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Quantum simulation of exact electron
dynamics can be more efficient than
classical mean-field methods

Ryan Babbush 1 , William J. Huggins 1, Dominic W. Berry2, Shu Fay Ung3,
Andrew Zhao 1,4, David R. Reichman 3, Hartmut Neven 1,
Andrew D. Baczewski 5 & Joonho Lee 1,3,6

Quantum algorithms for simulating electronic ground states are slower than
popular classical mean-field algorithms such as Hartree–Fock and density
functional theory but offer higher accuracy. Accordingly, quantum computers
have been predominantly regarded as competitors to only the most accurate
and costly classical methods for treating electron correlation. However, here
we tighten bounds showing that certain first-quantized quantum algorithms
enable exact time evolution of electronic systems with exponentially less
space and polynomially fewer operations in basis set size than conventional
real-time time-dependent Hartree–Fock and density functional theory.
Although the need to sample observables in the quantum algorithm reduces
the speedup, we show that one can estimate all elements of the k-particle
reduced density matrix with a number of samples scaling only poly-
logarithmically in basis set size. We also introduce a more efficient quantum
algorithm for first-quantizedmean-field state preparation that is likely cheaper
than the cost of time evolution. We conclude that quantum speedup is most
pronounced for finite-temperature simulations and suggest several practically
important electron dynamics problems with potential quantum advantage.

Quantum computers were first proposed as tools for dynamics by
Feynman1 and later shown to be universal for that purpose by Lloyd et
al.2. Like those early papers, most work on this topic assumes that the
advantage of quantum computers for dynamics is that they provide an
approach to simulation with systematically improvable precision but
without scaling exponentially. Here, we advance and analyze a differ-
ent idea: certain (exact) quantum algorithms for dynamics may be
more efficient than even classical methods that make uncontrolled
approximations. By exact we mean that the time-evolved quantum
state differs in 1-norm from the full configuration interaction dynamics
within a basis by at most ϵ, regardless of the initial state, with a
refinement cost scaling as Oðlogð1=ϵÞÞ. We examine this in the context

of simulating interacting fermions—systems of relevance in fields such
as chemistry, physics, and materials science.

It is often the case that practically relevant ground-state problems
in chemistry andmaterials science do not exhibit a strong correlation.
For those problems, many classical heuristic methods work well3–5.
Even for some strongly correlated systems, there are successful
polynomial-scaling classical methods6. Here, we argue that even if
electronic systems are well described by mean-field theory, quantum
algorithms can achieve speedup over classical algorithms for simu-
lating the time evolution of such systems. We focus on comparing to
mean-field methods such as real-time time-dependent Hartree–Fock
and density functional theory due to their popularity and well-defined
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scaling. Nonetheless, many of our arguments translate to advantages
over other classical approaches to dynamics that are more accurate
and expensive than mean-field methods. This is a sharp contrast to
prior studies of quantum algorithms, which have focused on strongly
correlated ground state problems such as FeMoCo7–11, P45012, chro-
miumdimers13 and jellium14–17, assessing quantum advantage over only
the most accurate and costly classical algorithms.

Quantum algorithms competitive with classical algorithms for
efficient-to-simulate quantum dynamics have been analyzed in con-
texts outside of fermionic simulation. For example, work by Somma18

showed that certain one-dimensional quantum systems, such as har-
monic oscillators, could be simulated with sublinear complexity in
system size. Experimentally motivated work by Geller et al.19 also
proposed simulating quantum systems in a single-excitation subspace,
a task for which they suggested a constant factor speedup was plau-
sible. However, neither work is connected to the context studied here.

In this work, we begin by analyzing the cost of classicalmean-field
dynamics and recent exact quantum algorithms in first quantization,
focusing on why there is often a quantum speedup in the number of
basis functions over classicalmean-fieldmethods. Next, we analyze the
overheads associated with measuring quantities of interest on a
quantum computer and introduce more efficient methods for mea-
suring the one-particle reduced density matrix in the first quantization
(which characterizes all mean-field observables). Then, we discuss the
costs of preparing mean-field states on the quantum computer and
describe new methods that make this cost likely negligible compared
to the cost of time evolution.We concludewith a discussion of systems
where these techniques might lead to a practical quantum advantage
over classical mean-field simulations.

Results
Classical mean-field dynamics
Here we will discuss mean-field classical algorithms for simulating the
dynamics of interacting systems of electrons and nuclei. Thus, we will
focus on the ab initio Hamiltonian with η particles discretized using N
basis functions, which can be expressed as

H =
XN
μν

hμνa
y
μaν +

1
2

XN

μνλσ

μν∣λσð Þay
μa

y
λaσaν ð1Þ

where aðyÞ
μ is the fermionic annihilation (creation) operator for the μ-th

orbital and integral values are given by

hμν =
Z

dr ϕ*
μ rð Þ �∇2

2
+V rð Þ

 !
ϕν rð Þ, ð2Þ

μν∣λσð Þ=
Z

dr1dr2
ϕ*

μ r1
� �

ϕν r1
� �

ϕ*
λ r2
� �

ϕσ r2
� �

∣r1 � r2∣
: ð3Þ

Here, V(r) is the external potential (perhaps arising from the nuclei)
and ϕμ(r) represents a spatial orbital.

