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Discovery of senolytics using machine
learning

Vanessa Smer-Barreto 1,6 , Andrea Quintanilla2,6, Richard J. R. Elliott1,
John C. Dawson 1, Jiugeng Sun3, Víctor M. Campa2, Álvaro Lorente-Macías 1,
Asier Unciti-Broceta 1, Neil O. Carragher1, Juan Carlos Acosta 1,2 &
Diego A. Oyarzún 3,4,5

Cellular senescence is a stress response involved in ageing and diverse disease
processes including cancer, type-2 diabetes, osteoarthritis and viral infection.
Despite growing interest in targeted elimination of senescent cells, only few
senolytics are known due to the lack of well-characterised molecular targets.
Here, we report the discovery of three senolytics using cost-effective machine
learning algorithms trained solely on published data. We computationally
screened various chemical libraries and validated the senolytic action of
ginkgetin, periplocin and oleandrin in human cell lines under various mod-
alities of senescence. The compounds have potency comparable to known
senolytics, andwe show that oleandrin has improved potency over its target as
compared to best-in-class alternatives. Our approach led to several hundred-
fold reduction in drug screening costs and demonstrates that artificial intel-
ligence can take maximum advantage of small and heterogeneous drug
screening data, paving theway for newopen science approaches to early-stage
drug discovery.

Senescence is a cellular state characterised by permanent cell cycle
arrest, macromolecular damage and metabolic alterations1. The
senescent phenotype can be triggered by multiple cellular and envir-
onmental stressors, including replicative exhaustion, oncogenic acti-
vation, chemotherapy, and radiation2, and is known to have beneficial
and deleterious effects on tissue microenvironment3. For example,
senescence aids mammalian embryonic development, promotes
wound healing and stemness4,5, and is a potent tumour suppression
mechanism that restrains the growth of cells in danger of malignant
alterations6. Conversely, senescent cells also promote tumorigenesis
and various age-relatedmalignancies due to the secretionof a complex
set of proteins known as the senescence-associated secretory pheno-
type (SASP)7,8. Besides their role in cancer and ageing9, the senescent
programme has been linked to adverse effects in a broad range of

conditions, including osteoporosis, osteoarthritis, pulmonary fibrosis,
SARS-CoV-2 infection, hepatic steatosis, and neurodegeneration10. As a
result, there is a growing interest in the discovery of new senolytics, i.e.
therapeutic agents that selectively target senescent cells for
elimination10.

Senolytics have shown substantial promise in ameliorating
symptoms of many conditions in mice11–20 and removal of senescent
cells has also been linked to some adverse effects due to blockage of
their beneficial roles in processes such as wound healing and liver
function21,22. Despite encouraging results, to date there are few known
compounds with proven senolytic action11–19,23–28, and only two com-
pounds have shownefficacy in clinical trials (dasatinib andquercetin in
combination therapy29). Some of the most scrutinised senolytics were
identified by targeting anti-apoptotic proteins upregulated in
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senescence, such as the Bcl-2 family inhibitors navitoclax28 and ABT-
73716. Other senolytics were discovered through panel screens17 and,
more recently, screens have identified cardiac glycosides (ouabain13,
digoxin15) and BET inhibitors (ARV82530, JQ131) as potent senolytic
agents. A key challenge for senolytic therapies to succeed is that many
such compounds display cell-type specific action. In addition, certain
senolytics thatworkwell for one cell-type arehighly toxic against other
non-senescent cell-types19,24. In the case of cancer therapies, most
known senolytics target pathways that are mutated in cancer, which
limits their applicability as therapeutic agents32 andhighlights theneed
to discover new senolytics that could be employed in therapy.

In the past decade, computational screens based on Artificial
Intelligence (AI) have been widely adopted by industrial and academic
laboratories due to their ability to detect hidden patterns in large
collections of chemical data33,34. These AI-powered screens can narrow
down the chemical search space and have found applications in a
range of tasks such as bioactivity prediction35, target identification36–38,
virtual drug screening39,40, and drug repurposing41,42. Most recently,
generative models have been employed to generate novel chemical
structures with prescribed properties43,44. Such approaches typically
employ a combination of molecular dynamics simulations and
sophisticated computational pipelines to navigate the space of drug
candidates45,46. Recent years have witnessed the adoption of machine
learning models trained on molecular fingerprints or learned repre-
sentations of chemical structures39,47–51, and several of these methods
depart from traditional target-oriented approaches to drug discovery
in favour of target-agnostic strategies52 that employ phenotypic read-
outs for model training39. Such target-agnostic approach offers new
avenues to expand the range of chemical starting points in early pha-
ses of the drug discovery pipeline53, and is particularly well suited for
senolytics discovery given the poor grasp of the molecular pathways
that control the senescent phenotype.

In the context of cellular senescence, various works have
employed machine learning for discovery of geroprotectors54, ageing-
related compounds49–51,55 and anti-senescence compounds via
convolutional neural networks trained on morphological features48.
Bioinformatics approaches have also aided target identification of
senescence-related compounds, senolytics and anti-senescent
compounds18,28,56.

Here, we report the development and validation of a machine
learning pipeline for the discovery of senolytics. We assembled a
dataset mined from multiple sources11–19,23–28, including academic
publications and a commercial patent, and employed it to train
machine learning models predictive of senolytic action. We compu-
tationally screened a library of more than 4000 compounds and
identified a reduced set of 21 candidate hits for experimental valida-
tion. Our experimental screen in twomodel cell lines of oncogene- and
therapy-induced senescence revealed senolytic activity of three com-
pounds: ginkgetin, oleandrin and periplocin, with potencies and dose-
responses comparable to known senolytics. We further show that
oleandrin has greater potency and activity over its target (Na+/K+

ATPase) and its senolytic effector NOXA, as compared to known car-
diac glycosides with senolytic action. Our work demonstrates that
machine learning can take maximum advantage of published screen-
ing data to find new active therapeutic compounds, laying the meth-
odological groundwork for a new open science approach to drug
discovery and repurposing.

Results
Data assembly and quality control
We first assembled a dataset of senolytics (positives) and non-
senolytics (negatives) for model training (Fig. 1a). To this end, we
mined a panel of 58 senolytics reported in the literature, including
compounds from various chemical families such as flavonoids, cardiac
glycosides, and antibiotics with senolytic action. These compounds

were selected on the basis that they can maintain a minimum of 60%
viability in normal cells and eliminate senescent cells for at least one
cell line, one concentration, and one strategy for induction of senes-
cence. While relaxing these constraints would have helped us increase
the number of positives for model training, we prioritised consistency
over the number of senolytic compounds. Wherever possible, we
cross-validated different studies, e.g. for widely reported senolytics
such as navitoclax, digoxin, ouabain, ABT-737 and fisetin. The selected
panel of positives includes compounds that target the senescent
phenotype in a variety of cell types (Fig. 1b). Some of these com-
pounds, e.g. ouabain13, have wide-spectrum senolytic action, whereas
others such as BIX-01294, limit their effect to specific conditions13. We
combined these positives with another panel of 19 senolytics reported
in a commercial patent14. The full list of positiveswas thenmergedwith
a large background of compounds assumed to lack senolytic action.
This assumption was needed due to the lack of data on negative
screening results in the literature. Since machine learning models can
bias their predictions towards the training data they have been
exposed to, we chose the negatives from two diverse chemical librar-
ies, LOPAC-1280 and Prestwick FDA-approved-1280, which contain a
wide range of FDA-approved or clinical-stage compounds.

The full dataset for model training contains 2523 compounds,
including 58 positives (2.3%). We deliberately chose to overrepresent
the negatives in the training data so as to reflect the low likelihood of a
chemical structure being a senolytic (Fig. 1a). To convert the chemical
structures into a numerical format for model training, we binarised
each compound in the training library as 0 (negative) or 1 (positive),
and computed 200 physicochemical descriptors with the RDKit
package57. These descriptors include basic molecular properties such
as maximum partial charge, molecular weight, and number of valence
electrons, as well as structural properties such as the molecular con-
nectivity Chi indexes, E-State topological parameters and Kappa shape
indexes.

