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Machine learning optimization of candidate
antibody yields highly diverse sub-
nanomolar affinity antibody libraries

Lin Li 1 , Esther Gupta1, John Spaeth1, Leslie Shing 1, Rafael Jaimes 1,
Emily Engelhart2, Randolph Lopez2, Rajmonda S. Caceres1,6,
Tristan Bepler 3,4,6 & Matthew E. Walsh1,5,6

Therapeutic antibodies are an important and rapidly growing drug modality.
However, the design and discovery of early-stage antibody therapeutics
remain a time and cost-intensive endeavor. Here we present an end-to-end
Bayesian, language model-based method for designing large and diverse
libraries of high-affinity single-chain variable fragments (scFvs) that are then
empirically measured. In a head-to-head comparison with a directed evolution
approach, we show that the best scFv generated fromourmethod represents a
28.7-fold improvement in binding over the best scFv from the directed evo-
lution. Additionally, 99% of designed scFvs in our most successful library are
improvements over the initial candidate scFv. By comparing a library’s pre-
dicted success to actual measurements, we demonstrate our method’s ability
to explore tradeoffs between library success and diversity. Results of our work
highlight the significant impact machine learning models can have on scFv
development. We expect our method to be broadly applicable and provide
value to other protein engineering tasks.

Therapeutic antibodies are an important and rapidly growing drug
modality. Because the vast search space of antibody sequences ren-
ders exhaustive evaluation of the entire antibody space infeasible,
screening relatively small numbers of antibodies from synthetic gen-
eration, animal immunizations or human donors are used to identify
candidate antibodies. The screened library represents a small portion
of the overall search space, and the resultant candidate antibodies are
often weak binders or suffer from developability issues. Optimization
of these candidates is needed to improve binding and other develop-
ment characteristics.

Due to the combinatorial scaling of sequence space, step-wise,
iterative approaches are often used to optimize antibody binding
against target molecules1,2, but are time consuming and effort is was-
ted interrogating nonfunctional antibodies. Improved binders may

need to be further altered to improve other properties, such as
hydrophobicity3,4, but such alterations can negatively influence the
previously optimized binding, resulting in additional measurement
and engineering cycles. This process of identifying the final antibody
routinely takes about 12-months to complete2. The ability to efficiently
engineer antibodieswith favorable binding and high diversity earlier in
the development process would reduce the impact of unfavorable
antibody characteristics that are often identified later in the process,
improve the developability potential and reduce the time required in
early drug development.

While computationalmethods canguide the searchof biologically
relevant antibodies, most de novo approaches require target struc-
tures or antibody-epitope complex structures to be known5–7. Machine
learning (ML) approaches can be used to effectively represent

Received: 6 December 2022

Accepted: 23 May 2023

Check for updates

1Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA. 2A-Alpha Bio, Inc., Seattle, WA, USA. 3Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, MA, USA. 4Present address: Simons Electron Microscopy Center, New York Structural Biology Center,
New York, NY, USA. 5Present address: JohnsHopkins Bloomberg School of Public Health, Baltimore, MD, USA. 6These authors contributed equally: Rajmonda
S. Caceres, Tristan Bepler, Matthew E. Walsh. e-mail: Lin.Li@LL.MIT.EDU

Nature Communications |         (2023) 14:3454 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4087-6149
http://orcid.org/0000-0003-4087-6149
http://orcid.org/0000-0003-4087-6149
http://orcid.org/0000-0003-4087-6149
http://orcid.org/0000-0003-4087-6149
http://orcid.org/0000-0003-3677-6698
http://orcid.org/0000-0003-3677-6698
http://orcid.org/0000-0003-3677-6698
http://orcid.org/0000-0003-3677-6698
http://orcid.org/0000-0003-3677-6698
http://orcid.org/0000-0002-5493-0399
http://orcid.org/0000-0002-5493-0399
http://orcid.org/0000-0002-5493-0399
http://orcid.org/0000-0002-5493-0399
http://orcid.org/0000-0002-5493-0399
http://orcid.org/0000-0001-5595-9954
http://orcid.org/0000-0001-5595-9954
http://orcid.org/0000-0001-5595-9954
http://orcid.org/0000-0001-5595-9954
http://orcid.org/0000-0001-5595-9954
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39022-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39022-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39022-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39022-2&domain=pdf
mailto:Lin.Li@LL.MIT.EDU


biological data and rapidly explore their vast design spaces in silico.
Suchapproaches canuncover complex andflexible features fromhigh-
dimensional data8–13 and have shown great promise in many applica-
tion areas, including protein structure prediction14, anddrug discovery
and design15–21. Existing ML-driven antibody optimization has shown
promising results in designing antibodies with improved binding
characteristics against a target and that antibody binding can be
learned from only sequence data and without the need for the target’s
structure15. A more recent work has presented an ML-driven antibody
optimization approach that achieves broader neutralizing activity
against diverse SARS-CoV-2 variants by learning the mutational effect
on protein-protein interactions from protein complex structures20.
Other works have investigated general purpose pre-trained generative
language models for designing antibody libraries that display good
physical properties18,19, but these methods are not target-specific and
only offer modest improvements over conventional libraries that are,
often, already based on natural antibody repertoires. Finally, none of
the existing work allows the evaluation of designed antibody libraries
prior to experimentation, a critical feature that allows for accelerated
design cycles.

