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Nonequilibrium thermodynamics of the
asymmetric Sherrington-Kirkpatrick model

Miguel Aguilera 1,2,3 , Masanao Igarashi4 & Hideaki Shimazaki 5,6

Most natural systems operate far from equilibrium, displaying time-asym-
metric, irreversible dynamics characterized by a positive entropy production
while exchanging energy and matter with the environment. Although sto-
chastic thermodynamics underpins the irreversible dynamics of small systems,
the nonequilibrium thermodynamics of larger, more complex systems
remains unexplored. Here, we investigate the asymmetric Sherrington-
Kirkpatrick model with synchronous and asynchronous updates as a proto-
typical example of large-scale nonequilibrium processes. Using a path integral
method,we calculate a generating functional over trajectories, obtaining exact
solutions of the order parameters, path entropy, and steady-state entropy
production of infinitely large networks. Entropy production peaks at critical
order-disorder phase transitions, but is significantly larger for quasi-
deterministic disordered dynamics. Consequently, entropy production can
increase under distinct scenarios, requiring multiple thermodynamic quan-
tities to describe the systemaccurately. These results contribute to developing
an exact analytical theory of the nonequilibrium thermodynamics of large-
scale physical and biological systems and their phase transitions.

While isolated systems tend toward thermodynamic equilibrium,
many physical, chemical, and biological processes operate far from
equilibrium. Such nonequilibrium systems – from molecules to
organisms and machines – persist by exchanging matter and energy
with their surroundings, being causally driven by time-varying external
stimuli or by their past states (e.g., the adaptive action of sensor and
effector interfaces1). Nonequilibrium processes inherently break time
reversal symmetry, describing spatial and temporal patterns with a
definite past-future order, and being thus strikingly different from the
reversible dynamics found at thermodynamic equilibrium. Under-
standing these dissipative processes – from chemical reactions to
neural dynamicsorflocks of birds –brings critical insights into the self-
organizationof open systems2. Although these ideashave attracted the
interest of disparate fields, from evolutionary dynamics3 to
neuroscience4–7, little is known about the thermodynamic description
of nonequilibrium systems comprising many interacting particles.

While stochastic thermodynamics has been greatly influential in the
study of small systems with appreciable fluctuations8, the thermo-
dynamics of large-scale nonequilibrium systems and their phase
transitions has attracted attention only very recently9–11.

When the elements of a system are numerous, characterizing its
nonequilibrium states is challenging due to the expansion of its state
space. Inspired by the success of the equilibrium Ising model in inves-
tigating disordered systems in the thermodynamic limit, we study the
nonequilibrium thermodynamics of a stochastic, kinetic Ising model
with both synchronous and asynchronous updates. The Isingmodel is a
cornerstone of statistical mechanics, originally conceived as a model
describing phase transitions in magnetic materials12. A natural exten-
sion of themodel introducingMarkovian dynamics either in discrete or
continuous time is the kinetic Isingmodel, a prototypicalmodel of both
equilibrium and nonequilibrium systems such as recurrent neural
networks13 or genetic regulatory networks14. With time-independent
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parameters and symmetric couplings (under synchronous or asyn-
chronous updates in the absence of lagged self-couplings), the kinetic
Ising model results in an equilibrium process exhibiting a variety of
complex phenomena, including ordered (ferromagnetic), disordered
(paramagnetic), and quenched disordered states (known as spin glas-
ses). The celebrated Sherrington-Kirkpatrick (SK) model, characterized
by quenched random couplings resulting in a spin-glass phase15, can be
solved using the replica mean-field method16. A kinetic version of this
symmetric-coupling model has been represented as a bipartite net-
work, also solved using the replica trick17.

The kinetics of equilibrium Ising systems are indistinguishable
when observed in a forward or backward direction in time, i.e., they are
invariant under the reversal of the arrow of time. This time-symmetry
breaks down under time-varying external fields or asymmetric cou-
plings comprising history-dependent, non-conservative forces. Such
time-asymmetric processes violate detailed balance, leading to none-
quilibrium dynamics yielding a positive entropy production8,18–20. In
the latter case of asymmetric couplings with constant fields, the sys-
tem may relax towards a steady state known as a nonequilibrium
steady state after some time. Time-asymmetric trajectories in steady
state are linked with entropy change of the heat baths under ‘local
detailed balance’ for a system coupled to equilibrium reservoirs or
heat baths21,22, suggesting that steady-state entropy production is cri-
tical for unveiling the interaction of out-of-equilibrium systems with
their environments. Yet, unlike its equilibrium counterpart, the prop-
erties of irreversible Ising dynamics remain unclear due to the lack of
theoretical description of its entropy production.

Here, we study the kinetics of the SK model with asymmetric
connections under synchronous and asynchronous updates as a pro-
totypical model of nonlinear and nonequilibrium processes. As the
model does not have a free energy defined in classical terms, we resort
to a dynamical equivalent in the form of a generating functional. We
apply a path integral approach to obtain exact solutions on its statis-
tical moments and nonequilibrium thermodynamic properties. Unlike
the replica method, the generating functional for fully asymmetric
couplings has exact solutions in the thermodynamic limit without
additional assumptions like analytic continuation and replica sym-
metry breaking23. Previous studies using this method24,25 have shown
that the asymmetric kinetic Ising model with asynchronous updates
does not have a spin glass phase. In this manuscript, we will extend the
generating functional path integral method to confirm this result in
both cases of synchronous and asynchronous updates and further
retrieve an exact solution of the entropy production of the system.

One of the open questions in empirical studies is whether an
increase in entropy production observed in specific none-
quilibrium systems under investigation is linked with the critical
properties of systems approaching continuous phase
transitions5,6. Entropy production is not necessarily maximized
under such conditions and can display a continuous change26, or
discontinuities in its derivative27. However, a number of simple
nonequilibrium systems maximize their entropy production at a
critical point. Examples are the entropy production of an Ising
model with an oscillatory field and a mean-field majority vote
model28–30. It is therefore important to investigate the case of the
kinetic Ising system as a general model of physical and biological
networks. We previously showed that the entropy production of
the stationary asymmetric SK model with finite size takes a max-
imum around a critical point by applying mean-field approxima-
tions preserving fluctuations in the system31. However, this result
(and the aforementioned references) relies on approximations and
numerical simulations. Therefore, the assumption that entropy
production is maximized near continuous phase transitions has
not yet been ratified by exact solutions of spin models in the
thermodynamic limit. In this study, we show analytically that the
entropy production is locally maximized at critical phase

transition points, representing a potentially useful phase transi-
tion correlate for systems without a globally defined free energy or
heat capacity. Nevertheless, we also show that entropy production
can take larger values for largely heterogeneous couplings in low-
temperature regimes exhibiting disordered but nearly determi-
nistic dynamics. Thus, entropy production must be examined
carefully, as its increase does not necessarily indicate that the
system is approaching a critical state. Instead, combining the
entropy rate and entropy production yields a more precise picture
of the irreversible processes.