The positive compounds were mined from highly heterogeneous
sources that utilised different cell lines, screening assays, andmethods
for induction of the senescent phenotype (Fig. 1b). This bears the risk
of introducing bias in our models and limit their predictive power if
specific chemical families are overrepresented in the training data.
This is further exacerbated by the heavy imbalance between the
number of positives and negatives included in the training data. We
thus sought to carefully quantify the diversity of the 58 positives using
the RDKit descriptors as feature vectors associated with each com-
pound. To assess diversity of the training data, we examined the
cluster structure of the positive compounds using three different
methodologies (Fig. 1c–e). We first clustered the positives with the k-
means algorithm58 and the cosine distance between feature vectors;
this analysis revealed an almost linear decrease in the k-means score
with respect to the number of clusters (Fig. 1c). The lack of a clear
“elbow” in the k-means score suggests poor data clustering and hence
provides a qualitative indication of diversity in the training data. To
determine the quality and consistency of these clusters, we computed
the silhouette coefficients for all compounds and number of clusters
(k)58; we found consistently low values for the silhouette coefficient
averaged across all compounds, which further suggests little similarity
among the senolytic compounds chosen for training.

As a separate check for the diversity of the training data, we built
the Tanimoto distance graph for all senolytics employed for training
and labelled each compound according to the source fromwhich they
were obtained (Fig. 1d). Nodes in the Tanimoto distance graph repre-
sent compounds, and two compounds are connected by an edge if
they are sufficiently close in the chemical descriptor space. The
structure of the resulting distance graph corroborates the finding that
most senolytics are far apart in the descriptor space (medianTanimoto
distance = 0.77; Fig. 1d inset), and thus tend to be highly dissimilar to
each other. As a final check, we clustered the Tanimoto distance graph
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using community detection, a type of clustering technique from net-
work science59 that does not require a priori specification of the
number of clusters. We employed the popular Louvain algorithm60,
because of its computational efficiency and the inclusion of a resolu-
tion parameter (γ) for tuning the granularity of the resulting clusters;
larger values of γ lead to more clusters and hence a more granular
partition of the graph. For a wide sweep of the resolution parameter,
we found an almost linear increase in the number of clusters, and two
plateaus at k = 5 and k = 6 clusters (Fig. 1e); such plateaus suggest that
the data may naturally cluster into five or six groups. We further
investigated these clusters and reasoned that compounds may
aggregate according to the source where they were mined from. To
test this hypothesis, we quantified the similarity between the Louvain
clusters and literature labels (Fig. 1b) using the adjusted Rand index
(ARI), a score for comparing different clusterings that corrects for
random group assignments61. We found low ARI scores (Fig. 1e) across

all cluster resolutions described by the γ parameter;moreover, the ARI
scores showed pronounced troughs at the plateaus detected with the
Louvain method (mean ARI < 0.05 for 100 runs of the clustering
method),whichwe regarded as sufficient evidence that compoundsdo
not cluster according to the source from which they were obtained.

Predicting senolytic compounds by computational screen with
machine learning
We next sought to train machine learning models on the assembled
dataset, with the aim of using them to computationally screen che-
mical libraries and identify hits for experimental validation (Fig. 2a). To
this end, we first performed a feature selection process on the full
dataset to reduce the number of features for training, before any cross-
validation or train-test split. Using a random forest model and the
average reduction of Gini index as ameasure of impurity, we identified
a reduced set of 165 normalised features (Supplementary Fig. 1a). This

Fig. 1 | Compounds employed to train machine learning models of senolytic
action. a We assembled training data from multiple sources. We mined 58 known
senolytics (positives) from academic papers and a commercial patent, and inte-
grated them with diverse compounds from the LOPAC-1280 and Prestwick FDA-
approved-1280 chemical libraries (negatives). Chemical structures were featurised
with 200 physicochemical descriptors computed with RDKit57 and binary labelled
according to their senolytic action. These labelled data were employed to train
binary classifiers predictive of senolytic activity. b Sources of the 58 senolytics
employed for training, including the number of compounds per source and the cell
lines where senolysis was identified. c Cluster structure of the senolytics employed
for training using the RDKit descriptors as features. Plot shows the k-means clus-
tering score and silhouette coefficient58 averaged across compounds for an
increasing number of clusters (k). Error bars denote one standard deviation over
100 repeats with different initial seeds. The lack of a clear “elbow” in the k-means
score and low silhouette coefficients suggest poor clustering among the senolytics

employed for training. d Tanimoto distance graph of senolytics employed for
training; nodes are compounds and edges represent compounds that are suffi-
ciently close in the physicochemical feature space. Node colour indicates the data
source as in panel b. To emphasise the overall dissimilarity between compounds,
we set the edge thickness as the Tanimoto similarity (1-distance). Inset shows the
distribution of Tanimoto distances across the 269 graph edges (median distance of
0.77). e Clustering of the Tanimoto distance graph using the Louvain algorithm for
community detection60. Plot shows the average number of clusters with respect to
the resolution parameter (γ) across 100 runs (error bars denote one standard
deviation); increasing values of γ produce a larger number of clusters. We observe
pronounced plateaus at 5 and 6 clusters, suggesting some degree of clustering in
the data. We computed the adjusted Rand index61 (ARI) averaged across all com-
pounds to quantify the similarity between cluster labels and compound source
labels (15 labels; panel e). Low ARI values indicate that Louvain clusters are sub-
stantially different from the literature source labels.
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relatively small reduction can be explained by the inherent high-
dimensionality of the training data; a principal component analysis
shows thatmore than 100dimensions are needed to accurately explain
the variability in the data (111 features for 99% of explained variance,
Supplementary Fig. 1b). The selected 165 features were then utilised
with the whole set of instances in the dataset (LOPAC, Prestwick,
external sources) to train various models for binary classification of
senolytics (Fig. 2b and Supplementary Table 2). Formodel selectionwe

performed 5-fold cross-validation on the whole dataset for fair com-
parisonacrossmodels and to take full advantageof the limited number
of positive samples. Due to the severe imbalance between the number
of senolytic and non-senolytic compounds, we scored themodels with
three performance metrics: precision (fraction of true positive iden-
tifications out of all positive identifications), recall (fraction of correct
identifications of true positives) and F1 score (harmonic mean of the
precision and recall). We note that model accuracy (fraction of overall

Fig. 2 | Training of machine learning models and computational screening.
a Pipeline for model training, compound screening, and hit validation. Several
classification scores were used as performance metrics to determine the most
suitable model for the computational screen. b Results from three machine
learning models trained on 2523 compounds (Fig. 1a) and a reduced set of 165
features (Supplementary Fig. 1a); bar plots show average performance metrics
computed in 5-fold cross-validation, with error bars denoting one standard devia-
tion across folds. Mean± s.d. are shown from n = 5 data folds. c The confusion
matriceswerecomputed frommodels trainedon 70%of compounds, and testedon
17 positives and 740 negatives that were held-out from training. All models dis-
played poor performance metrics (Supplementary Table 1), and we chose the
XGBoost algorithm for screening because of its lower number of false positives.

d Results from computational screen of the L2100 TargetMol Anticancer and
L3800 Selleck FDA-approved & Passed Phase chemical libraries, totalling 4340
compounds. The XGBoost model is highly selective and scored most compounds
with a low probability of having senolytic action; a small fraction of N = 21 com-
pounds were scored with P > 44%, which we selected for experimental validation.
e Compounds selected for screening, ranked according to their z-score normalised
prediction scores from the XGBoost model; the selected compounds are far out-
liers in the distribution of panel c. f Two-dimensional t-SNE visualisation of all
compounds employed in this work; t-SNE plots were generated with perplexity 50,
learning rate 200, and maximal number of iterations 120065. Compounds with
prediction scores above 44% from the XGBoost model are marked with orange
circles.
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correct classifications), a common metric employed to score classifi-
cation algorithms, is generally unsuited for imbalanced problems
because it tends to produce overoptimistic results due to correct
classification of the majority class, even when the minority class is
poorly classified62.

