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A shared neural code for the physics of
actions and object events

Seda Karakose-Akbiyik 1 , Alfonso Caramazza1,2 & Moritz F. Wurm2

Observing others’ actions recruits frontoparietal and posterior temporal brain
regions – also called the action observation network. It is typically assumed
that these regions support recognizing actions of animate entities (e.g., person
jumping over a box). However, objects can also participate in events with rich
meaning and structure (e.g., ball bouncing over a box). So far, it has not been
clarified which brain regions encode information specific to goal-directed
actions or more general information that also defines object events. Here, we
show a shared neural code for visually presented actions and object events
throughout the action observation network. We argue that this neural repre-
sentation captures the structure and physics of events regardless of animacy.
We find that lateral occipitotemporal cortex encodes information about
events that is also invariant to stimulus modality. Our results shed light onto
the representational profiles of posterior temporal and frontoparietal cortices,
and their roles in encoding event information.

Every day, we experience the world dynamically, not just as a set of
static objects but as a series of changes, relations, and events. When a
person moves their foot quickly and makes contact with a ball—we
interpret it as A kicking B. When two billiard balls collide and one of
them starts moving—we interpret it as A launching B into motion1,2. In
order to support this understanding, our brains need to process and
integrate various types of complex information ranging from the
physical properties of agents, objects, and their movement to more
abstract information such as an action’s meaning or its goals. How are
these various aspects of events encoded in the brain, and what are the
roles of different regions in this process?

Functional neuroimaging has revealed a set of bilateral fronto-
parietal and posterior temporal regions that are consistently recruited
when observing others’ actions (e.g., someone jumping). These
regions are collectively termed as the action observation network
(AON),with its frontoparietal component also called themirror neuron
system3–6. With a particular emphasis on lateral occipitotemporal
cortex (LOTC), inferior parietal lobe (IPL), and ventral premotor cortex
(PMv), these regions are thought to play complementary roles in
encoding information about observed actions7–11.

However, not only humans and other animate entities but also
inanimate objects can participate in events with rich meaning and

structure (object events, e.g., a ball bouncing). Furthermore, despite
differences between actions and object events on several dimensions
(e.g., biological motion, goals), a formal or linguistic description of
events that is invariant to animacy can characterize both (e.g., Amakes
contact with B). Since previous work mainly focused on the neural
representation of actions without a systematic comparison to object
events, a neural representation that can capture both event types has
not been identified. In this study, we searched for a shared neural code
that can characterize both actions and object events by investigating
the neural activity patterns associated with observing visually pre-
sented humanactions (e.g., a boy jumpingover a box)with structurally
similar motion events of objects (e.g., a ball bouncing over a box).

Identifying a neural representation that can capture both actions
and object events requires a systematic investigation of the two event
types within a unified framework. Previously, in rare cases where
actions and object events were investigated together, they tended to
have highly distinct structural and perceptual properties (e.g., point
light displays of bodies vs. tool motion12, see ref. 13 for a review).
Furthermore, object events were mostly used as baseline while testing
the boundaries of categorical specificity for event components unique
to animate entities (e.g., intentions, agency, sociality14–16). As powerful
as such designs are to study how the unique properties of actions are
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represented in the brain, they do not lend themselves to the investi-
gation of a neural representation of events that is invariant to animacy.

There is a long tradition of research on structured event repre-
sentations (i.e., event models) that enable predictive processing of
complex naturalistic stimuli (see refs. 17–19 for reviews, see ref. 20 for
a recent computational model). This work revealed neural repre-
sentations of events that are shared across perception, memory, and
language21–24, which presumably could capture the shared aspects of
actions and object events as well. However, previous work in this
domainmostly focusedon actions of humans, especially in the context
of how the brain segments ongoing human activity into meaningful
elements. Thus, a general neural representation of events that can
capture both actions and object events has not been addressed
explicitly. Finally, previous literature on action recognition mostly

compared the strength of neural responses to animate actions versus
simple dynamic stimuli (i.e., univariate analysis). Such comparisons
help reveal anatomical overlaps or discrepancies in neural responses,
but they do not provide direct information regarding the representa-
tional content of different brain regions.

In the current study, we investigated where in the brain informa-
tion about events is captured as a function of, or invariant to, the
animacy of the subject of the event. To address this aim, we used
classification techniques that approachneural responses as patterns of
activity (e.g., multivariate pattern analysis and cross-decoding, see
Fig. 1B). We used structurally similar events for actions of humans and
motion events of objects, and classifiers were trained and tested to
distinguish these events based on their respective neural activity pat-
terns (e.g., walk-jump-kick for human actions and roll-bounce-hit for

Fig. 1 | Sample stimuli and experimental design. A Example trials for action and
object event stimuli in the video session. For both event types, 2-sec videos were
used depicting the movements of a human or a ball. B Experimental design and
classification scheme. For both actions and object events, threemotion trajectories
were used in relation to an animate or inanimate patient (i.e., kick/hit, jump over/
bounce over, walk in front/roll in front of an object/person). To test for general-
ization across animacy within a modality, a classifier was trained on neural activity
patterns associated with events from one category (e.g., action videos) and tested

on neural activity patterns derived from events of the other category (e.g., object
event videos). Training and testing were done in both directions and resulting
accuracy maps were averaged. To test for generalization across both animacy and
modality, a classifierwas trained on events fromone category in onemodality (e.g.,
action videos) and tested on the other category in the other modality (e.g., object
event sentences). Training and testing were done across combinations of modality
and animacy conditions and the resulting accuracies were averaged across training
and testing directions.
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object events). To control for differences between observed actions
and object events that do not pertain to the events themselves, we
generated different exemplars for our unique event conditions by
displaying them across different viewpoints, subjects, animate/inani-
mate passive patients, and moving directions. This approach also
allowed us to reveal neural sensitivity to actions or object events in a
way that is not confounded by the presence of humans in the scene.
Finally, by using complementary evidence from verbal depictions of
events,wealso searched for a commonneural representationof events
that is not tied to the visual modality.

Here, we show that posterior temporal and frontoparietal regions
previously linked to action recognition represent information
about visually presented actions and object events in a similar way.
Subregions in posterior superior/middle temporal sulcus and superior
parietal lobes are more sensitive to agent-specific event aspects.
Through cross-decoding, we also find a shared neural code for
observed actions and object events throughout the action observation
network, and a representation of events in LOTC that is also invariant
to stimulus modality. Our results shed light onto the representational
profiles of temporal and frontoparietal cortices and their roles in
encoding event information.

