
Article https://doi.org/10.1038/s41467-023-39065-5

Operator growth from global out-of-time-
order correlators

Tianci Zhou 1,2 & Brian Swingle3

In chaotic many-body systems, scrambling or the operator growth can be
diagnosed by out-of-time-order correlators of local operators. We show that
operator growth also has a sharp imprint in out-of-time-order correlators of
global operators. In particular, the characteristic spacetime shape of growing
local operators can be accessed using global measurements without any local
control or readout. Building on an earlier conjectured phase diagram for
operator growth in chaotic systems with power-law interactions, we show that
existing nuclear spin data for out-of-time-order correlators of global operators
arewell fit by our theory.We also predict super-polynomial operator growth in
dipolar systems in 3d and discuss the potential observation of this physics in
future experiments with nuclear spins and ultra-cold polar molecules.

Out-of-time order correlators (OTOCs) play an important role in the
study of quantum chaos. After their introduction years ago1, interest in
them was recently reignited by the discovery of a quantum general-
ization of a classical Lyapunov exponent2–5. Since then, a large body of
work has explored OTOCs in a variety of contexts, in theory6–11 and
experiment12–16. A central question is how to characterize OTOC
dynamics in realistic systems, since the Lyapunov behavior seen in
large-N models is not generic. Here we are particularly interested in
OTOCs in systems with power-law interactions17,18 motivated by
experiments with nuclear spins19–23.

The microphysics probed by OTOCs is the growth of Heisenberg
operators6,7,9,11,18. Consider the example of a spin system defined on a
spatial grid and let Zi be a Pauli-z operator at site i and Zi(t) = eiHtZie−iHt

be the corresponding Heisenberg operator. The infinite temperature
OTOC between Zi and the Pauli-x operator at site j is
trð½ZiðtÞ,Xj�½ZiðtÞ,Xj�yÞ=trðIÞ. At time zero, the OTOC is a delta function
in space, since Zi and Xj commute unless i= j. At later times, the operator
Zi(t) grows in complexity and spreads in space leading the OTOC to
become non-zero when j is within a ball of time-dependent radius cen-
tered at i. This behavior is illustrated in the top panel of Fig. 1.

There is now intense interest in validating andextending this basic
physical picture inwell-controlled experimental systems. For example,
drawing on the tight connections between operator growth and
holographic models of quantum gravity2–5, experiments probing
OTOCs might point to the way to newmodels with holographic duals.

Such experiments may also help us understand what replaces simple
Lyapunov-like operator growth in more realistic systems.

However, experiments in this area are typically quite challenging,
as they require either time evolution with both H (forward) and −H
(backward)24,25 or a large number of randomized measurements26 or
precision measurements of a small purity-like signal25. Local control
and readout are also often required depending on the precise setup.

Remarkably, there is a class of experimental systems in which
backward time evolution is approximately possible: magnetic reso-
nance experiments with nuclear spins27–29. The nuclear magnetic
resonance (NMR) community has been measuring relatives of many-
body OTOCs since at least the 1970s with the development of the
magic echo technique27,28,30. However, there is a major complication:
one typically has no local control or readout in these experiments, so
what one gains access to are OTOCs of global operators. In the spin
example, this means it is possible to measure OTOCs between global
spin operators, such as trð½Z ðtÞ,X �½Z ðtÞ,X �yÞ, where Z =∑iZi and X =∑iXi.
It is not clear a priori how theseglobalmeasurements relate to the local
OTOCs that are more commonly studied.

Motivated by these observations, we argue that the key physical
property probed by local OTOCs, namely the size of growing opera-
tors, is also diagnosed by global OTOCs31,32. Under a few conditions
which we expect are generic to chaotic evolutions, we show that the
global OTOC is proportional to the “area under the local OTOC”, i.e.,
the gray region in Fig. 1.
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In light of this result, we revisit multiple quantum coherence
measurements on the nuclear spins in adamantanewith cluster sizes of
up to 10422. Based on the structure of this material, we propose a
simplified stochastic model which can be analyzed via Monte Carlo
sampling and find that a two-parameter fit of the model prediction
agrees well with experimental data (Fig. 2). Our results support the
hypothesis that quantum information scrambling with up to ~104 spins
has been observed in adamantane, and we predict new phenomena
including super-polynomial scrambling at longer times. Finally, we
discuss the extension to similar experiments with ultra-cold polar
molecules13,33,34, finding that similar operator growth can be observed
with modest gains in density and coherence time.

