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Thermally stable threshold selector based on
CuAg alloy for energy-efficient memory and
neuromorphic computing applications

Xi Zhou 1,2,3,7, Liang Zhao 2,4,7 , Chu Yan2, Weili Zhen5, Yinyue Lin1,3, Le Li1,3,
Guanlin Du1,3, Linfeng Lu1,3, Shan-Ting Zhang1,3,6, Zhichao Lu4 &
Dongdong Li 1,3,6

As a promising candidate for high-density data storage and neuromorphic
computing, cross-point memory arrays provide a platform to overcome the
vonNeumannbottleneck and accelerate neural network computation. In order
to suppress the sneak-path current problem that limits their scalability and
read accuracy, a two-terminal selector can be integrated at each cross-point to
form the one-selector-one-memristor (1S1R) stack. In this work, we demon-
strate a CuAg alloy-based, thermally stable and electroforming-free selector
device with tunable threshold voltage and over 7 orders ofmagnitudeON/OFF
ratio. A vertically stacked 64 × 64 1S1R cross-point array is further imple-
mented by integrating the selector with SiO2-based memristors. The 1S1R
devices exhibit extremely low leakage currents and proper switching char-
acteristics, which are suitable for both storage class memory and synaptic
weight storage. Finally, a selector-based leaky integrate-and-fire neuron is
designed and experimentally implemented, which expands the application
prospect of CuAg alloy selectors from synapses to neurons.

In the era of artificial intelligence (AI) and carbon neutrality, the
demand for energy-efficient computing systems capable of solving
data-intensive computing tasks is surging rapidly. For example, state-
of-the-art machine-learning models such as Generative Pre-trained
Transformer-31 or switch transformers2 can easily incorporatemultiple
billions of computing parameters. Conventional computing hardware
based on von Neumann architecture experiences major difficulty
processing such data-centric workloads, primarily due to the bottle-
neck of data transfer between the processor and thememory blocks in
these systems (also called the “memory wall” problem)3.

In order to break the memory wall and achieve energy-saving
green AI, the design philosophy of compute-in-memory (CIM) has

attracted significant interest4–7. Such non-vonNeumann computing
systems are often realized with emerging memory technologies
such as memristors5,8, phase change memories9–11, ferroelectric
memories12 or magnetic memories13. In particular, CIM chip based on
memristors (or resistive randomaccessmemory, RRAM) is one of the
most widely studied candidates due to its advantages of low-power
operation, low-cost manufacturing and compatibility with com-
plementary metal oxide semiconductor (CMOS) technology14–16. In
order to achieve RRAM-based CIM with high storage capacity, cross-
point array is a favorable scenario in terms of unit cell area (~4F2,
where F is the minimum feature size)6,17. However, the cross-point
arrays of 2-terminal memory devices typically suffer from the
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sneak-path current problem, which significantly limits the feasible
array size18–20.

The one-selector-one-memristor (1S1R) architecture, as a gen-
eral scheme for high-density cross-point memory arrays, is able to
suppress the sneak-path currents while improving the storage
density6,21–25. An ideal selector for cross-point arrays features a small
leakage current in the OFF state, sufficiently low resistance in the ON
state, steep switching slope (SS) as well as tunable threshold voltage
(Vth) that can match the memristors for joint operations26. As of
today, selector devices based on insulator-metal transition (IMT)27,28,
ovonic threshold switching (OTS)29,30, Cu-containing mixed-ionic-
electronic conduction (MIEC)31,32 andmetal-filament-based threshold
switching33,34 have been considered for 1S1R integration. The IMT
selectors with NbOx or VO2 switching layer do not require electro-
forming but have relatively high leakage currents and are susceptible
to ambient temperature change, making it difficult to achieve large
array operations27,28. OTS selectors also exhibit limited selectivity
(~103), and their high-temperature stability for backend-of-line
(BEOL) integration is yet to be demonstrated29,30. MIEC-based selec-
tors possess a high ON/OFF ratio and promising integration potential
but exhibit relatively gradual SS31,32. Finally, metal-filament selectors
have sufficiently small leakage currents and abrupt switching but
often lack stability under high-temperature annealing35. In particular,
Ag-basedmetal-filament selectors suffer from the self-agglomeration
of Ag under BEOL thermal budget36,37, whereas Cu-based selectors
typically require higher electroforming voltages before normal
operations34. Therefore, new selector technology with high-
temperature stability, electroforming-free feature, steep SS and sui-
table ON and OFF currents is highly desired.