Results
Procedure
To search for brain regions that host a shared neural code for observed
actions of humans (actions) and motion events of objects (object
events), we scanned participants (n = 25) while they viewed video clips
of humans and balls moving in structurally similar ways (e.g., a person
jumps over a box or a ball bounces over a box, see Fig. 1A, B for sample
stimuli, see Supplementary Fig. 1 for univariate neural responses to
observed actions and object events). To search for brain regions that
host a shared neural code for actions and object events that is also
invariant to stimulusmodality, we collected complementary data from
a sentence comprehension experiment. In this session, the same par-
ticipants read Subject-Verb-Object sentences describing the events
that are shown in the video session (e.g., the sentences ‘The boy jumps
over the box’ or ‘The ball bounces over the box’, see Fig. 1B for sample
stimuli, see Supplementary Fig. 2 for univariate neural responses to
sentences describing actions and object events).

Overlapping representations of actions and object events
First, we aimed to identify whether information about actions and
object events is encoded in overlapping or distinct brain regions. To
this end, we conducted two whole-brain multivoxel pattern analyses
(MVPA): within-actions and within-object-events. For within-actions
decoding, we trained and tested a classifier with neural activity pat-
terns associated with actions (i.e., kick/jump/walk). For within-object-
events decoding, we trained and tested a classifier with neural activity
patterns associated with object events (i.e., hit/bounce/roll). We cre-
ated different exemplars for each motion trajectory by using different
viewpoints, subjects, patients, and moving directions to make sure
that the decoding of events does not rely purely on low-level visual
features (see Methods for more detail).

In line with previous findings25–27, actions were decoded in
extended networks spanning occipital, posterior temporal, frontal,
and parietal cortices (Fig. 2A). Strikingly, object events were also
decoded in closely overlapping brain regions (Fig. 2B). To obtain a
better understanding of action and object event decoding across
specific regions, we extracted classification accuracies from inde-
pendently defined regions of interest (ROIs) in each hemisphere.
We primarily focused on regions of the action observation network
that are most strongly and consistently recruited during action
observation tasks: lateral occipitotemporal cortex (LOTC), ventral
premotor cortex (PMv), and inferior parietal lobe (IPL)3,5. To provide
a more fine-grained picture of how actions and object events are

represented in other areas that are also linked to action observation,
we also report ROI results from the superior parietal lobe (SPL) and
posterior superior temporal sulcus (pSTS) (see Methods for more
details on ROI selection).

Consistent with the whole-brain results (Fig. 2A, B), all ROIs in
both left and right hemispheres showed above-chance decoding of the
three events for both actions and object events (Fig. 2D, one-tailed
t tests against chance-level 33.33%, all ps < 0.001, FDR-corrected).
Overall, these analyses revealed that overlapping brain regions of the
so-called action observation network encode information about both
actions and object events, in a remarkably similar way.

Distinct representations of actions and object events
Structurally similar actions and object events can be defined by com-
monphysics andkinematics. However, animate actions are interpreted
as not mere movements of a physical entity, but rather, intentional
actions of a sentient being. That is, actions carry additional informa-
tion specific to animate entities (e.g., biological motion, intentions,
goals) that are not present in object events. To investigate where in the
brain information specific to animate actions is encoded,we compared
the outputs of within-actions and within-object-events decoding. The
logic behind this analysis is that if a region encodes additional infor-
mation about agent-specific event features that cannot be captured by
an inanimate object’s movements, it will show better decoding of
actions compared to object events.

A two-tailed whole-brain paired t test revealed a cluster in the
right posterior superior to middle temporal sulcus (pSTS) and tem-
poroparietal junction (TPJ) that could better distinguish actions com-
pared to object events. Although additional clusters in bilateral
superior parietal lobes (SPL) and ventral temporal cortices showed
significantly higher decoding for actions than object events (ps <
0.005), these clusters did not survive correction for multiple com-
parisons in the whole brain (Fig. 2C). For a more fine-grained exam-
ination of the differences between the neural representation of actions
and object events, we again turned to the ROI analysis.

To investigate if either of the twohemispheres ismore sensitive to
information about actions and object events, we fitted a linear mixed
effect model testing the interaction of event type and hemisphere
across all ROIs. The hemisphere by event type interaction was sig-
nificant (χ2[1] = 4.80, p = 0.028, ΔAIC= 2.80) and the difference in
decoding accuracy between actions and object events was stronger in
the right hemisphere (b = 4.72, t(472) = 4.48, p <0.001, d =0.57, 95%CI
[0.32 0.82]) compared to the left hemisphere (b = 2.53, t(472) = 2.40,
p =0.017, d =0.30, 95% CI [0.05 0.55]).

To compare decoding accuracies for actions and object events
across different brain regions within each hemisphere, we fitted linear
mixed effect models testing the interaction of event type and ROI for
each hemisphere. This ROI by event type interaction was significant
both in the left hemisphere (χ2[4] = 26.06, p < 0.001, ΔAIC = 18.06) and
in the right hemisphere (χ2[4] = 31.13, p <0.001, ΔAIC = 23.13). In the
left hemisphere, actions and object events were classified with com-
parable accuracy in ventral premotor cortex (b = 0.94, t(216) = 0.52,
p =0.601, d =0.15, 95% CI [−0.41 0.71]) and inferior parietal lobe
(b = −2.27, t(216) = −1.27, p = 0.207, d = −0.36, 95% CI [−0.92 0.20]).
However, actions were decoded at a higher accuracy than object
events in left LOTC (b = 3.85, t(216) = 2.14, p =0.034, d =0.61, 95% CI
[0.05 1.17]), pSTS (b = 5.57, t(216) = 3.10, p = 0.002, d =0.88, 95%CI 0.31
1.44]), and SPL (b = 4.55, t(216) = 2.53, p =0.012, d =0.72, 95% CI [0.15
1.28]). In the right hemisphere, actions and object events were classi-
fied with comparable accuracy in ventral premotor cortex (b =0.40,
t(216) = 0.25, p =0.804, d =0.07, 95% CI [−0.49 0.63]) and inferior
parietal lobe (b = 1.54, t(216) = 0.94, p =0.346, d = 0.27, 95% CI [−0.29
0.83]). However, actions were decoded at a higher accuracy than
object events in right LOTC (b = 7.23, t(216) = 4.45, p <0.001, d = 1.26,
95%CI [0.69 1.83]), pSTS (b = 8.23, t(216) = 5.06, p <0.001, d = 1.43, 95%
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CI [0.86 2.01]), and SPL (b = 6.20, t(216) = 3.81, p <0.001, d = 1.08, 95%
CI [0.51 1.64]).

In sum, within-actions and within-object-events decoding ana-
lyses revealed overlapping brain regions that encode information
about actions and object events, withminimal differences in decoding
strength across regions within each hemisphere. In the ROI analysis,
actionswere classified at a higher accuracy than object events in LOTC,

pSTS, and SPL in both hemispheres. In the whole-brain analysis, this
difference survived correction for multiple comparisons only in clus-
ters around right LOTC andpSTS/TPJ (for a comparison of decoding of
actions and object events separated by the animacy of the passive
patient, see Supplementary Note 1, see Supplementary Fig. 3).