Results
Global OTOC as the area under the local OTOC
As outlined above, in some quantum simulation platforms, it is pos-
sible tomeasure a global version of the OTOC.We consider the case of
spin-1/2 degrees of freedomarising fromnuclear spins. Let Xa, Ya, Za be
the Pauli matrices for spin a. We consider infinite temperature global
OTOCs built from commutators of the total spin, for example, we can
take the commutator of the total z spin Z =∑aZa and its time evolved
form, Z(t) = eiHtZe−iHt,

Cg ðtÞ= � trð½Z ðtÞ,Z �2Þ
trðZZ Þ : ð1Þ

The normalization factor trðZZ Þ is equal toPatrðZaZ Þ=N2N , where N
is the total number of spins. To relate to the linear size L, a system in d
dimensions has N ~ Ld.

By contrast, the quantum chaos literature primarily studies local
OTOCs,whichonly involve commutators of local spins.One example is

CabðtÞ= �
tr ½ZaðtÞ,Zb�2
� �

2N
, ð2Þ

which depends on two spin labels a and b. The operator at a initially
commutewith Zb. Time evolution expands the support ofZa away from
a, so that it no longer commutes with Zb at b. Thus the local OTOC
probes the expansion of the time evolved operator Za(t).

To relate the global and local OTOCs, we expand the global spins
in Eq. (1). The numerator becomes a four-fold summationP

abcdtrð½ZaðtÞ,Zb�½ZcðtÞ,Zd �Þ. Identifying the Cab(t) as the “diagonal”

contribution when a = c and b = d, Cg has the following decomposition
in terms of the diagonal and off-diagonal parts,

Cg =
1
N

X
ab

Cab �
X
a≠c

orb≠d

trð½ZaðtÞ,Zb�½ZcðtÞ,Zd �Þ
N2N

:
ð3Þ

In a quantum chaotic system, we argue that the off-diagonal term
is negligible compared to the diagonal term at long times. To illustrate
the reasoning, consider the case when a = c, b ≠ d. The off-diagonal
OTOC can be rewritten as trð½½ZaðtÞ=2N=2,Zb�,Zd �ZaðtÞ=2N=2Þ. The
operator Za(t)/2N/2 is normalized with respect to the operator inner
product ðA,BÞ= trðAyBÞ. Equivalently, its coefficients in terms of the
Pauli string basis can be viewed as an amplitude of a wavefunction.
After taking a double commutator, the amplitudes are (completely)
exchanged. Assuming the amplitudes are random, which is reasonable
after a chaotic evolution, they will destructively interfere. But if b = d,
amplitudes with X or Y at b are not exchanged. They are in phase, and
thus can produce a much larger contribution to Cg. This argument can

Fig. 1 | Local OTOC profiles. The local OTOC probes the expansion of the time
evolved operator, while the global OTOC is approximately the area under the local
OTOC curve. Here x denotes the separation between the operators. a System with
local interactions, where there is a characteristic velocity (the butterfly velocity) vB
for the expansion. b System with long-range interactions, where the OTOC curve
may have long tails and the light cone may not be sharp.

Fig. 2 | Fits with adamantane data. A two-parameter fitting of our stochastic
model results (solid triangle) with the adamantane measurements (circle) of the
global out-of-time ordered commutators. Error bar denotes the standard error of
the mean in either the mean value from simulation (over 103 samples) or experi-
ments. Experimental data is displayed with the permission of the authors. The unit
of time here is 0.4ms. aData for double quantumHamiltonianHDQ evolution taken
from Fig. 10 of ref. 50. The cluster size reaches almost 104 with a power law fit
[yellow dash] of a mysterious exponent 4.36. The stochastic model has a time shift
of −0.62 andK ≈ 1.77.bData for dipolar HamiltonianHYY evolution taken fromFig. 3
of ref. 23 for different scaling parameter δ (from 0.1 (red) to 0.4 (blue)). The sto-
chastic model has a time shift of −0.79 and K ≈ 2.27. Source data are provided as a
Source Data file.
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be quantitatively carried out, see Methods. We also refined the rea-
soning to the case with interacting quantum circuits (see Supple-
mentary Section III). Numerical computations in small systems confirm
the observation (See Methods) that the sum of the off-diagonal terms
is indeed negligible.

The global OTOC, after neglecting the off-diagonal terms, is
approximately 1

N

P
abCab, or ∑bCab for any a when inhomogeneities

such as edge effects can be ignored. The global OTOC is thus the sum
of local OTOCs ∑bCab. It is an integral of the local OTOC, which is the
“area” (literally, in 1d) under the local OTOC curve.

In a locally interacting system, there is a typical velocity vB that
characterizes the spreading of Za(t). The local OTOC is almost 0 when
∣xb − xa∣≫ vBt, and approaches an order unity value in a chaotic system
when ∣xb − xa∣≪ vBt, see Fig. 1a. Assuming homogeneity, we have
Cg ðtÞ∼ ðvBtÞd . In long-range interacting systems, the light cone cutoff
may no longer be sharp, see Fig. 1b; but the interpretation as the area
under the local OTOC curve still applies.