Exact quantum dynamics is encoded by the time-dependent
Schrödinger equation given by

i
∂
∂t

∣ψ tð Þ�=H∣ψ tð Þ� : ð4Þ

Mean-field dynamics, such as real-time time-dependent Hartree–Fock
(RT-TDHF)20, employs a time-dependent variational principle within
the space of single Slater determinants (i.e., anti-symmetrized product
states) to approximate Eq. (4). Othermethods with similar cost such as
real-time time-dependent density functional theory (RT-TDDFT) rely
on a relationship between the interacting system and an auxiliary non-

interacting system to define dynamics within a space of single Slater
determinants20–22. In bothmethods, there are η occupied orbitals, each
expressed as a linear combination of N basis functions using the
coefficient matrix, Cocc. The dimension of Cocc is N × η. These orbitals
constitute a Slater determinant, requiring OðNη logð1=ϵÞÞ space for
classical storage.

As a result of this approximation, we solve the following effective
time-dependent equation for the occupied orbital coefficients that
specify the Slater determinant Cocc(t) at a given moment in time:

i
∂Cocc tð Þ

∂t
=F tð ÞCocc tð Þ ð5Þ

where the effective one-body mean-field operator F(t), also known as
the time-dependent Fock matrix, is

Fμν tð Þ=hμν +
XN

λσ

μν∣λσð Þ � μσ∣λνð Þ
2

� �
Pσλ tð Þ ð6Þ

with PðtÞ=CoccðtÞðCoccðtÞÞy. While F(t) is an N ×N dimensional matrix,
we can apply it to Cocc(t) without explicitly constructing it, thus
avoiding a space complexity of OðN2 logð1=ϵÞÞ. Using the most com-
mon methods of applying this matrix to update each of η occupied
orbitals in Cocc(t) requires eOðN2ηÞ total operations. (Throughout the
paper we use the convention that eOð�Þ implies suppressing poly-
logarithmic factors).

However, a recent technique referred to as occ-RI-K by Head-
Gordon and co-workers23, and similarly Adaptively Compressed
Exchange (ACE)24,25 by Lin and co-workers, further reduces this cost.
These methods leverage the observation that, when restricted to the
subspace of the η occupied orbitals, the effective rank of the Fock
operator scales as OðηÞ. This gives an approach to updating the Fock
operator that requires only

eOðN η2Þ ð7Þ

operations. Below we will use gate complexity and the number of
operations interchangeably when discussing the scaling of classical
algorithms. Although these techniques are not implemented in every
quantum chemistry code, we regard them as the main point of com-
parison to quantum algorithms. We also note that RT-TDDFT with
hybrid functionals26 has the same scaling as RT-TDHF. Simpler RT-
TDDFT methods (i.e., those without exact exchange) can achieve
better scaling, eOðNηÞ in a plane wave basis, but are often less accurate.

For finite-temperature simulation, one often needs to track M > η
orbitals with appreciable occupations, increasing the space complex-
ity toOðNM logð1=ϵÞÞ. This increases the cost of occ-RI-K or ACEmean-
field updates to eOðNM2Þ. At temperatureswell above the Fermi energy,
most orbitals have appreciable occupations soM≃N. More expensive
methods for dynamics that include electron correlation in the
dynamics tend to scale at least linearly in the cost of ground state
simulation at that level of theory. Thus, speedup over mean-field
methods implies speedup over more expensive methods.

In recent years, by leveraging the nearsightedness of electronic
systems27, linear-scaling methods have been developed that achieve
updates scaling as OðNÞ28. For RT-TDHF and RT-TDDFT, linear scaling
comes from the fact that the off-diagonal elements of P fall off quickly
withdistance for the ground state29 and some low-lying excited states30

in a localized basis. One can show that for gapped ground states, the
decay rate is exponential, whereas for metallic ground states, it is
algebraic27. However, often such asymptotic behavior only onsets for
very large systems, and the onset can be highly system-dependent.
This should be contrasted with the scaling analyzed above and the
scaling of quantum algorithms (vide infra) that onsets already at
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modest system sizes. Furthermore, the nearsightedness of electrons
does not necessarily hold for dynamics of highly excited states and at
high temperatures. It has also been suggested that one can exploit a
low-rank structure of occupied orbitals using the quantized tensor
train format31. Assuming the compression of orbitals in real space is
efficient such that the rank does not grow with system size or the
number of grid points, the storage cost is reduced to ~OðηÞ, and the
update cost is ~Oðη2Þ. It is unclear howwell compression canbe realized
for dynamics problems and finite-temperature problems, and to our
knowledge, it has never been deployed for those purposes. Due to
these limitations, we do not focus on comparing quantum algorithms
to classical linear-scaling methods or quantized tensor train
approaches.