We found distinct neural representations of actions and object
events in pSTS/TPJ and superior parietal lobes. Higher sensitivity to
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action information in right pSTS/TPJ is consistent with previous stu-
dies linking these regions to human-specific event information such
as animacy and intentionality, social interactions, and biological
motion12,14–16,28–33. However, we would like to note that actions and
object events used in the current study varied alongmany dimensions,
and some of these dimensions were orthogonal to the animacy of the
actor. For instance, themovements of the human actors were richer in
terms of visual information: the bodies hadmoving parts while objects
did not. If a region is sensitive to variation in such differences in
movement kinematics, changes in decoding strength across actions
and object events could reflect encoding of such information.

A shared neural code for actions and object events
Ourwithin-actions andwithin-object-events decoding analyses revealed
overlapping neural representations for actions and object events in
regions linked to action recognition. However, overlap of decoding
does not guarantee activation of shared neural representations34,35. That
is, the overlap of decoding between actions and object events might
have stemmed from the activation of spatially overlapping but func-
tionally distinct neural populations.

To identify brain regions that encode a shared representation of
events independent of whether the event is associated with the
movements of an object or a person, we conducted cross-decoding
MVPA. For this analysis, we trained a classifier to distinguish neural
activity patterns associated with observed actions and tested its
accuracy on observed object events, and vice versa (see Fig. 1B). By
training a classifier to discriminate actions and testing the same
classifier on its accuracy to discriminate the corresponding object
events, this approach can identify spatially corresponding activity
patterns of the two event types. Success in this generalization points
toward event representations that are commonly defined by both
actions and object events.

In the whole-brain, the cross-decoding analysis revealed robust
generalization across observed actions and object events in both
frontoparietal and posterior temporal cortices, as well as throughout
the occipital cortex (see Fig. 3A). Consistent with the whole-brain
results, all ROIs in both left and right hemispheres showed above-
chance decoding of the three events by generalizing across animacy
(see Fig. 3B, all ps < 0.001, FDR-corrected).

Comparing the ROIs across the two hemispheres, we observed
some hemispheric differences in the strength of cross-animacy gen-
eralization. There was an ROI by hemisphere interaction (χ2[4] = 15.26,
p =0.004, ΔAIC = 7.25): cross-animacy generalization was stronger in
the left hemisphere compared to the right hemisphere for all ROIs
(LOTC: b = 4.57, t(216) = 3.62, p <0.001, d = 1.02, 95% CI [0.46 1.59];
IPL: b = 5.92, t(216) = 4.70, p <0.001, d = 1.33, 95% CI [0.76 1.90]; pSTS:
b = 3.60, t(216) = 2.85, p = 0.005, d =0.81, 95% CI [0.25 1.37];
SPL: b = 2.95, t(216) = 2.34, p =0.020, d =0.66, 95% CI [0.10 1.22]; PMv:
b = 2.66, t(216) = 2.11, p =0.036, d =0.60, 95% CI [0.04 1.16]) with the
difference being more salient for LOTC and IPL. Overall, decoding of
the events regardless of animacywas stronger in all frontoparietal and
posterior temporal ROIs compared to their right hemisphere homo-
logs. Stronger cross-animacy generalization in the left hemisphere
might imply distinct roles of left and right hemispheres in encoding
general versus agent-specific event aspects, respectively.

Looking at the ROIs within each hemisphere, highest decoding
accuracies were observed for LOTC in both hemispheres (Left:
LOTC–IPL: b = 5.01, t(216) = 3.97, p < 0.001, d = 1.12, 95% CI [0.56 1.69];
LOTC–PMv: b = 12.88, t(216) = 10.21, p < 0.001, d = 2.89, 95% CI [2.27
3.51]; LOTC–pSTS: b = 5.53, t(216) = 4.39, p <0.001, d = 1.24, 95% CI
[0.67 1.81]; LOTC–SPL: b = 4.44, t(216) = 3.52, p <0.001, d = 1.00, 95%CI
[0.43 1.56]; Right: LOTC–IPL: b = 6.37, t(216) = 5.05, p < 0.001, d = 1.43,
95% CI [.86 2.00]; LOTC–PMv: b = 10.97, t(216) = 8.70, p <0.001,
d = 2.46, 95% CI [1.86 3.06]; LOTC–pSTS: b = 4.57, t(216) = 3.62,
p <0.001, d = 1.02, 95% CI [.46 1.59]; LOTC–SPL: b = 2.83, t(216) = 2.24,
p =0.033, d =0.63, 95% CI [0.07 1.19]). Despite these differences in
decoding strength, all investigated regions of the action observation
network were robust to generalization across actions and object
events.

Control analyses revealed that generalization across actions and
object events in posterior temporal and frontoparietal brain regions
linked to action recognition persisted even when said actions did not
include any objects and said object events did not include any humans
(e.g., train on events that only had objects “ball bounces over the box”
and test on events that only had humans “woman jumps over the boy”,
see Supplementary Fig. 4a). This suggests that the cross-decoding
results cannot be explained away by the relevance of some object
events for animate entities in the scene since cross-decoding persists
even when the object events do not pertain to an animate being.
Furthermore, by investigating cross-decoding accuracies for pairs of
motion events (i.e., kick-hit VS jump-bounce; kick-hit VS walk-roll;
jump-bounce VS walk-roll), we also found that cross-animacy gen-
eralization did not rely on one peculiar event being different from the
rest. Cross-animacy decoding for pairs of motion events revealed
qualitatively similar patterns of decoding across the core regions of
the action observation network (see Supplementary Fig. 4b).

What shared aspects of actions and object events are captured by
cross-animacy decoding? Various shared properties of actions and
object events ranging from low-level visual andmotion cues to higher-
level spatiotemporal relations or semantic properties could all con-
tribute to successful cross-animacy generalization of observed events.
We created different event exemplars for each category so that
decoding does not purely rely on low-level visual properties but
naturally, there was still some variation in low-level visual features
across our event categories (e.g., bounce/jump events involve hor-
izontal movement while others did not, hit/kick events happened in
one half of the scenewhile the others spanned thewhole scene). Cross-
animacy generalization in early visual processing regions (see Fig. 3A)
is consistent with the possibility that encoding of such features can
contribute to cross-animacy generalization. However, this does not
necessarily mean that cross-animacy generalization in regions of the
so-called action observation network purely stemmed from shared
low-level visual properties. Decoding accuracies inmost regions of the
action observation network (e.g., LOTC, IPL, pSTS, SPL) were stronger
than in early visual processing regions. Thus, we think it is unlikely that
lower-level visual features are the main information driving cross-
animacy generalization in the action observation network.

