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Ventromedial prefrontal neurons represent
self-states shaped by vicarious fear in
male mice

Ziyan Huang 1,2,3, Myung Chung 1,2,3, Kentaro Tao 1, Akiyuki Watarai1,
Mu-Yun Wang 1, Hiroh Ito 1,2 & Teruhiro Okuyama 1,2

Perception of fear induced by others in danger elicits complex vicarious fear
responses and behavioral outputs. In rodents, observing a conspecific receive
aversive stimuli leads to escape and freezing behavior. It remains unclear how
these behavioral self-states in response to others in fear are neurophysiolo-
gically represented. Here, we assess such representations in the ventromedial
prefrontal cortex (vmPFC), an essential site for empathy, in an observational
fear (OF) paradigm inmale mice. We classify the observermouse’s stereotypic
behaviors during OF using a machine-learning approach. Optogenetic inhibi-
tion of the vmPFC specifically disrupts OF-induced escape behavior. In vivo
Ca2+ imaging reveals that vmPFC neural populations represent intermingled
informationof other- and self-states. Distinct subpopulations are activated and
suppressed by others’ fear responses, simultaneously representing self-
freezing states. This mixed selectivity requires inputs from the anterior cin-
gulate cortex and the basolateral amygdala to regulate OF-induced escape
behavior.

For wild social animals, the perception of fear expressed by others is
critical for detecting unseen threats1. The fear signals from the
demonstrator lead the observer to adopt a variety of defensive beha-
viors, and these complex and flexible responses include not only
freezingbut alsoescapebehavior. Notably, because the freeze-and-flee
response ismutually exclusive, animals should appropriately select the
behavioral output and achieve fast switching between thesebehaviors,
as required for effective and versatile responses2. The observational
fear (OF) paradigm is commonly used to investigate the transmission
of fear and its underlying neural mechanisms across species under
laboratory conditions3–5. In rodents, the freezing behavior of an
observer while a demonstrator receives repetitive foot shocks has
generally been measured to quantify the vicarious fear response6–10;
however, the observer’s escape behavior as an OF response has only
been described in a limited number of studies7.

Evidence from human functional magnetic resonance imaging
(fMRI)11,12 implied the involvement of the anterior cingulate cortex

(ACC) and basolateral amygdala (BLA) in emotional contagion, which
is supported by a series of rodent studies showing the indispensable
role of these regions in acquiring vicarious fear6,8–10. Subsequently,
BLA-projecting ACC neurons preferentially encode socially derived
aversive cue information8 to elicit freezing in the vicarious fear
response13. Consistently, another study reported OF-induced neural
activation in the ACC and BLA, with increased amplitude and slowed
decay of ACC-to-BLA NMDAR-mediated currents14.

Previous studies have also indicated a significant role of the
medial prefrontal cortex in the cognitive side of empathy11,15. Patients
with damage to the ventromedial prefrontal cortex (vmPFC), encom-
passing the prelimbic (PL) and infralimbic (IL) cortices in rodents, have
impairments in their ability to express empathic emotions16 and
interpret the emotions of others17,18. Furthermore, recent rodent stu-
dies regarding vmPFC social functions have yielded vmPFC neural
coding of social representation19 as well as the affective state dis-
crimination of other conspecifics20. Notably, a meta-analysis of
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rodents’ emotional contagion confirmed c-fos activation of PL and IL in
both mice and rats21. In conjunction, these results suggest a possible
functionof the vmPFC (encompassing the PL and IL but not theACC) in
the OF; however, the function and in vivo physiological features of
vmPFC neurons and their neural networks co-operating with the ACC
and BLA remain unclear.

In this study, we explored the function and neural representation
of vmPFC neurons in the OF. To objectively classify the complex
behaviors during OF, we employed DeepLabCut (DLC)22 with dimen-
sion reduction clustering using t-distributed stochastic neighbor
embedding (t-SNE)23 and identified eight types of stereotypic beha-
viors. Although vmPFC neuronal activities enabled decoding both
stereotypic behaviors and freezing, optogenetic inhibition of the
vmPFC specifically disrupted OF-induced escape behavior, but not
freezing behavior. We identified two distinct neural subpopulations
activated and suppressed when observing a demonstrator receiving
foot shocks (i.e., other-shock). Neural activities of other-shock acti-
vated and suppressed neurons were negatively and positively corre-
lated with self-freezing, respectively, revealing an intermingled neural
representation of other- and self-states in vmPFC neurons. The
representation of the self-state in the other-shock activated and sup-
pressed neurons required the ACC-vmPFC and BLA-vmPFC neural
inputs, respectively. Surprisingly, optogenetic inhibition of either the
ACC-vmPFC and BLA-vmPFC resulted in the acceleration of escape
behavior. Our study suggests that intermingled population coding in
vmPFC neurons represents self-states shaped by the other-state to
elicit OF-induced escape behavior.

Results
Classification of stereotypic behavioral patterns of the observer
mice during the OF task
The OF task in rodents, in which an observer exhibits robust freezing
behavior while a demonstrator receives repetitive foot shocks, has
been commonly used to investigate neural mechanisms underlying the
vicarious fear response24. In our paradigm, a demonstrator and an
observer freely moved in the context for 5min (habituation period),
and then the demonstrator received a 2 s shock every 10 s (a total of 60
times) for 10min (conditioning period) (Fig. 1a). Throughout the OF
session, the observer exhibited seemingly variable behaviors, with high
levels of freezing during the conditioning period (Fig. 1b). In this study,
we exploited a series of unsupervised analyses to categorize the
observer’s behavior into discrete patterns to reveal a mixture of dis-
tinct and stereotyped behavior sequences. First, to extract low-
dimensional time-series representations of postural dynamics, we
defined and extracted 13 body points on an observer’s head, trunk, and
limbs in recorded video frames (Fig. 1c) using the markerless tracking
method DeepLabCut22 (Supplementary Fig. 1a). We then divided a
single behavior session into 10-s bouts (corresponding to a shock fre-
quency) and embedded the 1950 D (13 body points × 2 coordinates ×
7.5 frames/s × 10 s) representation into 2 D space using t-SNE23,25 fol-
lowed by density-based clustering26–28, which yielded a total of eight
clusters (Fig. 1d–f; Supplementary Fig. 1b) representing distinct beha-
vioral patterns (Fig. 1g). Plotting the coordinates of the center of the
backwithin each bout revealedwhether the animalmoved or remained
stationary (Fig. 1g, right). By inspecting the observer’s posture, posi-
tion, and movement during each 10-s behavior bout, we annotated
each behavioral cluster as follows: (I) move left, (II) move right, (III)
back, (IV) front, (V) left, (VI) right, (VII) near a demonstrator (D), and
(VIII) far from a demonstrator (D) (Fig. 1g, center and left; Supple-
mentary Fig. 1c). The two clusters corresponding to the moving beha-
vior (clusters I and II) exhibited a significantly lower freezing rate than
the other six clusters (clusters III, IV, V, VI, VII, and VIII) (Fig. 1h).