Furthermore, selectors and 1S1R arrays have potential applica-
tions in neuromorphic computing, which adopts certain features of
the biological neural systems to accelerate processing and mimic the
human brain. For example, spiking neural networks (SNN)16,38 and
Hopfieldneural networks (HNN)5,39 basedonmemristor crossbars have
been widely explored. SNN uses pulses to encode input information
which mimics the working pattern of the brain, potentially offering
better energy efficiency for AI computing tasks9. HNN based on
memristors has been explored for applications such as associative
memory39, pattern recognition40 and solution of non-deterministic
polynomial-time-hard problems5. However, for practical SNN/HNN
applications, large cross-point arrays (e.g., 64 × 64 or larger5,41) are
desired, which share the same sneak-path current problem as cross-
point memories, i.e., the initial weight data cannot be properly pro-
grammed into large arrays without selectors (See “Methods” and
Supplementary Fig. 1 for array simulations)42. In this regard, thermally
stable selectors with high selectivity (>106) are necessary but are rarely
demonstrated in the form of large 1S1R arrays due to integration
challenges43. Also, selector devices are solely utilized to implement the
synaptic functions so far, while the volatile and hysteresis nature of
selector switching is inherently suitable for implementing oscillatory
neurons9,44.

In this work, we demonstrate for the first time that copper-silver
(CuAg) alloy as an electrode material of selectors exhibits superior
thermal stability (400 °C/1 h) compared to either Ag or Cu electrodes,
making it compatible with CMOS BEOL processing. The high ON cur-
rent, large ON/OFF ratio (>107), electroforming-free feature and
adjustable Vth of the proposed CuAg/SiO2/CuAg selector confirm its
feasibility for large 1S1R cross-point arrays. Subsequently, a functional
64 × 64 1S1R cross-point array is experimentally demonstrated by
vertically integrating the CuAg/SiO2/CuAg selector with Pt/SiO2/TiN
RRAM, exhibiting significant suppression of sneak-path currents and
enhanced computational accuracy as synapses. Furthermore, we
demonstrate that the proposed selector can be turned into a compact
leaky integrate-and-fire (LIF) neuron by simply adding one resistor and
one capacitor in parallel, which is a rigorous physical analog of the LIF

neuron model. These results suggest that the CuAg alloy-based
selector is a promising and reliable new candidate for cross-point
memory and neuromorphic computing applications.

Results and discussion
CuAg alloy-based selector with high-temperature stability
Figure 1a, b demonstrates the device concept and working principles
of the Cu/Ag metal-filament-based selector device. These two metals
can be injected into the intermediate dielectric layer and form a con-
ductive pathwhen applying a sufficient electric field, and the switching
can be volatile due to agglomeration and surface-tension effects45,46. In
this study, the CuAg alloy is adopted as the electrodematerial34, which
is previously known for its tunable optical properties47, outstanding
mechanical strength48, durability and oxidation resistance49,50. Here,
the thermal stability of symmetrical Ag/dielectric/Ag, Cu/dielectric/Cu
and CuAg/dielectric/CuAg cross-point selector arrays are first investi-
gated comparatively. The Cu, Ag and CuAg are prepared as bottom
electrodes (BE) and top electrodes (TE) by magnetron sputtering. The
dielectric layers of SiO2 (Fig. 1) prepared by electron beamevaporation
and Al2O3 (Supplementary Fig. 2) prepared by atomic layer deposition
(ALD) are both investigated (See “Methods”). Before annealing, Ag/
SiO2/Ag, Ag/Al2O3/Ag, CuAg/SiO2/CuAg, CuAg/Al2O3/CuAg and Cu/
Al2O3/Cu selectors all exhibit steep threshold switching characteristics
with various Vth (Fig. 1c and Supplementary Fig. 2b). For Cu/SiO2/Cu
though, its selector behavior is not ideal since it has excessively strong
retention (Fig. 1c).