To investigate more directly what shared aspects contribute to
generalization across animacy, we conducted an exploratory repre-
sentational similarity analysis (RSA)36. This analysis revealed that

Fig. 2 | Within-condition decoding of actions and object events. Results of
whole-brain three-way decoding searchlight forA actions andB object events (one-
tailed t tests against chance-level 33.33%). The maps are thresholded by areas
corrected for multiple comparisons using Monte Carlo Cluster based correction
(pinitial = 0.001). C Two-tailed whole-brain t test comparison of within-actions and
within-object-events MVPA. Black outlines mark areas that survived Monte Carlo
Cluster based correction (pinitial = 0.001). The map is thresholded at p <0.01 to
demonstrate significant differences that do not survive correction.DROI decoding
accuracies for actions (in orange) and object events (in blue) in lateral

occipitotemporal cortex (LOTC), inferior parietal lobule (IPL), ventral premotor
cortex (PMv), posterior superior temporal sulcus (pSTS), and superior parietal
lobule (SPL). Error bars indicate standard error of the mean (SEM, n = 25), and
asterisks indicate FDR-corrected effects of one-tailed t tests for comparisons
against chance-level (33.33%, *p <0.05, **p <0.01, ***p <0.001). Individual partici-
pants are connected via light gray lines. FDR-corrected pairwise two-tailed tests of
estimated marginal means showed better decoding of actions compared to object
events in LOTC, pSTS, and SPL in both hemispheres (*p <0.05,
**p <0.01, ***p <0.001).
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activity patterns throughout the action observation network, particu-
larly in left anterior IPL, can capture inter-object relations such as
making contact (see Supplementary Note 2, Supplementary Fig. 5a),
whereas motion path (i.e., horizontal versus vertical movement) was
captured only in dorsal occipital and medial premotor cortices (see
Supplementary Note 2, Supplementary Fig. 5b). These preliminary
analyses suggest that different regions of the action observation net-
work may encode events at a level specifying inter-object relations.

Generalization of actions and object events across modality
To test if any of the regions that we identified in cross-animacy
decoding in the video session encode event components that go
beyond shared visual properties of observed events,wefirst replicated

our cross-animacy decoding analysis with sentence stimuli. That is, we
trained a classifier to decode the three events on neural patterns from
action sentences (e.g., the boy kicks the box) and tested it on neural
patterns from object event sentences (e.g., the ball hits the box), and
vice versa. Overall, classification accuracies tended to be lower for the
sentence session compared to the video session. Thus, even thoughwe
report whole-brain results, we primarily focus onROI analyses (i.e., left
hemisphere action observation ROIs: LOTC, IPL, PMv, pSTS, SPL).

In the whole-brain analysis corrected for multiple comparisons,
clusters in bilateral lateral and ventral occipitotemporal cortices,
bilateral posterior parietal lobes, left inferior parietal lobe and left
ventral premotor cortex showed above-chance cross-animacy decod-
ing of sentences (see Fig. 4A). In the ROI analysis, all left hemisphere

Fig. 3 | Decoding of observed events by generalizing across animacy. A Results
of whole-brain three-way decoding searchlight by generalizing across actions and
object events (one-tailed t test against chance-level 33.33%). The map is thre-
sholded by areas corrected for multiple comparisons using Monte Carlo Cluster
based correction (pinitial = 0.001). B ROI decoding accuracies for cross-animacy
generalization of video stimuli in lateral occipitotemporal cortex (LOTC), inferior

parietal lobule (IPL), ventral premotor cortex (PMv), posterior superior
temporal sulcus (pSTS), and superior parietal lobule (SPL). Error bars indicate
standard error of the mean (SEM, n = 25), asterisks indicate FDR-corrected effects
of one-tailed t tests for comparisons against chance-level (33.33%, * p <0.05,
**p <0.01, ***p <0.001).
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ROIs showed above-chance decoding, with minimal non-significant
differences between them (see Fig. 4C). In sum, left hemisphere
regions of the action observation network was able to discriminate
events described via verbal stimuli by generalizing across actions and
object events (for decoding of action and object event sentences
without generalization across animacy, see Supplementary Note 3,
Supplementary Fig. 6a, b).

Note that even though cross-animacy generalization in the sen-
tence session might reflect encoding of higher-level semantic infor-
mation, successful cross-decoding in the sentence session might have
been driven by certain stimulus characteristics such as sentence length
or presence/absence of prepositions that do not pertain to the
meanings of the event per se (see Supplementary Files for the full set of
sentence stimuli). For instance, ‘kick-hit’ sentences did not contain
prepositions and were shorter than ‘jump-bounce’ and ‘walk-roll’ sen-
tences, leading to differences in sentence length, and thus, perceptual
differences in the visually presented sentences. To test more explicitly
where in the brain events are represented at a more abstract level that

not only generalizes across actions and object events but also stimulus
modalities, we conducted cross-animacy + cross-modality decoding.
For this analysis, we trained a classifier on videos of one condition and
tested it on the sentences of the other condition (e.g., train on video
showing [The boy jumps over the box] and test on sentence ‘The ball
bounces over the box’, see Fig. 1B). Success in this generalization
points toward abstract event representations that are commonly
defined by both actions and object events, and visual and verbal sti-
muli (for cross-modality generalization within event types, see Sup-
plementary Fig. 6c, d).

In the whole-brain analysis, clusters in left LOTC extending to
pSTS, aswell as some clusters in bilateral ventral occipitotemporal and
visual association cortices showed above-chance cross-animacy +
modality decoding that survived correction for multiple comparisons
(see Fig. 4B). The ROI analysis revealed that cross-animacy + modality
decoding was significantly above-chance in left LOTC, pSTS, and IPL,
but not in PMv or SPL (see Fig. 4D). Comparing the decoding accura-
cies across the different ROIs, we observed differences in decoding

Fig. 4 | Decoding of events by generalizing across animacy and modality.
A Whole-brain three-way decoding of events by generalizing across animacy for
sentence stimuli (one-tailed t test against chance-level 33.33%). B Whole-brain
three-way decoding of events by generalizing across both animacy and modality
(one-tailed t test against chance-level 33.33%). The maps show areas corrected for
multiple comparisons using Monte Carlo Cluster based correction (outlined in
black, pinitial = 0.005). ROI decoding accuracies for cross-animacy generalization of

C sentence stimuli and D cross-animacy + modality generalization in in lateral
occipitotemporal cortex (LOTC), inferior parietal lobule (IPL), ventral premotor
cortex (PMv), posterior superior temporal sulcus (pSTS), and superior parietal
lobule (SPL). Error bars indicate (SEM, n = 25) and asterisks indicate FDR-corrected
effects of one-tailed t tests for comparisons against chance-level (33.33%, *p <0.05,
**p <0.01, ***p <0.001).
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strength (χ2[4] = 30.68, p <0.001). While left LOTC showed the highest
decoding accuracy and was significantly higher than PMv (b = 2.58,
t(96) = 4.82, p < 0.001, d = 1.36, 95% CI [0.77 1.95]) and SPL (b = 2.00,
t(96) = 3.75, p =0.002, d = 1.06, 95% CI [0.48 1.64]), no significant dif-
ferences were observed between LOTC and IPL (b = 0.76, t(96) = 1.42,
p =0.21, d =0.40, 95% CI [−0.16 0.96]) or pSTS (b = 0.74, t(96) = 1.38,
p =0.21, d = 0.39, 95% CI [−0.17 0.95]).