Unexpectedly, the obtained behavioral sequence for each mouse
varied from one to the other, with little common behavior at specific
times (Fig. 1i). This led us to examine behavioral transitions. To test the

length of previous bouts that significantly affected the prediction of
the next bout in a behavioral sequence, we constructed a series of
Markov chain models ranging from zeroth (based only on the dis-
tribution of behavioral clusters) to the fifth order29. The results sug-
gested that only the immediately preceding bout strongly predicted
the next bout for all behavioral clusters (Supplementary Fig. 2a).
Therefore, we performed sequence analysis between two consecutive
bouts (i.e., transitions). The rendered square matrix of the transition
probability demonstrated that only the repetition of the same beha-
vioral cluster (i.e., clusters III, IV, V, VI, VII, and VIII) was significant
during the conditioning period, and those significant repetitions
increased compared with the habituation period across individuals
(Supplementary Fig. 2b). In the control group, in which the demon-
strator mice did not receive foot shocks (no-shock control group), an
increased freezing rate of the observer mice and a strong tendency to
repeat the same behavioral cluster were not observed (Supplementary
Fig. 3), suggesting that the latter feature along with the freezing
behavior were attributed not only to the habituation effect to the
shock apparatus but also to fear contagion from the demonstrator to
the observer.

We conducted a similar analysis using shorter 2-s bouts to isolate
the vicarious fear responses further. As mice move and stop con-
tinuously, we set a threshold of 50% in the 2-s freezing rate to classify
bouts as mobile or immobile. We then performed unsupervised clas-
sification and obtained 9 components for each dataset (Fig. 2a, b,
Supplementary Fig. 4a, b). Among all the components (Supplementary
Fig. 4c, d), three characteristic components were extracted from the
mobile dataset, namely (m1) approaching, (m2) leaving, and (m3)
moving near D; three from the immobile dataset, (i1) escaped, (i2)
gazing-1, and (i3) gazing-2 (Fig. 2c). The freezing rate of m1 and m2
were significantly lower compared to other mobile components
(Fig. 2d, Supplementary Table). When the habituation and condition-
ing period were compared, the proportion of mobile components
(m1–m3) decreased, while the immobile components (i1–i3) increased
in the conditioning period (Fig. 2e). Among the eight clusters obtained
in Fig.1,m1 shared the largest portion of cluster I,m2of cluster II,m3of
cluster I and VII, i1 of cluster III and VIII, i2 of V, and i3 of VII (Fig. 2f)
indicating that the 10-s clusters contained a mixture of different
behavior components.

Impaired escape behavior with the optogenetic inhibition of
vmPFC neurons
To investigate the function of the vmPFC of the observer in the OF,
we optogenetically silenced excitatory neuronal activity in the
vmPFC during the conditioning period. AAV5-CaMKII:eArchT3.0-
eYFP was bilaterally injected and an optic fiber was implanted
(Fig. 3a). We confirmed the optogenetic inhibition of the vmPFC
using acute single-unit recordings from head-fixed mice (Fig. 3b).
First, we found that vmPFC inhibition during the conditioning period
did not affect the freezing rate, unlike that of the ACC6 (Fig. 3c). To
take a closer look at the behavioral patterns, we positioned newly
obtained data with the vmPFC inhibition on the reference behavior
atlas of the mice without any surgery described above (Fig. 1e) by
calculating the 10 most correlated reference bouts and placing the
new bout at the median coordinate following a previous study25

(Fig. 3d, e). The transition repertoire exhibited reduced repetition of
escape behavior from the demonstrator (i.e., cluster VIII) (Supple-
mentary Fig. 5), corresponding with the low ratio of behavioral
cluster VIII compared to the shuffled data during the conditioning
period in the inhibition group but not in the control group (Fig. 3g).
In line with this, the proportion of the i1 “escaped” was significantly
smaller and i2 + i3 “gazing” was significantly larger in the inhibition
group compared to the control group (Fig. 3h–j). To further confirm
this trend, we investigated the position of the observers. The dis-
tance from the demonstrator side was significantly smaller in the
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inhibition group (Fig. 3k). Together, vmPFC inhibition during OF
disturbed the escape behavior from the threat, but not the freezing
behavior itself induced by emotional contagion.

vmPFC neural representation of the stereotypic behavioral
patterns and freezing during OF
To reveal the invivophysiological properties of vmPFCneuronsduring
the OF task, we performed microendoscopic Ca2+ imaging by micro-
injection of AAV5 carrying the calcium indicator protein GCaMP6f into
the vmPFC (Fig. 4a). After signal processing of the calcium fluores-
cence videos, we identified 355 vmPFC cells from four mice and
extracted calcium traces from individual cells (Fig. 4b, c; seeMethods).

The behavioral patterns of the recorded mice were identified in the
same way as in the optogenetic inhibition experiments described
above (Fig. 3d, e), and then the behavioral sequence of eachmousewas
obtained (Fig. 4d). To investigate how many neurons were specifically
activated inmice showing eachbehavioral pattern among the eight, we
statistically identified vmPFC neurons showing a significantly higher
number of calcium events in each cluster compared to the event
timing shufflingdata (seeMethods).Consequently,we found that 11.5%
of cells (41 of 355) were significantly activated in individual clusters
(Fig. 4e), while 9.5% of cells (36 of 377) were identified as cluster-
specific neurons in the no-shock control group (Supplementary
Fig. 6a, b).
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Fig. 1 | Automatic behavior classification using 10-s bouts of the OF task.
a Behavior paradigm for the OF task. b Freezing rate during the OF task (n = 13
mice, one-way repeated measures ANOVA). Data are presented as mean± SEM.
c Representative image of a frame with 13 body-point tracking. d Schematic
drawing of the 10-s behavior analysis. e Results of t-SNE embedding of 13 body-
point tracking experiments using DeepLabCut (data from n = 13 mice, 1170 bouts
total). fWatershed clustering of the t-SNE result. g Left, diagram of the skeleton in
the first 2 s of 10-s bouts using four points (left ear, right ear, back center, tail root)
with the back center point aligned to (0,0) (xpixel: −80 to 80, ypixel: −80 to 80).
Center and right, the position of the back center in the chamber (center, xpixel: 0

to 320, ypixel: 0 to 240) and back center points with the position of the first frame
of each bout (75 frames) were set to (0,0) (right, xpixel: −280 to 280, ypixel: 0 to
240). h Violin plot of freezing rate for each behavioral cluster (one-way ANOVA,
Tukey-Kramer test, two-sided). Mean± SEM. Cluster I: 11.0 ± 1.4%, II 7.3 ± 1.2%, III
27.6 ± 2.2%, IV 26.9 ± 1.5%, V 32.7 ± 1.9%, VI 34.9 ± 1.8%, VII 33.1 ± 2.1%, and VIII
32.1 ± 2.1%. The numbers under each cluster number represent the number of
bouts for each cluster. i The behavioral sequence of each mouse sorted by the
number of transitions. See Supplementary Information for exact p values. Source
data are provided as a Source Data file.
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Next, to examine whether the neural population as a whole in the
vmPFC represents the behavioral patterns, we utilized a multiclass
error-correcting output code model with a support vector machine
(SVM) binary decoder. SVM decoders, which were trained to distin-
guish among the eight types of clusters based on the pattern of vmPFC
population activities for each mouse (Fig. 4f, g), showed significantly
better accuracy compared to the decoders trained using shuffled data,
with an accuracy of 24.9–43.6% (Fig. 4h, i; Supplementary Fig. 7a; see
Methods). In the no-shock control group, the decoders trained with
real data did not perform better than those trained with shuffled data
(Supplementary Fig. 6c, d). Therefore, the vmPFC neural population
encodes information about behavioral clusters during the OF task.