The paper is organized as follows. First, we introduce max-
imum entropy Markov processes, their entropy production, and a
generating functional method used to compute the system’s
moments and the entropy production in both discrete and con-
tinuous time. Next, we describe the asymmetric SK model with
synchronous and asynchronous updates and a path integral
method calculating the configurational average of the generating
functional. This yields an exact solution of the entropy production,
magnetization, and correlations in an infinite system. We employ
our theoretical results to draw phase diagrams of the order para-
meters and entropy production for synchronous and asynchro-
nous dynamics with and without randomly sampled external fields.
The theoretical predictions are then corroborated by numerical
simulation. We also examine the critical line of nonequilibrium
phase transitions, the temporal structure of the dynamics, and
their relations to the entropy production. Finally, we conclude the
paper by discussing the implications of our results for the study of
biological systems.

Results
Maximum entropy Markov chains
The principle of maximum entropy is a foundation of equilibrium
statistical mechanics32. The principle has been later generalized for
treating time-dependent phenomena, as the principle of maximum
caliber ormaximumpath entropy33,34. Under consistency requirements
preserving causal interactions, the maximum caliber principle yields a
Markov process35. To see this, we start with a discrete-time stochastic
process with N discrete-state elements defined at time u as
su = {s1,u,…, sN,u} for discrete-time trajectories of length t + 1 defined by
a path probability p(s0:t). Later, we will show this discrete-time for-
mulation can be generalized to an equivalent continuous-time for-
mulation under appropriate assumptions.

Path entropy is defined as

S0:t = �
X
s0:t

pðs0:tÞ logpðs0:tÞ: ð1Þ

Maximizing Eq. (1), subject to constraints, yields the least structured
distribution p(s0:t) consistent with observations36. In causal network
models, entropy maximization has to be constrained with a set of
temporal consistency requirements35, as was first established by
Kolmogorov37. Specifically, for any positive integer u(≤t), we imposeX

su

p0:uðs0:uÞ=p0:u�1ðs0:u�1Þ, ð2Þ

where p0:u(s0:u) is given by

p0:uðs0:uÞ=pðs0:uÞargmax S0:u: ð3Þ

That is, we impose consistency between the marginal distribution for
the maximum entropy path s0:u−1 in p0:u(s0:u) and the maximum
entropy distribution of path s0:u−1, p0:u−1(s0:u−1). This constrains path
distribution dependencies between consecutive states. We will drop
the subscript in the path probability when not needed.

Article https://doi.org/10.1038/s41467-023-39107-y

Nature Communications |         (2023) 14:3685 2



Maximizing Eq. (1) with constraints fn(su, su−1) =Cn,u (where Cn,u is
a constant for then-th constraint at time u), an initial distributionp(s0),
and Eq. (2) results in a Markovian process35

pðs0:tÞ=pðs0Þ
Yt
u= 1

pðsu∣su�1Þ

/pðs0Þ
Yt
u= 1

exp
X
n

λnf nðsu, su�1Þ
" #

:

ð4Þ

The path entropy can be then decomposed into

S0:t = �
X
s0:t

pðs0:tÞ
X
u

logpðsu∣su�1Þ+ logpðs0Þ
 !

=
X
u

Su∣u�1 + S0,
ð5Þ

where S0 is the entropy of the initial distribution and Su∣u−1 is a condi-
tional entropy, defined as

Su∣u�1 = �
X

su ,su�1

pðsu,su�1Þ logpðsu∣su�1Þ, ð6Þ

which, at the steady state described in the following, corresponds to
the Kolmogorov-Sinai entropy or entropy rate, limt!1

1
t S0:t .

Nonequilibrium steady state
A Markov chain converges to a unique stationary distribution if the
system is irreducible (all states are accessible from any state in finite
time) and aperiodic (the greatest common divisor of the number of
steps for returning to the same state with non-zero probability is
one38). We can confirm that these requirements are satisfied by Eq. (4)
with finite transition probabilities, thus warranting the existence of a
steady-state distribution π(su), which can be either in or out of ther-
modynamic equilibrium, as explained in the following.

For a discrete-time Markov chain, the evolution of the state
probability distribution follows a master equation:

puðsuÞ=
X
su�1

pðsu∣su�1Þpu�1ðsu�1Þ

=pu�1ðsuÞ+
X
su�1

jusu�1!su
:

ð7Þ

Herepv(su) is amarginal probability distribution of a state su calculated
for the distribution at time v. For simplicity, we will omit the subscript
and write p(su) when v = u. jusu�1!su

are the system’s probability fluxes:

jusu�1!su
� pðsu∣su�1Þpðsu�1Þ � pðsu�1∣suÞpu�1ðsuÞ: ð8Þ

In the limit of small probability fluxes, the system can be described by
an equivalent continuous-time process:

dpðs,tÞ
dt

=
X
s0

js0!sðtÞ ð9Þ

js0!sðtÞ � wðs∣s0Þpðs0,tÞ �wðs0∣sÞpðs,tÞ, ð10Þ

where t refers to the continuous time and wðs∣s0Þ are transition rates.
The system is stationary or in a steady state if the sum of all

probability fluxes is zero for all su, i.e.,
P

su ,su�1
jusu�1!su

=0. In addition,
this will be an equilibrium steady state if jusu�1!su

=0 for all pairs su−1, su,

resulting in the detailed balance condition

pðsu∣su�1Þπðsu�1Þ=pðsu�1∣suÞπðsuÞ, ð11Þ

where π(su) is the steady-state distribution. When detailed balance is
broken under the stationary condition, i.e., some jusu�1!su

≠0 but their
sum is equal to zero, the stationary system is in a nonequilibrium
steady state.

Steady-state entropy production
Stochastic thermodynamics describes a link between the time-
irreversible stochastic trajectories with surroundings in the form of
heat (entropy) dissipation. As the system evolves, it experiences an
entropy change σsys

u :

σsys
u = Su � Su�1 =

X
su ,su�1

pðsu,su�1Þ log
pðsu�1Þ
pðsuÞ

: ð12Þ

Nonequilibrium systems maintain irreversible dynamics by con-
tinuously dissipating heat (entropy) to their environments.Under local
detailed balance21,22,39 in a system coupled to a heat bath, the entropy
change results from subtracting the entropy dissipated to the heat
bath σbath

u from the (total) entropy production σu:

σsys
u = σu � σbath

u , ð13Þ

where the entropy change of the heat bath is given as

σbath
u =

X
su ,su�1

pðsu,su�1Þ log
pðsu∣su�1Þ
pðsu�1∣suÞ

: ð14Þ

Herep(su−1∣su) is a transition probability (fromEq. (4)) but evaluatedby
the reverse trajectory21,40, that is, we define it using the transition
function at time u, but switch su and su−1. This equation relates the
system’s time asymmetry with the entropy change of the reservoir.