In order to simulate the compatibility of thedeviceswith theBEOL
processes, the devices are subjected to a high-temperature annealing
process (400 °C, Ar atmosphere, 3 mTorr, hold time 1 h), and their
root-mean-square roughness (RRMS) is determined by atomic force
microscopy (AFM). As shown in Fig. 1d and Supplementary Fig. 2a, the
Ag electrodes exhibit significant self-agglomeration after annealing.
The RRMS of the annealed device increases tremendously compared to
the initial RRMS (from 3.46 to 8.58 nm for Ag/SiO2/Ag and from 5.03 to
8.37 nm for Ag/Al2O3/Ag). In contrast, the stacks of Cu/SiO2/Cu, Cu/
Al2O3/Cu, CuAg/SiO2/CuAg and CuAg/Al2O3/CuAg maintain similar
morphology before and after annealing, in which the RRMS changes
from 2.55, 2.61, 2.79 and 2.21 nm to 3.14, 3.13, 3.78 and 3.87 nm,
respectively. In addition, the annealing process significantly degrades
the threshold switching behaviors of Ag/dielectric/Ag and Cu/dielec-
tric/Cu devices. The Ag-based devices become open due to the
apparent degradation of electrodes. On the other hand, the Vth of Cu-
based devices significantly increases (Fig. 1e and Supplementary
Figs. 2c and 3), potentially caused by copper oxidation even though
the structure seems intact. Intriguingly, the CuAg-based device still
maintains the threshold switching characteristics after annealing. The
crystalline structures of the Ag, Cu and CuAg thin films (~200nm),
which are deposited on Si/SiO2 substrates, are subsequently char-
acterized by X-ray diffraction (XRD, Fig. 1f). The combined results of
XRD, scanning transmission electron microscope (STEM, Supplemen-
tary Fig. 4a) and corresponding energy dispersive X-ray spectroscopy
(EDS) (Supplementary Fig. 4b, c) indicate that the CuAg film is an alloy
with an interplanar spacing of 2.30Å and a Cu/Ag atomic ratio of 3:5
(denoted as CuAg(3:5), if not otherwise specified, CuAg(3:5) is
expressed as CuAg in simplified form in this work). In addition, we also
vary the process conditions to obtain two more copper-silver alloys,
with the Cu/Ag atomic ratios determined as 8:3 and 4:7, respectively
(denoted as CuAg(8:3) and CuAg(4:7), see Supplementary Fig. 5a–c for
details). After 400 °C annealing, these devices with alloy electrodes
also maintain the threshold switching behaviors, indicating a wide
process window for good thermal stability (Supplementary Fig. 5d–f).

Furthermore, we explore the leakage current, voltage tunability
and endurance of the CuAg-based selectors. Symmetric CuAg/SiO2/
CuAg cross-point architecture is prepared as illustrated in Fig. 2a and
Supplementary Fig. 6a, d. The RRMS of the SiO2 interlayer (90 nm
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thickness) is ~1.95 nm, and the valence state of Si is determined to be
dominant Si4+ (103.3 eV) (Supplementary Fig. 6b, c). The tunable Vth is
achieved by varying the thickness of SiO2, where the thicknesses are
determined by AFM on patterned SiO2 films (Supplementary Figs. 7
and 8). In order to better evaluate the ON/OFF ratio, a Keithley 6430
source meter with higher precision is used to measure the switching
characteristics of the CuAg/SiO2(90 nm)/CuAg selector. The CuAg/
SiO2(90 nm)/CuAg device demonstrates stable symmetric threshold
switching characteristics with a superior SS of <0.3mVdecade−1 and an
average Vth of 316mV (Standard deviation σ ≈ 55mV) when the com-
pliance current (ICC) is set to 100μA (Fig. 2a and Supplementary
Fig. 8d). The device’s leakage current is at least smaller than 10−11 A, the
ON/OFF ratio is larger than 107 (Fig. 2a), which enables large cross-
point arrays that are very difficult to achieve with other categories of
selector technologies. Also, the enduranceof CuAg selectors can reach
over 1010 (Supplementary Fig. 9). Moreover, it should be pointed out
that the as-fabricated CuAg/SiO2/CuAg selectors do not require an
electroforming process with a voltage higher than Vth. This phenom-
enon can be explained by the lowermigration barrier of Ag/Ag+ in SiO2

compared to Al2O3, which is calculated by ab initio simulations with
the nudged elastic bandmethod51 (Supplementary Fig. 10). In addition,
the EDS mappings (Supplementary Fig. 6d) show the diffused Cu and
Ag particles, corroborating that the threshold switching of CuAg alloy-
based selectors originates from metallic conductive filaments15,34.

