
response. ADiagram of the phase transitions in the linear chain trick (LCT) model.
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the progression rates through S-G2 phase. Similarly, γ11, γ12, γ13, and γ14 are the
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S-G2 phase parts. B The sum of squared errors for the fits of each of five drugs over
all concentrations with and without the LCT modification. C, D G1 and S-G2 cell
numbers over time, respectively, for lapatinib treated cells at 5 concentrations and
untreated control (solid lines), overlayed with the average of three experimental
replicates (dashed lines). E The predicted accumulated dead cells over time for
untreated and lapatinib-treated cells at 5 concentrations. F, G G1 and S-G2 cell

numbers over time, respectively, for gemcitabine-treated cells at 5 concentrations
and untreated control (solid lines), overlayed with the average of three experi-
mental replicates (dashed lines).H The predicted accumulated dead cells over time
for untreated and gemcitabine-treated cells at 5 concentrations. I, J The average
phasedurations inG1 and S-G2phases for allfive drug treatments. The arrow shows
the shift from the control condition to the drug effect at the half maximum con-
centration (EEC50). K, L The overall probability of cell death in G1 and S-G2 phase,
respectively, for allfivedrug treatments. The arrow shows the shift from the control
condition to the drug effect at the half maximum concentration (EEC50) for G1 and
S-G2 phases. Source data are provided on Synapse.
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inferred that S-G2 durations were extended following gemcitabine
treatment, which we confirmed experimentally: S-G2 durations were
extended from 22.3H to 34.5H with 5 nM and to 38H with 10 nM
gemcitabine (Fig. 3G). Lastly, the model inferred an increase in the
number of cell death events relative to the starting cell number, from0
in control to 0.57 with 5 nM gemcitabine. At 10 nM gemcitabine, the
model predicted 1.0 relative cell death events such that the number of
cell death events across 96H was the same as the initial starting cell
number (Fig. 3A). The experimentally observed values showed similar
trends, though with more modest changes in cell numbers (0.14 and
0.41 relative cell numbers for 5 and 10 nM gemcitabine, respectively)
(Fig. 3H). Overall, we observed similar trends in each of the parameters
for gemcitabine treated cells as inferred by the model; modest dif-
ferences were that the model inferred higher cell death and shorter
extensions to S-G2 than we observed experimentally.

We also tested an assumption of the model that G1 and S-G2

phases are independent variables, which captures the idea that these
cell cycle phases are independently regulated at the molecular level.
We analyzed G1 versus S-G2 durations for individual cells in the
untreated, 10 nM gemcitabine, and 50 nM lapatinib conditions, and
found a minimal correlation between G1 and S-G2 durations (Fig. 3I).
These experimental observations confirm the implicit assumption of
the model that G1 and S-G2 durations are uncorrelated.

Lastly, we evaluated model inferences for paclitaxel treatment.
Consistent with our experimental observations, the model inferred
minimal changes to G1 and S-G2 durations following treatment (Fig. 3A,
J, K). At 2 nM paclitaxel, the model inferred 0.56 cell deaths relative to
the starting cell numbers, and at 3 nM inferred0.90 relative cell deaths
(Fig. 3A, Methods). Experimentally, our observations were consistent
with the values inferred by the model: we observed 0.54 and 1.00
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Fig. 3 | Analysis of single cell responses confirms model inferences and reveals
drug-specific cell cycle phase effects. AQuantification of cell cycle parameters as
inferred by themodel and observed experimentally (G1 and S-G2 durations and cell
death). B Distributions of G1 durations for cells that underwent one division in
response to 0, 25, and 50nM lapatinib. C. Distributions of S-G2 durations.
D Accumulated cell death across time. E Time to first division for cells in the
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S-G2 durations for the first complete cell cycle for all cells tracked in the control
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Source data are provided on Synapse.
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relative cell deaths for 2 nM and 3 nM paclitaxel (Fig. 3L). To sum-
marize the mechanisms that account for the observed changes in cell
numbers due to paclitaxel treatment, we compared the number of cell
death events againstfinal cell counts for each of the other drugs. These
data show the relative bias of paclitaxel toward inducing cell death,
especially at 2 nM, as compared to 5 nM gemcitabine and 50nM
lapatinib, which both result in similar final cell numbers (Fig. 3M).
Overall, the LCT model captures key observations about the cell cycle
effects of each drug, which were confirmed by in-depth single-cell
tracking of the experimental data.

