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The supercurrent diode effect and
nonreciprocal paraconductivity due
to the chiral structure of nanotubes

James Jun He 1,2 , Yukio Tanaka3 & Naoto Nagaosa 4

The phenomenon that critical supercurrents along opposite directions
become unequal is called the supercurrent diode effect (SDE). It has been
observed in various systems and can often be understood by combining spin-
orbit coupling and Zeeman field, which break the spatial-inversion and time-
reversal symmetries, respectively. Here, we theoretically investigate another
mechanism of breaking these symmetries and predict the existence of the SDE
in chiral nanotubeswithout spin-orbit coupling. The symmetries are broken by
the chiral structure and a magnetic flux through the tube. With a generalized
Ginzburg-Landau theory, we obtain the main features of the SDE in its
dependence on system parameters. We further show that the same Ginzburg-
Landau free energy leads to another important manifestation of the non-
reciprocity in superconducting systems, i.e., the nonreciprocal para-
conductivity (NPC) slightly above the transition temperature. Our study
suggests a new class of realistic platforms to investigate nonreciprocal prop-
erties of superconductingmaterials. It also provides a theoretical link between
the SDE and the NPC, which were often studied separately.

Nonreciprocal transport properties1 near or inside the super-
conducting phase of electronic systems have been attracting a lot of
research attention recently. It may manifest itself in nonreciprocal
paraconductivity (NPC)2–8 or in so-called supercurrent diode effect
(SDE)9,10.

In superconductors (SCs) or Josephson junctions with broken
inversion (P) and time-reversal (T ) symmetries, the critical currents
along opposite directions, Jc±,may be unequal, leading to the SDE. This
effect has been found in various experimental systems10–18, part of
whichmay beunderstood by combining spin-orbit coupling (SOC) and
Zeeman field19–21, which break P and T , respectively. The SOC-Zeeman
mechanism also works in one-dimension22,23 and in systems with
disorders24. Supercurrent interferometers may also give rise to the
SDE25–27, where the fractional Josephson effect of Majorana fermions
can play a crucial role25. There also exist theories that consider sym-
metry breakings by internalmagnetic28–32, electric33,34 or valley35 orders,

finite momentum pairing36,37, unconventional superconductivity38,39,
etc. However, systems with magnetic orders may be understood in a
way similar to those under Zeeman fields, and superconductors with
spontaneous P- or T -breaking pairing are not conveniently found in
nature. Thus, it remains an open question whether there exist a new
mechanism to generate the SDE in state-of-the-art experimental sys-
tems. Finding such a mechanism shall greatly enrich the choice of
platforms to investigate the SDE and promote the research in this
direction.

While the SDE is a manifestation of a nonreciprocal SC below its
transition temperature Tc, the nonreciprocity can also be seen slightly
above Tc, where Cooper pairs start to form but coherent super-
conductivity is not reached yet. In this regime, the trend of forming
Cooper pairs makes a large contribution to the conductivity, which is
called the paraconductivity40,41. In systems where P and T are broken,
the paraconductivity in opposite directions may differ significantly,
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leading to the NPC. Although nonreciprocal conductance may also
exist in the normal state at T≫ Tc, this effect can be enhanced by
several orders of magnitude as the temperature approaches Tc4. The-
ories have shown that the NPC can also originate from a combination
of SOC and Zeeman field2,4. Despite the similarity in the conditions to
realize SDEand theNPC, current theories havenot discussed the two in
the same framework to the best of our knowledge.

In the research works on nonreciprocal transport phenomena in
superconductors, both the understanding of current experimental
results and the proposals of future platforms focus on systems with
magnetization or spin-orbit coupling. A mechanism of generating SDE
or NPC in non-magnetic materials without spin-orbit coupling
remained elusive.