Global OTOC in nuclear magnetic resonance experiments
Wenow test our theory for globalOTOCs using existingNMRdata. The
relevant experiments use nuclear spins to form interacting quantum
magnets. In the rotation frame of the strong magnetic field in z
direction, the nuclear spins are evolved by the dipolar interaction
which decays as distance cubed. External radio frequency waves can
manipulate the global spin variable. Considerable effort is devoted to
design the pulse sequences that, when combined with time evolution
under the dipolar interaction, interesting effective Hamiltonians can
be generated.

For example, in the adamantane experiments we discuss below,
researchers can engineer a double quantum Hamiltonian,

HDQ =
P
a≠b

DabðXaXb � YaYbÞ, ð4Þ

where each term changes the total z spin by ± 2. The interaction
coefficient is

Dab = J
ð3cos2θab � 1Þ

2r3ab
, ð5Þ

where rab is the distance between the two spins, rab = ∣ra − rb∣, and θab is
the angle between ra − rb and the external magnetic field (z direction).
A “Y” convention dipolar Hamiltonian can also be engineered,

HY Y =
X
a≠b

DabðYaYb � XaXb � ZaZbÞ: ð6Þ

Moreover, for each of these Hamiltonians, one can design pulse
sequences that correspond to evolving with both H and −H. As
reviewed in Supplementary Section I, this enablesmeasurement of the
global OTOC,

Cg = � tr ½e�iHtZeiHt ,Z �2
� �

= N2N
� �

: ð7Þ

The ability to evolve forward and backward with these Hamiltonians is
approximate, but we focus on the ideal situation.

We choose thematerial adamantane as an example because of the
availability of large scale global OTOC data. Adamantane is a solid
polycrystal at roomtemperature. The crystal structure is face-centered
cubic (fcc) with one adamantane molecule (C10H16) at each lattice site.
The Hydrogen protons comprise the active nuclear spins, so there are
16 spin-1/2s per lattice site. Adamantane also has the peculiar feature
that the molecules tumble in place in the lattice at relevant tempera-
tures due to their nearly spherical nature.

The measurement of global OTOCs in adamantane molecules
dates back to the 1980s under the name of multiple quantum

coherences27,28,35–38 (MQC), although at that time only a handful of
coherent spins were involved39. More recently, thanks to improved
coherence times40 and the scaledHamiltonian technique41, the number
of coherent spins can be as large as 10422.

Previous works had developed stochastic model in the space of
coherent spin cluster size (K) and level ofmultiple quantum coherence
(n) to understand the dynamics ofMQC. This approach can fit the data
when K is small. But it ignores the spatial structure of the interaction
and predicts an exponential growth of the global OTOC in time, see
Supplementary Section II. Other non-stochastic models, such as the
Levy-Gleason model42,43, encounter the same issue. As experiments
push to larger sizes and longer times, the spatial structure of the
interactions becomes important.

We propose amodel that better accounts for the spatial structure
of the dipolar interactions. In adamantane, the dipolar interaction
exists between any pair of proton nuclear spins. Its strength has an
angular dependence 3cos2θab � 1 (Eq. (6)), where θab is the angle
between the z axis and vector rab from a to b. Unusually, the ada-
mantanemolecules constantly tumble in place, with a time scalemuch
shorter than that of the intra-molecular dipolar interaction. Hence if
a, b are in the same molecule, the fast tumbling means that the vector
rab has an ergodic trajectory over the sphere and the coupling will
average to zero. For a similar reason, fast tumbling implies that all
nearest-neighbor inter-molecular couplings time-average to the same
value and decay as 1

r3.
We propose a further simplification that is expected to capture

the leading time-dependence of operator growth. We consider a
model where the interactions between i and j include all possible
terms,

H =
X
ij

Kij

X16
a,b = 1

X3
μ,ν =0

ðBμνðtÞÞabij ðσ
μÞai ðσνÞbj , ð8Þ

where ðBμνðtÞÞabij are independent Gaussian white noise variables. This
modificationdestroysmostof the symmetries, but retains the essential
structure of the long-range interaction and a large number of spins (in
this case, M = 16) on each site. The assumption here is that the dipole
interaction in three dimensions is non-integrable and the completely
chaotic Brownian Hamiltonian in Eq. (8) can capture the dynamics at
long times. There are numerical evidences to support non-integrability
in similar two dimensional models44, although in one dimension
experiments show that dipolar Hamiltonians could well be close to
integrable19. Kij is proportional to 1

∣ri�rj ∣
3. We notice that the conserved

charges (total energy, and total y spin in Eq. (6)) are orthogonal to the
operator ∑aZa. Moreover, the coherent evolution of the conserved
parts is neglegible in both the diagonal and non-diagoal OTOCs, and
therefore can be ignored.