Drug-induced changes to cell cycle behavior generalize across a
molecularly diverse panel of breast cancer cell lines
To assess the generalizability of our computational framework and
experimental observations, we generated and tested three additional
breast cancer cell lines from diverse molecular backgrounds30: 21MT1
(Basal subtype, HER2+), HCC1143 (Basal subtype, HER2-) and
MDAMB157 (Claudin-low subtype, HER2-) (Supplementary Figs. 5–7).
Because these cell lines do not uniformly overexpress HER2, we
additionally tested BEZ235 and trametinib, which respectively target
PI3K and MEK, two growth factor pathways downstream from HER2.
We observed dose-dependent reductions in cell numbers and also
modulation of the percent of G1 cells following drug treatment.
Importantly, similar to our findings for AU565 cells, we observed
dynamic responses not captured by terminal endpoint readouts of cell
viability (Supplementary Figs. 5–7, panels A-B). Unique response pat-
terns observed include: a delayed G1 enrichment from trametinib in
21MT1 cells (Supplementary Fig. 6), a lack of G1 enrichment from pal-
bociclib and BEZ235 in MDAMB157 cells (Supplementary Fig. 7), and a
dose-dependent bifurcation in G1 enrichment for doxorubicin in all
three of the cell lines (Supplementary Figs. 5–7).

Next, we tested our LCT model on each of the new cell lines.
Comparisonofmodelfits to experimental observations confirmed that
our model could capture the dynamic responses observed across this
panel of molecularly distinct cell lines, indicating the generalizability
of our computational framework (Supplementary Figs. 5–7, panels C-
E). We analyzed the output of the LCT model, which inferred changes
to cell cycle phase durations and cell death probabilities for drug-cell

line pairs at the EC50 concentration (Sup. Fig. 8). The model inferred
cell-line-specific changes to both G1 and G2 phases (Supplementary
Fig. 8A, B). For instance, 21MT1 cells were inferred to preferentially
undergo G1 cell death after doxorubicin and paclitaxel treatments, at
probabilities of 60% and 15%, respectively (Supplementary Fig. 8C).
The model inferred that HCC1143 cells arrest and die in S-G2 following
paclitaxel or palbociclib treatment (Supplementary Fig. 8B, D).
MDAMB157 cells were inferred to become growth-arrested by drug
treatment and to preferentially die in G1 phase (Supplementary Fig. 8C,
D). Overall, these findings confirm that our computational framework
generalizes across several drugs and cell lines and can infer a range of
drug treatment response behaviors.

Responses to drug combinations are dependent ondrug specific
cell cycle and cell death effects
Durable and effective cancer treatments frequently require admin-
istration of multiple drugs; however, identification of the principles
underlying optimal drug combinations have been challenging31.
Here, we tested the idea that our LCTmodel, which incorporates cell
cycle effects, can be used to predict the impact of different drug
combinations on cell cycle behavior and final cell numbers. We
compared two strategies in accounting for drug combination effects:
first, we combined drug effects by additive combination of the drugs’
rate effects on G1 and S-G2 progression using Bliss additivity; second,
we applied Bliss additivity directly using the cell numbers at the end
of each experiment. To explore these predictions, we varied the
dose of one drug in the two drug combination pair and analyzed
responses to drug combinations that targeted either the same cell
cycle phase (G1 and G1, or S-G2 and S-G2) or different cell cycle phases
(G1 and S-G2).

We tested combining the rates for two G1 targeted drugs, in this
case lapatinib and palbociclib. Themodel predicted that effects on cell
number would saturate around the initial starting cell number, indi-
cating cytostatic effects of this drug combination (Fig. 4A). In contrast,
drug combination effects based on cell numbers alone predicted a
cytotoxic effect at higher drug concentrations, resulting in a reduction
in cell numbers relative to the starting cell numbers. We tested
these drug combinations experimentally and found a cytostatic
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effect at higher doses, which matches the model prediction based on
combining rates of cell cycle progression (Fig. 4A). Bliss additivity fails
to account for cytostatic effects, and so deviation in the palbociclib/
lapatinib combination is to be expected32. We also analyzed predic-
tions of gemcitabine combined with doxorubicin, which both extend
S-G2 durations and induce cell death.Here, bothmethodsof predicting
combination effects qualitatively agreed, and we again saw agreement
with experimentally measured combination effects (Fig. 4B). Overall,
we were encouraged to observe that our cell cycle model could
accurately account for these two distinct combinations.

