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Observation of bulk quadrupole in
topological heat transport

Guoqiang Xu1,5, Xue Zhou2,5, Shuihua Yang 1,5, Jing Wu 3,4 &
Cheng-Wei Qiu 1

The quantized bulk quadrupole moment has so far revealed a non-trivial
boundary state with lower-dimensional topological edge states and in-gap
zero-dimensional corner modes. In contrast to photonic implementations,
state-of-the-art strategies for topological thermal metamaterials struggle to
achieve such higher-order hierarchical features. This is due to the absence of
quantized bulk quadrupole moments in thermal diffusion fundamentally
prohibiting possible band topology expansions. Here, we report a recipe for
generating quantized bulk quadrupole moments in fluid heat transport and
observe the quadrupole topological phases in non-Hermitian thermal systems.
Our experiments show that both the real- and imaginary-valued bands exhibit
the hierarchical features of bulk, gapped edge and in-gap corner states—in
stark contrast to the higher-order states observed only on real-valued bands in
classical wave fields. Our findings open up unique possibilities for diffusive
metamaterial engineering and establish a playground for multipolar topolo-
gical physics.

Topological states of matter have found explosive developments
across various classical wave fields1–5. In an adiabatic system, Hermiti-
city lies at the foundation of these emerging topological properties6,7,
as it ensures the real-valued eigenvalues and orthogonal eigenstates.
When considering open systems, additional interactions with the
ambient raise the non-Hermiticities. Though these dissipations fail the
fundamental bulk-boundary correspondence8,9 defined in Hermitian
system, a plethora of exotic properties are empowered, such as parity-
time symmetry10–12, skin effects13,14, as well as Weyl exceptional rings in
cold atomic gas15, photonics16, and semimetal17. The newly predicted
higher-order topological insulators (HOTI) have further paved an
avenue toward studying hierarchical features in both Hermitian18–23

and non-Hermitian24–27 systems. Featuring a quantized bulk quadru-
pole moment18, the Benalcazar–Bernevig–Hughes (BBH) model
holds the key for realizing a minimal quadrupole topological insulator
(QTI) possessing positive and negative couplings18–20. Moreover, a
modified non-Hermitian BBH model indicates that both the on-site

non-Hermiticities24 and the Hermiticities25 can derive the quadrupole
topological phases and modulate the higher-order transitions in real-
valued bands24–27.

It is recently found that dissipative diffusion is fundamentally
governed by skew-Hermitian physics and characterized by a purely
imaginary Hamiltonian28,29. It thus enables the counter-intuitive topo-
logical features in heat transport, such as non-Hermitian topological
insulating phases30 and Weyl exceptional rings31. On the other hand,
even the state-of-the-art methods28–31 fail to create non-Hermitian
thermal quadrupole topological phases, due to the absent bulk
quadrupole moment and undefined negative couplings in heat trans-
fer. Therefore, to date, non-Hermitian BBH model seems not applic-
able to heat transport, and quadrupole topological phases in thermal
diffusion are still elusive at large.

Here, we reveal the existence of quadrupole moment and non-
Hermitian quadrupole topological phases in heat transport. It is
essentially realized by judicious configurations of controllable thermal
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couplings between neighboring sites. In contrast to the fact that the
higher-order features can only be experimentally observed on real-
valued bands in classical wave fields, we capture these states on both
real- and imaginary-valued bands. We then experimentally demon-
strate these thermal quadrupole topological phases, and observe sig-
nificant temperature localizations at the bulk, edge, and corner of the
fabricated samples. Our work sheds light upon establishing quantized
bulk quadrupole moments in thermal systems and unlocking rich
topological phase transitions in various diffusions32–35 and higher-
order topological insulators in diffusion systems in purely thermal
conduction36,37.