We focused primarily on two common models for binary classi-
fication: support vector machines (SVM) and random forests (RF).
Thesemodels operate by partitioning the feature space so as to ensure
that positive and negative samples are optimally assigned to a parti-
tion. In their basic form, SVM slices the feature space with a hyper-
plane, while RF are ensembles of decision trees that segment the
feature space with orthogonal cuts across each feature58. We found
that both SVM and RF models displayed poor performance (Fig. 2b)
and showed marked differences in the type of misclassification errors
they produce. The performance metrics (Fig. 2b) suggest that the RF
model tends to return few false positives (high precision) and a high
number of false negatives (low recall), whereas the SVM returns
opposite results. We also evaluated a number of alternative models of
varied complexity, including logistic regressors, a Naïve Bayes classi-
fier, as well as data augmentation methods for imbalanced classifica-
tion (SMOTE63); these additional models displayedworse performance
than the SVM and RF models (Supplementary Table 2). The hyper-
parameters of the SVM and RF models were determined using 5-fold
cross-validation (Supplementary Tables 3–4).

For the purposes of early-stage drug discovery, false positives are
more deleterious than false negatives because they artificially inflate
the number of predicted hits and thus increase the costs of down-
stream experimental validation. We thus took the performance of the
RF model as a baseline, and aimed at improving its predictive power
with an ensemble model (XGBoost) that is known to improve perfor-
mance by aggregating predictions froma collection of decision trees64.
The XGBoost model improved precision, recall, and F1 scores, and
overall returned the best performance among all considered models
(Fig. 2b).We observed an average precision score of 0.7 ± 0.16 in 5-fold
cross-validation on the whole dataset analysis of this model, which
amounts to an average false discovery rate of 30% that we regarded as
acceptable given the heterogeneity of the data employed for training.
The hyperparameters of the XGBoost model were determined via
5-fold cross-validation (SupplementaryTable 5).We also benchmarked
the XGBoost model against a deep learning model based on message-
passing neural networks that have shown excellent performance
across a range ofmolecular property prediction tasks39, but thesewere
substantially outperformed by the XGBoost model (Supplementary
Fig. 2). We re-trained the SVM, RF and XGBoost models on a stratified
split (165 features, 70% for training, 30% for testing) to produce con-
fusion matrices on the test set (Fig. 2c). These exemplify the trade-off
of few false positives (high precision) and many false negatives (low
recall) in the RF and XGBoost models, with opposite results for the
SVM model.

We employed this final XGBoost model trained on 70% of data to
screen a library of chemical structures designed on the basis of their
diversity. We assembled compounds from the L2100 TargetMol
Anticancer and L3800 Selleck FDA-approved & Passed Phase libraries
into a single dataset with 4340 structures featurised with the physi-
cochemical descriptors from RDKit; none of the compounds in the
screening library were present in the training library. The XGBoost
model proved to be exceptionally selective and produced a long-tailed
distribution of prediction scores (Fig. 2d); most compounds were
assigned extremely low prediction scores, and thus deemed to have a
low probability of being senolytic. At the far end of the tail, the score
distribution revealed a small group of 21 compounds (0.4% of the full
library) with a comparatively higher probability of being senolytic
(P > 44%, Fig. 2d, orange), which we selected for further experimental
validation. The selected compounds are extreme outliers, with pre-
diction scores at least 8 standard deviations away from the bulk of

compounds screened (Fig. 2e).Weemployeddimensionality reduction
to visualise the training and screening compounds in the RDKit feature
space65, which revealed a strong overlap between the two sets and thus
a strong evidence that the computational screen was performed in the
high-confidence domain of the machine learning model (Fig. 2f). The
majority of the selected compounds are structurally diverse natural
products, but with some common features including steroid saponins,
flavone derivatives, and macrocycles.

We note that our feature selection process accessed the full
dataset, and the best algorithm and hyperparameter settings were
selected by applying a 5-fold cross-validation on the full dataset, too.
Therefore, the performance metrics computed on a set of 30% held-
out compounds are over-optimistic, since model selection benefitted
from accessing those testing samples during feature selection and
cross-validation on the full data. This could be avoided by applying
feature selection and 5-fold cross-validation on the 70% training sam-
ples, but this would have reduced the training set to only 41 positive
compounds, and thus make the selection of the best model less reli-
able. Since our aim was to employ the model to screen for new
senolytics, we prioritised a reliable selection of the best model, at the
risk of producing over-optimistic performance metrics.

Identification of senolytics by experimental screening of top
predicted compounds
We experimentally screened the top predicted molecules (Fig. 2e) for
senolytic activity in two model cell lines for oncogene-induced and
therapy-induced senescence. We first assessed oncogene-induced
senescence (OIS) in human diploid fibroblasts IMR90 transduced with
the fusion protein ER:RAS (IMR90 ER:RAS), which induces oncogenic
RasG12V-mediated stress by addition of 4-hydroxytamoxifen (4-OHT) to
the culture media66. Treatment of IMR90 ER:RAS cells with 4-OHT
showed a decrease in proliferation, increased senescence-associated
β-galactosidase activity, induction of cell cycle inhibitor expression,
and activation of the SASP when compared with control and 4-OHT
untreated cells, indicating that the cells underwent OIS (Supplemen-
tary Fig. 3).

To test for senolytic activity, we compared the effect of each
compound on the total cell number (automated high content image-
based analysis of total number of nuclei per well) in non-senescent and
senescent IMR90 ER:RAS cultures treated with the top hits from the
computational screen (Figs. 2e and 3a–d and Supplementary Fig. 4a–c).
The drop in cell number compared to untreated controls is indicated
by the nuclei count and reflects cell death13,15. As positive control, we
employed ouabain, a cardiac glycoside with well characterised seno-
lytic activity13. An optimal senolytic effect was reached with addition of
46.4 nM ouabain (IC50 control = 231 nM; IC50 senescence = 28 nM) to
4-OHT-induced IMR90 ER:RAS cells. This concentration killed most of
the cultured senescent cells, but resulted in marginal reduction of the
number of non-senescent control cells (Fig. 3b).

We then tested the 21 candidate compounds and found threewith
clear senolytic action: periplocin and oleandrin, two cardiac glycosides
which have not been previously identified as senolytics, and ginkgetin,
a natural non-toxic biflavone; this amounts to a hit confirmation rate of
14.28% (Fig. 3c, d and Supplementary Fig. 4c). Treatment of senescent
IMR90 ER:RAS cells with the three compounds showed reduced nuclei
counts when compared with proliferating, non-senescent IMR90
controls with an effect comparable to the positive control (Fig. 3c, d
and Supplementary Fig. 5a). For confirmation, we performed cell
staining with Hoechst to label the nuclei, showing the clearest effect
with doses of 21.5 nM oleandrin (IC50 control = 85 nM; IC50 senes-
cence = 14 nM), 46.4 nM periplocin (IC50 control = 300nM;
IC50 senescence = 24nM) and 4.6μMginkgetin (IC50 control = 26μΜ;
IC50 senescence = 2.6μΜ). These concentrations have a marginal
effect on the nuclei counts in normal cells, but a marked decrease in
nuclei counts in senescent cells (Fig. 3c, d and Supplementary Fig. 5a).
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The dose-response curves showed a lower IC50 for the three com-
pounds in nuclei counts from senescent cells as compared to nuclei
from normal cells (Fig. 3d). In particular, periplocin (the top hit pre-
dicted by our model, Fig. 2d) showed a senolytic effect with a striking
resemblance to the positive control ouabain (Fig. 3b, d).

We performed a second validation of the effectiveness of our
machine learning models using a different stressor. We focused on

therapy-induced senescence (TIS, Supplementary Fig. 6a), where
human epithelial cancerous cells (A549) were induced to become
senescent by addition of etoposide66. Cells were treated with 100μM
etoposide for 48 h, followed by another three days of exposure to
media in standard conditions. As a positive control, we employed
navitoclax (IC50 control = 10.2μΜ; IC50 senescence = 440nM), a Bcl-2
family inhibitor with well characterised senolytic activity28. Addition of
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1μM navitoclax to A549 cells killed most of the cultured senescent
cells, but resulted in no reduction in numbersof non-senescent control
cells, confirming its optimal senolytic activity (Supplementary Fig. 6b).