We now discuss how many time steps are required to perform
time evolution using classical mean-field approaches. The number of
time steps will depend on the target precision as well as the total
unitless time

T = max
Cocc

∣F∣ t, ð8Þ

where t is the duration of time-evolution and ∥⋅∥ denotes the spectral
norm. This dependence on the norm of F is similar to what would be
obtained in the case of linear differential equations despite the
dependence on Cocc; see Supplementary Note 1 for a derivation. We
can upper bound T by considering its scaling on a local basis, and with
open boundary conditions. We find

max
Cocc

∣F∣ =O η2=3

δ
+

1

δ2

� �
=O N1=3η1=3 +

N2=3

η2=3

 !
, ð9Þ

where δ =Oððη=NÞ1=3Þ is the minimum grid spacing when taking cell
volume proportional to η. The first term comes from the Coulomb
operator, and the second comes from the kinetic energy operator.

We briefly describe how this scaling for the norm is obtained and
refer the reader to Supplementary Note 1 for more details. The 1/δ2

term is obtained from the kinetic energy term in hμν. When diag-
onalized, that termwill be non-zeroonlywhenμ = νwith entries scaling
as Oð1=δ2Þ due to the ∇2 in the expression for hμν. That upper bounds
the spectral norm for this diagonal matrix, and the spectral norm is
unchanged under a change of basis. The η2/3/δ comes from the sum in
the expression for Fμν. To bound the tensor norm of (μν∣λσ) − (μσ∣λν)/2
we can bound the norms of the two terms separately. For each, the
tensor norm can be upper bounded by noting that the summing over
μν, λσ with normalized vectors corresponds to transformations of the
individual orbitals in the integral defining (μν∣λσ). Sinceorbitals cannot
be any more compact than width δ, the 1/∣r1 − r2∣ in the integral
averages to give Oð1=δÞ. There is a further factor of η2/3 when
accounting for η electrons that cannot be any closer than η1/3δ on
average.

The number of time steps required to effect evolution to within
error ϵ depends on the choice of time integrator. Many options are
available32–34, and the optimal choice depends on implementation
details like the basis set and pseudization scheme, as well as the
desired accuracy35. In Supplementary Note 1, we argue that the mini-
mum number of time steps t/Δt one could hope for by using an arbi-
trarily high order integration scheme of this sort is T1+o(1)/ϵo(1). In
particular, for an order k integrator, the error can be bounded as
Oððk F k ΔtÞk + 1Þ, with a possibly k-dependent constant factor that is
ignored in this expression. That means the error for t/Δt time steps is
Oðt k Fkk + 1ΔtkÞ. To obtain error no more than ϵ, take
ðt=ΔtÞk =Oððt k Fkk + 1=ϵÞ, so the number of time steps is
t=Δt =OðT 1 + 1=k=ϵ1=kÞ. Plugging Eq. (9) into Eq. (8) and multiplying the
update cost in Eq. (7) by T1+o(1)/ϵo(1) time steps, we find the number of

operations required for classical mean-field time-evolution is

N4=3η7=3t +N5=3η4=3t
� � Nt

ϵ

� �o 1ð Þ
: ð10Þ

Finally, when performing mean-field dynamics, the central quan-
tity of interest is often the one-particle reduced density matrix
(1-RDM). The 1-RDM is an N ×N matrix defined as a function of time
with matrix elements

ρμν tð Þ= ψ tð Þ	
∣ay

μaν ∣ψ tð Þ�: ð11Þ

The 1-RDM is the central quantity of interest because it can be
used to reconstruct any observable associated with a Slater
determinant efficiently. For more general states, one would also
need higher order RDMs; however, all higher order RDMs can be
exactly computed from the 1-RDM via Wick’s theorem when the
wavefunction is a single Slater determinant36. Thus, when mean-
field approximations work well, the time-dependent 1-RDM can
also be used to compute multi-time correlators such as Green’s
functions and spectral functions.

Exact quantum dynamics in first quantization
One of the key advantages of some quantum algorithms over mean-
field classical methods is the ability to perform dynamics using the
compressed representation of first quantization. First-quantized
quantum simulations date back to refs. 37–40. They were first
applied to fermionic systems in ref. 38 and developed for molecular
systems in refs. 41,42. In first quantization, one encodes the wave-
function using η different registers (one for each occupied orbital),
each of size logN (to index the basis functions comprising each
occupied orbital). The space complexity of first-quantized quantum
algorithms is Oðη logNÞ.