Results
Generation of non-Hermitian quadrupole topological insulator
in fluid heat transport
We first consider a convective fluid heat transport with multiple dis-
crete sites as illustrated in Fig. 1a, b. Each site indicates a finite-volume
of heat transfer process, and the grid lines between neighboring sites
correspond to their thermal couplings. In stark contrasts to classical
wave dynamics, the fluid heat transport is based on continuous model
following conservation laws. Thus, the continuous conditions should
be considered for quantization (Supplementary Note 1). We adopt
tunable advections on each site to provide the necessary modulation
and create effective oscillations, thus further forming an effective unit-
structure consisting of four neighboring sites (Fig. 1b). Such unit-
structures can be periodically configured to establish an effective 2D

square-lattice with 16 sites (Fig. 1a) in heat transfer. The general heat
energy equation38 for each site can be expressed as

∂Tij

∂t
=

κ
ρc

∇ð∇TijÞ±ΩI=IIRðθÞ � ∇Tij +
X h

ρcax=y
ΔT

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
int racell

+
X βh

ρcax=y
ΔT

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
int ercell

:

ð1Þ

In Eq. (1), ρ, c, and κ respectively denote the density, specific heat,
and thermal conductivity of the site. Each site is depicted by its posi-
tion (i and j), and Tij denotes the corresponding temperature (Sup-
plementary Fig. 1a). ΩI/II represents the magnitude of the angular
velocities of the convection imposed on each site, and R and θ
respectively denote the radial and azimuth components in the x-y
plane. h indicates the heat transfer coefficient of the selected site, and
ax/y presents the widths for heat transport between the centers of
neighboring sites (Fig. 1b). Here we make ax = ay = a to ensure an
effective squareunit-structure, and letQc =

h
ρcawith the unit of s−1 stand

for the thermal coupling strength. β is the ratio between the intercell
and intracell thermal coupling strengths, and its value is 1 when
the heat exchange areas of the intracell and intercell components are
same (Methods). Taking into account thermal couplings in such a 2D
network, two components along the x and y directions can be
decoupled from the imposed advections on each site, i.e., ΩI=II � cosθ
and ΩI=II � sinθ. In that case, a diffusive analog to the quantized bulk
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Fig. 1 | Quadrupole topological phases in heat transport induced by Hermitian
advection and relevant band structures. a presents a square-lattice consisting of
16 sites in a grid thermal system. The red border indicates a four-site unit-structure.
ΩI/II represents the magnitude of the angular velocities imposed on each site.
b Schematic unit-structure with four sites, and ax/y presents the widths for heat
transport between the centers of neighboring sites. The light-yellow and light-red
colors indicate the counter-advections imposed on corresponding sites. The green
arrows present the advective directions. Each advection can be decoupled as two

advective components respectively in the x-z and y-z planes. The solid and dashed
lines respectively present the over-coupling and under-coupling channels between
neighboring sites. c–e plot of the real spectra of the dispersion induced by Her-
mitian advection respectively at the in-gap corner, gapped edge, and trivial bulk
states. The horizontal and vertical axes denote the effective Bloch wave numbers
and real value of the eigenvalue. The red and blue dots in (c and d) respectively
indicate the corner and edge states.
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quadrupole moment could emerge and exhibit characteristic quad-
rupole fields in temperature distributions when modulating the
advection and thermal coupling in the unit-structure (Supplementary
Note 3). It is worth to note that such two components originate from
the non-vanishing first-order drift terms of the advective vectors, thus
further indicating the different forms for quantization between
the governing function Eq. (1) and the well-established Schrodinger
equation.

Since the intrinsic thermal coupling is governed by skew-
Hermitian physics27–30, the imposed advections act as the real
Hermiticities, which are equivalent to the roles of gain and loss in
photonics. Note that the neighboring sites are coupled via the heat
exchanges induced by intracells and intercells. The tilted connections
(Supplementary Fig. 2) between two adjacent sites result in different
orientations of isotherms and coupling degrees under the same
advections (Supplementary Fig. 3). Such an implementation enables
the over-coupling and under-coupling, with respect to the reference
coupling strength in un-tilted configurations (Supplementary Note 3).
Due to the advective velocity vectors along x and y directions, the
temperature fields are available to propagate with two components
respectively along the advections like a wave. Thus, a wave-like solu-

tion Tij =Ae
i kxx�ωx t +φx + kyy�ωyt +φyð Þ on each site can be adopted

to reveal the oscillatory temperature field propagations, where

kx=y = 2π
lx=y

=R�1
x=y, ωx=y = � i

κ�k2
x=y

ρc + 1 + βð ÞQc

� �
�ΩI=II,x=y, A, and φx=y

indicate the effectivewave numbers, the complex angular frequencies,
the amplitude of temperature field, and the initial phase angles
respectively along the x and y directions. The values of φx=y are

respectively 0 and π for corresponding diagonal hot and cold sites.
Then, the effectiveHamiltonianof a four-site unit-structure can nowbe
written as Supplementary Eq. 5, where the real and imaginary parts
denote the two decoupled temperature field components respectively
along x and y directions.