Cells were then treated with the top 21 hits in Fig. 2d from our
computational screen (Supplementary Figs. 6a–d and 7); we found
that the same three compounds validated in oncogene-induced
senescent cells (periplocin, oleandrin, ginkgetin) also displayed
strong senolytic action in senescent A549 cells. The three com-
pounds showed enhanced toxicity when compared with proliferat-
ing, non-senescent A549 controls with an effect comparable to the
positive control. Hoechst labelling showed that a senolytic effect was
reached with concentrations of 10 nM oleandrin (IC50 control =
19.5 nM; IC50 senescence = 5.4 nM), 46.4 nM periplocin (IC50 con-
trol = 267 nM; IC50 senescence = 72.2 nM) and 4.64 μM ginkgetin
(IC50 control = 10.4 μΜ; IC50 senescence = 5.7 μΜ). These doses had
a marginal effect on normal cells, but a decrease in survival rate in
senescent cells (Supplementary Figs. 5b and 6c, d). The dose-
response curves showed a lowered IC50 for the three compounds in
senescent cells as compared to normal cells (Supplementary Fig. 6d).

To assess the chemical similarity between the three compounds
correctly identified by the XGBoost model (Fig. 3d) and the senolytics
employed for training (Fig. 2b), we computed theTanimotodistance in
the descriptor space between ginkgetin, oleandrin, and periplocin and
eachof the 58 senolytics in the training data (Fig. 3e). More than half of
the training compounds were found to be maximally distant from our
newly discovered senolytics, which provides some validation that our
machine learning approach can effectively identify diverse com-
pounds for specific biological effects such as senolysis. Both oleandrin
and periplocin are steroid saponins, similar to ouabain, yet ginkgetin is
a structurally distinct biflavone natural product. The steroid hormone
core structure alone (Supplementary Fig. 8a, coloured red) present in
periplocin, oleandrin and ouabain is insufficient for senolytic activity,
when compared to inactive compounds taurocholic acid and gamma-
oryzanol. Hence the glycoside linkages (Supplementary Fig. 8a,
coloured blue) and furanone moiety (Supplementary Fig. 8a, purple)
are likely contributing to target binding and potency, beyond physi-
cochemical properties (e.g. solubility or cell permeability). Similarly,
the basic flavone scaffold present in ginkgetin (Supplementary Fig. 8b,
coloured blue) is also present in inactive compounds, herbacetin and
morin. This may indicate a more complex target bindingmode for the
asymmetrical biflavone unit of ginkgetin and is worth further investi-
gation. Several studies have shown that flavonoids are promising
candidates in senescence-related research, hence the importance of
finding new and more efficacious compounds of this kind67–69.

AI-identified compound oleandrin displays improved senolytic
performance over benchmark senolytic cardiac glycosides
Our experimental screen suggested that oleandrin had enhanced
senolytic activity as compared to the knowncardiac glycosideouabain,
particularly in the low nanomolar range (Fig. 3c). We thus sought to
compare the potency and mechanism of action of oleandrin to other

benchmark senolytics. We first compared the senolytic activity of the
newly identified senolytics periplocin and oleandrin against ouabain at
a low concentration of 10 nM.Whileouabain andperiplocin showedno
cytotoxic activity in IMR90-ER:STOP proliferating control cells nor in
IMR90-ER:RAS cells undergoing OIS, oleandrin showed a significant
drop in cellular content inOIS cell cultures at 10 nM,which is indicative
of an enhanced and highly specific senolytic activity at a lower drug
concentration (Fig. 4a, b). We then tested whether oleandrin harbours
similar potency in replicative senescence in IMR90 cells and A549 lung
cancer epithelial cells undergoing TIS with etoposide treatment
(Supplementary Fig. 9b, d). In both models, oleandrin was the only
compound showing a significant reduction in cellular content in
senescent cultures at a concentration of 10 nM, while keeping the
cellular density unchanged in non-senescent control cell cultures. This
indicates that oleandrin has a more substantial senolytic effect than
ouabain in replicative senescence and therapy-induced senescence in
epithelial cancer cells (Fig. 4c and Supplementary Fig. 9b, d, e).
Importantly, treatment of oncogene-induced and replicative senes-
cent cellswith 10 nMoleandrin induced an evident increase in caspase-
3/7 activitywhen compared to control cells, aswell as cells treatedwith
oleandrin and periplocin, confirming that oleandrin induces apoptosis
in senescent cells at lower concentrations than ouabain (Fig. 4d and
Supplementary Fig. 9f).

To further determine if oleandrin produces unwanted side effects
in proliferation despite no cytotoxic effect in normal control cells, we
subjected proliferating IMR90 cells to 10 nM ouabain, periplocin and
oleandrin treatment, with etoposide as a control, and performed a
proliferation assay by BrdU incorporation, observing that none of the
cardiac glycosides inducedunwanted changes inproliferation at 10 nM
concentration (Supplementary Fig. 9g). The senolytic effect of cardiac
glycosides has beenpreviously linked to its canonical target, theNa+/K+

ATPase pump13.We confirmed that senescent cells displayed increased
intracellular K+. However, onlyoleandrin at 10 nMsignificantly reduced
K+ intracellular concentration during OIS and replicative senescence in
IMR90 cells (Fig. 5a, b and Supplementary Fig. 9h, i), indicating that
oleandrin inhibits its canonical target at lower concentrations than
ouabain in senescent cells.

Senolytic cardiac glycosides activate a transcriptional programme
resulting in the induction of several pro-apoptotic Bcl-2 family
proteins13. Specifically, ouabain induces the expression of the BH3-only
pro-apoptotic protein NOXA, which mediates its senolytic effect. We
observed that only oleandrin induced a significant increase in NOXA
mRNA expression at a low concentration of 10 nM (Fig. 5c, d), con-
firming the potent effect of oleandrin over benchmark cardiac glyco-
sides. Moreover, after three days of treatment with 10 nM oleandrin,
the mRNA expression of the senescence markers p16 and p21 was
found to be reduced in the surviving cells in both OIS (Supplementary
Fig. 9j) and replicative senescence (Supplementary Fig. 9k) cell cul-
tures. Furthermore, treatmentwith oleandrin for three days resulted in
reduced expression of proinflammatory cytokines IL1α, IL1β and IL8
mRNA in the surviving cells in OIS (Supplementary Fig. 9l) and

Fig. 3 | Experimental characterisation of compounds selected for screening in
oncogene-induced senescent (OIS) cells. a Experimental setup of OIS model with
IMR90 ER:RAS cells. Senescence was induced by addition of 4-OHT at 100nM
during the duration of the experiment (8 days). Control and senescent cells were
plated in a 384-well plate on day five of 4-OHT induction. Top predicted com-
pounds were added after multiwell seeding, and 72 h afterwards, the cells were
fixed, and the nuclei stained and counted. b Bar plot of OIS positive experimental
control, ouabain, at 46.4 nM. Data is normalised to DMSO. Data represented as
individual points, and bars and error bars represent the mean ± SEM of three
independent experiments. Statistical analysis was performed using a two-sided
two-sample t-test for difference in mean value: ***p <0.001; p = 2.6 × 10−4. c Results
from experimental validation of controls and the top 21 compounds from Fig. 2d
predicted to have senolytic action with P > 44%. Three compounds out of the 21

displayed senolytic activity: ginkgetin, oleandrin and periplocin; heatmap shows
mean across n = 3 replicates. This drug screen was done once with three experi-
mental replicates. d Dose-response curves of the three newly found senolytic
compounds. The senolytic index (SI) is defined as the ratio between the IC50 of
control cells and the IC50 of senescent cells. Data is normalised to DMSO.
Mean ± s.d. are shown from n = 3 experiments. Oleandrin and periplocin are related
steroid saponins, similar to ouabain. Ginkgetin is a structurally distinct biflavone;
the structures of the three compounds can be found in Supplementary Fig. 11.
e Tanimoto distance between the three validated senolytics and those employed
formodel training; distances were calculated using the RDKit descriptors that were
employed in the training ofmachine learningmodels in Fig. 2b and Supplementary
Table 2. Source data are provided as a Source Data file.
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replicative senescence (Supplementary Fig. 9m). These findings pro-
vide evidence that oleandrin treatment reduced both senescence
burden andproinflammatory SASP signalling. Altogether, these results
demonstrate that our machine learning approach was able to discover
an improved and more potent cardiac glycoside with senolytic action,
facilitating the identification of chemical structure baits for further
downstream chemical optimisation.