As described previously, mean-field classical methods require
space complexity of OðNη logð1=ϵÞÞ where ϵ is the target precision.
Thus, these quantum algorithms require exponentially less space in N.
Usually, when one thinks of quantum computers more efficiently
encoding representations of quantum systems, the advantage comes
from the fact that the wavefunction might be specified by a Hilbert

space vector of dimension
N
η

� �
and could require as much space to

represent explicitly on a classical computer. However, this alone can-
not give exponential quantum advantage in storage in N over classical
mean-field methods since mean-field methods only resolve entangle-
ment arising from antisymmetry and do not attempt to represent
wavefunction in the full Hilbert space. Instead, the scaling advantage
these quantum algorithms have over mean-field methods is related to
the ability to store the distribution of each occupied orbital over N
basis functions, using only logN qubits. But quantum algorithms
require more than the compressed representations of first quantiza-
tion in order to realize a scaling advantage over classical mean-field
methods; they must also have sufficiently low gate complexity.

Here we review and tighten bounds for the most efficient known
quantum algorithms for simulating the dynamics of interacting elec-
trons. Early first-quantized algorithms for simulating chemistry
dynamics such as refs. 41,42 were based on Trotterization of the time-
evolution operator in a real space basis and utilized the quantum
Fourier transform to switch between a representation where the
potential operator was diagonal and the kinetic operatorwas diagonal.
This enabled Trotter steps with gate complexity eOðη2Þ but the number
of Trotter steps required for the approach of those papers scaled
worse than linearly inN,η, the simulation time t and thedesired inverse
error in the evolution, 1/ϵ.
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Leveraging recent techniques for bounding Trotter error43–45, in
Supplementary Note 2 we show that using sufficiently high-order
Trotter formulas, the overall gate complexity of these algorithms can
be reduced to

N1=3η7=3t +N2=3η4=3t
� � Nt

ϵ

� �o 1ð Þ
: ð12Þ

This is the lowest reported scaling of any Trotter-based first-quantized
quantum chemistry simulation. We remark that the N1/3η7/3t scaling is
dominant whenever N <Θ(η3). In that regime, it represents a quartic
speedup in basis size for propagation over the classical mean-field
scaling given in Eq. (10).While efficient explicit circuits suchas those in
ref. 46 can be used to perform Trotter steps in this representation,
more work would be required to determine the constant factors
associatedwith the number of Trotter steps required. Prior analyses of
the requisite Trotter number for chemistry have generally found that
constant factors are low, but focused on different representations or
lower order formulas16,47–50.

The first algorithms to achieve sublinear scaling in N were those
introduced by Babbush et al.51. That work focused on first-quantized
simulation in a plane wave basis and leveraged the interaction picture
simulation scheme of ref. 52 to give gate complexity scaling as

eO N1=3η8=3t
� �

: ð13Þ

When N >Θ(η4), this algorithm ismore efficient than the Trotter-based
approach. Since that is also the regime where the second term in
Eq. (10) dominates that scaling, this represents a quintic speedup in N
and a quadratic slowdown in η over mean-field classical algorithms.
The work of Su et al.53 analyzed the constant factors in the scaling of
this algorithm for use in ground state preparation via quantum phase
estimation54. In Supplementary Note 3 of this work, we analyze the
constant factors in the scaling of this algorithm when deployed for
time evolution. Su et al.53 also introduced algorithms with the same
scaling as Eq. (13) but in a grid representation (seeAppendix K therein).

A key component of the algorithms of refs. 51,53 is the realization
of block encodings55 with just eOðηÞ gates. The difficult part of block
encoding is preparing a superposition state with amplitudes propor-
tional to the square root of the Hamiltonian term coefficients. A novel
quantum algorithm is devised in ref. 51, which scales only poly-
logarithmically in basis size. The N1/3 dependence of Eq. (13) enters via
the number of times the block encoding must be repeated to perform
time evolution, related to the normof the potential operator. Suppose
one can soften the Coulomb potential while retaining target precision
for the simulation. In that case, the norm of the potential term can be
reduced to polylogarithmic dependence on N (see Supplementary
Note 4 for details). In that case, an exponential quantum advantage in
N is possible.

We note that second-quantized algorithms outperform first-
quantized quantum algorithms in gate complexity when N <Θ(η2).
This is because while the best scaling Trotter steps in the first quanti-
zation require eOðη2Þ gates42, the best scaling Trotter steps in the sec-
ond quantization require eOðNÞ gates. As recently shown in ref. 45, such
approaches lead to a total gate complexity for Trotter-based second-
quantized algorithms scaling as

N4=3η1=3t +
N5=3

η2=3
t

 !
Nt
ϵ

� �o 1ð Þ
: ð14Þ

In the limit that η =Θ(N), this approach has OðN5=3Þ gate complexity,
which is significantly less than theOðN8=3Þ gate complexity of Trotter-
based first-quantized quantum algorithms mentioned here, or the
OðN11=3Þ gate complexity of classical mean-field algorithms. (See
Supplementary Note 5 for a discussion on the overall quantum

speedup in different regimes of how N scales in η.) However, these
second-quantized approaches generally require at least OðNÞ qubits.
The approach used in ref. 45 to implement Trotter steps involves the
fast multipole method56, which requires OðN logNÞ qubits as well as
the restriction to a grid-like basis. When using such basis sets, we
expect N≫ η, and so this space complexity would be prohibitive for
quantum computers.