As mentioned above, high-performance selectors need to have
sufficiently low leakage current in the OFF state and high drive current
in theON state so as to suppress sneak-path currents and achieve high-

density arrays on the one hand, and to allow easy memory write and
read operations without significant voltage drops on the selector on
the other hand. In these regards, the CuAg/SiO2(90 nm)/CuAg selector
is potentially a promising candidate due to its negligible leakage cur-
rent (<10 pA), high ON current (>100μA), steep SS (<0.3mV decade−1),
sufficient endurance (>1010), electroforming-free feature and superior
thermal stability.

64 × 64 1S1R array for synaptic weight storage
To further explore the feasibility of applying CuAg/SiO2/CuAg selec-
tors in 1S1R arrays, we construct vertically stacked 64 × 64 1S1R array
with CuAg/SiO2/CuAg selectors and Pt/SiO2/TiN memristors. Inde-
pendent Pt/SiO2(40nm)/TiN memristors are also prepared and mea-
sured for comparison (See “Methods”). TiN electrode is obtained by
reactivemagnetron sputtering with N2/Ar flow of 0.2/20 for optimized
electrical conductivity (Supplementary Fig. 11). The device character-
istics of Pt/SiO2/TiN memristor are summarized in Fig. 2b, which
exhibit typical bipolar resistive switching behaviorswithmoderate SET
and RESET voltages52–54.

For 1S1R integration, the manufacturing processes are shown in
Supplementary Fig. 12. The as-fabricated CuAg/SiO2/CuAg/TiN/SiO2/Pt
1S1R device exhibits the desiredDC sweep characteristics (Fig. 2c). The
CuAg/SiO2/CuAg selector acts as a threshold switch with low leakage
(<10−11 A), significantly suppressing the sneak-path currents in the
cross-point array. As the sweep voltage (from CuAg TE to Pt BE)
increases, the current of the 1S1R devicefirst sharply increases at ~0.3 V
(Vth), completing the threshold switch (arrow1, Fig. 2c). Then, a second

Fig. 1 | Exploration of the CuAg alloy-based selector. a Schematic illustrations
of a metal-filament-based selector under different applied voltage (Va).
b Representative current–voltage (I–V) characteristics of a Cu/Agmetal-filament-
based selector, the ON/OFF ratio corresponds to the current variation at the read
voltage (Vread) and half-read voltage (Vread/2). c I–V characteristics of Ag/SiO2/Ag,

Cu/SiO2/Cu and CuAg/SiO2/CuAg selectors before annealing. d Surface
morphologies of Ag/SiO2/Ag, Cu/SiO2/Cu and CuAg/SiO2/CuAg devices before
and after annealing in Ar atmosphere at 400 °C for 1 h. e I–V characteristics of
annealed Ag/SiO2/Ag, Cu/SiO2/Cu and CuAg/SiO2/CuAg selectors. f XRD patterns
of the Ag, Cu and CuAg films on SiO2/Si substrates.
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current jump occurs at ~1.5 V, indicating the SET process (arrow 2).
When the voltage sweeps back to ~0.1 V (hold voltage, Vhold), the cur-
rent drops, and the selector device switches to the OFF state (arrow 3).
When the voltage sweeps to negative values, the selector turns on
again at ~−0.3 V (−Vth, arrow 4), followed by a reduction in current at
above −2 V, indicating the RESET process (arrow 5). Finally, after the
negative voltage sweeps back to ~−0.1 V (−Vhold), the current drops
again, and the device returns to the HRS (arrow 6). A full switching
cycle is hence completed. To visualize the stacking of 1S1R devices, the
cross-sectional profile is extracted by focused ion beammilling in the
middle of one 1S1R device, where the stacking order of the electrodes
and dielectric layers can be clearly observed using STEM and EDS
(Fig. 2d, e).