We further investigated the 2-s behavior component information
encoding in the vmPFC. Since two components, i1 and i2 + i3, showed
significant decrease and increase, respectively, in the vmPFC inhibition
group compared to the control group (Fig. 3), we hypothesized that

information regarding these behavior components is particularly
represented in vmPFC neurons. We found 17 of 355 neurons sig-
nificantly active at the component i1 and 11 of 355 at the component
i2 + i3 with 2 overlapping neurons (Fig. 4j).

We also testedwhether the vmPFC neural population represented
freezing behavior, another aspect of behavioral output during OF. The
performance of SVM decoders for the binarized freezing states (high
or low, binarization threshold is the median freezing value for each
mouse) from the neural population activity was significant, with an
accuracy of 68.0–75.9% (Fig. 4k–n; Supplementary Fig. 7b; see Meth-
ods). In the no-shock control group, therewas no significant difference
between the decoders trained with the shuffled and real data (Sup-
plementary Fig. 6e, f). Taken together, these results suggest that the
vmPFC population neurophysiologically represents multifaceted
behavioral states of the self, including both escape and freezing
behavior, which were specifically induced by OF.
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Other-shock and self-freezing are correlated inversely in
the vmPFC
Next, we investigated how the vmPFC neural representation of self-
states is associated with other-state, namely, other-shock information.
Sensory modalities, including vision and sound, convey information
about fear expressed by the demonstrator to the observer6. During the
OF task, the demonstrator responded differently: jumped and ran
around with screaming vocalization while the shock was delivered

(0–2 s) and mostly froze during the shock interval (2–10 s)13. We
observed periodic features in the observer’s behavioral changes dur-
ing each shock frequency (10 s) (Supplementary Fig. 8). Freezing rate
was significantly lower at the shock timing (0–2 s, Supplementary
Fig. 8a), although the averagemovement speed along the x-axis had no
temporal feature (Supplementary Fig. 8b). The behavioral features
indicate that the observer’s behavior is dependent on demonstrator
being shocked. Thus, to investigate the effect of other-shock

Fig. 3 | Optogenetic inhibition of the vmPFC during the OF task. a Left,
schematic representation of the optogenetic manipulation of the vmPFC. Right,
coronal vmPFC section image stained with anti-GFP (green, for eYFP) and DAPI
(4′,6-diamidino-2- phenylindole, blue). b Representative in vivo unit recording of
optogenetic inhibition. c Freezing rate of the observer and the demonstrator
(two-way repeated-measures ANOVA). Green line indicates the light manipulation.
d, e Positioning points of the control (n = 15 mice, light blue dots) and inhibition
(n = 17 mice, pink dots) data on the t-SNE atlas obtained from the previous
experiment (Fig. 1d, gray dots). fBehavioral sequence of eachmouse during theOF
task sorted by the number of transitions within each group. g Proportion of each
behavioral cluster in the habituation and conditioning periods (the permutation

test, two-sided with Bonferroni correction, P <0.025/8 = 0.0031; STAR Methods).
h Proportion of each behavioral component in the habituation and conditioning
periods. i Proportion of components i1 of the control and inhibition group in the
habituation and conditioning periods (control: n = 15 mice, inhibition: n = 17 mice,
unpaired t-test, two-sided). j Proportion of components i2 + i3 of the control and
inhibition group in the habituation and conditioning periods (control: n = 15 mice,
inhibition: n = 17 mice, unpaired t-test, two-sided). k The distance from the
demonstrator side. The x-coordinate of the back center of the control and inhi-
bition groups (two-way repeated-measures ANOVA). *P <0.05, n.s. not significant.
Data are presented as mean± SEM (error bars and shadows). See Supplementary
Information for exact p values. Source data are provided as a Source Data file.
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responses on vmPFC neuronal activities, we first compared the activity
difference of each neuron between their responses before and during
the shock moment (−2–0 s vs. 0–2 s). Fifteen of 355 (4.2%) recorded
neurons were identified as shock-activated neurons, and 28 of 355
(7.9%) as shock-suppressed neurons (Fig. 5a, b; see Methods). Both
shock-activated and shock-suppressed neurons did not show periodic
calcium transients every 10 s during the habituation period (Fig. 5a),
suggesting that the activity alterations at the shockonsetwere induced
by OF.

We also cogitated how, at the neuronal level, this other-shock
information could be linked to the self-freezing information. Among
the wide range of correlations between neuronal activity and freezing
rate (Fig. 5c; see Methods), we identified a sizable fraction of neurons
as either positively (44 of 355, 12.4%) or negatively (65 of 355, 18.3%)
correlated with the observer’s freezing (Fig. 5d). Strikingly, freezing
positively- or negatively-correlated neurons showed significantly sup-
pressed or activated calcium transients during the shock moment
(0–2 s) compared to the baseline (Fig. 5e), and these changes in flow
during the last 10minwerenot observed in theno-shock control group
(Supplementary Fig. 6g, h). Correspondingly, the neurons that were
positively or negatively correlated with the observer’s freezing rate
showed a significantly negative or positive correlation with the shock-
or-not states (1 or 0) (Fig. 5f). In contrast, shock-activated neurons
showed a significantly negative correlation with freezing rate, while
shock-suppressed neurons showed a positive correlation (Fig. 5g).
Notably, while the vmPFC has cellular diversity, with each sub-
population of neurons targeting different major downstream
regions30,31, the spatial distribution of these other-shock responding
and self-freezing correlated neurons did not segregate on the imaging
plane (Supplementary Fig. 9a–i). While there were some overlaps
between shock-responding neurons and freezing-correlated neurons,
not all neurons exhibited both representations (Supplementary
Fig. 9j). Taken together, the information on other-shock and self-
freezing is represented in the vmPFC via two distinct neuronal

subpopulations with opposite responses: freezing-positive/shock-
suppressed neurons and freezing-negative/shock-activated neurons.

Furthermore, we investigated the neural properties of i1
“escaped”-specific and i2 + i3 “gazing”-specific neurons, which are
major components of the freezing-positively correlated neurons and
shock-suppressed neurons (Supplementary Fig. 10a–d). The calcium
activity of these neurons was suppressed during the shock timing
(Supplementary Fig. 10e, f), and their correlations with the freezing
rate were significantly higher than that of non-significant neurons
(Supplementary Fig. 10g, i). Also, while not significant, shock correla-
tions showed lower trends than non-significant neurons (Supplemen-
taryFig. 10h, j). Notably,we confirmed that the activity of the i1-specific
neurons was high at the timing of component i1 compared to the
preceding and proceeding 2-s bouts and component i2 + i3 compared
to the proceeding 2-s bouts (Supplementary Fig. 10k, l).