In our previous works, we analyzed the asymptotic light cone
structure of local OTOCs in models like Eq. (8)9,17,18. The interactions
were taken to decay as 1

rα, with the system defined on a lattice in d-
dimensional space. To give a solvable model, the coefficients ðBμνÞabij
were taken to be independent white-noise-correlated random vari-
ables. This enabled us to map the operator spreading problem to a
stochastic process that incorporates the spatial structure of the
interaction, which gives the exact results in Table 1. In ref. 17, we
argued that general quantum chaotic models with power-law interac-
tions at high energy density would reside in the same universality class
as the stochastic model thanks to an effective dephasing of the
quantum dynamics.

Returning to the experimental situation with adamantane, we
start by normalizing the basic timescales. The nearest neighbor dis-
tance between adamantane molecules is 0.67 nm, which yields a value
of J ~ 2π × 410 Hz ~ 2500 Hz frequency for the nearest neighbor dipole
coupling (also see ref. 37). This translates to a timescale of 0.4 ms. The
coherence time during which the data is taken in the experiment is of
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order 1 ms. We can therefore set J ~ 1 and consider about one unit of
time. The experimental timescales are currently too short to validate
or refute the asymptotic scalings predicted by our theory for d = 3 and
α = 3. Hence, we analyze the short time behavior of the
stochastic model.

To do so, we must calibrate the interaction strength in our sto-
chasticmodel. The dipolar interaction in Eq. (5) has strength Jwhen the
distance is nearest neighbor distance in adamantane. In the time
evolution, this interaction term is non-negligiblewhen Jt ~ 1.We takeKij

in Eq. (8) to be
ffiffiffiffiffi
2K

p
16

1
r3ij
. With this choice, the corresponding transition

rate generated by a dipolar interaction is 3
8K . The time scale is thus

comparable to the quantum model if we take K ~ 1.
We then carry out a Monte Carlo simulation of the stochastic

process on the fcc lattice. The results are shown in Fig. 2, where we
normalize the time to have a unit of 0.4 ms in our estimation. The fit
has two parameters: one isK, the other is a time shift. The bestfit of the
stochasticmodel toHDQ experimental data22 givesK ~ 1.77 and a shift of
−0.62 units. The fit is quite close to the experimental data points. One
possible interpretation is that we recalibrate the time after local ther-
malization (the time shift, about 0.87 units in Fig. 2a) beyondwhich the
stochastic approximation is valid. This assumption is subject to test
with future experimental data, especially if one can extend the
coherence time longer (about 3 units in Fig. 2a). In Fig. 2b, we fit the
stochastic model to HYY experimental data23 giving with K ~ 2.27 and a
shift of −0.79 units. Interpreting the time shift as local thermalization
time, in Fig. 2a it is larger. Thus consistently, the fit is not as good as
with the larger cluster sizes in Fig. 2a.

Discussion
We showed that in a chaotic quantum evolution, OTOCs of the global
spins arewell-approximated by the sumof OTOCs of local spins. When
the interaction is local or power law with α ≥d + 1

2, the global OTOC

asymptotically behaves as size of the (linear) light cone, i.e. ðvBtÞd in d
dimension. In contrast, when α <d + 1

2, the local OTOC’s asymptotic
light cone can be super-linear. Assuming the tail distributions in

Table 1, the local OTOC scales as r

t
1

2α�2d

� ��2α

= t
α

α�d

r2α when α 2 ðd,d + 1
2Þ.

Integration over r in d dimensions gives a constant factor; the time

dependence is t
α

α�d .
When applied to solid adamantane, which corresponds to α =

d = 3, the scaling function is r

t
1
4d

log2 t

� ��2d

. This gives an asymptotic time

dependence of the global OTOC of t
1
2log2t , which is faster than any

power of time. However, on currently accessible timescales, the
growth is slower. Up to a cluster size of 104, our numerical simulations
of the stochastic model and a two-parameter fit of the resulting data
yielded remarkable agreement with the experimental global OTOC
curve and give an interpretation of the mysterious t4.36 power-law fit.

There are several important complications in the comparisonwith
experiments. First, we ignored any effects of dissipation, coupling to
the lattice, and so on, which are present. Second, our theory assumes
the interaction to be completely random, ignoring approximate or
exact global conserved quantities in the dynamics. We expect the the
leading operator growth dynamics will not be strongly affected by
such slow modes, especially in the orthogonal space of the conserved
charges. However, at short times, conserved quantities or closeness to
an integrable point could matter. These questions require further
research.

The ability to engineer a many-body dipole Hamiltonian and its
forward/backward evolution is also accessible in platforms such as
dipolar molecules. Existing dipolar molecule experiments have a
longer (dimensionless) coherence time but also exhibit a relatively low
occupancy of the lattice which hinders operator spreading. We
numerically estimate that if the occupancy of each site is modestly
increased, say to about 30% or more, then extrapolations of existing
experimental configurations should be able to probe the global OTOC
dynamics predicted by our theory.