The complex angular frequency and eigenvalues (Supplementary
Note 2) imply that both the advections and corresponding couplings
result in the complex bands. The imaginary angular frequency

�i
κ�k2

x=y

ρc + 1 +βð ÞQc

� �
originates from the intrinsic conduction and the

thermal couplings, while the real angular frequency ΩI=II represents

the effective momentum induced by the imposed advections towards
different azimuths. These two parts simultaneously determine the
amplitudes and themovements of the dynamic temperaturefield, thus
retaining the possibilities of exciting significant hierarchical stateswith
two distinct recipes, i.e., modulating the Hermitian advection and the
non-Hermitian coupling. We then fabricate a square-lattice with 16
sites and immerse it into water (Methods). All fabricated sites are
hollow in order to make water pass through and connect with tilted
channels possessing tailored thermal coupling strengths. These sites
are of the same size and act as advective balls to provide the needed
advections.

Non-Hermitian quadrupole topological phase induced by Her-
mitian advection
We first focus on the quadrupole topological phases enabled by
the Hermitian advection. For example, we make ΩI = 1:3Qc >0 and
implement advective modulations under ∣ΔΩ∣= ∣ΩI �ΩII ∣ ≥ 2

ffiffiffi
2

p
Qc to

ensure the real eigenvalues (Supplementary Notes 2 and 4). The real
band structures of the first Brillouin zones under specific advections
are presented in Supplementary Fig. 6a, which imply the topological
phase transition via solely modulating the Hermitian advection and
represent a class of topological quadrupole phases, embracing the in-
gap 0D and gapped 1D topological modes. We then calculate the dis-
persion relations to further validate the existence of these quadrupole

topological phases. The robust in-gap corner state (red dots) and
gapped edge state (blue dots) are respectively presented in Fig. 1c and
d, revealing these higher-order states with the advective configura-
tions of ΩII = � 1:385ΩI and ΩII = � 2:077ΩI . The completely gapped
bands illustrated in Fig. 1e with ΩII = � 3:154ΩI present a thermal
analog of a trivial insulator.

We then fabricate a thermal system consisting of 12 sites
(9 square lattices) along the x and y directions (Fig. 2a) to manifest
these nontrivial states. In order to ensure the topological transitions
solely via the Hermitian advection (Supplementary Eq. 11), the same
structures are adopted in all coupling channels to retain the same
intercell and intracell thermal coupling strength (β = 1). One of the
imposed advections on a pair of diagonal sites in one unit-structure
(Fig. 2a) is adopted asΩI = 1:3Qc based on the calculated dispersion in
Fig. 1c, while we sweep advection ΩII on the other pair of diagonal
sites within the range of [�3:154ΩI , 0] to search for corresponding
real angular frequency (Supplementary Eq. 11). Due to the effective
quantized quadrupole moment enabled by the above advective
arrangements (Supplementary Notes 2–4), the eigenfrequency spec-
trum indicates that significant hierarchical features discretely dis-
tribute along the real-valued band and localize on one gapless
imaginary-valued band (Fig. 2b). When Ref respectively approaches 0
and 4:81Qc, the trivial bulk states showcase the gaps between these
two branches in the real-valued band. We choose three sites respec-
tively at the center, edge, and corner of the sample (marked as a
square in Fig. 2a), and capture their responses under changing Ref as
plotted in Fig. 2c. Here, we take the absolute values of the normalized