Discussion
Current approaches to drug discovery suffer from notoriously high
attrition rates in late-stage preclinical and clinical development. Due to
their ability to parse and detect patterns in large volumes of data, AI
has found applications across every stage of the drug discovery
pipeline70. In this paper, we described a successful machine learning
approach designed to identify novel drug candidates in early phases of
the discovery process. We focused on targeted elimination of senes-
cent cells, a phenotype that has attracted substantial interest for
adjuvant cancer therapy2, but for which few molecular targets have
been identified. Our strategy revealed three compounds (ginkgetin,
oleandrin and periplocin) that selectively eliminate cells displaying

oncogene- and therapy-induced senescence. We showed that these
compounds have a potency comparable or higher to senolytics pre-
viously described in the literature and, crucially, our method led to
large gains in efficiency by reducing the number of compounds for
experimental screening by more than 200-fold.

Our approach offers several innovations that depart from current
practice inAI for drug discovery. First, it relies solely on published data
for model training, and thus avoids the extra costs for in-house
experimental characterisation of training compounds. Second, our
machine learning models were trained on just 58 chemical structures
with proven senolytic action, which ismuch smaller data than typically
considered in the field; the small number of senolytics in the training
data is a consequence of senolysis being a raremolecular property and
the limited number of senolytics reported in the literature so far. The
success of our approach demonstrates that machine learning can take
maximum advantage of literature data, even when such data is het-
erogeneous and ofmuch smaller scale than typically expected71. Third,
ourmodels were trained in a target-agnosticmanner using phenotypic
signatures of drug action. Target specificity is of key importance for
drug efficacy and safety in later stages of the discovery pipeline, but

Fig. 4 | Senolytic performance of oleandrin and periplocin. a Cell survival assay
measuring the senolytic effect in OIS. The panels show a representative crystal
violet staining of tissue culture dishes of confluent senescent IMR90 ER:RAS and
control IMR90 ER:STOP cells cultured with 100nM 4OHT, and treated with 10 nM
oleandrin, ouabain and periplocin, and DMSO as vehicle control for 72 h. b Cell
survival by quantification of the crystal violet staining of the experiment shown in
a, as described in “Methods” section. Data represented as individual data points,
and bars and error bars representing the mean± SEM of 12 independent experi-
ments. Statistical analysis was performed using a one-way ANOVA (Tukey’s test) for
multiple comparisons. c Cell survival assay measuring the senolytic effect in
replicative senescence. Graphs representing the cell survival by quantification of
the crystal violet staining of confluent cultures of IMR90 cells at passage 27
(replicative senescence) and IMR90 cells at passage 13 (control) treatedwith 10 nM

oleandrin, ouabain and periplocin, and DMSO as vehicle control for 72 h (related to
Supplementary Fig. 9b). Data represented as individual data points, and bars and
error bars representing the mean± SEM of 12 independent experiments. Statistical
analysis was performed using a one-way ANOVA (Tukey’s test) for multiple com-
parisons. d Caspase 3/7 activity assay in control IMR90 ER:STOP and senescent
IMR90 ER:RAS cells cultured inmedia containing 100nM4OHT, and treated during
35 h with 10 nM oleandrin, ouabain and periplocin, and DMSO as vehicle control.
The panels show representative fluorescent images of caspase 3/7 positive cells
(lower panels) and brightfield images (upper panels) of the same field for cell
scoring. Percentage of green fluorescent cells per condition is indicated in the
panel figures. Representative data of one of two independent experiments. Scale
bars represent 100μm. ns not significant, *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001. Source data are provided as a Source Data file.
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there are numerous conditions of high economic and societal burden
with few or no known targets53; for such conditions, there is an
opportunity for phenotypic drug discovery to increase the number of
chemical starting points that can be carried through the discovery
pipeline52.

A key challenge in computational drug screening is the con-
struction of numerical representations of chemical structures that are
predictive of drug efficacy72. With the advent of deep learning as the
leading paradigm in the field73, many recent works have developed
such representations with e.g. transformer models for prediction of
chemical reactions74, graph neural networks to describe molecular
structures39,47, morphology-based convolutional neural networks for
activity prediction48 and generative models for de novo compound
design75. In the ageing-related literature, previous studies have built
pipelines to predict compounds that increase the life span of model
organisms utilising chemical descriptors and gene ontology terms as
features to train random forests49, feature selection pre-processing to

train RF, SVM and neural networks51, and molecular fingerprints to
train RF models50. In our approach, we found that classic physico-
chemical descriptors57 calculated from SMILES strings were sufficient
to train useful models. We observed limited benefits in the use of deep
learning for compound featurisation, possibly because of the small
size of our training data.

We found that careful data assembly, curation, andquality control
were key for success. Since negative assays are rarely reported in the
literature, we built the training data by pairing the known senolytics
with a background of compounds assumed to lack senolytic action,
but with an appropriate chemical diversity and a size deliberately
chosen to reflect the paucity of senolytic compounds. These design
choices produced a strong imbalancebetween thenumber of senolytic
and non-senolytic compounds, which introduced additional chal-
lenges for model training. Several checks were needed to ensure that
the training data was diverse enough and avoided bias toward specific
chemical classes. Moreover, our models generally displayed poor
performance as quantified by common classification metrics, produ-
cing large numbers of false positives and false negatives in cross-
validation. We mitigated the impact of class imbalance by prioritising
models with a lower number of false positives, and thus reduce the
downstream costs for experimental validation. We carefully designed
the screening library to balance similaritywith the training data against
exploration of novel chemical spaces (Fig. 2f). This led to an excep-
tionally selective distribution of prediction scores (Fig. 2d), which
allowed us to select a cutoff for experimental validation with a rea-
sonable number of hits and prediction scores far away from the bulk of
the screening compounds. Although cutoff selection is highly pro-
blem-dependent, the robustness of results can be assessed with ran-
domised repeats of model training and screening (Supplementary
Fig. 10). Our results thus show that seemingly poor models can be
employed effectively with adequate checks and balances on the
structure of the data, plus a careful interpretation of misclassification
errors.

Importantly, our approach identified oleandrin, a cardiac gly-
coside with stronger potency than the benchmark senolytic cardiac
glycoside ouabain. Oleandrin has improved senolytic performance
over ouabain, functioning at a low nanomolar range, inhibiting its
canonical target and activating its senolytic pathway with higher
efficacy. Moreover, we saw that oleandrin does not affect the pro-
liferative capacity and viability of normal cells at that nanomolar
concentration, indicating promising senolytic potential. Our work
thus demonstrates that artificial intelligence and machine learning
can help discover new and better-performing active compounds for
a given pharmacological group. Further validation on animal mod-
els may strengthen the evidence for oleandrin as a promising new
senolytic. A caveat, however, is that cardiac glycosides that have
been employed in heart conditions have severe limitations due to
toxicity76, and our results suggest that oleandrin is not an exception
because of its narrow therapeutic range and cardiotoxicity, and
hence its use as systemic senolytic should be considered cautiously.
The high potency of oleandrin could potentially benefit senolytic
therapies administered locally on the site of damage; clinical trials
are currently assessing such local administration of senolytics for
osteoarthritis10,77. Moreover, in a separate work we have shown that
ex-vivo senolytics perfusion of transplant discarded human livers
preserves tissue architecture and its regenerative capacity during
cold storage78. It is plausible that local oleandrin administration and
perfusion in donor livers during the cold storage period before
transplantation could overcome toxicity concerns from systemic
administration and facilitate its use in the clinic.