Finally, we used the LCT model to examine the impact of com-
bining twodrugs that target different cell cycle phases, whichmimics
lapatinib (G1 effect) combinedwith gemcitabine (S phase effect). The
cell cycle model predicted an antagonistic effect at higher doses,
such that 30 nM gemcitabine combined with 100 nM lapatinib is
expected to yield similar final cell numbers as 30 nM gemcitabine on
its own (Fig. 4C). Experimentally, we observed that three of the four
lapatinib and gemcitabine combination doses show an antagonistic
impact on cell number as compared to gemcitabine alone, indicating
that combining these two drugs is counterproductive. These antag-
onistic effects of the combination held when lapatinib was replaced
by palbociclib, which also impacts G1 durations (Fig. 4D). We exam-
ined the model predictions in more detail to gain insights into
the underlying biological mechanisms driving drug combination
responses. The LCT model predicted that the G1 effect of lapatinib
initially dominates over the S-phase effects of gemcitabine, leading
to an increased G1 proportion for the population. We confirmed this
prediction experimentally, indicating that lapatinib co-treatment can
mitigate the S-G2 effects of gemcitabine (Fig. 4E). In summary, these
data indicate that the cell cycle phase and cell death impacts of
each drug in a pair are critical for determining the influence of single
drugs on cell cycle behavior and that this information can be used
for rational identification of drug combinations likely to be ther-
apeutically beneficial.

Discussion
In this report, we link cell cycle regulatory mechanisms with drug-
specific cell cycle effects to gain insights into cancer cell responses to
individual drugs and drug combinations. To meld these ideas, we
developed a combined experimental and modeling approach to
measure cell dynamics and infer cell behavior. This approach
revealed that assessment of temporal dynamics and cell behavior is
critical to interpret and model drug-induced effects. Importantly,
assessment of the impacts of single agents on cell cycle behavior
could be used to identify drug combinations likely to yield ther-
apeutic benefits.

Recently, an in-depth analysis revealed that cell cycle phases in
individual cells are uncorrelated and have durations that can be
accurately modeled as an Erlang distribution, which is a special case of
a gamma distribution10. This observation indicates that the cell cycle
canbe viewed as a series of uncoupled,memoryless phases rather than
a single process10,33. In this work, we found similar uncorrelated pat-
terns in cell cycle phase responses after treatment with different anti-
cancer drugs. This revealed multiple implications for assessing and
modeling drug responses. First, viewing the cell cycle as a single pro-
cess implies that cell behavior is immediately impacted upon drug
treatment; however, we and others have reported that drug effects are
often not observed until individual cells enter or approach a spe-
cific cell cyclephaseor checkpoint34,35. For instance,we found that cells
were initially distributed across all phases of the cell cycle and that the
addition of lapatinib, a G1-targeting drug, did not initially affect cells in
S-G2 phase. This led to a partial cell cycle synchronization across the
population and required the incorporation of a linear chain trick into
our model to account for this dwell time. Our studies also revealed a
delayed induction of apoptosis after doxorubicin or gemcitabine

treatment, which we attribute to accumulation of DNA damage
over the course of the assay. The temporal dynamics of therapeutic
responses were also an important consideration for co-treatment with
gemcitabine and lapatinib. If both drugs had immediate effects on cell
behavior, we would expect that the G1 and S-G2 effects of each drug
would counteract each other and lead to a constant ratio of cells in G1

phase. Instead, both experimentally and through model predictions,
we found an initial G1 enrichment. This likely induced a secondary
effect of reducing the relative time that each cell spent in S-phase,
which further reduced gemcitabine sensitivity. This finding could
explain the antagonistic effects on cell numbers that we and others
have observed when combining gemcitabine with lapatinib or
palbociclib36,37. We speculate that a synergistic effect on cell numbers
could also arise by combining twodrugs that target S-G2 phases,where
each drug acts to extend the relative duration in which the other is
effective. This general strategy could be used to identify optimal
temporal scheduling of other drug combinations that induce different
effects on the cell cycle.