There are a number of other directions for both theoretical and
experimental investigations. At lower temperature, the adamantane
tumbling is no longer much faster than the dipole coupling time. The
random tumblingmight then enhance chaos, improving the predictive
power of our random interactionmodel. It would also be interesting to
explore the role of dimensionality, e.g., in quasi-one dimensional
materials, the role of large values of M and conserved quantities by
using different compounds.

Methods
The diagonal approximation of the global OTOC: random
operator estimation
In the expansion of the global OTOC, there are terms that are not
diagonal, such as trð½ZaðtÞ,Zb�½ZcðtÞ,Zd �Þ=2N with a = c and d ≠ d. In this
appendix, we give an estimation based on random operators to show
that those off-diagonal terms are negligible compared to the sum of
the local OTOCs.

Let us consider the case when a = c, b ≠ d. The OTOC can be
rewritten as

trð½½ZaðtÞ=2N=2,Zb�,Zd �ZaðtÞ=2N=2Þ: ð9Þ

The operator Za(t)/2N/2 is normalized according to the operator inner
product ðA,BÞ= trðAyBÞ. When expanding it in terms of the Pauli string
basis Bμ,

ZaðtÞ=2N=2 =
X
μ

aμBμ, ð10Þ

the amplitude squared ∣aμ∣2 can be regarded as the probability. At
sufficiently long times, the operator Za(t) is scrambled and we assume
that it is a random operator supported on Nop(t) spins, with
NopðtÞ∼ ðvBtÞd in a system with local interactions. We model the
effective randomness by treating the αμ as real random numbers (real
because Za(t) is Hermitian). There are 4Nop of them, and ∑μ∣aμ∣2 = 1. So
the typical size of aμ is

ffiffiffiffiffiffiffiffi
1

4Nop

q
= 2�Nop .

The double commutator interchanges Pauli strings depending on
the operators in the string located at sites b and d. Strings with XX are
exchanged with strings with YY, and similarly for XY and YX. Other
strings commute with at least one of Zb and Zd. Writing the corre-
sponding amplitudes as aμ∣XX, aμ∣YY, aμ∣XY, aμ∣YX, the off-diagonal

Table 1 | The scalings of the local OTOCpredicted by the long
range Brownian circuit model, see ref. 17,48,49

α Light cone Scaling function Tail
d
2 ,d
� �

expðBtηÞ C r
expðBtη Þ
� � 1

r2α*

d exp ln tð Þ2
4d ln 2

� �
C r

t
1
4d

log2 t

� �

ðd,d + 1
2Þ t

1
2α�2d

C r

t
1

2α�2d

� �

d+ 1
2 t ln t C r

t ln t

	 �
ðd+ 1

2 ,d+ 1Þ vBt C r�vBt

t
1

2α�2d

� � 1
r2α�2d *

d + 1 vBt C r�vBt

ðt ln tÞ12

� �
erf

d + 1,1½ Þ vBt C r�vBt

t
1
2

� �
erf

Parameters: B= d ln 2
2 α�dð Þ2 , η= log2

d
α. The tail scalings with * only has numerical support for d = 1

along with a few general scaling conjectures.
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OTOC is

8
X
μ

½Reðaμ∣XXa
*
μ∣YY Þ+Reðaμ∣XY a

*
μ∣YX Þ�: ð11Þ

There are at most 2Nop terms in the summation. Assuming they are
uncorrelated, the amplitude of the sum is estimated from a random
walk to be

ffiffiffiffiffiffiffiffiffi
2Nop

p
×2�Nop ∼ 2�Nop=2. Fixing a and b, there are at mostNop

choices of d. So the sum of those off-diagonal terms is Nop2
�Nop=2,

which is negligible for a local OTOCwhen the two operators are within
the butterfly light cone (order 1).

In Supplementary Section III, we refine this argument and do the
computation for evolution with a circuit of local gates. The sum of the
off-diagonal terms is indeed negligible. Then we argue that the same
should hold for long-range interactions. Numerical computations in
small systems confirm this observation.

Diagonal approximation in thepresenceof conservedquantities
There are two types of diagonal approximations in our effective model:
(1) the approximation that only takes the diagonal terms in the expan-
sion of the globalOTOCand (2) the approximation that the dynamics of
the diagonal terms can be effectively described by a classical stochastic
process. Type (2) is also “diagonal" in the sense that we neglect the
phases of quantummechanics thanks to the dephasing from the chaos.

In constrast, the conserved quantities undergoes coherent evo-
lution even in chaotic quantummany-body systems. The Hamiltonians
engineered in the NMR experiments in this work have conserved
quantities. Both HDQ in Eq. (4) and HY Y in Eq. (6) conserve the total
energy, and the later also conserves the total y spin ∑aYa. In the fol-
lowing, we argue that the coherent part of the evolution can not affect
the scalings of the global OTOC and both types of diagonal approx-
imations are valid in this sense.