The entropy production σu at time u is then given as

σu =
X

su ,su�1

pðsu,su�1Þ log
pðsu∣su�1Þpðsu�1Þ
pðsu�1∣suÞpðsuÞ

, ð15Þ

which is the Kullback–Leibler divergence between the forward and
backward trajectories8,18,20,41. Due to the non-negativity of the diver-
gence, the entropy production is non-negative, σu ≥0. This entropy
production vanishes if the probability of forward trajectories is
identical to a posterior of past states given the future state20, i.e.,
when the process loses time-asymmetry in prediction and
postdiction42.

Alternatively, the dissipation function8,43,44 quantifies the differ-
ence between incoming and outgoing fluxes in Eq. (8):

eσu =
X

su ,su�1

pðsu,su�1Þ log
pðsu∣su�1Þpðsu�1Þ
pðsu�1∣suÞpu�1ðsuÞ

, ð16Þ

whichdirectly assesses a violation of the detailed balance. The entropy
production σu anddissipation function eσu are equivalent under steady-
state conditions. Furthermore, both quantities become equivalent in
the continuous-time limit8,42,44 and converge to the entropyproduction
rate39:

dσðtÞ
dt

=
1
2

X
s,s0

js0!sðtÞ log
wðs∣s0Þpðs0,tÞ
wðs0∣sÞpðs,tÞ : ð17Þ

In a steady state, the entropy production is caused by dissipation
only and becomes equivalent to the house-keeping entropy production
caused by the non-conservative forces under a steady state45,46. Both σu
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and eσu result in:

σu = eσu = σ
bath
u = � Su∣u�1 + S

r
u∣u�1: ð18Þ

Here Sru∣u�1 is the entropy of the time-reversed conditional distribution:

Sru∣u�1 � �
X

su ,su�1

pðsu,su�1Þ logpðsu�1∣suÞ: ð19Þ

In this paper, we study the steady-state entropy production in Eq. (18),
which is critical for evaluating the interaction of the nonequilibrium
processes with their environment.

Generating functional
Consider a maximum caliber path probability (Eq. (4))

pðs0:tÞ=
Yt
u= 1

pðsu∣su�1Þpðs0Þ, ð20Þ

For simplicity, we will assume p0ðsÞ=
Q

iδ si,si,0
� �

– the initial dis-
tribution is a Kronecker delta with a unique initial state – and
ignore the term. However, the following steps are general for
any p0(s0).

In equilibrium systems, the partition function retrieves their sta-
tisticalmoments. A nonequilibrium equivalent function is a generating
functional or dynamical partition function. To obtain not only the
statistical properties averaged over trajectories, but also the forward/
time-reversed conditional entropies (Eqs. (6), (19)), we define the fol-
lowing generating functional:

ZtðgÞ=
X
s0:t

pðs0:tÞ exp Γðg,s0:tÞ
� �

, ð21Þ

Γðg,s0:tÞ=
X
i,u

gi,usi,u �
X
u

gS
uϵðsu∣su�1Þ

�
X
u

gSr
u ϵðsu�1∣suÞ,

ð22Þ

where ϵðsu∣su�1Þ � � logpðsu∣su�1Þ. In the limit t→∞, the logarithm of
the generating functional converges to the large deviation
function47–49,

φðgÞ= lim
t!1

1
t
logZtðgÞ, ð23Þ

which plays the role of a free-energy function for nonequilibrium
trajectories50. The vector g is composed of parameters gi,u
(i = 1,…, N, u = 1,…, t) and gS

u,g
Sr
u (u = 1,…, t) retrieving the

system’s statistical properties. The parameters gi,u recover the
statistical moments of the systems like the average rates and
correlations:

lim
g!0

∂ZtðgÞ
∂gi,u

= lim
g!0

si,u
� �

g = si,u
� �

, ð24Þ

lim
g!0

∂2ZtðgÞ
∂gi,u∂gj,v

= lim
g!0

si,usj,v
D E

g
= si,usj,v
D E

, ð25Þ

where angle brackets are defined as

f ðs0:tÞ
� �

g =
X
s0:t

f ðs0:tÞ exp
X
i,u

gi,usi,u

" #
pðs0:tÞ, ð26Þ

f ðs0:tÞ
� �

=
X
s0:t

f ðs0:tÞpðs0:tÞ: ð27Þ

In addition, gS
u,g

Sr
u retrieve the conditional and time-reversed

conditional entropy terms, Su∣u�1,S
r
u∣u�1:

Su∣u�1 = � lim
g!0

∂ZtðgÞ
∂gS

u

= lim
g!0

ϵðsu∣su�1Þ
� �

g = ϵðsu∣su�1Þ
� �

,
ð28Þ

Sru∣u�1 = � lim
g!0

∂ZtðgÞ
∂gSr

u

= lim
g!0

ϵðsu�1∣suÞ
� �

g = ϵðsu�1∣suÞ
� �

,
ð29Þ

and thus the steady-state entropy production (Eq. (18)):

σu = lim
g!0

∂ZtðgÞ
∂gS

u
� ∂ZtðgÞ

∂gSr
u

 !
: ð30Þ

Synchronous and asynchronous, asymmetric Sherrington-
Kirkpatrick model
We consider N interacting elements su (spins or neurons), taking each
element i at time u a binary state si,u = { − 1, 1}. Constraints take the form
of delayed pairwise couplings (i.e., fij(su, su−1) = si,usj,u−1 in Eq. (4)). This
results in the dynamics:

pðsu∣su�1Þ=
Y
i

exp βsi,uhi,u

� �
2 cosh βhi,u

� � , ð31Þ

hi,u =Hi,u +
X
j

Jijsj,u�1, ð32Þ

where β is the inverse temperature. The system’s state at time u
depends on the previous time-step (Fig. 1a).