Methods such as fast multipole56, Barnes-Hut57, or particle-mesh
Ewald58 compute the Coulomb potential in time eOðηÞ when imple-
mented within the classical random access memory model. If the
Coulomb potential could be computed with that complexity on a
quantum computer it would speed up the first-quantized Trotter
algorithms discussed here by a factor of OðηÞ. However, it is unclear
whether such algorithmsextend to the quantumcircuitmodelwith the
same complexity without unfavorable assumptions such as QRAM59,60,
or without restricting the maximum number of electrons within a
region of space (see Supplementary Note 5 for details). Thus, we
exclude such approaches from our comparisons here.

Quantum measurement costs
In contrast to classical mean-field simulations, on a quantum compu-
ter, all observables must be sampled from the quantum simulation.
There are a variety of techniques for doing this, with the optimal
choice depending on the target precision in the estimated observable
as well as the number and type of observables one wishes to measure.
For example, when measuringW unit norm observables to precision ϵ
one could use algorithms introduced in ref. 61 which require eOð

ffiffiffiffiffi
W

p
=ϵÞ

state preparations and OðW logð1=ϵÞÞ ancillae. Thus, to measure all
W =OðN2Þ elements of the 1-RDM to a fixed additive error in each
element, this approachwould require eOðN=ϵÞ circuit repetitions. While
scaling optimally in ϵ for quantum algorithms, this linear scaling in N
would decrease the speedup over classical mean-field algorithms.

Here we introduce a new classical shadows protocol for measur-
ing the 1-RDM. Classical shadows were introduced in ref. 62 and
adapted for second-quantized fermionic systems in refs. 63–66. Our
approach is to apply a separate randomClifford channel to each of the
η different logN sized registers representing an occupied orbital.
Applying a random Clifford on logN qubits requires Oðlog2 NÞ gates;
thus, Oðηlog2 NÞ gates comprise the full channel (a negligible cost
relative to time-evolution). In Supplementary Note 6, we prove that
repeating this procedure eOðη=ϵ2Þ times enables the estimation of all
1-RDMelements towithin additive error ϵ.We also prove that this same
procedure allows for estimating all higher-order k-particle RDMs ele-
ments with eOðkkηk=ϵ2Þ circuit repetitions. In the next section and in
Supplementary Note 7, we describe a way to map second-quantized
representations to first quantization, effectively extending the
applicability of these classical shadows techniques to second quanti-
zation as well.

To give some intuition for how this works, we consider the 1-RDM
elements in first quantization:

ρμν tð Þ= ψ tð Þ	
∣
Xη

j = 1

∣μ
�

νh ∣j

 !
∣ψ tð Þ� , ð15Þ

where the subscript j indicates which of the η registers the orbital-ν to
orbital-μ transition operator acts upon. Due to the antisymmetry of the
occupied orbital registers in first quantization, we could also obtain
the 1-RDM by measuring the expectation value of an operator such as
η∣p
�

q
	

∣1, which acts on just one of the η registers. Because η∣p
�

q
	

∣1
has the Hilbert–Schmidt norm ofOðηÞ, the standard classical shadows
procedure applied to this logN sized register would require eOðη2=ϵ2Þ
repetitions. But we can parallelize the procedure by also collecting
classical shadows on the other η − 1 registers simultaneously. One way
of interpreting the results we prove in Supplementary Note 6 is that,
due to antisymmetry, these registers are anticorrelated. As a result,
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collecting shadows on all η registers simultaneously reduces the
overall costby at least a factorofη. ToobtainW elements of the 1-RDM,
one will need to perform an offline classical inversion of the Clifford
channel that will scale as eOðWη2=ϵ2Þ; of course, any quantum or
classical algorithm for estimating W quantities must have gate
complexity of at least W. However, this only needs to be done once
and does not scale in t. As a comparison, the cost of computing 1-RDM
classically without exploiting sparsity is OðWηÞ.

When simulating systems that are well described by mean-field
theory, all observables can be efficiently obtained from the time-
dependent 1-RDM. However, for observables such as the energy that
have a norm growing in system size or basis size, targeting fixed
additive error in the 1-RDM elements will not be sufficient for fixed
additive error in the observable. In such situations, it could be pre-
ferable to estimate the observable of interest directly using a combi-
nation of block encodings55 and amplitude amplification67 (see e.g.,
ref. 68). Assuming the cost of block encoding the observable is negli-
gible to the cost of time-evolution (true for many observables,
including energy), this results in needing Oðλ=ϵÞ circuit repetitions,
where λ is the 1-norm associated with the block encoding of the
observable. For example, whereas there are many correlation func-
tions with λ=Oð1Þ, for the energy λ=OðN1=3η5=3 +N2=3η1=3Þ51. Multi-
plying that to the cost of quantum time-evolution further reduces the
quantum speedup.