Here, we reveal such a mechanism with the chiral structure being
the key element and predict nanotubes as realistic experimental plat-
forms. We show that both the SDE and the NPC exist in a chiral
nanotube under amagnetic field along its axial direction, and they can
be obtained with the same generalized Ginzburg-Landau theory. The
inversion symmetry is broken by the chiral structure of the nanotube
without any SOC, and the magnetic field plays its role through the
orbital effect, i.e., Aharonov-Bohm effect, instead of the Zeeman cou-
pling. The resulting nonreciprocal signals strongly depend on the
magnetic flux, the nanotube radius, and the chiral angle. There exist a
periodicity in the magnetic flux through the tube, similar to the Little-
Parks oscillation42, as well as a periodicity in the chiral angle. The
interplay of the magnetic flux and the chiral structure is the origin of
both the SDE and the NPC.

The NPC in nanotubes has been observed by Qin et al. in ref. 3
where the nanotubes are formed by transition metal dichalcogenides
WS2. A strong SOC exists in this material which may also contribute to
the NPC. Our theory is useful to clarify the origin of the observed NPC
in ref. 3 and, on the other hand, shows the existence of SDE in chiral
structures without SOC. While helping to understand the existing
experimental results, this study also serves as a basis for future
material choice. Its unified picture of non-reciprocal transport phe-
nomena below and above the superconductivity transition tempera-
ture Tc shall be beneficial to the research in both regimes.

Results
Chiral nanotubes near Tc

A nanotube near its superconductivity transition temperature Tc may
be described by the following free energy,

F =
Z

d2rψ*ðrÞ α + ξðp̂Þ+ β
2
∣ψ rð Þ∣2

� �
ψðrÞ, ð1Þ

where α ~ T − Tc and β are the conventional Ginzburg-Landau para-
meters. The displacement vector r = (x, y) is defined so that the
nanotube aligns alone the x-direction and the transverse coordinate y
circulates around the tube, as illustrated in Fig. 1. The term
ξðp̂Þ=Pijξ ij p̂

i
x p̂

j
y is the kinetic energy of a Cooper pair. Apparently, a

periodic boundary condition should be applied along the y-direction.
Themomentumoperator is p̂= � i_∇r +2eAðrÞ. Considering a uniform
magnetic field applied along the x-direction, i.eH=Hxx̂, and assuming
the nanotube wall thickness to be negligible, the vector potential
becomes A= ϕ

2πR ŷ, where ϕ =πR2Hx is the magnetic flux through the
nanotube and R is its radius. This is equivalent to a boundary condition
ψðrÞ=ψðr+2πRŷÞ expf�2πiϕ=ϕ0g,ϕ0 =h=2e being the magnetic flux
quantum.

A Fourier transformation (taking into account the magnetic flux)
leads to the following equivalent form of Eq. (1),

F =2πR
X
n

Z
dq α + ξ pð Þ+ β

2
ð2πRÞ2∣ψn∣

2
� �

∣ψn∣
2, ð2Þ

where q is the wavenumber along the tube and p = (ℏq, [n −ϕ/ϕ0]ℏ/R).
The integer n labels the transverse Fourier components. It is quantized
due to the small circumference of the tube. We have neglected the
coupling between different q-components in the ∣ψ∣4 term, which does
not affect the results of this study. It is clear from Eq. (2) that F is a
periodic function ofϕ, leading to the Little-Parks oscillation, as will be
seen later.

The chiral structure of the nanotube is reflected in the functional
form of ξ(p). To see that, imagine a nano-ribbon obtained by cutting
and flattening the nanotube. When the local continuous rotational
symmetry (C1) of this ribbon is reduced a discrete Cn, a chiral nano-
tube can be obtained if the rolling direction mismatch all the high-
symmetry directions. For simplicity, we consider here a systemwith C2
and the kinetic term may be written as (up to the 4-th order in the
momentum)

ξðp0Þ=
∣p0∣

2

2m0
+

∣p0∣
4

4m2
0ζ0

+
p2
x0 � p2

y0

2m1
+

p2
x0 � p2

y0

� �2
4m2

1 ζ 1

+
p2
x0 p2

x0 � 3p2
y0

� �
+p2

y0 p2
y0 � 3p2

x0

� �
4m2

2ζ 2

ð3Þ

where p0 is defined in a coordinate system whose axes align with the
high-symmetry directions. It is generally different from that of p
defined in the previous coordinate system whose x-axis is along the
nanotube. They are connected by a rotation of the chiral angle θ, as
shown in Fig. 1. The first two terms in Eq. (3) preserves C1 while the
third term reduces it to C2. Note that m1 >m0 must hold for the mass
along arbitrary direction to be positive. The last two terms are C4
symmetric. The inclusion of quartic terms is necessary to reveal the
nonreciprocal properties, similar to the case where such an effect is
caused by magnetochiral anisotropy2,4,20,21.