The equation above is a general formulation of a kinetic Ising
model with time-dependent fieldsHi,u. The dynamics can include both
synchronous and asynchronous Ising systems by introducing a set of
independent Bernoulli random variables: τi,u =0, 1 with probabilities
1 − α and α (i.e., τi,u ∼Bernoulli αð Þ) and making Hi,u stochastic pro-
cesses:

Hi,u =Θi,u + ð1� τi,uÞKsi,u�1: ð33Þ

Note that in the limit of K→∞, the state si,u is tightly coupled to the
previous state si,u−1. Therefore, the state changes only if τi,u = 1.Wehave
the following transition probability in the K→∞ limit:

pðsu∣su�1Þ=
Y
i

τi,uwðsi,u∣su�1Þ
�

+ ð1� τi,uÞδ si,u,si,u�1

� ��
,

ð34Þ

with the transition rate

wðsi,u∣su�1Þ=
exp βsi,uh

1
i,u

h i
2 cosh βh1

i,u

h i , ð35Þ

where h1
i,u =Θi,u +

P
j Jijsj,u�1 and Θi,u is an external field. With α = 1 we

have a kinetic Ising system under parallel or synchronous updates. In
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the limit α→0, we have in turn a kinetic Ising system with asynchro-
nous updates (i.e., at most one spin is updated each time step), con-
verging to a continuous-time master equation.

The generating functional of the kinetic Ising system (Eq. (21)) is
defined by the functions

ϵðsu∣su�1Þ= �
X
i

βsi,uhi,u + log 2 cosh βhi,u

� �� �� �
, ð36Þ

ϵðsu�1∣suÞ= �
X
i

βsi,u�1h
r
i,u + log 2 cosh βhr

i,u

� �� �� �
, ð37Þ

where hr
i,u =Hi,u +

P
j Jijsj,u =hi,u+ 1 +Hi,u � Hi,u+ 1.

The equilibrium Ising model with symmetric random Gaussian
couplings is referred to as the SK model. In the fully-asymmetric SK
model, the couplings Jij are quenched independent variables, each
following a Gaussian distribution

pðJijÞ=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πΔJ2=N
q exp

�1

2ΔJ2=N
Jij �

J0
N

	 
2
" #

, ð38Þ

with mean J0/N and variance ΔJ2/N scaled by N.
The asymmetric SK model shows a variety of population dynam-

ics. Figure 1 shows exemplary dynamics under asynchronous updates
without fields (Θi,u = 0). It shows disordered dynamics for large cou-
pling varianceΔJ2 both at high and low temperatures (i.e. low and large
β, Fig. 1b, c), ordered dynamics for low temperatures and low ΔJ2

(Fig. 1d), and critical dynamics at the phase transition (Fig. 1e).

Solution of the asymmetric Sherrington-Kirkpatrick model
The solution of the kinetic version of the SK model with asymmetric
andquenched couplings canbeobtainedbycomputing the generating
functional averaged over the couplings (referred to as the configura-
tional average):

½ZtðgÞ�J =
Z

dJZtðgÞ
Y
i,j

pðJijÞ: ð39Þ

This integral cannot be solved directly because of the log 2 cosh �½ �� �
terms in Eqs. (36) and (37), which depend nonlinearly on Jij. A path

integral method51 to find a solution introduces a delta integral repre-
senting βhi,u with auxiliary variables θi,u = β(Hi,u +∑jJijsj,u−1) as well as
βhr

i,u with an auxiliary variable ϑi,u = θi,u+1 + β(Hi,u −Hi,u+1). Let θ = {θi,u}
(note u = 1,…, t + 1) and ϑ = {ϑi,u} (u = 0,…, t) denote a set of the aux-
iliary variables. Using conjugate variables θ̂= fθ̂i,ug to represent the
delta function in the integral form, the configurational average is
written as

½ZtðgÞ�J =
1

2πð ÞNðt + 1Þ
Z

dθdθ̂dJ
Y
i,j

pðJijÞ
 !

�
X
s1:t

exp
X
i,u

ðsi,uθi,u � log 2 cosh θi,u
� �Þ"

+
X
i,u

iθ̂i,u θi,u � βHi,u � β
X
j

Jijsj,u�1

 !
+ Γðg,s0:t ,θ,ϑÞ

#
,

ð40Þ

with

Γðg,s0:t ,θ,ϑÞ=
X
i,u

Γi,uðg,s0:t ,θi,u,ϑi,uÞ

=
X
i,u

gi,usi,u + g
S
u si,uθi,u � log 2 cosh θi,u

� �� �� ��
+ gSr

u si,u�1ϑi,u � log 2 cosh ϑi,u
� �� �� ��

:

ð41Þ

Note that the summation of θ̂i,u terms is performed over u = 1,…, t + 1
to retrieve the fields of both the forward and backward trajectories.

The integral over Jij can be now performed directly over linear
exponential terms (see Supplementary Note 1). After integration, Eq.
(40) incorporates quadruple-wise interactions among spins s0:t and
conjugate variables θ̂ (Supplementary Eq. (S1.10)), similar to replica
interactions in the equilibrium SK model12. These interactions are
simplified by introducing Gaussian integrals and a saddle-point
approximation in the thermodynamic limit (Supplementary Eq.
(S1.26)). The saddle-point solution can be simplified by introducing
four types of order parameters (Supplementary Eq. (S1.31)). In fully-
asymmetric networks, two of these order parameters are found to be
zero at g =0, yielding a solution in terms of the order parameters mu

Fig. 1 | Asymmetric kinetic SK model. a The asymmetric kinetic Ising model
describes a Markov chain where states at time su depend on pairwise couplings to
states su−1. Thismodel shows disordered dynamics for large coupling variance both

at high and low temperatures (b and c), ordered dynamics for low temperatures
and a low coupling variance (d), and critical dynamics at the phase transition (e).
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and qu,v (see Supplementary Eqs. (S1.48) and (S1.49)):

mu =
1
N

X
i

si,u
� �� �

J, ð42Þ

qu,v =
1
N

X
i

si,usi,v
� �� �

J: ð43Þ

Finally, conjugate variables θ̂ in the saddle-point solution can be
substituted with a multivariate Gaussian integral (Supplementary Eq.
(S1.57)), leading to a factorized generating functional

½ZtðgÞ�J =
Y
i

X
si,1:t

Z
dξpðξ Þ exp

X
u

si,uhi,uðξuÞ
"

+
X
u

βsi,u�1
ehi,u�1 �

X
u

log 2 cosh βhi,uðξuÞ
h i

+
X
u

Γi,uðg,s0:t ,βhi,uðξuÞ,βh
r
i,uðξu+ 1ÞÞ

#
,

ð44Þ

where the stochastic elements ξ = (ξ1,…, ξt+1) affecting each spin i fol-
low a multivariate normal distribution pðξ Þ=N ð0,qÞ with q defining
qu−1,v−1 as the covariance of each pair ξu, ξv for u, v∈ 1,…, t + 1. Here, at
g =0, spin interactions are effectively substituted by same-spin
temporal couplings in mean effective fields

hi,uðξuÞ=Hi,u + J0mu�1 +ΔJξu, ð45Þ

h
r
i,uðξu+ 1Þ=Hi,u + J0mu +ΔJξu+ 1, ð46Þ

ehi,u�1 = 0: ð47Þ

Applying Eqs. (24) and (25) to the configurational average in Eq. (44),
we obtain the order parameters mu and qu,v:

mu =
1
N

X
i

Z
Dz tanh βhi,uðzÞ

h i
, ð48Þ

qu,v =
1
N

X
i

Z
Dxyðqu�1,v�1Þ tanh βhi,uðxÞ

h i
� tanh βhi,vðyÞ

h i
, ð49Þ

where the Gaussian stochastic terms are simplified to

Dz =
1ffiffiffiffiffiffi
2π

p exp � 1
2
z2

� 
, ð50Þ

Dxyðqu,vÞ =
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

u,v

q exp
�x2 � y2 + 2qu,vxy

2ð1� q2
u,vÞ

" #
: ð51Þ

In contrast with the equilibrium SK model, mu is independent of qu,v,
resulting in the lack of a spin-glass phase as suggested by previous
studies25.