From a translational point of view, we highlight that the three
senolytics identified in this study are natural products found in tradi-
tional herbal medicines: Ginkgo biloba (ginkgetin)79 Nerium oleander
(oleandrin)76 and Periploca sepium (periplocin)80. Oleandrin and

Fig. 5 | Activity of oleandrin and periplocin on their senolytic targets.
a, b Intracellular K+ levels measured using Asante staining in a 100nM 4OHT con-
taining cultures of senescent IMR90 ER:RAS cells treated with 10nM oleandrin,
ouabain and periplocin, or DMSO as vehicle control, compared with IMR90
ER:STOP controls (n = 7), and b in IMR90 cells at passage 27 (replicative senes-
cence) treated with 10 nM oleandrin, ouabain and periplocin, or DMSO as control
vehicle compared to IMR90 cells at passage 13 (control) (n = 6).Data represented as
individual data points and themean± SEM. Statistical analysiswas performed using
a one-way ANOVA (Tukey’s test) for multiple comparisons. Representative images
of Asante cell staining are shown in Supplementary Fig. 9h, i. c, dmRNA expression
of NOXA determined by RT-qPCR in c 100 nM 4OHT containing cultures of
senescent IMR90 ER:RAS cells treated with 10 nM oleandrin, ouabain and periplo-
cin, and DMSO as control, compared to control IMR90 ER:STOP cells (n = 4), and
d IMR90 cells at passage 27 (replicative senescence) treated with 10 nM oleandrin,
ouabain and periplocin, and DMSO control compared to IMR90 proliferating cells
at passage 13 (control) (n = 3). Data represented as individual data points and the
mean ± SEM. Statistical analysis was performed using a one-way ANOVA (Dunnett’s
test) for multiple comparisons. ns not significant, *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001. Source data are provided as a Source Data file.
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periplocin belong to the group of cardenolide glycosides, which are
highly potent cardioactive agents, while ginkgetin is a biflavone with a
broad pharmacological spectrum. Although they are not exempt of
toxicological concerns, their already established ADME-Tox profiles in
different models can help to reduce pharmacokinetics and tolerability
issues during preclinical and clinical development. In principle, we do
not rule out the senolytic potential of a low-toxicity compound like
ginkgetin, but the exceptional activity and potency of oleandrin,
together with its relatively low molecular weight (576.7 g/mol) and
favourable cLogP (2.4), make it a promising lead candidate as com-
pared to periplocin and ginkgetin (Supplementary Fig. 11). Oleandrin
shares key structural features with other cardiac glycosides, including
the presence of a sugar attached to the steroid core (at the C3β-OH
group), a 2-furanone ring atC17β and anOHgroup at the C14βposition
of the steroid ring. Unlike most cardiac glycosides, oleandrin has an
acetyloxy group attached at position C16β. In contrast to more struc-
turally complex cardiac glycosides that display senolytic activity (e.g.
ouabain, periplocin or lanatoside C), oleandrin features a mono-
saccharide and a simple central steroid system, which makes it closer
to a potentially non-cardiotoxic pharmacophore and, consequently, an
attractive starting point for future senolytic medicinal chemistry
campaigns.

Our approach led to a significant reduction in experimental
screening costs, largely because all models were trained solely on
published data and, unlike other recent successes in the field39, there
was no need to screen compounds purposely for model training. The
approach thus offers exciting prospects for new open science
approaches to drug discovery. The COVID-19 pandemic spurred a
multitude of such initiatives across the globe with the goal of finding
new antivirals from the troves of published data81. Our work provides a
concrete example of a simple yet effective machine learning pipeline
that can be readily built from published screening data. We hope this
approach will catalyse more open science approaches to discover
treatments for conditions of unmet need, particularly those for which
there is a limited grasp of the biological pathways involved in disease
onset and progression.

Methods
A Data assembly, featurisation and quality control
Training data. We assembled a list of 58 previously identified senoly-
tics mined from 15 sources11–19,23–28 (Fig. 1b). The library of negative
compounds contains 2465 compounds from the LOPAC-1280 (Library
of Pharmacologically Active Compounds; Merck, Darmstadt, Ger-
many) andPrestwickFDA-approved-1280 (PrestwickChemical, Illkirch,
France). We reasoned that these libraries are sufficiently diverse for
trainingmachine learningmodels. Although all compounds from these
two library sources were assumed to be negative, it is plausible that
some of thesemolecules were incorrectly labelled. This is because not
all senolytics found have been expressly named in publications with
screens (some sources only name a small set of their discoveries), or
because these molecules have only been tested in several cell lines
under one type of senescence induction.

Featurisation. The training dataset contains a string representation
of the two-dimensional structures in the formof SMILES strings. The
majority of SMILES were taken from the library of origin of every
compound (LOPAC or Prestwick for training, Selleck or TargetMol
for screening) with the exception of five positives (ProDrug A,
JHB76B, CGP-74514A, A1331852, A1155463) whose SMILES were cal-
culated using ChemDraw v18.1.0.53512,13,19. For chiral molecules, we
favoured isomeric SMILES representations instead of the canonical
case. We employed the RDKit package57 to compute 200 physico-
chemical descriptions for each compound, which quantify different
aspects of the molecular structure, its fragments, and global
properties.

Clustering analysis and Tanimoto graph. To quantify the diversity of
the senolytics employed for training (Fig. 1c–e),weperformed k-means
clustering of the 58 positives using the RDKit descriptors as features
and the cosine distance function between z-score normalised feature
vectors. The degree of clustering was quantified by the k-means score
(Fig. 1c) defined as the within-cluster sums of point-to-centroid dis-
tances, summed across all clusters. The quality of the k-means clusters
were determined with the silhouette coefficient S averaged across the
58 senolytics. The silhouette coefficient varies between −1 and 1, with
S = 1 indicating that compounds are in well separated clusters, S = 0
indicating overlapping clusters, and S = −1 indicating incorrect
assignment of clusters. To build the Tanimoto distance graph (Fig. 1d)
we first constructed a fully connected graph weighted by the pairwise
Tanimoto distances feature vectors. This graph was then sparsified
with the k-nearest neighbours graph (k = 7) intersected with the mini-
mum spanning tree of the original graph. The edge widths were set as
the Tanimoto similarity between compounds (1-distance). Clustering
of the Tanimoto distance graph (Fig. 1e) was done with a Matlab
R2022a implementation of the Louvain algorithm for community
detection60. To compare the Louvain clusters with the compounds
labelled according to their source (Fig. 1b), we employed the adjusted
Rand Index which is a measure of the similarity between two cluster-
ings, adjusted for the chance grouping of compounds61; low values of
the ARI indicate little similarity between clusterings.

B Model training and computational screen
All models were trained with the scikit-learn 0.24.1 library plus
XGBoost 0.9064 in Python.Modelswere trained on a reduced set of 165
z-score normalised features identified as relevant for classification
using scikit-learn feature importance with a forest of trees function
(Supplementary Fig. 1a) and the average reduction of Gini index as an
impuritymeasure82,83. A PCAanalysiswas performedusing the function
prcomp from R’s stats package 4.0.2 (Supplementary Fig. 1b). Dimen-
sionality reduction of this data proved to be challenging, asmore than
50% of the 200 RDKit features were needed to explain 99% of the
variance.