Equation (3) can be rewritten as

ξðpÞ= p2
x

2mx
+

p2
y

2my
+
pxpy

mxy
+
X4
n =0

κnp
n
xp

4�n
y ð4Þ

with,mx,my,mxy and κnbeing functions (seeMaterials andMethods) of
the original parameters in Eq. (3). To see how a chiral nanotube breaks
P, note that py = (ny −ϕ/ϕ0)ℏ/R is defined along a circular coordinate
and behaves as angular momentum (rather than the usual momentum
in a flat space). It remains unchanged under P operation, consistent

Fig. 1 | A schematic of a chiral nanotube formed by rolling a two-dimensional
sheet. The two coordinate systems, (x0, y0) and (x, y), are connected by a rotation
of the chiral angle θ. A magnetic field H is applied along the tube to generate
nonreciprocal effects.
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with the symmetry property of the magnetic flux ϕ which should not
change under spatial inversion. As a result, the nanotube geometry
leads to the symmetry operation ðpx ,pyÞ!

P ð�px ,pyÞ, and thus the
px-odd terms in Eq. (4) break P.

The supercurrent is

Jx = � 2e
Z

dyψ*ðrÞ dξ
dp̂x

ψðrÞ ð5Þ

= � 2e
X
n

2πR
L

Z
dq

∂ξðpÞ
∂px

∣ψnðqÞ∣2, ð6Þ

where L→∞ is the length of the nanotube. With Eqs. (2), (4) and (6), we
study the SDE when T < Tc and the NPC when T > Tc in the following.

Supercurrent diode effect
When a supercurrent passes through the nanotube, the Cooper pairs
acquire amomentum p and a kinetic energy ξ(p). The order parameter
is determined by the Ginzburg-Landau equation as
∣ψnðqÞ∣2 = ∣α∣β�1ð2πRÞ�2 1� ξðpÞ=∣α∣� �

and the supercurrent is

Jxðn,qÞ=
�2eR

L2
∣α∣
βR2 1� ξðpÞ

∣α∣

� 	
∂ξðpÞ
∂px

: ð7Þ

Note that α <0 since T < Tc. The critical currents Jc± are the absolute
values of the maximum andminimum, respectively, of Jx(n, q) as n and
q are varied.

For general parameters, Jc± can be determined numerically and

the resulting diode efficiency, η � Ic+�Ic�
Ic+ + Ic�

, is shown in Fig. 2 as functions

of the magnetic flux ϕ, the angle θ and the temperature, respectively.
Figure 2a shows a periodicity inϕ, similar to the Little-Parks oscillation.
Different curves are for various values of the ratio r = R/l0, with R being

the radius of the nanotube and l0 = _=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0Tc

p
. When r is small and

ϕ/ϕ0 is close to a half-integer, the transverse momentum,
py = (n −ϕ/ϕ0)ℏ/R ≈ ℏ/(2rl0), costs so high a kinetic energy ξ(p) that it

kills the superconductivity (i.e., ψn→0), leading to vanishing Jc±. We
define η in this case to be zero, resulting in the curve with r = 1 in Fig. 2
(a). As r increases, Jc± becomes nonzero for arbitrarymagnetic flux and
discontinuities occur as ϕ/ϕ0 changes across half-integers, which ori-
ginates from the quantization of the transverse index n in Eq. (7).When
r≫ 1, discontinuities disappear while non-smooth kinks remain and ∣η∣
decreases. FromFig. 2b, one finds that η vanishes whenever θ becomes
a multiple of π/2. This is expected because the nanotubes in these
cases are not chiral and the inversion symmetry is preserved, forbid-
ding the SDE. As θ/π deviate from half-integers, ∣η∣ increases sharply
and extreme values of η are reached quickly. Note that the positions of
the extreme points depend on the ratio m0/m1, which measures the
strength (and the sign) of inversion symmetry breaking. The tem-

perature dependence has the usual feature η∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p
, as shown in

Fig. 2 (c).