A second implication of multiple independently regulated cell
cycle processes relates to the concept of effect equivalence in drug
combinations. This concept—that two drugs with independent tar-
gets can be used to identify drug synergy or drug antagonism—has
predominantly focused on the cell number effect of each drug2–5. Our
current work suggests that equivalence in effect may be better
applied to rates of cell cycle phase progression and cell death. In our
work, we found that lapatinib and palbociclib primarily impacted G1

phase with limited effects on cell death. In contrast, doxorubicin and
gemcitabine both extended S-G2 durations and induced cell death.
These cell cycle and cell death effects were critical for gaining
insights into the effect of drug combinations. For example, two
cytostatic drugs, lapatinib and palbociclib, were additive up to doses
that reached the maximum cytostatic effect, with further dose
increases leading to only minor effects on cell numbers. In contrast,
combining the two cytotoxic drugs led to increasingly cytotoxic
responses across the full dose range. These results suggest that
considering the cell cycle and cell death impacts of each drug is
necessary to make predictions about the effects of their combina-
tions and implies that this information could be used for the rational
identification of effective drug combinations38,39. Further, the LCT
computational model could be used to explore the impact of dif-
ferent drug sequences or schedules, thereby increasing the efficiency
of laboratory experiments by identifying drug regimens most likely
to yield therapeutic benefit. Future studies that examine additional
drug combinations and schedules across a larger panel of cell lines
would further extend our findings and help to prioritize therapeutic
strategies that may warrant further preclinical testing in more com-
plex model systems.

Drug response measurements evaluated in the context of a
mechanistic cell cycle model can reveal insights about the nature of
drug response and resistance not immediately apparent from purely
data-driven analyses. For instance, a model for the proliferation
dynamics of cancer cells can separate the contribution of dividing,
non-dividing, and dying cells22, revealing that the rates of cell death
and entry into quiescence change with drug treatment. Previous
computational models of cell cycle behavior have explored various
ways inwhich cell cycle behaviormight impact drug responsebut have
struggled to identify experimental data amenable formodel fitting and
evaluation. For instance, others have appreciated that drugs do not
affect the cell cycle uniformly and have therefore proposed compu-
tational models that partition the cell cycle into several independent
steps, both with10 and without33 cell death effects. Modeling cell life-
times as being hypo-exponentially distributed helps to explain the
distribution of cell lifetimes within a population but does not connect
these observations to known cell cycle stages40. In this report, we
demonstrate that partitioning known cell cycle phases to account for

Article https://doi.org/10.1038/s41467-023-39122-z

Nature Communications |         (2023) 14:3450 7



their dwell time effects—and including experimentally observed drug
effects like cell death—results in a modeling framework that can
faithfully and mechanistically capture experimentally observed anti-
cancer drug effects.

We applied our experimental approach and computational fra-
mework to examine dynamic drug-induced responses in amolecularly
diverse set of breast cancer cell lines. In all cases, we observed that
therapeutic inhibition induces a wide array of responses, indicating
that the influence of therapies on cell cycle dynamics is a generalizable
mechanismoperable in awide array ofmolecular backgrounds.Cancer
cells treated with therapies may adopt new molecular programs
associatedwith adaptive and acquired resistance, and indeed previous
studies have demonstrated this principle in both model systems and
patient samples41. We hypothesize that cells with acquired resistance
may show distinct drug-induced cell cycle programs as compared to
naïve cells and that our approach could be used to uncover the
molecular mechanisms associated with adaptive resistance. The
approach outlined here is built around the concept that therapies
perturb cell cycle behavior and are agnostic of the exact type of cel-
lular perturbation. Our study therefore provides a blueprint for
studying responses of diverse cell types—both normal and diseased—
to a wide array of perturbations, including diverse panels of ther-
apeutic inhibitors, growth factors, or genetic manipulation with
CRISPRi/a. The resultant data could be used to adapt our computa-
tional framework to identify mechanisms of cell cycle control in dif-
ferent cellular contexts, microenvironmental conditions, or disease
states.