In addition, the potential of the 1S1R array for implementing next-
generation memory and neuromorphic computing primitives is con-
sidered. The structure schematic, chip and array photos are shown in
Fig. 3a–c. By optimizing the RRAM interlayer process, various devices in
the as-fabricated 64 ×64 1S1R array exhibit expected electrical proper-
ties, making it a promising candidate for high-density memory appli-
cations (Fig. 3d and Supplementary Fig. 13). With the integration of the
selector, the leakage current of the 64 ×64 1S1R reduces from 10−6

(64 × 64 1R in Fig. 3e) to <10−11 A (Supplementary Fig. 14). The sneak-path
current and parasitic capacitance are significantly suppressed (Supple-
mentary Fig. 15), indicating that 1S1R array is a particularly useful
technology for SNN applications with improved operation speed and
reduced power consumption. In summary, the ON/OFF ratio of 1S1R
devices achieves an improvement of 105 times relative to the Pt/SiO2/
TiN 64 ×64 1R array alone, reducing the power consumption and
improving the feasible array size as cross-point memory.

Furthermore, we demonstrate the advantages of applying 1S1R to
synaptic weight storage by performing simulations of vector matrix
multiplication (VMM)using 32 × 32 and64 × 64 cross-point arrays,with
and without selectors (See “Methods” for array simulations). Figure 3f
shows a schematic of the simulation procedure, in which the input

vector and binary weight matrices are randomly generated55–58. The
weights are encoded in the form of RRAM conductance matrix (S) in
which LRS corresponds to ‘1’ and HRS corresponds to ‘0’. During the
simulations, the LRS resistances are generated using the measured
distribution, and the ON/OFF ratios of RRAM and 1S1R are assumed to
be 100 and 107, respectively. The output results in terms of BL currents
are simulated with one fully connected (FC) layer of 64 × 64 or 32 × 32
weight matrices, as shown in Fig. 3g and Supplementary Fig. 16. These
results indicate that the arrayswith selectors are able togeneratemuch
more similar output feature maps to the theoretical values than those
without selectors. In order to quantify the accuracy of VMM compu-
tation, the correlation coefficient of the simulated output vector (IR
drop and sneak-path currents considered) versus the theoretical out-
put (by floating-point calculation) is calculated. The probability den-
sity of the correlation coefficients obtained from 1000 sets of random
inputs are shown in Fig. 3h. It can be concluded that cross-point arrays
with selectors achieve much higher VMM accuracy compared to those
without selectors (93.8% vs. 48.05% for 64 × 64 array). Subsequently,
the accuracy of VMM calculations using the 1S1R and 1 R subarrays is
also compared in Supplementary Fig. 17 to demonstrate the positive
effect of the 1S1R on the VMM. It can be seen that the accuracy
decreases significantly with increasing array size in the absence of the
selector. By eliminating the sneak-path currents, the as-fabricated 1S1R
device can strongly suppress the accuracy degradation and enable
much larger arrays of synaptic data to be accessed simultaneously,
boosting energy efficiency.

Selector-based LIF neuron
The LIF neuron is an important classical biological neuron model
which has been widely studied and adopted to mimic the human
brain59 (Fig. 4a). The LIF model features a “leaky” resistor and a capa-
citor connecting in parallel with a switch, the voltage across which
represents the membrane potential of the biological neuron (Fig. 4b).
So far, there have been many attempts to emulate LIF model with

Fig. 2 | SiO2-based selector, memristor and 1S1R device. a I–V characteristics of
the CuAg/SiO2(90 nm)/CuAg selector as determined by Keithley 6430. b I–V
characteristics of the Pt/SiO2/TiN memristor in DC voltage sweep cycles with dif-
ferent stop voltages, the Pt/SiO2/TiN memristor exhibits typical SET and RESET

processes. c I–V characteristics of the 1S1R device in DC voltage sweep cycles with
different stop voltages.dCross-sectional STEM imageof one 1S1Rdevice. eThe EDS
mapping and linear sweep results with the elements Ag, Cu, Ti, N, Pt, Si and O
corresponding to (d).
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CMOS analog circuits60 or non-volatile memories such as NOR Flash61

or FeFET62. Figure 4c depicts a key feature of the LIF neuron: there is
minimal input for the neuron to reach the threshold and fire, and once
the threshold is reached, the firing frequency increases almost linearly
with increasing input. By setting the refractory period (τ0), RC time
constant (τRC) and threshold current (Ith), the variation curve of firing
rate with input current in Fig. 4c is simulated. Compared to other
selectors with higher leakage (e.g., VO2

28, NbOx
10, or OTS-based30), the

extremely low leakage currents of CuAg alloy-based selectors is the key
enabler for implementing a LIF neuron. This is because the equivalent
leaky resistance of the LIF neuron circuits depends on both the parallel
resistor and theOFF state resistance of the switch.With the connection
topology of Fig. 4b, the CuAg alloy-based selector’s OFF state resis-
tance and its impact on the parameters of the LIF neuron is negligible
compared to the parallel resistor, where the value of the parallel
resistor can be well controlled in modern integrated circuit design.