Formodel selection, we trained on the whole set of data instances
after feature reduction (165 columns, 2,523 rows) to perform fair
comparisons across models and take full advantage of the limited
number of positive samples. This was donewith 5-fold cross-validation
to check for overfitting. Themetrics of this analysis are displayed in the
bar charts of Fig. 2b and in Supplementary Table 2. All models were
scored with three metrics of classification performance:

precision= ðTP=ðTP+FPÞ, ð1Þ

recall =TP=ðTP+FNÞ, ð2Þ

F1 = TP=ðTP+ 1=2ðFP + FNÞÞ, ð3Þ

where TP, TN, FP and FN are the number of true positives, true nega-
tives, false positives and false negatives, respectively. We attempted to
resolve the severe class imbalance problem inherent to our data by
utilising the pre-processing technique SMOTE on several classification
algorithms, without significant improvement; SMOTE was applied to
the training set only. For the SVM and RF, we tuned the ‘class weight’
parameter, whichwhen set to ‘balanced’ rather than the default ‘None’,
adjusts weights in a manner inversely proportional to class frequen-
cies, therefore imposing heavier penalties in the misclassification of
the less represented class. In the case of SVM, the setting of ‘class
weight’ to ‘balanced’ was the best option, whereas for the RF the best
setting was the default one. For the XGBoost model, we utilised this
same data (165 columns, 2,523 rows) to optimise the hyperparameter
‘max depth’ using a grid search across all integer values in the interval
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max_depth = [1,10] to maximise precision over 5-fold cross-validation
runs; hyperparameter optimisation settings were applied only to the
training set in each of the five folds. The hyperparameters of the SVM,
RF and XGBoost models can be found in Supplementary Tables 3–5.

We subsequently re-trained the XGBoost, RF, and SVM models
with a stratified random split of the data (70% for training, and 30% for
testing) to produce the confusion matrices in Fig. 2c. For the compu-
tational screen, we employed the XGBoost model ran on the L2100
TargetMol Anticancer (TargetMol Chemicals, Wellesley Hills, MA) and
L3800 Selleck FDA-approved & Passed Phase (Selleck Chemicals,
Houston, TX) libraries. We used the XGBoost model trained on the
70:30 split to compute prediction scores on the screening library, i.e.
the probability of a compound being classified as senolytic (Fig. 2d).

C Validation assays
We performed experimental validation of the compounds with
z-score > 8 (Fig. 2e). These correspond to 21 compounds out of a total
of 4340 compounds in our screening libraries. We employed two cel-
lularmodels of senescence: one of OIS and a secondone of TIS. For the
OIS case, we utilised IMR90 ER:RAS cells with 4-OHT at 100nM. The
4-OHT treatment hadadurationof sixdays. For theTISmodel, weused
A549 cells with etoposide at 100μM. The exposure of the cells to
etoposide lasted 48 h, after which period the cells were cultivated for a
further three days with normal media.

Cell culture. IMR90 (CCL-186) female human foetal lung fibroblasts
and A549 (CCL-185) human lung adenocarcinoma cells were obtained
from the AmericanType CultureCollection (ATCC,Manassas, VA). The
cell lines were confirmed to be mycoplasma negative (Lonza MycoA-
lert, cat #LT07-118). IMR90 ER:RAS is a derivative of IMR90 cells
expressing a switchable version of oncogenic H-Ras84. IMR90 ER:RAS
and A549 cells weremaintained in Dulbecco’s Modified Eagle Medium
(DMEM, ThermoFisher) supplementedwith foetal bovine serum (10%),
L-glutamine (2mM, ThermoFisher), and antibiotic-antimycotic solu-
tion (1%, ThermoFisher) and incubated under standard tissue culture
conditions (37 °C and 5% CO2). For induction of the senescent phe-
notype, IMR90-ER:RAS cells were cultured in hydroxytamoxifen (4-
OHT) (Sigma) addedmedia at 100 nM final concentration. IMR90were
kept in culture for over 27 passages for replicative senescence. Cells
were tested for mycoplasma on a regular basis.

Quantification of senolytic action. Cells were seeded (50μL per well)
into 384-well plates (IMR90 ER:RAS cells in Nunc Optical Bottom
Polybase Microplates [#142761, Thermo Scientific, Rochester, NY]
and A549 cells in CELLSTAR Cell Culture Microplates [#781091,
Greiner Bio-One, Kremsmünster, Austria]). Cells were incubated
under standard tissue culture conditions for 24 h before the addition
of compounds. Passage 14 IMR90 ER:RAS cells were seeded at 1300
cells perwell in the control condition, and at 1600cells perwell in the
senescent case. Passage 34 A549 cells were seeded at 7000 cells per
well in the control condition, and at 10,000 cells per well in the
senescent case.

Dose response plates were prepared with a DMSO control and a
10-point half-log concentration range, and added to the compounds
using a D300e digital dispenser (Tecan Trading AG, Switzerland) at a
final concentration of between 10μM and 10 nM. Every screened
condition was carried out in triplicate. After 72 h of incubation with
exposure to the compounds, cells were fixed by the addition of an
equal volume of formaldehyde (8%, 50μL; #BP531-500, Fisher Bior-
eagents, Fisher Scientific, Loughborough, Leicestershire) to the exist-
ingmedia, incubated at room temperature (30min), andwashed three
times in phosphate-buffered saline (PBS). Cells were then permeabi-
lised in Triton-X100 (0.1%, 50 μL) and incubated at room temperature
(30min) followed by three more washes with PBS.

Cells were stainedwithHoechst 33342 for nuclei count (excitation/
emission wavelength at 387/447 nM, DAPI channel, original concentra-
tion at 10mg/ml, final concentration at 2μg/ml; H1399, Molecular
Probes, Eugene, OR). The staining solution was prepared in bovine
serum albumin solution (10%). The staining solution was added to each
well (30μL) and incubated in the dark at room temperature (30min),
followed by three washes with PBS and no final aspiration. Plates were
foil sealed.

Image acquisition. Plates were imaged on an ImageXpress micro
XLS (Molecular Devices, Eugene, OR) equipped with a robotic plate
loader (Scara4, PAA, UK). Four fields of view were captured per well
(20x objective for A549 cells, 10x objective for IMR90 ER:RAS cells)
and one filter was used (DAPI). A typical wild-type field of view
contained 1000 cells in the IMR90 ER:RAS case, and 1400 in the
A549 case.

Image and data analysis. The stained cell nuclei were counted on
MetaXpress v6.6.2.46 software. The results per compound, phenotype
condition, and dose were added and the results morphed into data
frame format with functions from R’s dplyr, tidyr, and reshape2
libraries.

The dose-response data (control plus 10 half-log range points)
was fitted (ordinary least squares) to a log (inhibitor) vs normalised
response (control value per condition [senescent, non-senescent] was
constrained at 100%) with variable slope equation using Prism 6
software (GraphPad, San Diego, CA). With this fit, IC50 values were
calculated for senolytic compounds.

Compounds. The following compounds were used in the present
study: etoposide (Sigma-Aldrich, E1383), 4-hydroxytamoxifen (Sigma-
Aldrich, H7904), ouabain (Apexbio, B2270), navitoclax (Apexbio,
A3007), ginkgetin (CaymanChemical, 25103-1mg), oleandrin (Cayman
Chemical, 29871-1mg), periplocin (Cayman Chemical, 25216-1mg),
BMS 599626 dihydrochloride (Apexbio B5792), BMS 986142 (BioVi-
sion, B2420-1), ellagic acid (Apexbio, A2306), everolimus (Cayman
Chemical, 22559-1mg), herbacetin (Cayman Chemical 19285-1mg),
morin (MedChemExpress LLC, HY-N0621-10mg), paritaprevir (Med-
ChemExpress HY-12594), rapamycin (Cayman Chemical, 13346-5mg),
taurocholic acid sodium salt hydrate (Selleck Chemicals, S5130), vel-
patasvir (BioVision, B1194-5), verteporfin (Apexbio, A8327), zotar-
olimus (Cayman Chemical, 29246-5mg), gamma mangostin
(MedChemExpress LLC, HY-N1957-5mg), gamma oryzanol (Med-
ChemExpress LLC, HY-B2194), gossypol (MedChemExpress LLC, HY-
15464A-10mg), ridaforolimus (Apexbio, B1639), scutellarein (Med-
ChemExpress LLC, HY-N4314-1mg), vinblastine sulfate (MP Biomedi-
cals LLC, 0219028725).

Cell survival assay using crystal violet staining. Equal numbers of
control and senescent cells were plated at high density on multiwell
plates just before senolytic treatment addition. After treatment, cells
were fixed on 0.5% glutaraldehyde (Sigma) and then dried at RT
overnight. Then, wells were stained with crystal violet solution for 3 h,
washed and dried. Once they were completely dry, the plates were
scanned for records. Quantification was performed extracting the
staining with 1% acetic acid and measuring the final solution by
absorbance at 595 nm.