While our model could explain many of the key observations in
our experimental data, extensions of the model could further
improve its generalizability and robustness. We partitioned the cell
cycle into two observed phases, G1 and S-G2, which were further
subdivided to explain the dwell time behavior of each phase. With
improved reporter strategies42, we may be able to further subdivide
these phases into constituent parts, which could help to localize the
effect of a drug to a more specific portion of one cell cycle phase.
Generalizations of the linear chain trick could be used to account for
both subphases of varying passage rates, as well as heterogeneity in
the rates of passage, such as would arise through cell-to-cell
heterogeneity29. While the subdivisions within each cell cycle phase
are phenomenological, it is tempting to imagine that they represent
mechanistic steps within each phase. Identifying how effects connect
to actual biological events in the cell cycle would help identify
opportunities for drug combinations. A practical challenge when
using the model for drug combinations has been normalization
between experiments. While cell number measurements are routi-
nely normalized by dividing by a control, experiment-to-experiment
variation in inferred rates requires additional consideration. A wider
panel of experiments, across multiple cell lines, may help to tease
apart variations associated with drugs, cell lines, or experiments. A
final potential extension is considering the existence of phenotypi-
cally diverse subpopulations43. At the cost of additional complexity,
one could employ several instances of the current model with tran-
sition probabilities between these states when the cells divide to
simulate a heterogeneous population of cells.

We observed that five commonly used cancer drugs each
modulated cell numbers through distinct routes and with different
temporal dynamics. By revealing how these drugs uniquely impacted
cell fate, our model and analyses have implications for how different
cancer drugs can be combined to maximize therapeutic impact. For
instance, our results can identify drug combinations that modulate
cell cycle effects in orthogonal ways or drug schedules that take
advantage of the shift in cell cycle state of the overall population. In
summary, these studies provide amap for understanding how cancer
cells respond to treatment and how drugs may be combined and
timed for maximal effect.

Methods
Creation of stable cell lines
AU565 (ATCC CRL 2351) and MDAMB157 (ATCC HTB 24) cells were
grown in DMEM supplemented with 10% FBS, HCC1143 (ATCC CRL
2321) cellswere grown inRPMI supplementedwith 10%FBS, and 21MT1
(generous gift from Kornelia Polyak) cells were grown in DMEM/
F12 supplemented with 5% horse serum, 20 ng/ml rhEGF, 0.5 µg/ml
hydrocortisone, 100 ng/ml cholera toxin, and 10 µg/ml insulin. Cells
were genetically engineered using plasmids available from Addgene.
The coding fragment for clover-HDHB (Addgeneplasmid 136461)23was
cloned in frame into a transposase expressionplasmidmodified to also
express a nuclear localized mCherry and stable cell lines were created
as previously described44. In brief, the clover-HDHB-NLS-mCherry
expression plasmid was co-transfected 24–48 h with the pSB100X
transposase plasmid (Addgene plasmid 34879) at a ratio of 4:1 using
Lipofectamine 3000 (AU565, HCC1143, 21MT1) or LTX (MDAMB157)
and selected for 3–7 days with 0.5–2 µg/ml puromycin. To ensure
uniform fluorescence across the transfected population, HCC1143 and
21MT1 cells were sorted at OHSU’s Flow Cytometry Core and cells with
a medium intensity clover-HDHB signal and a high intensity NLS-
mCherry signal were selected for drug dose response experiments. In
all cases, cells were validated by STR profiling (LabCorp) and tested
negative for mycoplasma.

Drug dose response protocol
In initial experiments, AU565 cells were plated at a density of 25,000
cells per well into 24-well Falcon plates (Corning #353047). 24H after
plating the media was exchanged with Fluorobrite media supple-
mented with 10% FBS, glutamine, and penicillin-streptomycin.
Cells were then treated with dose-escalation: lapatinib (Selleckchem
#S1028), gemcitabine (#S1149), paclitaxel (#S1150), doxorubicin
(#S1208), palbociclib (#S1116), BEZ235 (#S1009), or trametinib
(#S2673). Starting immediately after drug addition (T0), plates were
imaged every 30min for 96H using phase, GFP, and RFP imaging
channels with an IncuCyte S3. For single drug treatments of AU565
cells only, at 48H the media was replaced in all wells including the
control wells, and fresh media and drug were added. Four equally-
spaced image locations per well and three biological replicates were
collected.