In order to characterize the behaviors of the proposed LIF neuron,
we carry out electrical measurements using the setup shown in Fig. 4d

and Supplementary Fig. 18. When a constant current is input to the
neuron, it will charge up the capacitor and increase the input node
voltage from 0V, which in turn will induce leakage current through
the parallel resistor. If the input current is smaller than the Ith (Fig. 4e),
the input node voltage will saturate at a voltage smaller than the Vth

of the selector, and the neuron will not be fired. On the other hand, if
the input current is above Ith, the input node voltagewill rise above Vth,
leading to an ON state of the selector device (i.e., the neuron is fired).
The firing of the neuron manifests itself as a high transient current
across the device and the discharge of the parallel capacitor. Based on
the mechanism described above, the Ith of the LIF neuron can be
derived in terms of the selector Vth: Ith = Vth/R. The firing frequency of
the selector-based LIF neuron also increaseswith the input current due
to the less time needed to charge up the parallel capacitor again. In
summary, the LIF behaviors predicted by the theoretical model have
been experimentally observed from the selector-based LIF neuron.We
may conclude that the proposed LIF neuron circuit based on CuAg
alloy selectors is a near-perfect physical analog of the LIF model.

Fig. 3 | The 64× 64 1S1R array. a Schematic illustration of the integrated 1S1R
devices. b Photo of the integrated 64 × 64 1S1R chip. c Optical micrograph of the
64 × 64 1S1R array. The inset shows an AFM image of one 1S1R device. d I–V char-
acteristics of different 1S1R devices in a 64 × 64 array. e I–V characteristics of the Pt/
SiO2/TiN memristor measured from the 64 × 64 1R array. The inset shows the
optical image of the 64 × 64 1R array. f Schematic diagramof VMMsimulation using
cross-point array, where the voltage vector input to the word line (WL) is a random

value and the current after VMM is output from the bit line (BL). g Output feature
mapobtainedby VMMsimulation using one FC layerwith 64 × 64weightmatrix for
the theoretical output (left), without selector (middle), and with selector (right),
respectively. h Probability density of the correlation coefficients between the the-
oretical results and the output results obtained by generating 1000 random sets of
voltage vectors and weight matrices fed into the RRAM matrix with and without
selector.
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In summary, we have demonstrated the CuAg alloy-based selector
as a promising candidate for high-density cross-point memory and
neuromorphic computing applications, which features simple pre-
paration processes, good thermal stability, electroforming-free selector
behaviors, tunable Vth and over 7 orders of magnitude ON/OFF ratio.
Based on this selector device, the proper 1S1R device characteristics in a
vertically stacked 64 ×64 1S1R cross-point array are achieved, including
sufficiently low sneak-path current, desirable I–V curves, stablememory
window and switching endurance. Such cross-point arrays can be used
to store the synaptic weights of neural networks and achieve more
accurate andenergy-efficient in-memory computation forAI. A selector-
based LIF neuron is also experimentally demonstrated, providing a new
perspective for the application of such devices as neurons. The CuAg-
alloy electrode selector has good thermal stability that is compatible
with the CMOS BEOL process. It can potentially realize the on-chip
integration of 1S1R array and LIF neuron, which implements two dif-
ferent functions (synapse and neuron) on one technology platform.

Methods
Device fabrication

(1) CuAg-based selector: The Cu, Ag and CuAg BE are deposited on
polished SiO2 (300 nm) on Si wafers by means of standard
photolithography and magnetron sputtering (AJA, ACT Orion 8).
Cu and Ag are obtained by magnetron sputtering of 50.8mm
diameter Cu target (99.99% purity) and Ag target (99.99% purity),
respectively. During the co-sputtering process, the Ag target is
sputtered at a radio frequency power of 60W/120W/240W, and
the Cu target is sputtered at a direct current power of 60W. SiO2

films with different thicknesses are obtained by electron beam
evaporation with an acceleration voltage of 10 kV at room
temperature (99.99% purity of SiO2 particles, evaporation rate:
~5 Å/s). The Al2O3 layer is deposited on the BE by the ALD process
(200 °C, 60 cycles). For a single cycle of ALD, trimethylaluminum
(TMA) is first pulsed to 70 Pa for 0.02 s, followed by a 15 s purge.
H2O is then pulsed to 90 Pa for 0.01 s, followed by a 20 s purge.
After that, Cu, Ag and CuAg alloy thin films as TE are deposited by
photolithography and magnetron sputtering.