The final measurement cost to consider is that of resolving
observables in time. In some cases, e.g., when computing scattering
cross sections or reaction rates, one might be satisfied measuring the
state of the simulation at a single point in time t. However, in other
situations, one might wish to simulate time-evolution up to a max-
imum duration of t, but sample quantities at L different points in time.
Most quantum simulation methods that accomplish this goal scale as
OðLÞ (OðLtÞ in the case where the points are evenly spaced in time).
However, the work of ref. 61 shows that this cost can be reduced to
Oð

ffiffiffi
L

p
tÞ, but with an additional additive space complexity of eOðLÞ.

Either way, this is another cost that plagues quantum but not classical
algorithms.

Quantum state preparation costs
Initial state preparation canbe as simple or as complex as the state that
one desires to begin the simulation in. Since the focus of this paper is
outperforming mean-field calculations, we will discuss the cost of
preparing Slater determinants within first quantization. For example,
one may wish to start in the Hartree–Fock state (the lowest energy
Slater determinant). Classical approaches to computing the

Hartree–Fock state scale as roughly eOðNη2Þ in practice23,24. This is a
one-time additive classical cost that is notmultiplied by the durationof
time-evolution so it is likely subdominant to other costs.

Quantum algorithms for preparing Slater determinants have
focused on the Givens rotation approach introduced in ref. 69 for
second quantization. That algorithm requires OðNηÞ Givens rotation
unitaries. Such unitaries can be implemented with Oðη logNÞ gates in
first quantization53,70, hence combining that with the sequence of
rotations called for in ref. 69 gives an approach to preparing Slater
determinants in first quantization with eOðNη2Þ gates in total, a rela-
tively high cost. Unlike theoffline cost to compute theoccupiedorbital
coefficients, this state preparation cost would be multiplied by the
number of measurement repetitions.

Here, we develop a new algorithm to prepare arbitrary Slater
determinants in first quantizationwith only eOðNηÞ gates. The approach
is to first generate a superposition of all of the configurations of
occupied orbitals in the Slater determinant while making sure that
electron registers holding the label of the occupied orbitals are always
sorted within each configuration so that they are in ascending order.
This is necessary because, without such structure (or guarantees of
something similar), the next step (anti-symmetrization) could not be
reversible. For this next step, we apply the anti-symmetrization pro-
cedure introduced in ref. 71, which requires onlyOðη logη logNÞ gates
(a negligible additive cost). Note that if one did not need the property
that the configurations were ordered by the electron register, then it
would be relatively trivial to prepare an arbitrary Slater determinant as
a product state of η different registers, each in an arbitrary super-
position over logN bits (e.g., using the brute-force state preparation
of ref. 72).

A high-level description of how the superposition of ordered
configurations comprising the Slater determinant is prepared now
follows, with details given in Supplementary Note 7. The idea is to
generate the Slater determinant in second quantization in an ancilla
register using the Givens rotation approach of ref. 69, while mapping
the second-quantized representation to a first-quantized representa-
tion one second-quantized qubit (orbital) at a time. One can get away
with storing only η non-zero qubits (orbitals) at a time in the second-
quantized representation because the Givens rotation algorithm gra-
dually produces qubits thatdonot require further rotations.Whenever
one produces a new qubit in the second-quantized representation that
does not require further rotations, one can convert it to the first-
quantized representation, which zeros that qubit. Thus, the procedure
only requiresOðηÞ ancilla qubits—a negligible additive space overhead.
A total of OðNη logNÞ gates are required because for each of OðNÞ

Table 1 | Costs of exact quantum algorithms and mean-field classical algorithms for simulating fermionic dynamics

Processor Algorithm Observable Space Gate complexity

Classical T = 0 mean-field with occ-RI-K/ACE23,24 Anything eOðNηÞ ðN4=3η7=3t+N5=3η4=3tÞðNtϵ Þ
oð1Þ

Classical T > 0 mean-field (density matrix) with refs. 23,24 Anything eOðNMÞ ðN4=3M2η1=3t + N5=3 M2 t
η2=3 ÞðNtϵ Þ

oð1Þ

Classical T > 0 mean-field (sampled trajectories) with refs. 23,24 Anything eOðNηÞ ðN4=3η7=3 t
ϵ2 + N5=3η4=3t

ϵ2 ÞðNtϵ Þ
oð1Þ

Quantum Second-quantized Trotter grid algorithm45 Sample ∣ψðtÞ� OðN logNÞ ðN4=3η1=3t+ N5=3 t
η2=3 ÞðNtϵ Þ

oð1Þ

Quantum First-quantized Trotter grid algorithm here Sample ∣ψðtÞ� Oðη logNÞ ðN1=3η7=3t+ N2=3η4=3tÞðNtϵ Þ
oð1Þ