temperatures I =
T *��Tmeað Þ
ΔTmea

��� ��� to evaluate field intensities, where T *, �Tmea

and ΔTmea respectively denote the target temperature at specific
measured points, the average temperature of the system, and the
difference between the highest temperature and �Tmea at the mea-
sured moments. Two peaks of the field intensities are observed at
corresponding Ref to the bulk branches as predicted in Fig. 2b.
Similar to the responses in the bulk, the gapped edge states also
exhibit two peaks as the gradient blue area in Fig. 2c. The four in-gap
corner states emergewhenRef ∼ 3:05Qc. In that case, only one peak is
found on the field intensity distribution. To further experimentally
demonstrate these quadrupole topological phases, we measure the
temperature distributions at corresponding Ref by modulating the
advections as shown in Fig. 2d–f. The corresponding numerical
results for these behaviors are shown in Supplementary Fig. 7. Note
that, the observed behaviors simultaneously contain effects on mul-
tiple fields for fluid heat transport. The findings in Fig. 2 are exhibited
with temperature distributions, since the energy equation of fluid
transport naturally satisfy the description of systemic energies of
Hamiltonian. More intuitively, the systemic velocity and pressure
distributions described by momentum equation of Navier-Stokes
equation can be also adopted to directly present these behaviors in
the real vector space (Supplementary Note 4.4). These theoretical,
numerical, and experimental findings reveal the quadrupole topolo-
gical phases in real-valued bands solely induced by Hermitian
advection in a thermal system. All these demonstrated fields are
typical transport phenomena within the fluids. These transport
quantities of energy, mass, and momentum follows the conservation
laws formulated by the constitutive equations of continuity equation,
momentumequation, and energy equation of the fluid heat transport.
The same continuous mechanism and mathematical frameworks of
the constitutive equations between these different fields enable the
similar processes of conserved transport and quantization, which can
be generally described by the balance among the conserved quan-
tities entering and leaving the control volume, the additional gen-
erations of all the original components for the conserved quantities,
and the non-zero accumulations (the net flows) retaining in the sys-
tem after the conservationprocess. Such a process is characterized by
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the presence of net fluxes or flows of conserved quantities within the
system. It also describes the responses of generalized fluxes (the net
flux/flow) to the generalized forces (quantity gradients) based on
Onsager reciprocal relations, which builds a commonphysical ground
for extensive transport phenomena (Supplementary Note 4.4) with
the interplay between energy and field motions.

Non-Hermitian quadrupole topological phase induced by
intrinsic non-Hermiticity
Wedemonstrate that such quadrupole topological phases can alsobe
enabled by the intrinsic non-Hermiticities and captured along the
imaginary-valued bands (Supplementary Eq. 12). Note that, such
states in these imaginary-valued bands can be theoretically observed
either in a skew-Hermitian thermal system without advections

(ΩI = ΩII =0) or a non-Hermitian heat transfer with advections pos-
sessing the same magnitudes and direction (ΩI = ΩII≠0). Here,
we focus on the non-Hermitian strategy and further demonstrate
the quadrupole topological phases as illustrated in Fig. 3a
(ΩI =ΩII =0:025Qc). In that case, the real-valued band is gapless and
can be adopted to distinguish the states along the gapped imaginary-
valued band (Supplementary Note 4). The intracell and intercell
thermal coupling strengths should be also different at this stage,
since the same coupling strengths would otherwise close the
imaginary-valued bands and indicate a trivial bulk state24,25 instead.
The coupling strengths can be manipulated by the heat exchanges
within the intercell and intracell channels. For simplification, we keep
the same intercell coupling channels as the case shown in Fig. 1.
We further modify the structure by enlarging the intracell coupling
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Fig. 2 | Quadrupole topological phases in heat transport solely induced by
Hermitian advection. a Photo of a fabricated sample with 9 square-lattices made
of epoxy resin, whilewater is fully imposed to each site as theworking fluid. The left
and right upper insets present the connection of a fabricated unit-structure and
one square lattice with 16 sites. The grey-shadowed and black-dashed areas
respectively indicate the over-coupling and under-coupling channels. The green
arrows indicate the directions of the imposed advections. b Spectra of the thermal