It is helpful to obtain the analytical form of η, which is possible
when ζ0,1,2≫ Tc and thus the terms with κn in Eq. (4) can be treated as
perturbations. We also assume r to be small, and then varying the
transverse quantum number n costs so much energy that Jc± are
obtained with a fixed n in Eq. (7). Under these conditions, the diode
efficiency is

η =
�4ffiffiffi
3

p 4κ0
m2

x

mxy
+ κ1mx

 !
m0Tc

×b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣α∣
Tc

mx

m0
� b2 mx

my
� m2

x

m2
xy

 !vuut ,

ð8Þ

where b =ϕ/ϕ0 − [ϕ/ϕ0] ([x] denotes the integer closest to x). From Eq.
(8) it becomes clear that either m�1

xy or κ1 must be nonzero to achieve

the SDE. The requirement, combined with Eqs. (13) and (15), becomes
m�1

1 ≠0 and sin 2θ≠0, which is just equal to requiring the nanotube to
have a chiral structure.When themagneticfiledHx is small,η is linear in
Hx (note thatϕ =πR2Hx). As themagnetic flux increases, the expression

under the square root becomes negative for small ∣α∣ since ðmx
my

� m2
x

m2
xy
Þ is

positive definite. This results in a decrease of the transition tempera-

ture to T 0
c with δTc =Tc � T 0

c ∼b2ðmx
my

� m2
x

m2
xy
Þm0
mx
. And the temperature

dependenceof Eq. (8)may bewritten asη∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 0
c � T

p
. A substitution of

Eqs. (12–16) leads to the dashed curves in Fig. 2 (a) and (c), which show
great agreement with previous numerical results except two situa-
tions, (i) r≫ 1 and ϕ/ϕ0 is close to a half integer and (ii) The tem-
perature is far below Tc. In both situations, the assumption that Jc± can
be obtained with the same index n in Eq. (7) no longer holds.

The differences in the SDE between chiral nanotube SCs and
previously studied spin-orbit coupled SCs19–21 is clear now. The diode
efficiency here is controlled by the nanotube diameter and the chiral
angle, while it is determined by the SOC strength in spin-orbit coupled
SCs. The sign change of η happens in both kinds of systems as the
magnetic field is tuned. However, the origins are rather different. In
SOC SCs, η changes sign due to the higher-order (inmomentum and in
field strength) terms in the kinetic energy of the Cooper pairs. Here, it
is because the transverse indexn corresponding to the critical currents
Jc± is shifted. The sign of η changes exactly at b = 1/2 here (i.e. when the
number of flux quanta is a half-integer) while the sign-flipping field-
strength in SOC SCs depends on multiple system parameters.

Nonreciprocal paraconductivity
The nonreciprocity of superconducting materials manifests itself not
only in the SDE when T − Tc <0, but also in the NPC when
Tc≫ T − Tc >0. In the latter case, although the average order parameter
vanishes, its quantum fluctuations induce a significant contribution to
the conductance, resulting in a drop of resistance above Tc before a

Fig. 2 | The diode efficiency, η = (Jc+ − Jc−)/(Jc+ + Jc−), obtained by numerically
solving for the critical currents Jc± with Eq. (7). a The dependence on the mag-
netic flux (ϕ0 = h/2e is the flux quantum). The solid curves are for various values of
the nanotube radius R, normalized so that r =R/l0, where l0 = _=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0Tc

p
. The

dashed curve is the approximate result given by Eq. (8) with r = 30. b Dependence
on the angle θ which corresponds to the chiral structure of the nanotube. c The
temperature dependence. The parameters arem0 = 1,m1 = 2, ζ2m2→∞, ζ0/Tc = 10,
ζ1/Tc = 20, r = 2,θ =0.6π,ϕ/ϕ0 = 0.3 and T/Tc =0.9 for all the results unless specified
otherwise.
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finite order parameter is established. The relation between the two
phenomena has not been discussed elsewhere although the symmetry
requirements are very similar. In this section, we calculate the para-
conductivity of the chiral nanotubes described by Eq. (2) and discuss it
in the same framework as we discuss the SDE.