Physiological activity in the vmPFC during inhibition of
the ACC-vmPFC and BLA-vmPFC pathways
Several studies have shown that the acquisition of vicarious fear and
subsequent expression of freezing behavior highly depends on neural
activity in the ACC6,8,9 and BLA8,14. Given that vmPFC neurons receive
direct neural projections from both the ACC and BLA32–35, we con-
jectured whether the vmPFC received OF-related other-shock or self-
freezing information via projections from these brain regions. To
address this hypothesis, the vmPFC calcium transients were recorded
with the AAV5-hSyn:GCaMP6f injection into the vmPFC, while inhibit-
ing its input from the ACC or BLA by injecting AAV5-CaMKII:NpHR3.0-
mCherry into each region and applying laser stimulation for silencing
in the vmPFC during the conditioning period (ACC-vmPFC circuit
inhibition, Fig. 6a–h; BLA-vmPFC circuit inhibition, Fig. 6i–p). For ACC-
vmPFC inhibition (384 cells from four mice), other-shock responding
neurons and self-freezing correlated neurons were identified (shock-
activated, 17 of 384 cells, 4.4%; shock-suppressed, 30 of 384 cells, 7.8%;
freezingpositively correlated, 45 of 384 cells, 11.7%; freezing negatively
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correlated, 60 of 384 cells, 15.6%) (Fig. 6c, e; Supplementary Fig. 11a).
Interestingly, the freezing correlation of shock-activated neurons was
not significantly different from that of non-significant neurons (Fig. 6d,
green), unlike the mice without pathway inhibition (Fig. 5g, green),
whereas that of shock-suppressed neurons remained positive (Figs. 5g,
6d, g, yellow). Conversely, the freezing negatively correlated neurons
did not show a significantly positive correlation with the shock-or-not
states (Fig. 6f, blue), which was observed in mice without pathway
inhibition (Fig. 5f, blue), whereas freezing positively correlated neu-
rons maintained a negative correlation with the shock-or-not states
(Figs. 5f, 6f, red). Corresponding with these results, the increased
calcium transients of the freezing negatively correlated neurons at the
shock moment (0–2 s) were not observed, whereas the decreased
transients of the positively correlated neurons were maintained
(Fig. 6h). Therefore, the mixed selectivity of the freezing-negative/
shock-activated subpopulation required input from the ACC.

Moreover, a distinct pattern of effects was seen for the BLA-
vmPFC inhibition mice (360 cells from four mice). The freezing cor-
relation of shock-suppressed neurons (18 of 360 cells, 5.0%) (Fig. 6k)
was not significantly different from that of the non-significant neurons
(Fig. 6l, yellow), unlike the mice without pathway inhibition (Fig. 5g,
yellow), while shock-activated neurons (15 of 360 cells, 4.2%) showed a
negative correlation with the freezing rate (Figs. 5g, 6l,o, green).
Conversely, freezing positively correlated neurons (40 of 360 cells,
11.1%) (Fig. 6m; Supplementary Fig. 11d) were not significantly nega-
tively correlated with the shock-or-not states (Fig. 6n, red), unlike the
micewithout pathway inhibition (Fig. 5f, red), in contrast, to negatively
correlated neurons that maintained their positive correlation with the
shock-or-not states (Figs. 5f, 6n, blue). Notably, both the suppressed
responses at the shock moment (0–2 s) of the freezing positively
correlated neurons and the activated responses of the negatively
correlated neurons (105 of 360 cells, 29.2%) were still detected
(Fig. 6p), probably because of the unilateral partial inhibition of the
vmPFC. Together, these results clearly showed that both the ACC-
vmPFC and BLA-vmPFC circuits play essential roles in linking the
neural representation of other-shock and self-freezing during OF.
Importantly, theACC-vmPFC andBLA-vmPFChave opposite functions;
the former contributed to the activities of the freezing-negative/shock-
activated neurons, and the latter contributed to the freezing-positive/
shock-suppressed neurons, suggesting the cooperative function of
twodistinctpathways for processing theneural representationsof self-
states based on other-state.

Optogenetic inhibition of ACC-vmPFC and BLA-vmPFC
accelerates the escape behavior
To further investigate whether the ACC-vmPFC and BLA-vmPFC
pathways also facilitate behavioral outputs during OF, especially
escape behavior that required vmPFC function (Fig. 3), we performed
an optogenetic inhibition of each pathway. We injected AAV9-CaM-
KII:NpHR3.0-eYFP into the ACC (Fig. 7a, b) or BLA (Fig. 7d, e) and
performed axon terminal inhibition in the vmPFC. The freezing rate
did not change in either case (Fig. 7c, f). While the proportion of
i1”escaped” tends to be larger and i2 + i3 “gazing” smaller in the
inhibition group compared to the control group, these differences
did not reach statistical significance (Fig. 7g, h). To describe the
difference in detail, we rigorously quantified escape behavior by
calculating howmuch more time each mouse spent on the near-side
to the demonstrator (near-side) or the far-side from the demon-
strator (far-side) during the conditioning period than during the
habituation period (Fig. 7i; see Methods). Thus, we found that the
inhibition accelerated the observers to move further away (toward
the furthest far-side) from the demonstrator side in both experi-
ments (Fig. 7j, k). Together, these results suggest that both of the two
distinct neural subpopulations in the vmPFC regulate the escape
behavior during OF.

Discussion
In this study, we showed the neural representation of the vmPFC of
other- and self-states during OF, which is critical for modulating OF-
induced escape behavior. Here, we primarily discuss the (1) neural
mechanisms underlying OF-induced escape behavior and (2) vmPFC
neural representation in the OF on self-states and other-states.

While previous studies regarding the OF task have focusedmainly
on freezing behavior, very few studies have focused onother defensive
behaviors, including escape behavior7. In our study, following the
objective classification algorithm that was successfully applied to
zebrafish behaviors and fly songs in past research26,27, a t-SNE-based
clustering analysis using body-point data tracked by DeepLabCut
automatically classified eight types of stereotypic 10-s behavior clus-
ters and 2-s behavior components during the OF task that could not be
segmented by the freezing rate alone (Figs. 1h, 2d). Eight behavior
clusters consisted of different characteristic behavior components
(Fig. 2f). Furthermore, we confirmed that these eight types of behavior
were detected robustly, even when using a subset of the acquired
dataset (Supplementary Fig. 1b). Our results revealed that observers
exhibited an increase in the repetition of the same behavioral cluster
during the conditioning period (Supplementary Fig. 2b), suggesting
that mode switching of the self-state depends on the other-state at the
behavioral level.

Furthermore, optogenetic inhibition of the CaMKII-expressing
vmPFC neurons (i.e., excitatory neurons) impaired escape behavior
from the demonstrator side (Fig. 3g–k). In contrast, while the differ-
ences in the proportion of components were small, the inhibition of
the ACC and BLA neural inputs to the vmPFC accelerated the escape
behavior, implying the OF-induced escape behavior is regulated via an
inhibitory interneuron-mediated neural network (Fig. 7l). In rodents,
the vmPFC, both PL and IL, is a critical region for the regulation of
active avoidance in non-social Pavlovian fear conditioning, whereas its
inactivation does not affect the freezing evoked by a conditioned
stimulus36–39. In addition, the dmPFC, encompassing the PL and ACC,
and its neural input from the BLA are also crucial for the initiation of
avoidance behavior evoked by threat-predicting stimuli39, suggesting
that themPFC is involved in dynamicmode switching from freezing to
escape behavior under exposure to aversive stimuli. Additionally,
considering our results together, the vmPFC dysfunction presumably
disrupted the initiation of escape behavior in the OF.