We focus on type (2) first, i.e., the effects of conserved charges on
local OTOCs. The operator that spreads in the OTOC is orthogonal to
the charge and energy density operators. We evolve the operator∑aZa
while the evolution is given by eitherHDQ in Eq. (4) orHY Y in Eq. (6). An
inspection shows that the powers of the Hamiltonian or total y spin
have zero overlap with the ∑aZa operator. Hence the operator we
considered is in an orthogonal space of the conserved charge. The
coherent part of the evolution can not affect spreading of ∑aZa. In fact
according to ref. 45, if the evolving operator has non-zero overlap with
the charge, then there is a lump in the center that spreads sublinearly
(according to the corresponding hydrodynamics of the conserved
charge, say diffusion in locally interacting systems). Such lump does
not exist if theoverlapwith the charge is zero. Therefore the conserved
charges do not affect our analysis of the local OTOCs.

Moreover, even if there is a non-zero overlap with a (hidden)
conserved charge, the charge will undergo a Levy flight with distribu-
tion 1

r6 in three-dimension, which is a random walk. Following the ana-
lysis of ref. 45, the amplitudeof the conservedoperator in thePauli basis
is conserved, but theprobability of those operators decreases as 1ffiffi

t
p d (for

diffusion). Thus the conserved part of the operator carries less and less
weight as the evolution proceeds. In the global OTOC, their weight is
subleading: The sum of the diagonal terms are (area of local OTOC
curve) × ð1�Oðt�d=2ÞÞ. The correction to the diagonal term of the
global OTOC is parametrically smaller and can be neglected in large t.

Finally, the off-diagonal terms of type (1) are also much smaller
than the diagonal terms in an infinite temperature ensemble. For
instance, trðe�βH ½ZaðtÞ,Xb�½ZcðtÞ,Xd �Þ is the thermal average of corre-
lations of the commutators. In a high temperature ensemble, we
expect the correlator to factorize:

trðe�βH ½ZaðtÞ,Xb�½ZcðtÞ,Xd �Þ
∼ trðe�βH ½ZaðtÞ,Xb�Þtrðe�βH ½ZcðtÞ,Xd �Þ:

ð12Þ

This is justified because in a high temperate ensemble e−βH has small
correlations when the location a, b are far away from c, d. Micro-
scopically, one can decompose the time evolved operators Za(t) and
Zc(t) as a coherent part that propagates diffusively and a ballistic part
as in the non-conserving case. The diffusive part is concentrated on
local operatorswith diffusiveweight. To generate correlations, both Za
and Zc have to diffuse to points b and d, which lays in the tail of a
Gaussian if these locations are separated long apart. Besides, the
incoherent part follows the our analysis of the non-conservation case,
in which their contribution can be neglected. Therefore the diagonal
approximations of type (1) also holds.

To provide further evidence, we perform numerical simulations
of the OTOCs with the dipolar Hamiltonian HY Y. In Fig. 3a, we plot
trð½Z 1ðtÞ,Zr �y½Z 1ðtÞ,Z6�Þ=2N in a one-dimensional open chain of
14 sites. To simulate the effect of α = 3 in a three-dimensional chain,
we take α = 1, which lies at the same critical line of α = d in our sto-
chastic model. We can see that for different choice of r, the diagonal
term (r = 6) is much larger than the other terms. In the inset, we show
the spatial profiles of OTOCs for the first three time steps. The OTOC
decays quickly when the index r is taken away from the diagonal
choice r = 6.

We repeat the computation in a more realistic 8 π
2-pulse setup

in ref. 23. Ignoring the Zeeman terms, the 8 pulses generate 9

Fig. 3 | Numerical tests of the diagonal approximation. The local out-of-time
ordered commutator (OTOC) trð½Z 1ðtÞ,Zr �y½Z 1ðtÞ,Z6�Þ=2N for (a) evolution by the
dipolar Hamiltonian HY Y and (b) the 8 π

2-pulse sequences in the experiments of
ref. 23 ranging from r = 2 (red) to r = 14 (magenta). The diagonal OTOC (r = 6) is
dominant and the growth pattern is similar to the stochastic model prediction.
Insets show the spatial profile of the OTOC as a function of r from t = 1 (red) to t = 3
(cyan). The OTOC decays quickly when the index r is away from the the diagonal
r = 6. Source data are provided as a Source Data file.
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Hamiltonians, which are listed below together with their respective
duration

HZZ D1, HYY D2 HXX 2D1

HYY D2, HZZ 2D1 HYY D2

HXX 2D1, HYY D2 HZZ D1

ð13Þ

where D1 and D2 are

D1 = τð1� δÞ D2 = τð1 + 2δÞ: ð14Þ

To the first order approximation, the effective Hamiltonian is −12δτHY

Y (see SupplementalMaterial Section I(A) of ref. 23). In the experiment,
δ = ½� 1

2 , 1�, τ is optimized between 6μs to 16μs. We take δ = 1
2. From

J ~ 2500Hz,we set τ =0.1. Thisgives the results in Fig. 3b. Thegrowthof
the diagonal OTOC follows the general pattern of the stochastic
model. From the inset, the off-diagonal terms are negligible compared
to the diagonal terms.