In the so-called action observation network, only left LOTC/pSTS
showed significant cross-animacy + modality generalization that sur-
vived correction for multiple comparisons in the whole brain. Is this
region causally involved in understanding events both through visual
and verbal formats? If cross-animacy + modality generalization in
LOTC is due to verbalization (in the video session) or visual imagery (in
the sentence session), this might not be the case. For instance, if
generalization across observed videos and sentences is due to imagery
in the sentence session, this would not guarantee that neural activity
during sentence processing is essential for understanding events in
that modality. Since fMRI can only provide correlational evidence,
evidence from individuals with brain damage or neuromodulation
studies can be used to address the critical role of this region in
understanding events through visual and verbal modalities. Still, our
study allowed us to address the extent of imagery or verbalization
effects as we balanced the order of video and sentence sessions across
participants. If across modality generalization is due to imagery, we
would expect stronger imagery for people who received the videos
first and sentences second, and stronger verbalization for people who
received sentences first and videos second. The contrast of the
decoding maps of the two groups, however, revealed no significant
differences indicative of an effect of imagery or verbalization (see
Supplementary Fig. 7). Thus, we found no support for the hypothesis
that visual imagery or verbalization can fully account for the observed
generalization across animacy and modality.

Successful cross-animacy+modality generalization in LOTC/pSTS
is consistent with recent evidence for cross-modal event representa-
tions in this region35. Notably, we found cross-animacy + modality
decoding not only in left LOTC, but also in posterior and ventral
occipital areas in both hemispheres (see Fig. 4B). This finding is con-
sistent with previous evidence showing cross-modal decoding of
object categories37–40 or cross-task generalization of action similarity41

in posterior occipital regions. However, since we cannot rule out
potential low-level visual similarities across videos and sentences (e.g.,
visual extent of stimuli, eye movement), cross-animacy + modality
decoding in posterior occipital regions must be interpreted with
caution.

In the ROI analysis, left IPL also showed cross-animacy + modality
generalization, which is consistent with previous claims that parts of
IPL may contain conceptual representations. For instance, previous
studies revealed representations of actions in IPL that generalize
across specific instances of observed actions, viewpoints, and visual
and motor modalities26,27,42,43. Notably, a recent study by Wurm &
Caramazza35 found generalization across observed videos and sen-
tences only in left LOTC, but not in IPL. This discrepancy between
Wurm & Caramazza35 and the current study might be attributed to the
kinds of actions that were tested (i.e., hand actions that were defined
by manner of movement vs. body actions or object events that were
defined by path ofmotion, respectively). Overall, more work is needed
to address the differential roles of LOTC and IPL in encoding event
information within and across stimulus formats.

Discussion
Using multivariate pattern analysis techniques, we show that over-
lapping brain regions in posterior temporal and frontoparietal cortices
encode information about observed actions and object events in a
similar way. Using cross-decoding, we also provide robust evidence for
a neural representation of observed events that is invariant to animacy.

Subregions in lateral occipitotemporal cortex represent events by
generalizing across both animacy (i.e., humans and objects) and sti-
mulus modality (i.e., visual and verbal stimuli). Yet, right posterior
superior/middle temporal sulcus and temporoparietal junction as well
as bilateral parietal lobes are particularly sensitive to information
about observed human actions compared to object events. Overall,
while conceptual event representations converged in left posterior
temporal cortex, encoding of human-specific event information was
primarily right-lateralized.

Premotor cortex and inferior parietal lobe have long been asso-
ciated with encoding of action knowledge, particularly in relation to
theirmotor functions44–46. However, in the current study, object events
devoid of sensorimotor features of bodily actions were decoded as
robustly as actions in both premotor cortex and IPL. Furthermore,
both regions could represent event information by generalizing across
humans and inanimate objects. What might be the driving force
behind this general event representation in frontoparietal cortices?
Previous work showed that frontoparietal regions are engaged in tasks
that require physical inference47,48 and predicting future steps of an
event49. Based on the impairment patterns of apraxia patients who
struggle with object use, it has also been proposed that the IPL is
implicated in representing spatial relations between objects and
mechanical reasoning50. Premotor cortex and IPL have also been linked
to visual perception of causal interactions between objects51,52. Com-
bined with our finding of a common neural representation for actions
and object events in frontoparietal cortices, we think that these
regionsmight bemore properly construed as representing the physics
and kinematics of events even if they lack any motor-relevant
properties.

There has been growing evidence for encoding of higher-level
action knowledge in LOTC (see refs. 11,53 for reviews). For instance,
this region encodes information about actions by generalizing across
their concrete instantiations (i.e., opening a box and opening a bottle
are encoded similarly)42 or stimulus modalities (e.g., visual and verbal
stimuli)35. Our findings expand this previous work by identifying a
neural representation of events in the LOTC that is invariant to
both animacy of the entities that are involved and stimulus modality.
This functional profile of LOTC points to the possible role of this
region in encoding higher-level semantic information about events.
For instance, both actions and object events can be described through
event primitives that are invariant to the animacy of the entities that
are involved (e.g., make contact with, cause)54–56. Lateral occipito-
temporal cortex seems to encode events at a sufficiently abstract level
that can capture such semantic relations between agents, objects, and
their environment.

Actions share many features with object events, but by being
events that include intentional animate entities, they also have some
uniqueproperties. Howare these unique aspects of actions represented
relative to those properties shared across actions and object events? In
the current study, posterior superior temporal sulcus, temporoparietal
junction, and superior parietal lobes showed better decoding of actions
compared to object events. Higher sensitivity to action information in
posterior superior temporal sulcus and temporoparietal junction,
especially in the right hemisphere, is consistent with previous work
linking these regions to human-specific event information such as ani-
macy and intentionality14,16,29,30, social interactions15,31–33 and biological
motion12,28. As for superior parietal lobe, considering its link to visuo-
motor coordination57–59, recognizing actions compared to object events
might have activated motor representations in this region. Further-
more, superior parietal lobe has been linked to attentional and visuos-
patial processing60–62 and recognizing and predicting future steps of
intentional animate actsmight recruit special predictive and attentional
processes.