Regarding the intermingling neural representations of self-
freezing and other-shock in the vmPFC, we obtained three following
insights. First, our in vivo physiological recordings of vmPFC neurons
with SVM decoders showed that vmPFC neural populations represent
other-state-dependent self-state information regarding variable beha-
vioral outputs, such as our identified stereotypic behaviors and
freezing (Fig. 4i, n). These neural representationswere only depicted in
themiceunder theOF task, whereas themicewithout observing other-
shock had no decodable representation, although cluster-specific
neurons and freezing-correlated neurons were identified (Supple-
mentary Fig. 6b, g). Notably, considering the high similarity of vmPFC
neural population activities maintained up to 12 s during the OF task,
10 s of the behavior bout length (used as it corresponded to the shock
frequency) was an adequate period (Supplementary Fig. 7c, d). Inter-
estingly, although optogenetic inhibition of the vmPFC did not impair
OF-induced freezing behavior (Fig. 3c), some vmPFC neurons exhib-
ited neuronal activities significantly correlated with the freezing rate,
corresponding with high decoding accuracy for freezing from vmPFC
population activities, suggesting that the vmPFC possesses significant
information on self-freezing. In the case of stereotypic behaviors, each
behavioral output reflected by the self-states can be decoded from
population activities, even when a single vmPFC neuron selectivity to
that aspect is eliminated. Although the decoding accuracy of beha-
vioral clusters was higher than that of the randomdata, the overall rate
remained below 50%. This could be because the 10-s bouts contained a
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mix of components, albeit with varying proportions (Fig. 2f). However,
our analysis did reveal the presence of neurons that were specifically
active during the escaped (i1) and gazing (i2 + i3) behaviors (Fig. 4j),
which aremajor components of freezing positively-correlated neurons
(Supplementary Fig. 10a). We thus speculate that these distinct

components underlie the significantly higher decoding rate for eight
clusters compared to the shuffled data. Although it would be unreli-
able to decode those behavior components with the unbalanced
dataset in its current form, such analysis may provide more evidence
to support this hypothesis with a larger dataset. These representations
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of self-states probably rely on two possible neural encoding mechan-
isms: the distributed and coordinated activities of neural
populations40,41, and the coding based on different activity character-
istics, such as the spike intervals42.

Second,we identifieda linkbetween informationaboutother-shock
and self-freezing within vmPFC neurons. We identified two distinct
neuronal subpopulations in the vmPFC with opposite responses, the
activities of which simultaneously represent other-shock and self-
freezing. The neural subpopulation was activated by other-shock, and
its activity was negatively correlated with the self-freezing rate, and vice
versa. Previous studies have also found that neural populations in the
ACC8 and BLA13 were activated and suppressed by other-shock (or its
associated cue).Moreover, in the rat ACC, emotionalmirror-likeneurons
exist that have the capability to respond to both self-fear and other-fear
in different contexts9. In contrast, we here found that the vmPFC is the
region in which single-neuron activity is tuned to the mixed and simul-
taneous representation of both other-state and self-state information
during OF, suggesting the mixed selectivity of vmPFC neurons in the
social context. Theoretical studies have shown thatmixed selectivity has
a significant computational advantage for the repertoire of input-output
functions implementable by readout neurons40. The highdimensionality
of the vmPFCmight contribute to the remarkable adaptability of neural
coding and variable defensive behavioral outputs in the social context.

Third, optogenetic inhibition of the ACC-vmPFC and BLA-vmPFC
projections disrupted the link between other-shock and self-freezing
within two distinct neuronal subpopulations: freezing-negative/shock-
activated neurons and freezing-positive/shock-suppressed neurons,
respectively. These two pathways function in parallel and coopera-
tively for the high dimensionality of the vmPFC representation, pre-
sumably to facilitate variable vicarious fear responses. By optogenetic
inhibition, the mixed selectivity of the two neural subpopulations
representing both the other-state and self-state disappeared (i.e., the
pure selectivity representing either other-state or self-state), and the
OF-induced escape behavior was impaired as well. In the current
working model for the OF, the ACC-BLA network is the center for
eliciting OF-induced freezing behavior6,8,13,43. Together with previous
studies, our study proposes two parallel information networks in the
OF: the ACC-BLA network for freezing; and the ACC-vmPFC and BLA-
vmPFC networks for escape behavior.

The essential roleof theBLA-mPFCcircuits in the self-fear response
has been extensively studied using the fear conditioning paradigm. The
PL of the vmPFC has been implicated in sustained fear expression and
resistance to fearmemory extinction, whereas the IL plays a central role
in the extinction44. The basal amygdala in the BLA is themajor source of
fear-related input to both the PL and the IL35,45,46. Another optogenetic
study revealed that the BLA-vmPFC facilitates anxiogenic behavior and
reduces social interaction47. Our study shows the significant function of
the BLA-vmPFC in the vicarious fear response.

Converging evidence from humans, nonhuman primates, and
rodents has proposed the PFC as a central hub of the social brain48–50

for multi-layered social cognition such as empathy51,52 social
hierarchy53,54, social rewardmonitoring and valuation55, social decision-
making49, and high-level social cognition in humans (i.e., perspective-
taking and mentalization)17,56–58. All these social cognitive processes
require other- and/or self-representation and its integration. Our study
sheds light on the role of the vmPFC in the neural representation of
self-states shaped by others’ states.

Methods
Animals
All procedures were performed in accordance with protocols
approved by the Institutional Animal Care and Use Committee at the
Institute for Quantitative Biosciences, the University of Tokyo (Proto-
col number 2915 (2018), 3112 (2019), 0201 (2020), 0314 (2021), 0403-2
(2022), A2022IQB018 (2023)). All mice described in this paper were

C57BL/6 J (B6) male mice (Clea Japan). All animals were housed in the
Institute for Quantitative Biosciences facility under a 12 h (7 am–7 pm)
light/dark cycle, 23 ± 2 °C, 50% humidity with food and water ad
libitum.

Optogenetics and microendoscopy surgery
Mice were anesthetized with mixed anesthetics (0.75mg/kg medeto-
midine, 4.0mg/kg midazolam, and 5.0mg/kg butorphanol) and
mounted on a stereotaxic apparatus (Leica Angle Two, Leica Biosys-
tems). A glass pipette (World Precision Instruments) attached to a 1ml
microsyringe (Hamilton) filled with mineral oil was used for the
microinjection of virus vector solutions using a microsyringe pump
(UMP3, World Precision Instruments) to control the injection speed
and volume. The glass pipette was slowly lowered to the target site,
and the virus solutions were delivered at a speed of 2–3 nl/s and then
retracted 5min after injection.