Quantum Interaction picture plane wave algorithm51 Sample ∣ψðtÞ� Oðη logNÞ eOðN1=3η8=3tÞ
Quantum Grid basis algorithm from Appendix K of ref. 53 Sample ∣ψðtÞ� Oðη logNÞ eOðN1=3η8=3tÞ
Quantum New shadows procedure here k-RDM(t) Oðη logNÞ eOðkkηkL Csamp=ϵ

2Þ
Quantum Gradient measurement61 ψðtÞ	

∣O∣ψðtÞ� eOðη+ LÞ eOð
ffiffiffi
L

p Csamp λ=ϵÞ
Quantum Gradient measurement61 ψðtÞ	

∣H∣ψðtÞ� eOðη+ LÞ eOð
ffiffi
L

p
Csamp tðN1=3η5=3 +N2=3η1=3 Þ

ϵ Þ
N is the number of basis functions, η is the number of particles, ϵ is target precision,M is the number of appreciably occupied orbitals in a finite-temperature (T) simulation (M≃N for high T),O is any
observablehavingnorm λ that can beblock encodedwith cost less than time-evolution, t is the duration of evolution, L is thenumber of timepoints atwhichwewish to resolve quantities and Csamp is
the cost of sampling ∣ψðtÞ�with a quantumalgorithm.Weare not accounting for the additive time-independent costs of statepreparation (eOðηNÞ gates using theprocedure of SupplementaryNote 7)
or of classically reconstructing the k-RDMgivenmeasurement outcomes. Thus, this table reports gate complexities for long-time t simulations. In SupplementaryNote 5we provide a table clarifying
which algorithm has optimal gate complexity as a function of N/η.
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steps one accesses all Oðη logNÞ qubits of the first-quantized repre-
sentation. In Supplementary Note 7, we show the Toffoli complexity
can be further reduced to OðNηÞ with some additional tricks.

Finally, we note that quantum algorithms can also perform finite-
temperature simulation by sampling initial states from a thermal
density matrix in each realization of the circuit. For example, if the
system is in a regime that is well treated by mean-field theory, one can
initialize the system in a Slater determinant that is sampled from the
thermalHartree–Fock state73. Since theoutput of quantumsimulations
already needs to be sampled this does not meaningfully increase the
number of quantum repetitions required. Such an approach would
also be viable classically (and would allow one to perform simulations
that only ever treat η occupied orbitals despite having finite tem-
perature) but would introduce a multiplicative Oð1=ϵ2Þ sampling cost.
For either processor, there is the cost of classically computing the
thermal Hartree–Fock state, but this is a one-time cost not multiplied
by the duration of time-evolution or Oð1=ϵ2Þ.

Discussion
We have reviewed and analyzed costs associated with classical mean-
field methods and state-of-the-art exact quantum algorithms for
electron dynamics. We tightened bounds on Trotter-based first-
quantized quantum simulations and introduced new and more effi-
cient strategies for initializing Slater determinants in first quantization
and for measuring RDMs via classical shadows. We compare these
costs in Table 1.Weplot the speedupof quantumalgorithms relative to
classical mean-field approaches when the goal is to sample the output
of quantum dynamics at zero temperature in Fig. 1. We see that the
best quantum algorithms deliver a seventh power speedup in particle
number when N <Θ(η2), quartic in basis size when Θ(η2) <N <Θ(η3),
super-quadratic in basis sizewhenΘ(η3) <N <Θ(η4) and quintic in basis
size but with a quadratic slowdown in η when N >Θ(η4). In extremal
regimes of N <Θ(η5/4) and N >Θ(η4), the overall speedup in system size
is super-quadratic (see Supplementary Note 5 for details). These are
large enough speedups that quantum advantage may persist even
despite quantum error-correction overhead74. Note that our analyses
are based on derivable upper bounds for both classical and quantum
algorithms over all possible input states. Tighter bounds derived over

restricted inputs would give asymptotically fewer time steps required
for both classical and quantum Trotter algorithms75.

The story becomes more nuanced when we wish to estimate ϵ-
accurate quantities via sampling the quantum simulation output at L
different time points. For observables with norm scaling as Oð1Þ (e.g.,
simple correlation functions or single RDM elements), or those per-
taining to amplitudes of the state (e.g., scattering amplitudes or
reaction rates), the scaling advantages in system and basis size are
maintained but at the cost of the quantum algorithm slowing down by
a multiplicative factor of at least Oð

ffiffiffi
L

p
=ϵÞ. When targeting the 1-RDM

(which characterizes all observables within mean-field theory) we
maintain speedup inN but at the cost of an additional linear slowdown
in η. When measuring the total energy, the overall speedup becomes
tenuous. Thus, the viability of quantum advantage with respect to
zero-temperature classical mean-fieldmethods depends sensitively on
the target precision and particular observables of interest.