Our findings suggest potential research directions that will shed
light on how the brain represents dynamic information about agents
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and objects. An avenue for future work is identifying which shared
aspects of actions and object events are encoded by their common
neural representation in frontoparietal and posterior temporal cor-
tices. Candidate features include, but are not limited to, shared visual
and kinematic information, physics of visual scenes, and high-level
semantic information. Another alternative is that the propensity to
attribute human-like characteristics to inanimate entities, anthro-
pomorphizing, underlies the commonneural representation of actions
and object events that we have uncovered1,2,16. Spontaneous recruit-
ment of regions involved in social cognition while reasoning about
movements of simple visual shapes63–65 supports this possibility.
According to this alternative, the cross-animacy representations we
uncovered would not necessarily reflect encoding of event compo-
nents that are shared across actions and object events, but rather,
encoding of human-like properties that are attributed to inani-
mate objects’ movement. Although possible, we think that this is
highly unlikely in the context of our experiment since we used filmed
events. Thus, there was no question as to the inanimate nature of the
objects in the object event condition, nor did they move in ways that
might signal animacy or intentionality (e.g., autonomous motion that
appears to be goal-directed). Still, addressing the contributions of
anthropomorphic reasoning to the shared neural representations
of actions and object events will be an important challenge for
future work.

In addition, even though we think that common physics and
spatiotemporal characteristics of events underlie the shared neural
code we have uncovered, we would like to note that we have tested a
small set of events that were primarily defined by their motion tra-
jectories. This limits the conclusions we can derive regarding the
underlying factors of cross-animacy generalization. Most events we
perform and encounter in our daily life consists of small units orga-
nized in a temporal and spatial hierarchy.Whether theneural locus and
degree of generalization across actions and object events will extend
to these more complex scenarios remains to be seen. For instance, it
has been shown that during passive viewing of daily activities or
comprehension of narrative texts, posterior medial network regions
(i.e., parahippocampal cortex, angular gyrus,medial prefrontal cortex,
posterior cingulate, precuneus) and hippocampus are sensitive to
information about event dynamics66–69. While these regions capture
event dynamics at a longer temporal scale, regions that we focused
here (e.g., posterior temporal cortex, inferior parietal lobe, and ventral
premotor cortex) capture event boundaries at shorter temporal
scales70. Even though we observed cross-animacy generalization in
certain posterior medial regions (e.g., posterior medial parietal lobe,
angular gyrus), we did not observe robust cross-animacy general-
ization in regions such asparahippocampal cortexormedial prefrontal
cortex. Future studies can test events across different timescales and
levels of complexity to address shared neural representations of
actions and object events in different scenarios.

Finally, even though the physics and kinematics of events can
commonly describe activities of both animate and inanimate entities,
there are also key differences between them. For instance, agents can
spontaneously change their path or speed, or fight against physical
forces. However, the movements of objects are purely constrained by
other agents or physical forces. Thus, predicting future steps of
intentional animate acts might recruit special predictive and atten-
tional processes. For a complete understanding of event recognition,
more work is needed on how our brains integrate our knowledge of
agents and their unique characteristics with that of the objects and the
physical structure of the world. Future work can also delineate what
aspects of actions are driving the differences between actions and
object events in pSTS and SPL. Compared to object events, action
stimuli in the current study involved biological motion and intentional
movement and were richer in kinematic information. These regions
might be sensitive to all or someof these features anddiscovering their

unique functional characteristics will provide significant avenues for
future work. Furthermore, in posterior temporal cortices, event-
general representations tended to be left-lateralizedwhile encoding of
human-specific informationwas right-lateralized. The underlying basis
for this hemispheric lateralization remains to be worked out.

Overall, our results provide insights on how information about
dynamic events is encoded in the brain across stimulus modalities and
types of entities that are involved. Even though different neural sys-
tems might be recruited while processing information about actions
and object events (as evidenced by differences in pSTS, TPJ, and SPL),
regions that encode information about observed actions carry a
shared neural code that can represent events more broadly. By pro-
viding clear evidence for a shared neural code for actions and object
events, our study highlights the broader role of regions classically
associated with action recognition in encoding the physics and kine-
matics of events, regardless of whether they involve people or objects.
Our findings thus invite rethinking the common interpretation that
neural responses to actions are naturally due to action-specific, or
motor, aspects. This work could be a starting point for systematic
research that will delineate how the brain encodes information about
events ranging from low-level perceptual information about agents’
and objects’ movement to more abstract information such as an
action’s meaning or its goals.

Methods
Participants
Twenty-five right-handednative Italian speakersparticipated in a video
(Experiment 1) and sentence session (Experiment 2, 15 male, Mage =
24.52, SDage = 4.80). The order of sessions was counterbalanced
across participants (odd IDs: video-sentences, even IDs: sentences-
videos). All participants had normal or corrected-to-normal vision and
no history of neurological or psychiatric disease. The participants
provided informed consent before participation and all procedures
were approved by the Ethics Committee for research involving human
participants at the University of Trento, Italy. Participants were com-
pensated with 30 euros.

No statistical test was used to predetermine sample size. We col-
lected data from n = 25 participants who attended both the video and
sentence sessions. Our previous work on human action observation
showed that depending on region of interest, actions presented in
videos can be decoded with sample sizes between n = 5 (left LOTC;
with d = 1.94, alpha =0.05, power = 0.95) and n = 14 (left PMC; with
d =0.95, alpha =0.05, power = 0.95)27. Another recent study from our
lab showed cross-decoding of human actions across verbal and visual
stimuli with n = 22 participants35. Given these considerations, we think
that our sample size of n = 25 is in the range of sample sizes con-
ventionally used in the field and gives us sufficient power to identify
where in the brain information about events are encoded.

Stimuli
For both video and sentence sessions, there were 6 unique events of
interest that varied along two main dimensions: the animacy of the
moving entity (animate/inanimate) and the motion trajectory (e.g.,
jump-bounce, walk-roll, kick-hit). For the video session, 32 exemplars
of these 6 unique events were used, resulting in 192 unique videos in
total. In both actions and object events, there was a passive animate or
inanimate entity in the scene (i.e., patient). These passive patients
served as reference for the trajectory of themotion event (e.g., the ball
rolled in front of a box/girl). Furthermore, we used both animate and
inanimate entities as passive patients tomake sure that any differences
between actions or object events cannot be explained away by the
mere presence or absence of humans in the scene. Sample stimuli are
presented in Fig. 1A, B and Supplementary Figs. 3–4. Individuals shown
in thesefigures provided informed consent for the publicationof these
images in the context of this article.
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We created different exemplars for each event to make sure that
encoding of events are not trained purely on perceptual features. This
perceptual variance was introduced via two different perspectives, two
subjects, animate/inanimate patients of two exemplars each, and two
moving directions for each unique event (32 exemplars, see Supple-
mentary Files for event exemplars). The videos were shown at least
twice over the course of the experiment. All videos were comparable in
termsof the timing andunfoldingof events (see Fig. 1A). They all started
with one passive patient in the scene, followed by a motion event of a
human or a ball. Videos were presented in color, had a length of
2 seconds (30 frames per second), and a resolution of 274 by 367 pixels.