For the optogenetic inhibition experiments, bilateral virus deliv-
ery and optic fiber implants were aimed at coordinates relative to
Bregma: vmPFC injections were targeted to +1.80mm Anterior-
Posterior (AP), ±0.35mm Medial-Lateral (ML), and −2.50mm Dorsal-
Ventral (DV); ACC injections were targeted to +1.00mm AP,
±0.25mmML, and −2.10mm DV; BLA injections were targeted to
+1.60mm AP, ±3.30mmML, and −4.85mmDV; and vmPFC optic fiber
implants (Ø200 µm core, 0.22 NA, Doric Lenses Inc.) were placed at
+1.80mm AP, ±0.35mmML, and −2.35mm DV. For the vmPFC opto-
genetic inhibition experiments, 150nl of rAAV5/CaMKIIa:eArchT3.0-
eYFP (University of North Carolina [UNC] Vector Core, 3.4 × 1012 virus
molecules/ml, inhibition) or rAAV5/CaMKIIa:eYFP (UNC Vector Core,
3.6 × 1012 virus molecules/ml, control) was injected into the vmPFC. In
axon terminal optogenetic inhibition experiments, 120 nl and 150nl of
rAAV9/CaMKIIa:eNpHR3.0-eYFP (Addgene, 2.2 × 1013 virus molecules/
ml, adjusted to 2.2 × 1012 virus molecules/ml, inhibition) or rAAV9/
CaMKIIa:eGFP (University of Pennsylvania Vector Core, 2.5 × 1013 virus
molecules/ml, adjusted to 5.0 × 1011–12 virusmolecules/ml, control) was
injected into the ACC and BLA, respectively.

For microendoscopic Ca2+ imaging, 300 nl of rAAV5/hSyn:G-
CaMP6f (UNC Vector Core) was unilaterally injected into the vmPFC.
For the Ca2+ imaging experiment combined with circuitry optogenetic
inhibition (ACC-vmPFC and BLA-vmPFC), 120nl and 150 nl of rAAV5/
CaMKIIa:eNpHR3.0-mCherry (UNC, 4.7 × 1012 virusmolecules/ml) were
bilaterally injected into the ACC and the BLA, respectively. Immedi-
ately following virus injection, a 500 μm gradient index (GRIN) lens
(Doric Lenses Inc.) was implanted 150 μm above the injection site
(+1.80mmAP, +0.35mmML, −2.35mmDV). Themicewere allowed to
recover for 2–4 weeks before the behavioral experiments.

Acute single-unit recordings from head-fixed mice and
optogenetic inhibition
Two adult male mice (3–4 months old) were anesthetized with 1–2%
isoflurane and mounted on a stereotaxic apparatus (SR-9M-HT, Nar-
ishige). After the virus was microinjected into the bilateral vmPFC (as
described above), a custom-made head frame was attached to the
cleared skull using dental cement for subsequent recording sessions.
After 1–2 weeks of recovery, the mice were anesthetized andmounted
with a head frame, and a craniotomy was performed around the virus
injection site. A 64-channel silicon probe (A4 × 16-Poly2–5 mm-20s-
150-160, NeuroNexus) conjugated with a fiber optic cannula (Ø105 µm
core, 0.22 NA; CFMLC21U-20, Thorlabs) was attached on a micro-
manipulator and was gradually inserted into the target area
(+1.60–2.05mm AP, +0.35mmML, −2.00–2.50mmDV) perpendicular
to the midline. The probe was connected to a 64-channel amplifier
board (RHD2164, IntanTechnologies), and neural activity was sampled
at 30 kHz using the Open Ephys data acquisition system59. The fiber
optic cannula was connected to a yellow-green diode-pumped solid-
state laser (MGL-FN-561-100mW, CNI Laser) through a fiber patch
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cable. After the neural signal was stabilized, a pulse train (10 s duration,
20 s interval, 10 pulses) was generated using PulsePal (Sanworks)60,
and optogenetic inhibition (5mW at the fiber tip; approximately a half
of laser intensity used in the OF task because of unilateral inhibition)
was delivered to the recording site. The recorded spike signals were
automatically sorted using Kilosort261 followed by manual adjustment
of the waveform clusters using the Phy graphical user interface62.

Histology and immunohistochemistry
Mice were transcardially perfused with 4% paraformaldehyde (PFA) in
phosphate-buffered saline (PBS) for post-hoc analysis. Extractedbrains
were fixed in 4% PFA solution overnight and coronally sectioned to a
thickness of 50 μm using a vibratome (VT1000S, Leica), with every
three sections collected. Sections were incubated in 0.3% Triton-X PBS
with 5% normal goat serum (Vector Laboratories) for 1 h at room
temperature (RT), followed by the addition of a primary antibody to
the solution and incubation overnight at 4 °C. The primary antibodies
used were chicken anti-GFP (Thermo Fisher Scientific, A10262, 1:1000)
for eYFP, eGFP, and GCaMP6f staining, and rabbit anti-RFP (Rockland,
600-401-379, 1:1000) for mCherry staining. After rinsing four times
with PBS, brain sections were incubated with secondary antibodies,
anti-chicken Alexa Fluor-488 conjugated secondary antibodies
(Thermo Fisher Scientific, A11039, 1:500) and anti-rabbit Alexa Fluor-
546 conjugated secondary antibodies (Thermo Fisher Scientific,
A11010, 1:500), in 0.3% Triton-X PBS with 5% normal goat serum for 3 h
at RT. Sections were rinsed twice with PBS and then stained with DAPI
(4′,6-diamidino-2- phenylindole, 1μg/ml) dissolved in PBS, and rinsed
againwith PBS. Thebrain sectionswere thenmountedonto glass slides
with VectorShield (Vector Laboratories) or Fluoromount/Plus (Diag-
nostic BioSystems) medium. Images were obtained by fluorescence
microscopy (BZ-X710, Keyence) using 4× and 10× objectives or con-
focal laser microscopy (FV3000, Olympus) using 10× and 20× objec-
tives. Images were post-processed using the ImageJ software (NIH).

Observational fear (OF) task
All habituation and behavior assays were conducted during the facil-
ity’s light cycle (7 am–7 pm). The same mice were never used twice in
the samebehavioral paradigm. Twelve- to 20-week-oldmalemicewere
used as observers and demonstrators. The observermicewere socially
housed, whereas the demonstrator mice were singly or socially
housed. The mice that underwent optic fiber, or GRIN lens implanta-
tion surgery, were co-housed immediately after the surgery. An
observer and a non-littermate demonstrator mouse were co-caged to
familiarize each other (starting from day 1)63,64. The observer and
demonstrator were then habituated to the experimenter’s hands for
another 2 days (days 4 and 5) for three times in total. Previous research
has shown that observers with prior foot shock experience respond
more to demonstrators’ fear65. Based on the results, a shock experi-
ence was given to the observer in a different context. Observer mice
were placed in the chamber and partitioned using a matt-gray divider
in the middle. A 2-s foot shock (0.75mA) was delivered at 140 s for
3-min pre-shock conditioning. Acetic acid (1%)was used as anolfactory
cue in the pre-shock conditioning context (pre-shock, day 6). Twenty-
four hours later, the observer and demonstrator mice were individu-
ally placed in a chamber separated by a transparent plastic divider in
the middle (OF, day 7). A matt-gray acrylic plate on the bottom and
0.25% benzaldehyde were used for observer mice to have a different
context. After a 5-minute habituation session, a 2-s foot shock was
delivered every 10 s for 10min to the demonstrator mouse. The
observer mice with microendoscopy were habituated to the experi-
menter’s hands and a dummymicroscopeon three separate days (days
4 to 6) for four times in total, and the pre-shock (day 7) was performed
1 day before the OF (day 8). (Note: Mouse #2 performedOF on day 13.)
The shock intensity of the OF was 0.75mA for optogenetic inhibition
experiments and 1.0mA for the others. We did not observe any

behavioral differences between groups using 0.75mA and 1.0mA in
our setting (Supplementary Fig. 1d). Behavior was recorded using
FreezeFrame (Actimetrics) at 7.5 Hz. Optogenetic inhibition started at
290 s until the end of the experiment. The intensity of the 561 nm
green laser (described above) for the bilateral optogenetic inhibition
was set between 12.5mW and 13.0mW. Calcium transients were
recorded at 25Hz using a twist-on eFocus fluorescence microscope
(Doric Lenses Inc.). The LED power for unilateral optogenetic inhibi-
tion combined with microendoscopic Ca2+ imaging (612 nm) was set
to 6.0mW.