The configurational average of Eqs. (28) and (29) results in the
following conditional entropy and time-reversed conditional entropy

Su∣u�1

� �
J
=
X
i

Z
�Dz β Hi,u + J0mu�1

� �
tanh βhi,uðzÞ

h i�
+β2ΔJ2 1� tanh2 βhi,uðzÞ

h i� �
� log 2 cosh βhi,uðzÞ

h ih i�
,

ð52Þ

Sru∣u�1

h i
J
=
X
i

Z
�Dz βðHi,u + J0muÞ tanh βhi,u�1ðzÞ

h i�
+β2ΔJ2qu,u�2 1� tanh2 βhi,u�1ðzÞ

h i� �
� log 2 cosh βh

r
i,uðzÞ

h ih i�
:

ð53Þ

Up to this point, our results are general for time-dependent fields
Hi,u, covering synchronous and asynchronous updates by Eq. (33). We
obtain the results for the synchronous SK model by setting α = 1 or,
equivalently, Hi,u =Θi,u. For time-independent fields (Θi,u =Θi), the
system converges to a steady state determined by the solution of the
self-consistent equations given by Eqs. (48) and (49). Finally, using Eq.
(30), the steady-state entropy production under the synchronous
updates is obtained as

σu

� �
J =β

2ΔJ2ð1� qu,u�2Þ
X
i

Z
Dzð1� tanh2 β Θi + J0mu�1 +ΔJz

� �� �Þ,
ð54Þ

withmu−1 andqu,u−2 givenby their steady-state values (i.e., independent
ofu). Note that for the synchronous system the steady-state solutionof
qu,v is the same for all u, v. In the following, we will use m and q to
represent these steady-state solutions.

To calculate the steady-state solutions for the asynchronous SK
model, we calculate the generating functional ZtðgÞ

� �
J,τ that is addi-

tionally averaged over the independent random variables τi,u in Eq.
(33). We show in Supplementary Note 2 that the resulting order
parameters in continuous-time m(t) and qðt0,tÞ are subject to the fol-
lowing dynamical equations:

dmðtÞ
dt

=
1
N

X
i

Z
Dz tanh βh*

i ðz,tÞ
h i

�mðtÞ: ð55Þ

dqðt0,tÞ
dt

=q1ðt0,tÞ � qðt0,tÞ, ð56Þ

dq1ðt0,tÞ
dt0

=
1
N

X
i

Z
Dxyðqðt

0 , tÞÞ tanh βh*
i ðx, t0Þ

h i
� tanh βh*

i ðy, tÞ
h i

� q1ðt0, tÞ
ð57Þ

with h*
i ðz,tÞ=Θi + J0mðtÞ+ΔJz. Here q1ðt0,tÞ is the spin correlation

conditioned on spins being updated at time t. The steady-state
solutions of m(t) and qðt0,tÞ (assuming t0≫t) converge to the same
steady-state valuesm and q found for the synchronous SK model (see
Supplementary Note 2).

In the continuous-time limit, the steady-state entropy production
converges to a steady-state entropy production rate (Eq. (17)) given by:

dσðtÞ
dt

� 
J,τ

= lim
α!0

β2ΔJ2ð1� qðt +α,t � αÞÞ

�
X
i

Z
Dz 1� tanh2 βh*

i ðz,tÞ
h i� �

:

ð58Þ

The delayed-self correlation qðt0,tÞ is discontinuous at t0 = t (i.e.,
lim
α!0

qðt +α,t � αÞ≠qðt,tÞ= 1, see Supplementary Fig. S1), warranting

that the entropy production rate can be non-zero for appropriate
parameters.

Given the analytical solutions of the system, we will now study
the phase diagramof the SKmodel. In contrast with the naive replica-
symmetric solutionof the equilibriumSKmodel, the equations above
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are exact in the model with asymmetric couplings in the thermo-
dynamic limit under both synchronous and asynchronous updates.

The SK model without external fields
Figure 2a, b displays the phase diagram of the steady-state order
parameters, m and q, for both synchronous and asynchronous
updates, respectively derived from Eqs. (48) and (49) as a function of
the inverse temperature β and the width of the coupling distribution
ΔJ, when the external fields are fixed at zeros (Θi,u = 0) and the mean
coupling is J0 = 1. In this setting, the inverse temperature β controls
the magnitude of the couplings. The phase diagram shows two dis-
tinct regions, one in which the order parameters are fixed at zero
(zero magnetization and zero self-correlations, m = 0 and q = 0) –

indicating disordered states – and the other in which the order
parameters become positive (m > 0 and q > 0) – indicating ordered
states. Therefore, the system exhibits a nonequilibrium analogue of
the paramagnetic-ferromagnetic (disorder-order) phase transition
controlled by the parameters, β and ΔJ. The dashed line in each panel
shows the critical values of ΔJ as a function of β, which is obtained by

solving the following equation (see Supplementary Note 3),

1
βJ0

=
Z

Dz 1� tanh2 β ΔJzð Þ½ �
� �

: ð59Þ

The solution will be denoted as ΔJc(β). As studied in Supplementary
Note 3, this critical phase transition corresponds to the mean-field
universality class, as in the order-disorder phase transition of the
equilibrium SK model (note that the spin-glass phase has different
exponents52).

Depending on the coupling varianceΔJ, the dynamicsdoor donot
undergo the nonequilibrium phase transition by varying the inverse
temperature β. The critical ΔJc(β) at β→∞ is given as ΔJc(∞) = 0.79501
(dotted horizontal line). If the distribution is narrower than the critical
valueΔJc(∞), the processundergoes the phase transition by changing β.
If the distribution is wider than the critical value, the order parameters
are fixed at zeros (m = 0, q =0) for any β. Note that, for β→∞ (zero
temperature), the activation function approaches the threshold non-
linearity given by the sign function; therefore, the process becomes
deterministic. That is, for the large values of β, the process approaches
deterministic dynamics yielding either ordered or disordered states
for smaller or larger ΔJ, respectively. We remark that the disordered
statewithm =0 and q = 0athigh β (low temperature) does not indicate
the spin-glass phase as expected for the equilibrium Ising system (see
Supplementary Note 4). We confirmed the non-existence of a spin-
glass phase for the asymmetric kinetic SK model by finding that the
system decays exponentially in this region (Supplementary Note 5).