In subsequent experiments, we tested additional cell lines.
MDAMB157, HCC1143, and 21MT1 cell lines were transferred to and
maintained in a base of either Fluorobrite media and 1× GlutaMAX or
mixed Fluorobrite/F12 media and 0.5× GlutaMAX along with their
corresponding supplements for no less than one week before per-
forming the drug dose response protocol. MDAMB157 and HCC1143
cells were plated at a density of 25,000 cells per well, while the larger
21MT1 cells were plated at a density of 5000 cells per well into 24-well
Falcon plates (Corning #353047). 24H after plating the media was
exchangedwith fresh Fluorobritemedia as indicated per cell line. Cells
were then treated with dose-escalation: BEZ235, gemcitabine, pacli-
taxel, doxorubicin, palbociclib, or trametinib. After drug addition (T0),
plates were imaged every 2 h for 96H using phase, GFP, and RFP
imaging channels with the IncuCyte S3. Four equally-spaced image
locations per well and three biological replicates were collected.
In pilot experiments, we confirmed that drugs were stable of the
duration of the assay, so excluded the 48H media refresh in this set of
experiments.

Image analysis
To analyze AU565 image data, phase, GFP, and RFP images were
overlaid and collated into single files using FIJI45 (version 2.3.0), then
segmented into three classes (nuclei, background, debris) using a
manually trained classifier in Ilastik46 (version 1.3.3b2). The seg-
mented nuclear masks from Ilastik and the IncuCyte GFP images
were used to count the number of nuclei in each image with Cell
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Profiler47. Additionally, using the same images (nuclear masks from
Ilastik and GFP cell cycle reporter images) cell cycle phase was
determined by taking the mean fluorescence in the nucleus com-
pared to the mean fluorescence in a 5-pixel ring surrounding the
nucleus, excluding background pixels. A threshold was then manu-
ally set for the ratio of nuclear fluorescence to cytoplasmic fluores-
cence and cells with values above the thresholdwere defined as being
in G1 and cells with values below the threshold were defined as being
in S-G2 phase47.

Tomanually track AU565 cells and identify drug-induced changes
operable in single cells, GFP image sequences were registered using
the FIJI plug-in StackReg (version 2.0). Individual cells present in the
first image and their progeny were followed to identify the time of G1

transition, cell death, and cell division using the plug-in mTrackJ48

(version 1.5.1). We excluded cells that were binucleated, had abnor-
mally large nuclei, or were near the image border where complete
lineages could not be tracked. The G1 transition was defined as the last
frame before the nuclear intensity of the cell cycle reporter was above
the level of the cytoplasm. Assessment of cell death enabled disen-
tangling of cytostatic and cytotoxic drug effects.

We used the following approach for automated analysis of
HCC1143, 21MT1 and MDAMB157 cell lines. Image registration was
performed on the red channel nuclear marker image stack using the
python skimage phase_cross_correlation function to correct transla-
tions. Image stacks were cropped to their common areas and indivi-
dual cells were segmented with the Cellpose LC2 model trained on
phase and nuclear images from the untreated and highest drug con-
centration treatments49. Nuclei were segmented with the Cellpose
cyto2 model on the nuclear channel. To associate nuclei across the
image stack, to identify progeny aftermitosis, and to identify cell death
events we used Loeffler tracking50 with the default parameters of del-
ta_t = 3 and roi_size = 2. We created cytoplasm masks by subtracting
the nuclear masks from the cell masks and applied these masks to
the green channel cell cycle reporter images using the python skimage
function regionprops_table. To assign cells to G1 or S-G2 states,
we computed the ratios between the cytoplasm and nuclear cell cycle
reporter. k-means clustering of the ratios observed in cells in the
untreated condition was used to establish a per-plate threshold
between cell cycle states.

The quantitated cell-level data was mean summarized to the
population level for each image and to assess cell counts and G1 cell
cycle state proportion. The cell countswere normalized to themean of
the counts of the first three images. The cell count dose response
curves were normalized to the control by dividing each drug cell count
by the control cell count at the same time slice.