quadrupole topological phases. c Measured temperature field intensities at cor-
responding boundaries. The measured regions are marked by colored borders in
(a).d–fCaptured temperaturedistributions at steady state after thefield evolutions
at the peaks of the corner, edge, and bulk spectra as indicated by the red, blue, and
black dashed lines in (c), and their locations are indicated by the dashed white lines
in d–f.
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channels (the right lower inset of Fig. 3a) and inserting internal fins
(Fig. 3b). Such implementations lead to stronger intracell thermal
couplings under the same energy inputs and enable the modulations
of β ranging from 0 to 1. The imaginary band structures of the first
Brillouin zones of one modified square-lattice are presented in Sup-
plementary Fig. 6b. Similar to the modulations with Hermitian
advection (Fig. 1c), all the imaginary-valued bands degenerate with
the same intracell and intercell coupling strengths (β = 1). Two gaps
(one between thefirst and secondbands, and theother between third
and fourth bands) are observed when modulating β, thus revealing
the 1D edge and 0D corner states in the imaginary-valued bands. The

dispersion relations further validate the existences of in-gap corner
(Fig. 3c), gapped edge (Fig. 3d), and trivial bulk (Fig. 3e) states along
the imaginary-valued bands at tailored β.

We construct the thermal system with 9 modified square-lattices
as illustrated in Fig. 4a and Supplementary Fig. 6c. When β respec-
tively approaches near-zero and 1 in the experiments, two branches
are localized along Imf and imply the trivial bulk states (Fig. 4b).
When selecting β in the range of 0 to 1, two gapped edge and one in-
gap corner states are also expected. Thefield intensities on imaginary-
valued bands (Fig. 4c) further verify the above hypothesis with two
peaks on the central/edge and one peak on the corner of the

= . = . = .
c d e
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Ω = Ω

Over-coupling Under-coupling
Intercell ( )
Intracell ( ⁄ )

Intercell
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Advective direction
Intercell ( )
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b IntracellIntercell

xy
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Fig. 3 | Quadrupole topological phases in heat transport induced by non-
Hermitian couplings and relevant band structures. a illustrates the square-
lattice with different coupling strengths and the four-site unit structure. The
directions and magnitudes of the imposed advections (green arrows) on each site
are same to hold the non-Hermitian properties. The intercell and intracell channels
are fabricated to different structures to enable the different thermal coupling

strengths. b presents the inner structures of these thermal coupling channels with
different coupling strength ratios. c–e indicate the imaginary spectra of the dis-
persion induced by non-Hermitian couplings respectively at the in-gap corner,
gapped edge, and trivial bulk states. The horizontal and vertical axes denote the
effective Bloch wave numbers and imaginary value of the eigenvalue. The red and
blue dots in c and d respectively indicate the corner and edge states.
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measured sites (Supplementary Fig. 6c). Such features agree well with
the numerical results (Supplementary Fig. 8) and experimental tem-
perature field distributions (Fig. 4d–f). These results (Figs. 2 and 4)
demonstrate the proof-of-concept quadrupole topological phases
in non-Hermitian thermal systems via controlling either the imposed
advections (Hermiticity) or the thermal coupling strengths (non-
Hermiticity). Their topological robustness can be described by the
nontrivial quadrupole invariant (12) and half-integer polarizations (12)
based on the Wannier bands in the Brillouin zone and the nested
Wilson loop respectively along the x and y directions in the
parameter space of the fluid heat transport system (Supplementary
Note 4). The calculated polarizations for the results in Figs. 2 and 4
indicate both the two strategies possess gapped Wannier bands
and half-integer quantized polarizations (Supplementary Fig. 4).
Moreover, these hierarchical states are also significant during none-
quilibrium processes before reaching stable (Figs. 2 and 4), which
can be described by the time changing rate of field intensity ∂I

∂t
(Supplementary Note 5).