The reduction in uncertainty at higher β is indicated by the reduc-
tion of the conditional entropy (the path entropy) Su∣u−1 by increasing β
(Fig. 3a). This figure additionally shows that the conditional entropy
decreases slowly with increasing β along the critical line of the phase
transitions. This means that strong couplings and diverse patterns co-
exist along the critical line. In contrast, the time-reversed conditional
entropy Sru∣u�1 (Fig. 3b) displays opposite dependency on β for the
broader or narrower coupling distributions. Time-reversed conditional
entropy quantifies how surprising the reverse process is under the for-
wardmodel.With coupling distributions narrower than the critical value
ΔJc(∞), the time-reversed conditional entropydiminishes by increasingβ,
indicating that the reverse processes takes place with increasingly high
probabilities. This is because the spin state is fixated at all up or down
under the ferromagnetic-like state for all time, losing temporal asym-
metry. In contrast, the reverse process becomes less likely to happen as
the dynamics becomes more deterministic by increasing β yet remains
disordered as long as the coupling distribution is broader than ΔJc(∞).
This distinct behavior between the conditional entropy and its time-
reversed version found at the wider coupling distributions and high
inverse temperatures yields the strong time-asymmetry in this regime.

The entropy production under the steady-state condition quan-
tifies the difference between the conditional and time-reversed con-
ditional entropy. Figure 3c displays the phase diagram of the entropy
production for the synchronous Ising model (the asynchronous Ising
model has a similar behavior but different scaling, see Supplementary
Note 2 or Fig. 4). The entropy production is maximized at the high β
under the broader coupling distributions, where we find a significant
difference between these two conditional entropies. Namely, strong
time-asymmetry appears when the dynamics are disordered, nearly
deterministic processes. The entropy production increases with β if
the coupling distribution is wider than ΔJc(∞). In contrast, the entropy
production is locallymaximized at the critical point (white dashed line)
with the coupling distribution being narrower than ΔJc(∞) (see also
Fig. 3d). For the narrowly distributed couplings, the process exhibits a
paramagnetic-like (randomized or disordered) phase at lower β and a
ferromagnetic-like (ordered) phase at higher β (Fig. 2), neither of
which can exhibit adequately asymmetric dynamics in time. Time-
asymmetry appears between the ordered and disordered phases,

Fig. 2 | Order parameters of the asymmetric SK model with zero fields under
synchronous and asynchronous updates. The average magnetizationm and the
average delayed self-coupling q are shown in the phase diagram of the inverse
temperature β and coupling heterogeneity ΔJ using a model with fixed parameters
J0 = 1,ΔH =0. The dashed line represents the critical line separating ordered and
disordered phases. The dotted line represents the critical value at zero tempera-
ture (β→∞).
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namely at the critical point. As a consequence, the steady-state entropy
production can be ameasure of the criticality in this regime. However,
more importantly, the magnitude of the entropy production is far
more significant in the regime of large ΔJ and β than near the critical
states, due to the strong time-asymmetry caused by the combination
of disordered and quasi-deterministic dynamics.

To verify our theoretical predictions for the order parameters
and steady-state entropy production, we compared them with the
values computed from the sample trajectories by numerically
simulating the kinetic SKmodels (see Supplementary Note 6 for the

details). We constructed the kinetic Ising model with parameters
Θi,u = 0 and randomly generated Jij with ΔJ = 0.5 and J0 = 1 while
changing the inverse temperature β. We ran simulations of the
model for t = 128 time steps and repeated the simulation 106 times
at each β. We computed the mean activation rate 1

N

P
i si,u
� �� �

J,τ , the
average delayed self-correlations 1

N

P
i si,usi,u�1

� �� �
J,τ , and the nor-

malized entropy production and entropy production rates
1
N σ½ �J, 1N dσ

dt

� �
J,τ from trajectory and parameter sampling. We used the

values at the last time step (u = t), where we confirmed that the
statistics approached their steady-state values.

Fig. 3 | Steady-state entropy rate and entropyproductionof the asymmetric SK
model under synchronous updates. a The phase diagram of the conditional
entropy Su∣u�1

� �
J
(equivalent to the entropy rate) as a function of the inverse tem-

perature β and the coupling heterogeneity ΔJ. b The conditional entropy of the
reverse dynamics Sru∣u�1

h i
J
. c The entropy production at a steady state. The white

dashed line is a critical line for the nonequilibrium phase transitions. d (inset) The
horizontal sections of the entropy production (ΔJ =0.4, 0.5, 0.6, 0.7, and 0.7950),
showing that it peaks at the critical line. All figures are based on a model with fixed
parameters Hi,u =0 and J0 = 1.

Fig. 4 | Verification of the exact mean-field solutions by simulating the kinetic
Ising systems with synchronous and asynchronous updates. We repeated
400, 000 simulations of systems under synchronous (top) and asynchronous
(bottom) updates with Θi,u =0 and ΔJ =0.5: a, d Sample estimates of the mean
activation rate 1

N

P
i si,u
� �� �

J,τ compared with the theoretical order parameter m.
b, e Sample estimates of the average delayed self-covariances 1

N

P
i si,usi,u�d

� �� �
J,τ �

1
N

P
i si,u
� �� �

J,τ
1
N

P
i si,u�d

� �� �
J,τ (d = 1 for the synchronous system and d = 10N for the

asynchronous one) computed from samples compared with the theoretical order
parameter q-m2. c, f Sample estimates of the entropy production and entropy
production rate (Supplementary Eqs. (S6.6) and (S6.7)) compared with its mean-
field value at the thermodynamic limit 1

N σ½ �J, 1N dσ
dt

� �
J,τ (Eqs. (54) and (58)).
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Figure 4 compares the theoretical order parameter m and q with
themean activation rate and delayed self-correlations computed from
the simulated trajectories for system size N = 32,…, 1024 under syn-
chronous (Fig. 4a, b) and asynchronous (Fig. 4d, e) updates. The
simulated values approach the theoretical prediction as the size
increases, albeit the convergence speed slows down near the critical
temperature as it is expected. Similarly, we confirm in Fig. 4c, f that the
entropy production from the sample trajectories for synchronous and
asynchronous systems converges to the mean-field value at the ther-
modynamic limit as we increase the system size. Note that entropy
production for synchronous updates differs from the entropy rate in
the asynchronous update in continuous-time limit due to different
values for the delayed correlation term q in Eqs. (54) and (58). These
results corroborate our theoretical predictions that the steady-state
entropy production peaks at the critical nonequilibrium phase transi-
tions. We further verified by simulations with ΔJ = 1 that the steady-
state entropy production increases when the significantly hetero-
geneous systems approach the quasi-deterministic regime (Supple-
mentary Fig. S4).