The sentence stimuli matched the video stimuli in terms of sti-
mulus variance (32 sentences of 6 events: 192 unique sentences in
total). All sentences had the structure subject-verb-object (e.g., Il
ragazzo calcia la donna/The boy kicks thewoman; Il pallone colpisce la
donna/The ball hits the woman). Different verbswere used to describe
the actions and object events (action verbs: calcia/kick, salta oltre/
jump over, cammina davanti/walk in front; object event verbs: col-
pisce/hit, rimbalza oltre/bounce over, rotola davanti/roll in front). To
create 32 exemplars per event type, we crossed these verb phrases
with four subjects (agents: lei/she, lui/he, la ragazza/the girl, il ragazzo/
the boy; objects: la palla da pallavolo/the volleyball, il pallone/the
football, la palla dabasket/the basketball, la palla di gomma/the rubber
ball) and eight patients (animate patients: l’amica/girlfriend, l’amico/
boyfriend, l’uomo/the man, la donna/the woman; inanimate patients:
lo sgabello/the stool, la sedia/the chair, la panca/the bench, il cassone/
the box). All sentences were presented superimposed on light gray
background (274 by 367 pixels) in three consecutive chunks (subject,
verb phrase, object), with each chunk shown for 666 msec (2 s
per sentence), using different font types (Arial, Comic Sans MS, Ver-
dana, MV Boli, Times New Roman, Calibri Light) and font sizes (25–30)
to increase the perceptual variance of the sentence stimuli (balanced
across conditions within experimental runs). Since our analyses on the
shared aspects of actions and object events relied on generalization
across stimulus types, perceptual and syntactic differences between
sentences, such as sentence length and presence/absence of preposi-
tions, were ignored.

Stimuli were back-projected onto a screen (60Hz frame rate,
800 × 600 pixels screen resolution) via a liquid crystal projector
(OC EMP 7900, Epson Nagano, Japan). While in the scanner, partici-
pants viewed stimuli through a mirror mounted on the head coil.
Stimulus presentation, response collection, and synchronization with
the scanner were controlled with the MATLAB Psychtoolbox-3 for
Windows.

Task
Before fMRI, participants were instructed and trained for their
respective first session (videos or sentences). The instructions and the
practice of the second session were completed inside the scanner and
after the first session. Participants were instructed to watch the videos
(or read the sentences) and press a button with their right index finger
on a response button box when they detected occasionally presented
aberrant videos or sentences (catch trials, 14%of trials). The catch trials
ensured that participants paid attention and understood the events.
For videos, these aberrations were either conceptual or perceptual. In
conceptual catch trials, the video depicted an incomplete event or an
event that followed adifferentmotionpath than the threemain events.
In perceptual catch trials, a visual oddity was introduced to the video
(e.g., freezing). For sentences, catch trials comprised grammatically
incorrect or semantically odd versions of each of the six events (e.g.,
The boy walks in front for the woman, The ball bounces over the sun).
The different types of catch trials were shuffled and randomly dis-
tributed across all runs. Responses made between the onset of the
video and prior to the end of the 1 s fixation period following each trial
were counted.

Participants detected catch trials with high accuracy in both video
(Median = 0.90, SD =0.16) and sentence sessions (Median =0.86,
SD = 0.11), with no difference in performance between them
(t(24) = −0.40, p =0.691, d = −.08, 95% CI [−.48 .32]). In both sessions,
false alarm rates were low (video: Median =0.005, SD =0.017, sen-
tence: Median =0.005, SD =0.019) indicating that participants paid
attention to the task anddidnot confuse experimental trialswith catch
trials. Not onlywas the false alarm rate low, in both video and sentence
sessions, participants were equally likely to make a false alarm
for actions and object events (Video: t(24) = 0.86, p =0.396, d =0.18,
95% CI [−.23 .58]; Sentence: t(24) = 1.86, p = 0.075, d =0.38, 95% CI
[−.04 .79]). This suggests that the catch trial detection task imposed
comparable demands for action and object event stimuli. Behavioral
accuracies 2 SD below the average were used as a pre-established
exclusion criterion. Based on this criterion, no data were excluded
from the analyses.

Experimental design
For both experiments, stimuli were presented in amixed event-related
design. The video and sentence experiments consisted of four and five
functional scans, respectively. Each functional scan started with a 10 s
fixation period and ended with a 16 s fixation period. Four blocks were
presented per run, separated by 10 s fixation periods. Twenty-eight
trialswere shownper block. Each of the 6 unique eventswaspresented
four times per block, along with four catch trials. In every trial, videos
or sentences (2 s) were followed by a 1 s fixation period. In the video
session, for each of the 6 unique events, there were 64 trials in total
(4 trials per block × 4 blocks per run × 4 runs per session). For sen-
tences, for each of the 6 unique events, there were 80 trials in total
(4 trials per block × 4 blocks per run × 5 runs per session. The order of
conditions was counterbalanced within runs.

Data acquisition
Neuroimaging data were acquired using a 3T Siemens Prisma fMRI
Scanner with a 32-channel phased-array head coil. T1-weighted struc-
tural images were obtained using a 3D MPRAGE sequence (176 sagittal
slices; repetition time (TR) = 2530ms; inversion time = 1020ms; flip
angle = 7 degrees; field of view (FoV) = 256 × 256mm; 1 × 1×1mm voxel
resolution). Blood oxygenation level-dependent (BOLD) contrast func-
tional images were obtained using a T2*-weighted gradient echo-planar
imaging (EPI) sequence (TR = 1500ms; echo time (TE) = 28ms; inter
slice time = 33ms; flip angle = 70 degrees; FoV= 200mm×200mm;
matrix size = 66 × 66; 3 × 3 × 3mmvoxel resolution; 45 slices with 3-mm
thickness and 0mm gap).

Preprocessing
We preprocessed and analyzed functional and anatomical data using
BrainVoyager QX 2.8 (BrainInnovation), NeuroElf Toolboxes, and
MATLAB (MathWorks) functions. The first four volumes of functional
runs were removed to prevent T1 saturation. Preprocessing of func-
tional data included slice time correction, three-dimensional motion
correction (trilinear interpolation, the first volume of the first run of
each participant was used as reference), linear trend removal, high-
pass filtering (cutoff frequency of three cycles), and spatial smoothing
(Gaussian kernel of 8mm FWHM for univariate analyses and 3mm
FWHM for MVPA). Functional images were registered to high-
resolution anatomical images (six parameters), and anatomical and
functional data were normalized to Talairach space.