Discussion
We report the creation of an effective quadrupole moment in heat
transport and observe the non-Hermitian thermal quadrupole
topological phases. Our results highlight the fundamental properties
of these higher-order diffusive quadrupoles that drastically deviate

from the wisdom about HOTIs in classical wave fields. The complex
eigenvalues enable the phase transitions on both the real- and
imaginary-valued bands. By modulating either the Hermitian advec-
tion or the non-Hermitian thermal coupling, the experimental
demonstrations exhibit significant hierarchies of topological states
in heat transport. Quadrupole topological phases in diffusive
domains may reveal exotic physics on complex bands and empower
the topological diffusion in fractal systems39 and moiré lattices40,41.
These diffusive bulk, edge and corner states as discovered in this
work may further shed lights on the control of mass concentration
in biomedicine and catalysis as well as the charge diffusion in semi-
conductors, and many other diffusive fields at large (Supplemen-
tary Note 6).

Methods
Experimental samples and coupling channel
We fabricated two types of experimental samples to demonstrate the
non-Hermitian thermal quadrupole topological phases enabled by
the advections and thermal couplings, as illustrated in Fig. 2 and
Supplementary Fig. 6c, i.e., the advective and coupling types. All
these fabricated samples consist of 144 sites with corresponding
hollow advective balls shaped in the same radii of 25mm, and 264
coupling channels for connecting any two neighboring sites. Thewall
thicknesses of these advective balls and coupling channels are 1mm.
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Fig. 4 | Observation of the quadrupole topological phases in heat transport
solely inducedbynon-Hermitiancouplings. aPhotoof a fabricated square-lattice
(16 sites) with different intercell and intracell coupling channels. The grey-
shadowed and black-dashed areas respectively indicate the over-coupling and
under-coupling channels. b Spectra of the thermal quadrupole topological phases
induced by non-Hermitian couplings. c Measured temperature field intensities at

corresponding boundaries. The measured regions are marked by colored borders
in Supplementary Fig. 6c. d–f Captured temperature distributions at steady state
after the field evolutions at the peaks of the corner, edge, and bulk spectra as
indicated by the red, blue, and black dashed lines in (c), and their locations are
indicated by the dashed white lines in d–f. β is the ratio between the intercell and
intracell thermal coupling strengths.
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In order to hold the entire system within fluid ambient and inde-
pendently implement the tailored modulations on each site, we set a
series of square blocks possessing small thicknesses around each
advective ball (Fig. 2 and Supplementary Fig. 6c). The entire system is
installed via setting the advective balls in each block and embedding
the coupling channels on the square partitions. Then, water is fully
infused into each region, hollow advective ball, and coupling channel
for creating the fluid ambient. The tailored advections of each type
are modulated by independent motors through specific steering
gears inside the advective balls (Supplementary Fig. 6d). Note that,
the configurations of the advective and coupling types (samples) are
completely different. For the sample modulated by advections, all
the intracell and intercell channels are same to maintain the same
thermal coupling strengths (Fig. 3b) to satisfy the condition of β = 1.

For the sample modulated by thermal coupling strength, we
keep the same intercell coupling channels with the advective types
and modify the intracell channels to reach the appropriate thermal
coupling strength ratios under the same energy inputs. Based on the
Newton cooling law, the total coupling energies within each channel
are directly proportional to the heat exchange areas. In that case,
more average temperature distributions are significant with larger
heat exchange areas, and localized temperature occur with small
areas. Thus, we can generally modulate them by changing related
heat exchange areas (Fig. 3a, b). When β = 0.5, we increase the
internal heat exchange areas within each intracell channel via
simultaneously enlarging the entire channel size and inserting
one internal fin to maintain the approximate thermal coupling
strength ratio. For the case of β = 0.2/0.1, we further configure certain
numbers of fins to each enlarged intracell channel to respectively
realize the five/ten times the total heat exchange areas of the intercell
ones (Fig. 3b).