The numerics show that the local OTOCs that have visible mag-
nitudes other than the diagonal terms are those “close” to diagonal
terms, for instance when c is close to b in �trð½Za,Zb�y½Za,Zc�Þ. These
terms only bring in an overall Oð1Þ correction factors to the global
OTOC due to the fast decay when c goes away from b. In the numerics
above, they are atmost 5% compared to the diagonalOTOCat t = 1, and
becomes much less when t > 1. Hence our diagonal approximation
works well even in Floquet engineered time evolutions in the NMR
experiments.

The Monte Carlo simulation
In this section,weprovidedetails about theMonteCarlo simulationsof
our stochastic model. We first simulate the values of local OTOCs,
which is represented by a discrete height valuable h taking integer
values among [0,N]. For the adamantane molecule, N = 16. The height
values are defined on each site on the fcc lattice, and f(h, t) is the
probability distribution that the height take values as components of
h. After taking the randomaveraging, thedistributiongeneratedby the
Hamiltonian in Eq. (8) satisfies the master equation:

∂f ðh, tÞ
∂t

=
X
j≠i

3DijðN � hi + 1Þ
N

hjf ðh� ei, tÞ

+
X
j≠i

Dijðhi + 1Þhj

N
f ðh+ ei, tÞ

�
X
j≠i

3DijhjðN � hiÞ+Dijhihj

N

( )
f ðh, tÞ

ð15Þ

where the long range kernel Dij is K
∣i�j∣3

.
In the numerics,we set up the fcc lattice embeded in a cubit lattice

with L ~ 36 in three dimensions. Initially, we set h = 1 at the center site
and zero elsewhere. We approximate the continuous stochastic pro-
cess by evolving a small discrete time step Δt ~ 10−5 with the rate given
by Eq. (15). The rate is 3

8K for a site of h = 1 site to increase the height of
a neighboring site from zero to one. We set K = 1. The global OTOC for
each instance is the sumof entries of h at different sites.We repeat the
process several times to obtain an average. In practice, self-averaging
effect is quite strong since the system has relatively large N.

After obtaining thedata,we adjust the values ofK and theorigin of
time zero (a linear transformation of the time axis) to fit the
experimental curve.

Polar molecules
We now turn to another physical realization of dipolar interactions via
polar molecules and consider the possibility of experiments similar to
those in adamantane and other NMR systems. Polar molecules are

synthesized by neutral atoms cooled to a few hundred nK. Its rota-
tional groundstate and excited states are taken to be pseudo-spin ∣ #

and ∣ "
13,33,34,46. For 40K87Rb molecule, an effective Hamiltonian of the
pseudo-spin includes an electric dipolar interaction

H =
X
ij

DijðJ?ðXiX j + Y iY jÞ+ JzZ iZ jÞ, ð16Þ

where Dij has been defined in Eq. (5), Jz can be tuned by an applied
electric field.

The experimental controls available in the polarmolecule case are
similar to the NMR setting. The ∣ #
 population, or in other words
trðρZ Þ can be directly measured. Global pseudo-spin rotations can be
performed by microwave pulses. These similarities prompt us to pro-
pose that global OTOCs can also be probed via polarmolecules using a
very similar set of pulses as in the nuclear spin experiments. In parti-
cular, given an initial state ρ, the procedure is to measure the phase
rotated quantity trðeiϕX e�iHtρeiHte�iϕX e�iHtZeiHtÞ, and then compute
via post-processing its second order derivative with respect to ϕ. The
result will be proportional to�trð½X ,ρðtÞ�½X ,Z ð�tÞ�Þ, with ρ(t) = e−iHtρeiHt

and Z( − t) = e−iHtZeiHt, see Supplementary Section I.
Instead of a high temperature ensemble, for polar molecule it is

experimentally easiest to begin with a pure state, such as

ρð0Þ= 1

2N
Y
i

ð1 + ZiÞ: ð17Þ

In the expansion as sum of homogeneous polynomials of Zi, the first
term is proportional to I, the second term is proportional to Z =∑iZi,
etc.. Truncating to the second term gives us the global OTOC as in the
case of nuclear spins. Higher order polynomials of Zi create extra off-
diagonal terms such as

�trð½ZaðtÞ,Zb�½ZaðtÞ,ZcZd �Þ=2N : ð18Þ

However, similar to our arguments for the off-diagonal terms, these
extra off-diagonal terms to be negligible compared to Cab in long time,
seeMethods. So we expect that even the pure state will give the global
OTOC, up to an overall constant, at long times.