Event classification
For each participant, session (i.e., video or sentence), and run, we
computed a general linear model using design matrices containing 24
event predictors (separate predictors were fit for animate/inanimate
patients per 6 unique events resulting in 12 conditions, and two pre-
dictors were fit for each of these conditions based on 4 trials selected
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from the odd and 4 selected from the even trials of that condition
within a run), the catch trials, and the 6 parameters resulting from 3D
motion correction (x, y, z translation and rotation). Regressors were
defined as boxcar functions convolved with a canonical double-
gamma hemodynamic response function. Trials were modeled as
epochs lasting from video or sentence onset to offset (2 s). The
resulting reference time courses were used to fit the signal time
courses of each voxel. In total, this procedure resulted in 16 betamaps
per 6 unique events in the video, and 20betamaps per 6 unique events
in the sentence session.

We performed searchlight classification for each participant
separately in volume space using searchlight spheres with a radius of
12mm and a linear support vector machine (SVM) classifier as imple-
mented by the CoSMoMVPA toolbox and LIBSVM71,72. Data were
demeaned for eachmultivoxel beta patternwithin a searchlight sphere
by subtracting the mean beta of a sphere from the betas of the indi-
vidual voxels. Demeaning was applied to make sure that classifiers do
not distinguish actions based on global univariate differences across
ROIs due to different processing demands (e.g., differences in sen-
tence length, spurious visual differences across scenes).

To identifywhere in thebrain information about actions andobject
events are encoded, we conducted within-actions or within-object-
eventsMVPA. In within-actionsMVPA, we decoded the three actions via
leave-one-out cross-validation:we traineda classifier todiscriminate the
three actions (i.e., kick, jump, walk) by using betas from all runs except
one and tested its accuracy at discriminating the three actions on the
betas of the held-out run. This procedurewas completed in iterations to
make sure that all patterns were included for both training and testing,
and the resulting classification accuracies were averaged. We then
repeated the same procedure for object events.

To identify the shared neural representations of actions and events
that generalize across animacy or modality, we completed cross-
decoding. For cross-decoding, the classifier was trained on all betas
from one condition (e.g., trained to distinguish kick/walk/jump in
actions), and then tested on all betas from another condition (e.g., tes-
ted to distinguish hit/roll/bounce in object events). This was then
repeated in the opposite direction, and classification accuracies were
averaged. Note that for all decoding analyses, motion events with dif-
ferent subjects, animate or inanimate passive patients, viewpoints, and
moving directions were specified as the same event. That is, we col-
lapsed the events across these variations, meaning the classifier was
trained to detect the event independent of variation in these factors.
Overall, this approachensured that theneural representationsof actions
andobject eventswe identify arenot tied to thenumberof entities in the
scene, presence/absence of humans, presence/absence of interpretable
movement, or fine-grained perceptual information. Controlling for such
factors would be difficult in a standard univariate approach, emphasiz-
ing the strength of the decoding approach for the current study.

Individual accuracy maps were entered into one-tailed one-sam-
ple t tests to identify voxels that showed above-chance classification.
Statistical maps were thresholded using Monte Carlo Cluster correc-
tion for multiple comparisons (10000 simulations). For Monte Carlo
Cluster correction, we used an initial threshold of p = 0.001 for within-
video classifications (see Figs. 2 and 3). Due to decreased signal-to-
noise ratio, we used an initial threshold of p = 0.005 for within-
sentence and cross-modal classifications (see Fig. 4). We projected
maps on a cortex-based aligned group surface for visualization using a
transparency factor of 0.8 for visibility of gyri and sulci.

ROI analysis
For a more fine-grained understanding of action and object event
decoding across frontoparietal and posterior temporal cortices, we
performed ROI analyses on areas that are commonly recruited during
action observation. We selected the relevant coordinates based on a
meta-analysis of action observation, which revealed increased activity

across a range of frontal, temporal, and parietal brain regions during
action observation tasks3. Among these regions, we primarily focused
on a bilateral network of three core regions of the so-called “action
observation network”—the lateral occipitotemporal cortex (LOTC), the
inferior parietal lobule (IPL), and the ventral premotor cortex (PMv) –
that are most strongly and consistently recruited during action
observation tasks (see refs. 3,5 for reviews). In addition to these three
core regions of the AON, for a more fine-grained understanding of
differences between actions and object events, and cross-animacy
generalization in AON more broadly, we also report results from the
superior parietal lobe and posterior superior temporal sulcus. Since
themeta-analysis providedmultiple ROIs for superior parietal lobe, for
simplicity, we used the centroid of Brodmann areas 7 for left and right
visuomotor SPL (see ref. 73). The MNI coordinates from the meta-
analysis were converted to TAL coordinates using Yale Bioimage
Suite74,75, and all ROIs were created as spheres with a 12mm radius
around their respective coordinates (TAL coordinates: left LOTC [−45
−71 6], left IPL [−58 −23 34], left PMv [−48 8 29], left pSTS [−52 −49 11],
left SPL [−18 −57 50]; right LOTC [52 −63 5], right IPL [44 −31 41], right
PMv [50 12 27], right pSTS [54 −40 8], right SPL [24 −56 54]).

From each ROI, classification scheme (e.g., action decoding,
object event decoding), and participant, we extracted decoding
accuracies from the searchlight maps and averaged accuracies across
voxels. FDR-corrected one-tailed t tests were used to test above-
chance classification for each ROI. To test for differences between
actions and object events, we entered mean decoding accuracies into
linear mixed effects models76, and two-tailed post-hoc contrasts were
implemented by estimatedmarginal means. To examine differences in
classification accuracy, we fitted linear mixed effects models testing
the interaction of event type, ROI, and if relevant, hemisphere, nested
within subjects (i.e., subject ID was defined as a random effect). We
assessed the residual normality and homoscedasticity assumptions for
each model by inspecting residual plots. Upon inspecting the residual
plots, we found no major deviations from normality or homo-
scedasticity, validating the use of these models. To test for interac-
tions, say for the interaction of event type and ROI, we compared a
model where ROI and event type were not allowed to interact with an
expanded model where ROI and event type were allowed to interact
(example R model syntax: Model 1: Classification Accuracy + Region +
Event Type + (1 |Subject ID);Model 2: Classification Accuracy ~ Region *
Event Type + (1 | Subject ID)). We compared these models using a
likelihood ratio test to examine if a model with an interaction term led
to a better fit. Following the analyses of interaction, we conducted
post-hoc contrasts to investigate the conditions driving the effects by
using pairwise two-tailed estimated marginal means. Correction for
multiple comparisons was conducted using the FDR method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawand preprocessed functional neuroimaging data, designmatrices,
sample stimuli, and the Source data underlying Figs. 2–4 and Supple-
mentary Figs. 3c, 6e, f are deposited at the Open Science Framework
(https://osf.io/h4mtp/). The full set of stimuli are available from the
corresponding author upon request.

Code availability
Analysis code is available from the corresponding author upon
request.
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