Core model
To identify the dynamics of the AU565 cancer cell population in
response to compounds, we built a system of ordinary differential
equations (ODEs) with two states: G1, and S-G2. Cells transition fromG1

to S-G2 phase, and then vice versa when doubling. Cell death can occur
in either phase with phase-specific death rates. S and G2 phases are
combined as our reporter cannot distinguish them. From single-cell
tracking, we identified that G1 and S-G2 phase time-intervals are
gamma-distributed. Based on this observation, we employed the linear
chain trick (LCT)28 to capture gamma-distributed cell cycle phase
durations. We broke down each phase into a series of sequential sub-
phases and derived the system of mean-field ordinary differ-
ential equations. Each sub-phase is represented as a single state vari-
able within the differential equation system. The total number of cells
in each phase is the sum of the cell numbers in each sub-phase. Fur-
thermore, to account for the non-uniformeffect of the drugs over each
cell cycle phase, we divided G1 and S-G2 into 4 parts each, such that the
effect of a drug can be distinguishable at the beginning, middle, or the
end of the phases.

The mean-field system of ODEs is:

d G11,1

dt
= + 2β4G24,5 � α1 + γ1,1

� �
G11,1 ð1Þ

d G1k,1

dt
= +αk�1G1k�1,2 � αk + γ1,k

� �
G1k,1 ð2Þ

d G1k,2

dt
= +αkG1k,1 � αk + γ1,k

� �
G1k,2 1≤ k ≤4 ð3Þ

d G21,1

dt
= +α4G14,2 � β1 + γ2,1

� �
G21,1 ð4Þ

d G2i,j

dt
= +βiG2i, j�1 � βi + γ2,i

� �
G2i,j 2≤ j ≤ 5 ,1≤ i≤4 ð5Þ

The parameters of the model include progression rates through
G1 phase, α, and S-G2 phase, β, and death rates in each of the G1 phase,
γ1, and S-G2 phase, γ2. Cells at the end of the S-G2 phase divide and give
birth to two cells at G1 phase. Because each phase is divided into 4
parts, each part of G1 contains 2 sub-phases, and each part of S-G2

contains 5 sub-phases.
The model was implemented in Julia v1.5.3. The differential

equations were solved by the matrix exponential. As the data was
measured with equal spacing, we pre-calculated the transition matrix
between timesteps.

Dose response relationship
We assumed that the progression and death rates in G1 and S-G2 that
form the quantified drug effects on the population follow a Hill
function:

Hill Cð Þ= Emin +
Emax � Emin

1 + EC50
C

� �k ð6Þ

where the EC50 indicates the half-maximal drug effect concentration,
Emin the value of the rate parameter in the absence of drug, Emax the
rate parameter at infinite concentration, and k the steepness of the
dose-response curve. Given these parameters and the drug concentra-
tion (C) we then calculated the specific rate parameters for that
treatment.

Exponential model
To show the benefit of our LCTmodel, we employed a commonly-used
exponential model to fit to the G1 and S-G2 cell numbers and showed
that the exponential model cannot capture the dynamics of the data.
The parameters were the same as the mean-field model.

d G1

dt
= +2βG2 � α + γ1

� �
G1 ð7Þ

d G2

dt
= +αG1 � β+ γ1

� �
G2 ð8Þ

Model fitting
The data included the percentage of cells in G1 phase and the total
number of cells normalized to the cell numbers at the initial timepoint.
We assumed 1 starting cell at 0H and calculated the number of cells in
G1 and S-G2 phase over time. The Savitzky–Golay filter was used to
smooth the data. Three replicates of each experiment were averaged,
and the average was used for the purpose of fitting.
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The number of G1 and S-G2 subphases, and the parameters in the
absence of drug were shared across all drugs and concentrations. The
sum of squared error was used as the cost function value and was
calculated between the cell numbers predicted by the model and the
average cell numbers of three replicates, over all time points, con-
centrations, and drugs tested. This cost function was then minimized
using the default adaptive differential evolution optimizer from the
BlackBoxOptim.jl Julia package, version 0.5.0.

To characterize the identifiability of our fit parameters we con-
ducted a local sensitivity analysis. To do so, we calculated the cost
functionwhile varying each parameter from0.1 to 10 times the optimal
value, holding all the other parameters at their optimum. All para-
meters were identifiably constrained according to this analysis.