Freezing rate
The freezing rate was calculated using two methods. One method was
with FreezeFrame software (Actimetrics) using the algorithm “freezing”
for observer without surgery and all demonstrator data (threshold = 6,
bout = 0.25 s), and the other was using the algorithm “SMP - optoge-
netics” in the data from observer mice that had been subjected
to surgery for optogenetic manipulation and microendoscopy;
threshold = 1; open/close = 1; pixel threshold = 50 (FreezeFrame4,
vmPFC inhibition), 200 (FreezeFrame5, vmPFC inhibition), 1 (Free-
zeFrame5, circuit inhibition) or 50 (FreezeFrame5, microendoscopy).

Point tracking using DeepLabCut
DeepLabCut22 was used to track the motion of the mouse. The videos
of OF task with a frequency of 7.5Hz recorded in FreezeFrame were
used, and 13 points (nose, right/left ear, right/left eyes, head top, right/
left hand, back center, right/left foot, tail root, and tail tip)were chosen
for tracking. For post-processing, a median filter within DeepLabCut
and linear completion of points with a probability of <0.999 were
performed. In addition, as a geometrical restriction, we set the y
coordinate of the tail root to be the same as that of the back center if
the former was larger than the latter (the back center was essentially
above the tail root in our camera angle of view). Additionally, owing to
an update to the FreezeFrame software (from version 4 to version 5) in
the middle of the vmPFC inhibition experiment, the recorded video
size was doubled in both height and width (x:640 pixels, y:480 pixels).
Therefore, the tracking results for videos obtained in version 5 were
divided by two to obtain the same frame size as the first set of videos
(x:320 pixels, y:240 pixels). The speed of each mouse during the OF
taskwas calculated by summing the differences in the x coordinates of
the back center of each frame during a 2-s bout.

t-SNE and clustering
t-SNE is a dimension-reduction algorithm that maintains local dis-
tances while ignoring far distances and is suitable for visualization and
clustering23. Using the data obtained in behavioral tracking using
DeepLabCut, we performed t-SNE (MATLAB function: tsne) (1) every
10 s as one bout, as shocks were delivered to the demonstrator mice
every 10 s (MATLAB version 2020a), and (2) every 2 s as one bout
(MATLAB version 2022a). For 10-s bouts, the 15-min tracking data of an
individual mouse were parsed into 90 10-s bouts. Because the x- and
y-coordinates of the 13 points on the trunk were tracked in the 10-s
video at 7.5 Hz (75 frames), each bout consisted of 1950-dimensional
data. For 2-s bouts, the 15-minute tracking data of an individual mouse
were parsed into 450 2-s bouts, which consisted of 390-dimensional
data. We then divided bouts according to their mean freezing rate
(threshold: 50%) into mobile and immobile datasets and performed
t-SNE in each dataset. This was followed by clustering using a water-
shed algorithm (MATLAB function: watershed) for the mouse data
(Figs. 1e, f, 2b), as previously described in MATLAB (MathWorks Inc.).
We used the Barnes-Hut implementation and set perplexity = 30 as the
default for t-SNE embedding. Principal component analysis (PCA)
before t-SNE embedding was omitted because the results of t-SNE
performed with the PCA-extracted components and the raw data did
not show qualitative differences.
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Drawing of posture sequences and body positions
Data fromfivepoints (left ear, right ear, ear center, backcenter, and tail
root; ear center is the middle point of the left and right ears) were
collected every 2 s in the same frame at the same transparency. The
back centerswere placed at (0,0). The back center pointswere pointed
in the x- and y-coordinates in the “center”, and the points in the first
frame of every bout (75 frames) were set to (0,0) in the “normalized
center”.

Markov chain modeling
Following a previous study29, wemodeled the eight behavioral clusters
as eight states in aMarkov process. A zeroth-ordermodel uses only the
distribution of clusters for the prediction. The corresponding number
of preceding bouts was considered in the higher-order Markov mod-
els. A paired two-tailed t-testwas performed to compare the prediction
accuracybetween the twomodels (e.g., a zeroth-ordermodel vs. afirst-
order model) with Bonferroni correction (p < 0.025/5 = 0.005) for
each state.

The transition from one cluster to another
To identify the significance of each behavioral cluster transition, we
used a permutation test and randomly shuffled the behavioral
sequence within all mice during the habituation period and the con-
ditioning period 1000 times and calculated two-tailed p-values for
each transition.

Positioning new data on the t-SNE atlas
Although t-SNE is a nonparametric method and no new points can be
placed on a t-SNE atlas once constructed, straightforward mapping of
new points on an existing t-SNE atlas has been proposed. Following a
previous study25, for each new bout point of optogenetics and
microendoscopy data, we calculated the Pearson correlation with
every reference bout point of the data of mice without surgery and
found its k = 10 nearest neighbors. Next, we positioned the point at the
median t-SNE location of the k reference points. We then used the
borderline obtained in the t-SNE of WT data and attributed clusters to
each point (Fig. 3d, e). The procedure was the same for the 10-s bouts
and 2-s bouts. We confirmed that clustering based on this alignment
provided similarly classified behavioral clusters by illustrating and
checking their posture sequence, back center position, and its tem-
poral change.

The proportion of each cluster
To identify the significance of the proportion of each behavioral
cluster, we used a permutation test and randomly shuffled the label of
the group (control or inhibition), calculated the proportion of each
behavioral cluster in the first 30 bouts (the habituation period) or the
last 60 bouts (the conditioning period) 10,000 times, and calculated
two-tailed p-values of the real data with Bonferroni correction
(p < 0.025/8 = 0.0031) for each behavioral cluster. This allowed us to
detect a significantly large or small number of bouts for each beha-
vioral cluster between the two groups.

Side preference analysis
To quantify the side preference of the observer, whether near or far
from thedemonstrator, two sectionswere set on the image. The length
of the front and back sides of the floor (as the floor was not fully visible
in the image, the pseudo-length was calculated by extending the sides
of the floor in the image and finding the intersection) were each divi-
ded into five equal parts. The section closest to the demonstrator was
named the near-side, and the section farthest was named the far-side.
The number of frames that the observer stayed in these two com-
partments was calculated, and the side preference during the con-
ditioning period was compared by subtracting twice the number of

frames during the habituation period (baseline) from the number of
frames during the conditioning period. Finally, a paired t-test was
performed between the number of frames of the near-side and that of
the far-side.