Finally, knowing the order parameters of the system under the
configurational average, we can investigate the structure of the pat-
terns emerging from the dynamics of a sufficiently large but finite
system under certain conditions. We calculate the probability Ω(n) of
observing a state su+n again for thefirst time aftern steps, starting from
the same pattern su = su+n (Supplementary Note 7). For zero tempera-
ture (β→∞) and synchronous updates,Ω(n) describes the probability of
observing a periodic pattern of length n since transitions become
deterministic and can result in periodic patterns. In general, the dis-
tribution of these patterns depends on the higher-order correlations
between spins across time steps. However, we observe that for the
disordered phase (m =0) as well as in the deep ordered phase (m ~ 1),
these correlations disappear for the configurational average in the
asynchronous model or in the synchronous model for large n (see
Supplementary Fig. S5). In these regions of the phase diagram, we can
approximate the probability of observing a pattern n as
ΩðnÞ
h i

≈ exp ð1� nÞλ½ � with λ= 1+m
2

� �N
(see Supplementary Note 7). The

expected length until a repeated pattern is observed is then

X
n

n ΩðnÞ
h i

≈
1
λ
=

2
1 +m

	 
N

: ð60Þ

At the disordered phase (m =0), the average length of observed
patterns exhibits a maximum value, growing exponentially at a rate of
2N. In contrast, when the system enters the ordered phase (m ~ 1), the
growth rate decreases as m increases. In the limit m = 1, the system
reaches a static equilibrium of average length 1, where the same pat-
tern is repeated indefinitely. These results are consistent with expec-
ted dynamics under order-disorder phase transitions. Thus, bringing a
quasi-deterministic system to a more stochastic regime by decreasing
β to the critical value βc (with ΔJ smaller than ΔJc(∞)) increases the
diversity of irreversible patterns and hence entropy production.
However, further reduction of βmakes the system more random (i.e.,
less irreversible transitions), leading to a decrease in entropy pro-
duction. In contrast, the large entropy production found at the dis-
ordered phase at large β andΔJ (wider thanΔJc(∞)) is caused by diverse
oscillatory dynamics whose average pattern length is 2N as in the ran-
dom dynamics (β =0). Adding stochasticity to the dynamics by
decreasing β in this regime reduces the entropy production
monotonically.

The SK model with uniformly distributed external fields
Next, we apply non-zero external fields to the spins. For simplicity, we
will consider the synchronous Ising system with unchanging fields
Hi,u =Hi, assuming a uniformdistributionHi ∼U �ΔH,ΔHð Þ. Figure 5a, b
shows the β −ΔJ phase diagram for the order parameters. With this

change, we observe non-zero correlation q in the area where we pre-
viously saw the disordered states (m =0 and q = 0, Fig. 2b). Figure 5c, d
displays the order parameters as a function of the inverse temperature
and ΔH, where we examine the effect of heterogeneity in the external
fields while fixing the coupling variability, ΔJ = 0.2. The critical line of
ΔHc(β) is obtained in this case as a solution of the following self-
consistent equation (Supplementary Eq. (S3.9)):

ΔH
J0

=
Z

Dz tanh β ΔH +ΔJzð Þ½ �: ð61Þ

Again, as studied inSupplementaryNote 3, this critical phase transition
corresponds to the mean-field universality class. Since the right-hand
side term is less than or equal to 1 regardless of β and ΔJ, the phase
transition occurs only when ΔH < J0 is satisfied. Intuitively, there is a
competitionbetween thedispersion inducedby thefielddiversitiesΔH
and the cohesion induced by the mean coupling strength J0. The
orderedphase takes placeonly if J0 counteracts the dispersion induced
by the heterogeneity of external fields. More precisely, the critical
ΔHc(β) at the low temperature limit (β→∞) is obtained by solving
ΔH=J0 =

R
Dz sign ΔH +ΔJz½ �. Here we have ΔHc(∞) = 1. We observe the

phase transition by varying β if ΔH <ΔHc(∞), and no phase transition if
ΔH >ΔHc(∞). Note that q increases monotonically with β even for
ΔH >ΔHc(∞) when the distributed fields are introduced.

We now examine the conditional entropy, its reverse, and entropy
production for the synchronous system with distributed fields, using
the β vs. ΔH phase diagram. Similarly to the observation in the model
without fields, the conditional entropy decreases with higher β (it
becomesmoredeterministic processes, see Fig. 6a). The time-reversed
conditional entropy also decreases with increasing β for all ΔH, indi-
cating that the reverse process is more and more likely to happen
regardless of ΔH (Fig. 6b). As seen previously, the time-reversed con-
ditional entropy diminishes under the ferromagnetic-like states
(ΔH <ΔHc(∞)). In contrast, we also observe the reduction of the time-
reversed conditional entropy at higher β for ΔH >ΔHc(∞). Note that we

Fig. 5 | Order parameters of the asymmetric SK model with heterogeneous
fields. a, b The average magnetization m and average delayed self-coupling q are
shown as a function of ΔJ and β. Fixed parameters are J0 = 1,ΔH =0.5. The dashed
line represents the critical line separating ordered and disordered phases. The
horizontal dotted line represents the criticalΔJ at zero temperature (β→∞). c,dThe
phase diagram of order parameters as a function ofΔH and β. Fixed parameters are
J0 = 1 and ΔJ =0.2 and variable ΔH. The dashed line is a critical ΔH at zero
temperature.
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observe increased correlations q at higher β for ΔH >ΔHc(∞) when we
introduce non-zero external fields (see Fig. 5d), which results in a
reduction of the reversed entropy similarly to ferromagnetic-like
states. Both conditional and time-reversed conditional entropies
decrease much slower along the critical line than in other regions,
although with different magnitudes. As a result, we see the max-
imization of the entropy production around critical points more
clearly than the β–ΔJ phase diagram (Fig. 6c, d). Finally, at the zero
temperature limit (β→∞), the entropy production peaks at
ΔHc(∞) = 1 (Fig. 6e).