Calculating relative number of cell deaths and average phase
durations
We evaluated the number of dead cells at 96H relative to the starting
cell number at 0H. This formed the observed relative cell death
numbers reported in Fig. 3A. To calculate the corresponding cell death
values inferred fromthemodel, we calculated the predicted number of
cells at each phase part (G11, G12, G13, G14, G21, G22, G23, G24) separately,
and multiplied them by their individual death rates at all time points.
This provides the number of dead cells at each phase part at each time
point. The sum of cell numbers died in each phase part provides the
total cell death counts at each time point, nðtÞ. Figure 2C, D shows the
accumulated dead cells across time for lapatinib and gemcitabine
treatments which was calculated by summing over the cell death
counts, nðtÞ, across time from 0 to each timepoint, T . Calculating for
96H results in the total cell death normalized by the initial cell num-
bers, 1, this value refers to the relative predicted cell death number
reported in Fig. 3A.

n tð Þ=
X2

i = 1

X4

j = 1

Gij tð Þ× γij ð9Þ

N Tð Þ=
XT

t =0

n tð Þ ð10Þ

The average phase durations ( �G1 , S� G2) from the model were
calculated using the progression rates. The G1 phase has 8 subphases
which is divided into 4 parts that results in 2 phases per part. S-G2

phase has 20 subphases divided into 4 parts that results in 5 subphases
in eachpart. Each phase part has a unique parameter for cell death and
phase progression rate. The average phase duration will be given by
the following expressions, derived by recognizing that the time in each
part is gamma-distributedwith a shape parameter equal to the number
of subphases.

�G1 =
X4

j = 1

2
α1j

ð11Þ

S� G2 =
X4

j = 1

5
β2j

ð12Þ

Predicting drug combinations
Bliss independence was used to calculate the predicted effect of drug
combinations. Assuming Ea and Eb to be the saturable, quantified
effects of drugs a and b, the expected combined effect would be:

Eab = Ea + Eb � Ea : Eb ð13Þ

For death effects, we added the effects of each drug to find the
death effect of the drug combination:

Dab =Da + Db ð14Þ

The Bliss relationship requires that data first be scaled to be
between0 and 1, and then scaled back after the interaction calculation:

X̂ =
Xcontrol �X

� �

Xcontrol
ð15Þ

This measure is usually used as a baseline to decide whether the
combination of two drugs is synergistic or antagonistic. Here we used
Bliss in two ways: (1) on the progression rate parameters to simulate
the model predictions of drug combinations; and (2) on cell numbers
to serve as a baseline approach to calculate drug combination effects,
as is commonly used. In the first case, we use Bliss additivity on the cell
cycle progression rates (*) to find the set of progression parameters
representing the combined treatment and assume that the death
effects are only additive because the cell death process is not saturable
(**). The combinationparameters for all the eight concentrations for all
pairs of drugs were calculated and then converted back to their ori-
ginal units. Next, we simulated the cell numbers using these para-
meters. In the baseline case, we used the cell numbers in the control
condition to normalize the cell number measurements and then con-
verted the cell numbers back to their original scale. This was used as a
benchmark reference.

Data availability
All data and code as well as additional relevant resources are available
under Synapse ID syn51239112. Specifically, the AU565 single drug
treatment data corresponding to Figs. 1, 2, 3, Supplementary Figs. S1,
S2, S3, and S4 are available under Synapse ID syn51239569. Cell cycle
durations in Supplementary Fig. S3 are available under Synapse ID
syn51359628. AU565 drug combination results corresponding to Fig. 4
are available under Synapse ID syn51239601. HCC1143 single drug
treatment data corresponding to Supplementary Fig. S5 are available
under Synapse ID syn51239126. 21MT1 single drug treatment data
corresponding to Supplementary Fig. S6 are available under Synapse
ID syn51239113. MDAMB157 single drug treatment data corresponding
to Supplementary Fig. S7 are available under Synapse ID syn51239135.
The live-cell image data generated in this study have been deposited in
the Image Data Resource database under accession code
idr0119. Source data are provided with this paper.

Code availability
The code and analysis51 is available at https://github.com/meyer-lab/
DrugResponseModel.jl. Code for the automated segmentation and
tracking52 is on Zenodo at https://zenodo.org/badge/latestdoi/
612325635.
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