Calcium events detection
The recorded calcium-imaging movie was aligned and converted to a
TIFF file extension using Doric Neuroscience Studio software (Doric
Lens Inc.) and thenpreprocessedwithminormodifications. Briefly, the
movieswere spatially downsampledby two and automatically cropped
to extract the round-shaped field of view. Motion correction of the
movies was performed using Mosaic MATLAB code (correction type,
skew, translation, and rigid; reference region by subtracting spatial
mean [r = 16 pixels], inverting, and applying spatialmean [r = 4 pixels]).
The preprocessed movies were then processed using EXTRACT66 to
extract the calcium transients. The automatically suggested cells were
then carefully manually selected: A total of 355 cells out of 591 cells
fromvmPFC (mouse#1, 115 out of 152;mouse #2, 110 out of 179;mouse
#3, 100 out of 178; mouse #4, 30 out of 82), 377 cells out of 578 cells
from no-shock control vmPFC (mouse #5, 140 out of 170; mouse #6,
125 out of 220; mouse #7, 57 out of 71; mouse #8, 55 out of 117), 384
cells out of 729 cells from ACC-vmPFC (mouse #9, 155 out of 325;
mouse #10, 73 out of 108; mouse #11, 60 out of 148;mouse #12, 96 out
of 148), 360 cells out of 688 cells from BLA-vmPFC (mouse #13, 95 out
of 210; mouse #14, 58 out of 110; mouse #15, 93 out of 157; mouse #16,
114 out of 211). Further analyses were performed only on the selected
cells. The peaks of calcium events were detected by applying a
threshold (2.5 standarddeviations of the calcium trace [df/f] fromeach
cell), then the number of events was counted in 2-s bins (450 bins in
total for 900-s long OF task) and used as the event rate. The calcium
trace (df/f) of each cell was transformed into a z-score for further
analysis.

Identification of cluster-specific and component-specific
neurons
We used a permutation test to identify the cluster-specific and
component-specific neurons. We circularly shifted the timing of cal-
cium events using a randomnumber for eachmouse 10,000 times and
calculated the sum of the calcium events for each cluster and com-
ponent.We calculated the p-value of each cell for each cluster or i1 and
i2 + i3 components if the number of each cluster or component ismore
than 1% of all bouts, and after Holm-Bonferroni correction (p <0.05,
one-sided), named significant cells as cluster-specific or component-
specific neurons.

Decoding behavior from neural activity
We trained L2-regularized linear binary support vector machine (SVM)
decoders to decode freezing behavior from neural activity patterns
and one-versus-all multiclass error-correcting output code models to
decode behavioral clusters using L2-regularized linear binary SVM
decoders. The calcium event rate for each cell was partitioned into 2-s
bins, and five consecutive bins corresponding to each 10-s bout from
all imaged cells were used to train the SVM decoders. To decode
freezing behavior, freezing rate were divided into two groups con-
taining equal numbers of bouts by the median value to create binary
labels. Tenfold cross-validation was implemented by randomly
grouping 90 bouts into nine sets of nine bouts for training and one set
of nine bouts for testing. Cross-validation was repeated 1000 times,
and the decoding accuracy was calculated as the mean across repeti-
tions. Toevaluate the decoder accuracy, the decoderwas trained using
circularly shifted shuffled labels, and the average accuracy across
1000 shufflings was compared with the accuracy of the real data. A
paired t-test was performed to compare the accuracy of real and
shuffled decoders.
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Identification of shock-responding neurons
Wecalculated themeandf/f of the shockmoment (0–2 s for eachbout)
and compared it to that of −2–0 s for each bout (60 bouts in total). If
themean df/f of 0–2 s of every bout was significantly bigger or smaller
(paired t-test, p <0.05) than that of −2–0 s, the cell was classified as
shock-activated or shock-suppressed neurons.

Identification of freezing correlated neurons
We calculated the Pearson’s correlation between the freezing rate (2-s
chunk) and each calcium event rate (2-s chunk) and set cells with a
p-value of correlation <0.01 as significantly positively or negatively
correlated neurons.

Shock correlation
The shock correlation coefficient (Shock correlation) was calculated
between the calcium event rate (2-s chunk) and 60 consecutive ’1-0-0-
0-0’ arrays during the conditioning period. ‘1’ here indicates the time
chunk when the demonstrator receives foot shocks (shock moment),
and ‘0’ indicates the time chunks without shock.

Time-series analysis of neural activity
To calculate the correlation of neural activity between adjacent bouts,
the calciumevent rate for eachcellwas partitioned into 2-s chunks, and
Pearson’s correlation coefficients were calculated between each bout.
A paired t-test was performed to compare the activity correlation
between bouts n and n + 1 (2-s), n + 2 (4-s),…, to n + 30 (60-s).

Spatial clustering analysis of annotated neurons
To evaluate the spatial distribution of annotated neurons (e.g., freez-
ing positively correlated neurons), pairwise distances across all pos-
sible neuron pairs among the groups were calculated, and the mean
value was compared with those from random shuffling to test its sig-
nificance. Random shuffling was performed by selecting the same
number of neurons as the original subpopulation, and the mean value
of the pairwise distances was calculated, which was repeated 10,000
times. The real and the mean of the shuffled mean values were then
compared using a paired t-test across mice.

Statistics and reproducibility
No statistical methods were used to determine sample sizes. Suitable
sample sizes were determined based on our previous experiences and
similar studies which are generally employed in the field of study7,24,63.
All the subject mice were randomly assigned to each experimental
groups in each study. The nonlittermate demonstrator mice were
randomly assigned to the observer mice. All the behavioral experi-
ments were conducted with a blind group allocation during data col-
lection and analysis, except for the in vivo Ca2+ imaging experiments
due to its high complexity. All animal behaviors were automatically
tracked using DeepLabCut. All mice used for optogenetic inhibition
andmicroendoscopy experiments were perfused and blindly post-hoc
verified to include only individuals with appropriate expression and
accurate optic fiber or GRIN lens implant position for further analysis.
Only individuals who demonstrated less than 50% freezing during the
habituation period (0–300 s) were included in the microendoscopy
analysis. During microendoscopy, two mice had missing microendo-
scopy image frames (ACC-vmPFC mouse #10 [3 frames: 0.12 s], BLA-
vmPFC mouse #14 [30 frames: 1.2 s]) at the end of the task due to
technical problems. The last bouts from these individuals were omit-
ted from the statistical analysis. To calculate shock correlation, a cell
must show at least one calcium event during the conditioning period
(301–900 s). Owing to the absence of calcium events during the con-
ditioning period, four cells from the vmPFC group (Fig. 5g) and four
cells from the BLA-vmPFC group (Fig. 6l) were excluded from the data
analysis. All fluorescent image analyses were independently repeated
at least twice and consistently demonstrated a similar trend.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Source Data file.
Rawdatawill be provided upon request. Sourcedata are providedwith
this paper.

Code availability
The custom-made MATLAB script used for behavioral and calcium
activity analysis can be downloaded from Github: https://github.com/
okuyamalab/Huang_et_al_2023_NatCommun.
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