Systemic parameters, actuation, and general setups
The fabricated samples satisfy spatial periodicities both along x and y
directions. Considering the square lattice adopted in the current sys-
tem, the distances between neighboring centers of any two advective
balls are designed as ax = ay = a = 56mm. The internal width of each
block for holding the advective ball and coupling channels is 56mm.
For creating the fluid ambient within the entire system, water with a
thermal conductivity of 0.6W·m−1·K−1 is adopted. To weaken the
additional thermal effects between the sample and injected water,
all the samples, advective balls, and coupling channels are made
of epoxy resin, whose thermal conductivity is also 0.6W·m−1·K−1

(ρ = 1180 kg∙m−3, c = 750 J∙kg−1 ∙m−3). For the actuation of these advec-
tive balls, we introduced a steering gear set to each advective ball
(Supplementary Fig. 6d). Such a steering gear set consists of a pair of
bevel gears (12 teeth, transmission ratio is 1), which is available to
provide driving motions from different directions. Considering the
superposed velocity fields respectively in the x-z and y-z planes, we can
actuate themodulated angular velocities with independentmotors via
the transmission shafts along z-direction, and the steering gear sets
further switch the motional directions. Such behaviors lead to the
rotations around the axis perpendicular to z-direction and raise the
effective advective components out of the x-y plane. For manipulating
the projections of the superposed velocity fields on x-y plane, we only
need to adjust the orientations of the advective balls to satisfy the
specific demands.

During the experiments, the initial temperature profiles are
imposed by hot (323 K) and cold (283 K) waters in corresponding
blocks to satisfy the field distributions of effective thermal quadru-
poles, while the ambient temperature is 297 K (right-inset of Supple-
mentary Fig. 6c). It is noted that some deviations in the temperatures
caused by the heat exchanges between blocks and ambient are
observed due to the sequential orders of water injections (Supple-
mentary Fig. 6e). Then, themotors are started tomodulate the systems

at specific advections and coupling effects. All the temperature dis-
tributions are captured by an IR camera with a setting emissivity of
0.97. For simplifying the observations of measured intensities, the

average temperatures �Tblc of each block are adopted to replace T *

used in the theoretical calculations via I = ∣
�Tblc ��Tmeað Þ
ΔTmea

∣. All the tem-

peratures used for these calculations are directly measured by
thermocouples.

Experimental demonstrations for thermal quadrupole topolo-
gical phases with Hermitian advection
Basedon the advective demands, the critical strategy for observing the
thermal quadrupole topological phases with Hermitian advection is to
modulate the velocity differences between the imposed advections.
Considering the structural parameters (the thicknesses of the advec-
tive balls and coupling channels) and thermal properties of the system
(water andepoxy resin), the convective heat transfer coefficients of the
intercell and intracell channels can be estimated with the Bartz equa-
tion, i.e., h→ 5696W ∙m−2 ∙K−1. In that case, the value of Qc is 0.129 s−1

and ΩI = 1:3Qc =0:0205 rad∙s−1. The other angular velocities ΩII of the
cases shown in Supplementary Fig. S7g–i are respectively ΩII = �
1:8Qc = � 0:0283 rad∙s−1,ΩII = � 2:7Qc = � 0:0424 rad∙s−1, andΩII = �
4:1Qc = � 0:0647 rad∙s−1. The imposed velocities of each case adopted
in the experiments strictly follow the above theoretical values, and the
thermal profiles are captured when the changing trends of tempera-
ture distributions of each region become stable (about 30min after
activating the motors).

Experimental demonstrations for thermal quadrupole topolo-
gical phases with non-Hermitian thermal couplings
In the experimental demonstrations with non-Hermitian thermal
couplings, the imposed advections are only used for providing the
Hermiticities rather than modifying the effective bands. Thus, we
adopt the same and quite small angular velocities for the advective
configurations (ΩI = ΩII =0:025Qc =0:0004 rad∙s−1). As mentioned
above, three kinds of intracell coupling channels are fabricated to
satisfy the tailored thermal coupling strength ratios of the cases shown
in Figs. 3, 4, and Supplementary Fig. 6. Thus, three independently sub-
demonstrations are implemented via switching different intracell
coupling channels in turn. During the measurements, it takes a longer
time to reach the stable state (about 50~60min after activating the
motors) than that with Hermitian advection, since the heat exchange
components inducedby the advections are far smaller than the ones of
intrinsic conductions.

Data availability
The data supporting the findings of this study are available within the
article and its supplementary file. Data for the figures can be found in
the file of Source Data. Source data are provided with this paper.

Code availability
The code utilized during the current study is available from the cor-
responding author on request.
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