Cell proliferation assay using crystal violet staining. 50,000 cells
per 10 cm-plate were seeded and kept in culture. After 12 days, cells
were fixed with 1% glutaraldehyde (Sigma) for 1 h. After several washes
with water, dried plates were stained with 0.15% crystal violet solution
for 1 h and thenwashed again. Once theywere completely dried, plates
were scanned for analysis.
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Caspase 3/7 activity assay. IMR90 ER:STOP and IMR90 ER:RAS cells
were cultured with 100nM4-OHT for 5 days. Cell were then plated in a
multiwell plate at high density. Once cells were attached, Caspase 3/7
probe (C10423 Invitrogen) and senolytic drugs, oleandrin, ouabain and
periplocin at 10 nM, were added to the media and cultured for 36 h.
Time lapse imaging was recorded every hour on a Leica AF6500
microscope (10x). ImageJ 1.53k was used for positive cell counting.

Intracellular K+ determination with Asante staining. Cells were cul-
tured for control and senescent phenotype and then treated with the
senolytics oleandrin, ouabain and periplocin at 10 nM for 72 h. Asante
(Asante Potassium Green-2 AM, abcam ab142806) was added to the
culture 30min before fixation, following manufacturer instructions.
DAPI staining was done before image acquisition on Nikon TI2
microscope (20x). Image analysis was performed using ImageJ 1.53k
for setting intensity threshold and measuring mean intensity.

mRNA gene expression analysis. Total RNA was isolated using
RNAeasy kit (Quiagen). cDNAwas generatedwith reverse transcriptase
iScript (Bio-Rad). RT-qPCR was performed using SYBR Select Master
Mix (Applied Biosystems) in OneStepPlus detection system (Applied
Biosystems). Oligos for amplification were: NOXA Fw-CATGAGG
GGACTCCTTCAAA and Rv-TTCCATCTTCCGTTTCCAAG; b-ACTIN Fw-
CATGTACGTTGCTATCCAGGC and Rv-CTCCTTAATGTCACGCACGAT;
IL1a Fw-AGTGCTGCTGAAGGAGATGCCTGA and Rv- CCCCTGCCAAGC
ACACCCAGTA; IL1b Fw-TGCACGCTCCGGGACTCACA and Rv- CATGG
AGAACACCACTTGTTGCTCC; IL8 Fw-GAGTGGACCACACTGCGCCA
and Rv-TCCACAACCCTCTGCACCCAGT; p16 Fw-CGGTCGGAGGCCGA
TCCAG and Rv- GCGCCGTGGAGCAGCAGCAGCT; p21Fw-CCTGTCAC
TGTCTTGTACCCT and Rv- GCGTTTGGAGTGGTAGAAATCT.

Western blot analysis. Cell lysates were prepared using Cell Lysis
Buffer (Cell Signalling 9803S). Clear lysates were quantified by Brad-
ford colorimetric assay. Samples were resolved by polyacrylamide gel
electrophoresis and transferred on nitrocellulose membrane, which
was blocked by a 5% milk-TBS-Tween buffer for 1 h at RT. Primary
antibodies (anti-p21 Sigma P1484, anti-p16 JC8, anti-IL1BMAB201 R&D)
were incubated o/n at 4 °C. After 2 washes with TBS-Tween buffer,
secondary antibodies were added for 1 h at RT and then 2 washes were
done before developing by using enhanced chemical luminescence
(Amersham) detection reagent. HRP-B-actin was incubated for
normalisation.

SA-β-galactosidase assay. After 10 days in culture, cells were fixed
in 0.5% glutaraldehyde (Sigma) for 10min at RT. Then the cells were
washed and stained with SA-β-Gal staining solution (20× KC
[100mM K3FE (CN)6 and 100mM K4Fe(CN)6*3H2O in PBS], 20×
X-Gal solution (Thermo Fisher Scientific) diluted to 1× in PBS/1mM
MgCl2 pH 6). Staining was performed overnight at 37 °C in the dark.
Once cells were washed, images were taken using an inverted tissue
culture widefield microscope (Nikon) for documentation and
quantification.

Immunofluorescence and imaging. IMR90 ER:STOP and IMR90
ER:RAS cells treated with 4-OHT during 8 days were fixed with 4%
paraformaldehyde for 30min. After several washes, cells were per-
meabilised with 0.2% Triton-100 for 10min and then blocked for
30min with PBS-BSA-Gelatin fish (Sigma). Primary antibodies (IL1A AF-
200-NA R&D Systems; IL1B MAB201 R&D Systems and IL8 MAB208
R&DSystems) were prepared in a blocking buffer and incubated for 1 h
at RT. Alexa Fluor secondary antibodies were used for signal detection
and DAPI solution was added for 10min. Finally, samples were washed
before imaging. Confocal images (512 × 512 pixels; 0.76μm/pixel) were
acquired sequentially on a SP5 laser-scan microscope (Leica) with a
×20 NA objective and 2× electronic zoom using LAS AF acquisition

software. Cells were excited sequentially with 405 nmand 594 nm laser
lines and emissionwas captured between 430-480 nm (DAPI) and 605-
655 nm (Alexa594) respectively. Images are presented after digital
adjustment of curve levels to maximise signal with ImageJ. In all cases,
exposure time, sensor gain, and digitalmanipulationwere the same for
control and experimental samples. Fluorochromes and colours are as
indicated in the figure legends.

BrdU incorporation assay. 5-bromo-2′-deoxyuridine (BrdU) incor-
poration was used to measure the number of cells actively replicating
DNA. Cells were incubated with 10μM BrdU (85811, Sigma) for 18 h.
After that, cells were fixed with 4% Paraformaldehyde, permeabilised,
blocked and then stained for immunofluorescence using BrdUprimary
antibody (555627 BD Pharmigen), Alexa fluor secondary for detection,
and DAPI staining for cell counting. Acquisition was done with a Nikon
TI2 microscope and analysis was performed with ImageJ for cell
counting.

Data acquisition and statistical analyses. For in vitro biological
experiments, cell culture plates were randomly assigned to treatments
in each experiment. Most imaging data were acquired and analysed
automatically by a high content microscopy platform and the imaging
analysis software MetaXpress, and thus, data collection and analysis
were blinded. For all other experiments, data collection and analysis
were blinded to the person collecting and analysing the data, and the
samples were identified only at the end of each experimental analysis.
All measurements were taken from distinct samples, as noted in figure
legends, and no data were excluded. Sample sizes were based in
standard protocols in the field. Unless otherwise stated, at least three
biological independent replicates were performed for each experi-
ment. Statistical analyses were performed using GraphPad Prism 9. All
experimental replicates are plotted in the graphs as individual data
points. All experimental data is available in the data source file. Sta-
tistical significance for each experiment was established by one-way
ANOVAusing the built-in tools of Prism 9. Statistical tests are indicated
in the figure legends and were chosen based on the nature of the
experiment and the standard tests employed in the field. Underlying
assumptions for these tests, including sample independence, variance
equality, and normality were assumed to be met although not expli-
citly examined. One-way ANOVA was followed by Tukey’s or Dunnett’s
multiple comparison test when appropriate, as indicated in the figure
captions. Two-sample statistical tests (Fig. 3b) were performed with a
two-sided t-test with the R package rstatix 0.7.0. Asterisks denote p
value as follows: ns = not significant, *p < 0.05, **p < 0.01, ***p <0.001,
****p < 0.0001.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data for model training and computational screen is available at
https://doi.org/10.5281/zenodo.7870357. Source data are provided
with this paper.

Code availability
Python code for model training and computational screening are
available in Zenodo at https://doi.org/10.5281/zenodo.7870357. We
employed Python v3.8.3 and the following packages: seaborn (0.10.0),
numpy (1.18.1), pandas (1.0.1), matplotlib (3.1.3), sklearn (0.24.1), pickle
(4.0), and xgboost (0.90).
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