Wenowestimate the requirements needed toprobe the long-time
regime in experiments with KRb molecules. In this case, J⊥ is about
2π × 104 ~ 650Hz. The coherence time shown in the Ramsey spectro-
scopy experiment is of order 10ms. Hence the coherence time is about
10 units of time, an order of magnitude larger than the nuclear spin
experiment. However, unlike in the nuclear spin case, experimental
realizations to date involve a dilute lattice of spins, with many lattice
sites empty.

Previous experiments achieved a filling factor of less than 10%,
which is in sharpcontrast to the 16 spins on each site in thenuclear spin
experiment. As expected, the low occupancy significantly hinders the
spreading, although the long-range nature of the dipolar interaction
moderates this slowdown to some extent. To give a crude estimate,
imagine a sphere surrounding onemolecule. The volumeof the sphere
is 4π

3 r30 ≈4r
3
0. Taking the occupancy to be 5%, a volume of 4r30 = 20 has

only one site occupied by a molecule. On average, the nearest neigh-
bor interaction is reduced by a factor of 1

r60
= 1

25 (in the classical sto-
chastic model, the rate is 1

r6 rather than
1
r3 due to dephasing). Hence 10

units of time can only populate a cluster of size 10=25 × 3
4 =0:3, which

is barely one spin. Keeping with this estimate, the linear size of the
cluster is 10 × ð4pÞ2 × 3

4 = 120p2. The volume is 1203p6. Thus the
thresholds of occupancy to reach cluster sizes of 10, 102, 103 are 13.4%,
19.7% and 28.9% respectively.

We numerically simulate the stochastic process on a simple cubic
lattice for p∈ [15%, 30%]. The global OTOC does match the order of
magnitude of our estimation, see Fig. 4
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In summary, the coherence time (in units where ℏ = 1) of the
dipolar molecule systems is roughly one order of magnitude larger
than in the NMR system, but the relatively low density of occupation
hinders rapid operator growth. However, the cluster size has a 6th
power dependence with respect to the occupancy p and 3rd power
dependence with respect to the coherence time. Hence, reaching a
cluster of size 103 requires only a moderate increase in occupancy or
coherence time. Assuming the presently available factor of 10
enhancement in the coherence time, we estimate the threshold to see
significant operator growth to be p ≈ 30%. Beyond this density, one
should be able to observe some of the growth patterns of the global
OTOC in the polar molecule system.

Computations of off-diagonal OTOCs
We provide further evidence that off-diagonal OTOCs are negli-
gible in a variety of models. For example, for holographic CFTs
one can extend the results of ref. 2 by mapping off-diagonal
OTOCs at non-zero energy density to certain two-sided correla-
tions in a black hole spacetime where the operators are inserted
at different spatial locations. Using, for example, a geodesic
approximation to the correlator, one can then verify that off-
diagonal OTOCs decay exponentially with the separation between
operators. We can also study this question in a variety of lattice
models using exact diagonalization and Krylov techniques.

To illustrate the basic physics, we consider a spin model, studied
at finite size using exact evolution of the many-body quantum state.
The model is a long-range version of the well studied kicked Ising
model. It is a Floquet model with a single period of time evolution
generated by U =UIUK with

UK = exp ib
X
r

σx
r

 !
ð19Þ

and

UI = exp iJ
X
r,d

1

dα σ
z
rσ

z
r +d + i

X
r

hrσ
z
r

 !
: ð20Þ

The couplings hr are random and drawn from a Gaussian distribution
with mean zero and standard deviation h.

We choose this model because in the local case it is a model of
strong quantum chaos47. In particular, when α =∞ (local interactions)
and J = b =π/4, the model is at the dual unitary point and exhibits a
number of exact features characteristic of quantum chaos.

Here we consider a long-range version of the model, still with
J = b =π/4 and now with α <∞. As a simple diagnostic, we compute

jh½X 1ðtÞ,Xr ðtÞ�½X 1ðtÞ,X2ðtÞ�ij, ð21Þ

where the quantum average is taken over a random state in Hilbert
space. This would reduce to a trace in the maximally mixed state if we
also averaged over the choice of random state, but these data are for
a single realization of the random state. The diagonal term corre-
sponds to r = 2, which gives order 1 value; the off-diagonal terms and
their sum is two orders of magnitude smaller, see Fig. 5. This indicates
the OTOCs of global operators can be approximated by diagonal
OTOCs of local operators, which is interpreted as the area under the
local OTOC curve.

Data availability
Source data are provided with this paper.

Code availability
The computer code to simulate the stochastic process is available
upon reasonable request.
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