Discussion
In this paper, we studied in detail the nonequilibrium thermodynamics
of the kinetic, asymmetric SK model for both synchronous and asyn-
chronous dynamics. As expected, the order parameters reveal that the
model exhibits order-disorder nonequilibrium phase transitions analo-
gous to the paramagnetic-ferromagnetic phase transitions in the equi-
librium Ising model. There are, however, no phase transition akin to a
spin-glass (which does not emerge due to coupling asymmetry, as pre-
viously reported for continuous-time asymmetric SK models25). In
addition, we show that the steady-state entropy production is max-
imized near nonequilibrium phase transition points, being its first
derivative discontinuous at these points (Fig. 3d). This result is similar to
previously reported critical behavior of the entropy production caused
by external stimulation or inertial dynamics (via self-coupling) in
homogeneous systems with asynchronous updates by means of naive
mean-field approximations or numerical simulations28–30. Nevertheless,
our result is novel in that it provides the critical behavior of the entropy
production caused by asymmetric, heterogeneous couplings using an
exact analytical solution for such complex systems. In addition, the
studiedmodel displays a regionwith disordered oscillations in its phase
diagram, where the entropy production takes even larger values than in
the critical regime. This phase takes place for disordered systems with
low entropy rates, i.e., the heterogeneous connections are strong
enough to make the dynamics disordered but quasi-deterministic
(Fig. 3c, top-right). In contrast, theentropyproductiondoesnot increase
when we increase the heterogeneity of external fields (Fig. 6c).

Taken together, our results indicate that the behavior of entropy
production peaking at a critical point is more general than the simple
mean-field, homogeneous models, therefore a non-smooth change of
the steady-state entropy production (or entropy dissipated to an
external reservoir) can be a useful indicator of a number of none-
quilibrium phase transitions. At the same time, our results demonstrate
that an increase in entropy production does not necessarily mean that
the system is approaching a phase transition point. Instead, combining
the order parameters, entropy rate, and entropy production yields a
moreprecise pictureof the complex systemsand their phase transitions.

Typically, solutions of the symmetric (equilibrium) SK model
involve the replica trick to calculate the configurational average of the
logarithm of the partition function12. This method introduces an inte-
ger number of replicas of a system for averaging the disorder and then
recovers the solution using a continuous number of replicas in the zero
limit under the replica symmetry or replica-symmetry breaking ansatz.
This treatment forces researchers to check the validity of solutions
before reaching correct solutions16,53. As an alternative to the replica
methods, the path integral methods have been widely used in ana-
lyzing the symmetric SK model54,55. However, for partially- or fully-
symmetric SK models, the path integral method does not give a defi-
nite analytical solution but needs to be computed with Monte Carlo
approaches56. Fortunately, the path integral method derives an exact
analytical solution for the case of the fully asymmetric nonequilibrium
SK model25, which we extended to cover synchronous and asynchro-
nous updates, and theoretically underpinned their nonequilibrium
properties by deriving the exact solution of the steady-state entropy
production and entropy rates of the system.

Nonequilibrium properties of biological and adaptive systems
have received the attention of neuroscience and biological science
communities. For example, increased entropy production in macro-
scopic neural activity was suggested as a signature of physically and
cognitively demanding tasks4, conscious activity5,6 or neuropsychiatric
diseases like schizophrenia, bipolar disorders, and ADHD7. While it is
not easy to contrast theirfindings based on the coarse-grained analysis
of ECoG or fMRI data with the present results, our precise character-
ization of the entropy production of the prototypical system sheds

Fig. 6 | Conditional entropies and entropy production of the asymmetric SK
modelwithheterogeneousfieldsunder synchronousupdates. aThenormalized
conditional entropy Su∣u−1 (equivalent to the entropy rate under a steady state).
b the normalized conditional entropy of the reverse dynamics Sru∣u�1. c The

normalized entropy production at a steady state. d Horizontal sections of the
entropy production (ΔH =0.2, 0.4, 0.6, 0.8, 1.0, and 1.2). It peaks at the critical line.
e A vertical section of the entropy production at zero temperature (β→∞). All plots
are based on a model with fixed parameters J0 = 1,ΔJ =0.2 and variable ΔH and β.
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light on what kind of behaviors we might expect from these compli-
cated systems. Most importantly, our results indicate two scenarios to
increase entropy production by controlling the connection hetero-
geneity (ΔJ) and neuron’s nonlinearity (β). These global changes in the
model parameters can be achieved in the brain as gain modulation
often mediated by neuromodulators57. One scenario to increase
entropy production is that the system approaches a critical state as
seen in the low ΔJ in Fig. 2 or Fig. 5. The other scenario is to make the
system more heterogeneous and sensitive by increasing ΔJ and β. A
significant difference is that the former process maintains stochastic
nature while the latter yields quasi-deterministic disorder, as indicated
by thehighor reduced entropy rate. Therefore, the results suggest that
it is crucial to investigate the multiple possibilities of nonequilibrium
states to underpin the unconscious (sleep or anesthesia), awake, and
engaged states more precisely.

Neuroscientists have often discussed the role of temporal pat-
terns in spiking activities of neurons in computation or in memory
consolidation and retrieval. One central topic of the debate is whether
neurons, e.g., cortical or hippocampal ones, exhibit precise sequential
patterns in a repeated manner58–61. Such precise sequences should
result in a large entropy production similar to the low-temperature
disordered phase of the kinetic Ising system. Alternatively, one may
explain a broad range of irreversible temporal patterns, including
avalanche dynamics62,63, by the dynamics near the nonequilibrium
phase transitions without the precise sequential structure. As sug-
gested by Eq. (60), the same network that shows simple periodic
patterns at zero temperature can retrieve the diverse patterns yielding
large entropy production by being poised near the critical phase
transition point. The current study highlights the need to dissociate
the two scenarios, characterizing different temporally irreversible
spiking patterns to understand the distinct roles in neural computa-
tion using multiple thermodynamic quantities.

Finally, our analytical solutions offer a benchmark for – the
aforementioned and other – methods for estimating thermodynamic
quantities. For example, characterizing entropyproduction frombrain
imaging data requires methods for coarse-graining the phase
diagram4,5. The kinetic SK model can serve as a test bench for such
methods as it is an analytically tractable system with a well-known
phase diagram. Moreover, we can use them to examine both estab-
lished and novel mean-field theories in estimating the thermodynamic
properties of large-scale systems. For example, one can directly fit the
Ising model to neuronal spiking data using mean-field methods for
finite-size networks, from which one can estimate various thermo-
dynamic quantities of the system31,64. Accurately estimating these
quantities in large networks gives deeper insights into the nonlinear
computations of cortical circuitries. The exact solutions provided
here serve to evaluate the accuracy of these approximation methods
applied to large-scale networks and provide a benchmark of the
thermodynamics quantities of infinitely large networks.

Data availability
The datasets and code generated in the current study are available in
the GitHub repository, https://github.com/MiguelAguilera/asymmetric-
SK-model.

Code availability
The datasets and code generated in the current study are available in
the GitHub repository, https://github.com/MiguelAguilera/asymmetric-
SK-model.
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