We calculate the paraconductivity using the time-dependent
Ginzburg-Landau theory43 (see Materials and Methods). The resulting
current density jx = σ1E + σ2E2 +O(E3) where the linear conductivity

σ1 = γ
T
Tc

e2

4π2_

l0
R

X
n

Z
dx

∂2xf nðxÞ
½α=Tc + f nðxÞ�2

, ð9Þ

and the nonreciprocal term

σ2 = γ
2 T

T2
c

e3

6π2_

l20
R

X
n

Z
dx

∂3
xf nðxÞ

½α=Tc + f nðxÞ�3
: ð10Þ

In the dimensionless function fn(x) = ξ(p)/Tc, we made a change of
variables, p = [px, py]→ [xℏq0, ynℏq0], where yn = (n −ϕ/ϕ0)/Rq0 and
q0 = 1/l0. The substitution of Eq. (4) leads to

f nðxÞ=
1
Tc

ξ x_q0,yn_q0
� �

=
x2

2 ~mx
+

y2n
2 ~my

+
xyn
~mxy

+
X4
i=0

~κnx
iy4�i

n

ð11Þ

where ~mx=y=xy =m
�1
0 mx=y=xy and ~κi = κim0ð_q0Þ2 are dimensionless

parameters.
The integrals in Eqs. (9) and (10) can be done numerically and the

resulting σ1/2 are shown in Fig. 3 as functions of themagnetic fluxϕ and
the chiral angle θ. Little-Parks oscillations of both the linear and non-
linear conductivities are found in Fig. 3a. Themaxima/minima of σ1 are
at integer/half-integer values of ϕ/ϕ0 since σ1 is an even function of ϕ
and finite flux suppresses superconductivity. On the hand, the non-
reciprocal σ2 is odd in ϕ and it vanishes whenever ϕ/ϕ0 becomes a
integer. The flux values for optimal σ2 depend on the system para-
meters such as the nanotube radius, as shown in Fig. 3b. The curves
resemble those in Fig. 2a with the difference that they are smooth here
because all the transverse components n∈ ( −∞,∞) of the order
parameter contribute, unlike the supercurrent which is given by a
certain n. Fig. 3c shows the effect of the chiral angle θ. The angle
dependence of σ2 is of similar amplitude to the flux dependence in
Fig. 3a. In Fig. 3d, we find that the temperature dependence of σ1 is

rather linear, which is similar to higher-dimensional systems2,4,43. A
difference here is a shifted transition temperature T 0

c, so that
σ�1
1 ∼ ðT � T 0

cÞ. The T-dependence of σ�1
2 is clearly of higher order and

we do not find any single power law.

Discussion
We have shown that superconducting chiral nanotubes with trapped
magnetic flux behave as supercurrent diodes, whose diode efficiency
strongly depends on the chiral angle. We also found, in the same
theoretical framework, that the paraconductivity of such chiral nano-
tubes near Tc contains a nonreciprocal part σ2, whose dependence on
the system parameters is rather similar to that of the SDE efficiency η
and oscillates periodically as themagnetic fluxϕ or the chiral angle θ is
varied. The results show that a combination of inversion symmetry
breaking by chiral structure and time-reversal symmetry breaking by
magnetic flux can induce nonreciprocal transport properties, includ-
ing the SDE and the NPC, in superconductors.