(2) Annealing process: All selectors are placed in an argon atmosphere
(3 mTorr) at a heating rate of 0.3 °C per second to 400 °C and
maintained for 1 h, followed by slow cooling to room temperature.

(3) Pt/SiO2/TiN memristors: Patterned Ti/Pt (5/15 nm) as BE are
deposited at room temperature by means of photolithography
and electron beam evaporation (99.99% purity of Ti and Pt par-
ticles). SiO2 films are obtained by electron beam evaporation with
an acceleration voltage of 10 kV at room temperature (99.99%
purity of SiO2 particles, evaporation rate: ~5 Å/s). Patterned TiN as
TE is deposited at room temperature by sputtering (AJA, ACT
Orion 8) Ti target (99.99% purity) in N2/Ar flow ratio of 0.2 sccm
/20 sccm (3 mTorr) at room temperature.

(4) The 1S1R array: The 64 × 64 1S1R array consists of CuAg/SiO2/
CuAg selectors and Pt/SiO2/TiN memristors stacked vertically,
and the fabrication steps are detailed in Supplementary Fig. 12.

Materials characterizations
Opticalmicroscope images are obtained by 3D laser scanning confocal
microscope (Keyence VK9710K). AFM images and Raman spectra are
obtained by a combined AFM/Raman (532 nm) instrument (NT-MDT

Fig. 4 | On the validation of selector-based LIF neuron. a Schematic diagram of a
biological neuron. bCircuitmodel of a LIF neuron, the relationship between the I(t)
and the u(t) is described by the equation in (b), where urest is the restingmembrane
potential. c Simulation schematic of a LIF response function, where the relationship

between the firing rate and the input current is described by the equation in (c).
d Circuit for implementing the selector-based LIF neuron. e Experimental
demonstrationof the LIF neuron’s firing ratewith various input currents (I1 ≈ 1.8μA,
I2 ≈ 2.0μA and I3 ≈ 2.2μA).
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NTEGRA). The composition and structural analyses are carried out by
XRD (RigakuD/max2200) andX-ray photoelectron spectroscopy (XPS,
Thermo Fisher 250 XI). STEM images and corresponding EDS are
obtained by FEI Titan Themis 200.

Electrical measurements
Electrical characterizations are executed with an Agilent B1500A
semiconductor device parameter analyzer, a Keithley 6430 source
meter, an Agilent MSO7054A oscilloscope, a Keysight 33250A wave-
form generator, a Keithley 4200 SCS, a Keithley 707A switch matrix,
and a self-made variable resistance box (10 k, 100 k, 1M and 10 MΩ).

Array simulations
The input parameters of then × n cross-point array simulations include
voltage vector applied to the WL [V1, V2, V3,…, Vn], the weight data in
the form of conductance matrix corresponding to all cross-points
[S1,1,…, Sn,n], and the line resistances between two adjacent junctions
along WLs or BLs (RWL, RBL). The output parameters of VMM are
defined as the current vector read from the BLs [I1, I2, I3,…, In] when the
BL voltages are fixed at zero. The junction conductance is defined by
themeasured results of 1S1R devices, and the line resistance is defined
with empirical values. The cross-point array simulations are performed
as SPICE-style simulations of the equivalent circuits implemented in
MATLAB. The steady-state electrical characteristics of a cross-point
array can be completely described by the WL plane voltages [VWL(i, j)]
and BL plane voltages [VBL(i, j)] at each cross-point, where 1 ≤ i, j ≤ n.
Based on Kirchhoff’s law and the input parameters, these 2 × n × n
voltage variables can be written in matrix form and solved for the
currents in an iterative manner. The accuracy of the VMM operations
using the cross-point array is characterized by the statistical results of
the correlation coefficient between the simulated output current
vector and the theoretical output vector, obtained using multiple sets
of randomly generated input parameters (See Supplementary Fig. 1
and Supplementary Table 1 for further details).

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The simulation codes supporting the findings of this study are avail-
able from the corresponding authors upon reasonable request.
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