In terms of applications, we expect RT-TDHF to provide qualita-
tively correct dynamics whenever electron correlation effects are not
pronounced. RT-TDDFT includes some aspects of electron correlation
but the adiabatic approximation often creates issues76 and themethod
suffers fromself-interactionerror77.When the adiabatic approximation
is accurate, self-interaction error is not pronounced, and the system
does not exhibit a strong correlation,weexpectRT-TDDFT to generate
qualitatively correct dynamics. When there are many excited states to
consider for spectral properties, it is often beneficial to resort to real-
time dynamics methods instead of linear-response methods. Further-
more, we are often interested in real-time non-equilibrium electronic
dynamics. This is the case for photo-excited molecules near metal
surfaces78. The time evolution of electron density (i.e., the diagonal of
the 1-RDM) near the molecule is of particular interest due to its
implications for chemical reactivity and kinetics in the context of
heterogeneous catalysis79. In this application, the simulation of nuclear
degrees of freedommay be equally important, which we will leave for
future analysis.

We see from Table 1 that prospects for quantum advantage are
considerably increased at finite temperatures. Thus, a promising class
of problems to consider for speedup over mean-field methods is the
electronic dynamics of either warm dense matter (WDM)80–83 or hot
dense matter (HDM)84. The WDM regime (where thermal energy is
comparable to the Fermi energy) is typified by temperatures and
densities that require the accurate treatment of both quantum and
thermal effects85,86. These conditions occur in planetary interiors,
experiments involving high-intensity lasers, and inertial confinement
fusion experiments as the ablator and fuel are compressed into the
conditions necessary for thermonuclear ignition. Ignition occurs in the
hot densematter (HDM) regime (where thermal energy far exceeds the
Fermi energy). While certain aspects of these systems are con-
spicuously classical, they represent a regime that can be challenging to
model, particularly the opacity of matter in stellar atmospheres87,88.
Such astrophysical applications often require spectroscopic accuracy
which is ordersofmagnitudemoreprecise than chemical accuracy and
necessitates a high ratio of N to η (the regime where the speedup of
quantum algorithms relative to classical mean-field is most
pronounced).

Another interesting context arises due to the conditions in which
WDM is created in a laboratory. High-intensity ultrafast lasers or
charged particle beams incident on condensed phase samples can be
used to create these conditions on femtosecond time scales and the
associated strong excitation and subsequent relaxation are well
beyond the capabilities of mean-field methods89. Classical algorithms
for HDM typically rely on an average atom description of the system in
which the entire electronic structure is reduced to that of a single atom
self-consistently embedded in a plasma90–93. While the level of theory
applied to this atom can be sophisticated, the larger-scale structure of

Fig. 1 | Quantum speedup ratio. Plot of the zero temperature dynamics quantum
speedup ratioβC/βQwhichassumesanΘ(ηα) relationshipbetweenproblemsizeand
basis size so that cost of the best exact quantum simulations of electron dynamics
can be expressed as ðηβQ tÞðNt=ϵÞoð1Þ and the cost of the best classical mean-field
algorithms for electron dynamics can be expressed as ðηβC tÞðNt=ϵÞoð1Þ. These costs
are compared under the same assumptions for sampling time-dynamics output as
those mentioned in Table 1. See Supplementary Note 5 for more details.
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such a plasma is treated at a mean-field level. Identifying suitable
observables for both of these regimes remains ongoing work.

Simulations in either the WDM or HDM regime typically rely on
large plane wave basis sets and the inclusion of 10–100 times more
partially occupied orbitals per atom than would be required at lower
temperatures. Often, the attendant costs are so great that it is
impractical to implement RT-TDDFT with hybrid functionals. There-
fore, many calculations necessarily use adiabatic semi-local approx-
imations, even on large classical high-performance computing
systems80. Thus, the level of practically achievable accuracy can be
quite low, and the prospect of exactly simulating the dynamics on a
quantum computer is particularly compelling.

Although we have focused on assessing quantum speedup over
mean-field theory, we view themain contribution of this work as more
general. In particular, if exact quantum simulations are sometimes
more efficient than classical mean-field methods, then all levels of
theory in between mean-field and exact diagonalization are in scope
for possible quantum advantage. Targeting systems that require more
correlated calculations narrows the application space but improves
prospects for quantumadvantagedue to theunfavorable scalingof the
requisite classical algorithms. Thus, it may turn out that the domain of
systems requiring, say, coupled cluster dynamics94–97,might be an even
more ideal regime for practical quantum advantage, striking a balance
in the trade-off between the breadth of possible applications and the
cost of the classical competition.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper.

Code availability
The source code for generating Fig. 1 is available from the corre-
sponding authors upon request.
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