One may notice that actual nanotubes created in laboratories are
mostly related to honeycomb or triangular lattices, while the nano-
tubes discussed here are obtained by rolling a sheet of rectangular
lattice. This choice is for technical convenience. However, the main
conclusions drewhere shall generally apply. Toquantitativelydiscuss a
carbon nanotube (honeycomb) or a transition-metal-dichalcogenide
nanotube as experimentally studied in ref. 3 (triangular), terms up to
the6-th order inmomentummustbe includedwhenconstructing their
Ginzburg-Landau free energies, which is not really meaningful con-
sidering the condition for the validity of the Ginzburg-Landau theory
itself. Thus, a study of realistic (carbon/NbSe2/WS2/...) nanotubes may
need to use the microscopic BCS theory, which can be done numeri-
cally. Another difference of the theory from real materials is that rea-
listic nanotubes may be multi-wall and have nonzero thickness, which
we ignored here. Our theory is still valid as long as chiral structures are
formed and the thickness is much smaller than the superconductivity
coherence length. The former condition can be satisfied by sample
choice without much difficulty, and the latter one is usually satisfied
since the coherence length is quite large in comparison to atomic
scales.

Although single superconductors are considered here, the non-
reciprocal effects discussed here shall apply to Josephson junctions
where twoconventional bulk superconductors (Al, Pb, Nb, NbSe2, etc.)
are connected by a chiral nanotube. A study of such a systemwill be of
great practical importance. In this manuscript, we aim to clarify the
physical principles and general features of the nonreciprocal proper-
ties of superconducting chiral nanotubes, and leavemore detailed and
realistic studies to future works.

Although one needs to break both P and T to obtain unequal
Jc±28,44, it should benoted that there also exist nonreciprocal properties
in T -preserving Josephson junctions. The nonreciprocity may be
observed in unequal retrapping currents Jr±45 or in ac Josephson
effects9,28. The interactionbetween electronsplays an important role in
these cases. The design or improvement of supercurrent diodes with
strong electron interactions is a topic worth further investigation.

Methods
Parameters in the rotated coordinate system
By rotating the coordinate systemby the chiral angle θ, one obtains the
free energy form in Eq. (4) where the parameters are functions of those
in Eq. (3). The functional forms are

1
mx=y

=
1
m0

±
cos 2θ
m1

, ð12Þ

1
mxy

= � sin 2θ
m1

, ð13Þ

Fig. 3 | The linear and nonlinear paraconductivity of a chiral nanotube, σ1 and
σ2, normalized by σ1 =

kBT
Tc

e2
4π2_

γl0
R and σ2 =

kBT
T2

c

e3
6π2_

γ2 l20
R , respectively. a Magnetic-

flux dependence, showing the Little-Parks oscillation. b The evolution of the flux
dependence as the normalized radius r is varied. cDependence of σ1/2 on the chiral
angle θ. d The temperature dependence of the inverse of σ1/2. The parameters are
the same as those in Fig. 2.
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κ0 = κ4 =
1
4

1
ζ0m

2
0

+
cos22θ
ζ 1m

2
1

+
cos 4θ
ζ 2m

2
2

 !
, ð14Þ

κ1 = � κ3 =
sin 4θ

2
1

ζ 1m
2
1

+
2

ζ 2m
2
2

 !
, ð15Þ

κ2 =
1
4

2
ζ0m

2
0

+
1� 3 cos 4θ

ζ 1m
2
1

� 6 cos 4θ
ζ 2m

2
2

 !
: ð16Þ

Time-dependent Ginzburg-Landau theory
At a temperature slightly above Tc, the fluctuation of the order para-
meter is determined by the following Langevin equation43,

_γ∂tψðr,tÞ= � α + ξðp̂Þ� �
ψðr,tÞ+ δðr,tÞ, ð17Þ

where δ(r, t) is an uncorrelated random force and γ is the inverse of
damping constant. Note that α > 0 and the static order parameter
vanishes, i.e. hψn,qðtÞit =0. However, Eq. (17) leads to a nonzero
h∣ψn,qðtÞ∣2it , which is43

h∣ψn,qðtÞ∣2i=
2kBT
_γ

Z t

�1
dt0e�

2
_γ

R t

t0 dt
00 ½α + ξðt00 Þ�

: ð18Þ

It is nonzero when an electric field E = Ex̂ is applied, making
ξ(p(t″)) = ξn(q + 2eEt″). Combining Eqs. (6) and (18), one obtains Eq. (9)
and Eq. (10).

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper.
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