In this work, we develop an end-to-end ML-driven single-chain
variable fragment (scFv) design framework that uniquely combines
state-of-art language models, Bayesian optimization and high-
throughput experimentation (Fig. 1). Because we synthesize expli-
citly defined oligo pools of 300bp, our method allows the design of
the entire scFv chain (heavy or light). Furthermore, it does not assume
candidate scFvs strongly bind to the target, and relies on sequence
data without the need for sequence alignments or knowledge of the
target antigen structure, allowing themethod to be applicable to early-
stage antibody development for any target antigen. We demonstrate
our end-to-end framework can rapidly and cost-effectively lead to the
design of diverse target-specific scFv libraries with therapeutically
relevant binding affinities. At a meaningful scale (~10^4 sequences),
and in a head-to-head comparison with the directed evolution
approach, we show that ourML-based approach produces significantly
stronger binders.More remarkably, ourML-designed scFv libraries are
highly diverse, demonstrating the ability of our approach to efficiently
extrapolate and discover mutationally distant, high affinity scFvs.
Lastly, we show how our method can provide general insights to the
engineering process. We can evaluate the performance of an scFv
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Fig. 1 | Illustrationof the end-to-endML-driven scFvdesign process.The end-to-
end process consists of three components: training data generation, ML-driven
design to generate scFv libraries and empirical validation of designed libraries,
providing a pool of potential scFv candidates for further development. a The
training data is generated via random mutations of the candidate scFv along the
entire CDR region, followed by high-throughput binding quantification to the
selected target. The circular plot is a conceptualdescriptionof scFv sequences used
during training; each circle represents the sequence space with its associated
mutation number from the candidate scFv (the center of the diagram). Sequences
are placed uniformly at random along each mutation circle because the training
data are generated uniformly at random from the candidate sequence. b This

training data combined with publicly available protein sequences is used to train,
refine and evaluate ML models that drive the in silico sequence design process.
c The designed libraries are experimentally validated, providing thousands of
potential antibody candidates for development. ML-driven designs produce highly
diverse scFvs (sequences as far as 23 mutations away), with strong on-target
binding (the best design is 28.7-fold better than the directed evolution approach),
and high success rate (as high as 99%). d Detailed ML-driven design process: (1)
supervised fine-tuning of pretrained language models on the training data to pre-
dict binding affinities with uncertainty quantification; (2) in silico scFv design via
Bayesian optimization over ML-extrapolated fitness landscape; (3) in silico scFv
library evaluation.
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library in silico, explore the affinity-diversity tradeoff prior to experi-
mental testing, weigh the choice of optimizing complementarity-
determining regions (CDRs) jointly or individually, and combine our
method with other software tools to explore other desired develop-
ment properties, such as hydrophobicity and isoelectric point, of scFvs
in designed libraries. Our results highlight the impact ML models can
have on early-stage scFv development. Through coordinated data
generation, MLmodel development, training and optimization, we are
able to start with only a target protein sequence and a candidate
antigen-binding fragment (Fab) that weakly binds to the target, and
after a single round of optimization, generate large, diverse libraries of
high-affinity scFvs against the target.

Results
Development of an end-to-end, target-specific scFv optimiza-
tion process
We hypothesized that by integrating target-specific binding affinities
with information from millions of natural protein sequences in a
probabilistic machine learning framework, we could rapidly engineer
scFvs that are significantly stronger binders than what typical directed
evolution approaches would produce. To engineer a given candidate
scFv (the variable fragment of a Fab) against the target molecule, we
developed a five-step process that uniquely combines state-of-art
language models, Bayesian optimization and high-throughput experi-
mentation to generate high-affinity scFv libraries (Fig. 1 and Methods
section):
1. High-throughput binding quantification of random mutants of

the candidate scFv to the target, to create supervised training
data (Fig. 1a).

2. Unsupervised pre-training of language models22,23 on large
numbers of protein sequences to distill biologically relevant
information and represent scFv sequences (Fig. 1b, d).

3. Supervised fine-tuning of pretrained language models on the
training data to predict binding affinities with uncertainty
quantification (Fig. 1b, d).

4. Construction of a Bayesian-based scFv fitness landscape extra-
polated from the trained sequence-to-affinity model, followed by
in silico scFv design via Bayesian optimization and in silico design
validation (Fig. 1b, d).

5. Experimental validation of top scFv sequences that are in silico
predicted to have strong binding affinities for the target (Fig. 1c).

We generated our supervised training data using an engineered
yeast mating assay. The target peptide is a conserved sequence found
in the HR2 region of coronavirus spike proteins and to which neu-
tralizing antibodies were previously identified24. A phage display
campaign with a phage library containing naïve human Fabs was used
to identify candidate scFv sequences (Ab-14, Ab-91, and Ab-95) that
bind weakly to the target (Supplementary Table 1). All heavy and light
chain sequences in the data were designed by performing random
k = 1, 2, 3mutationswithin either the heavy chain or light chainCDRs of
three candidate scFvs (Supplementary Table 2). We have separately
published this dataset in its entirety to support its reuse25,26. In this
work, we sought to optimize Ab-14 and therefore used only the Ab-14
measurements (26,453 heavy chain, 26,223 light chain) as supervised
training data for the sequence-to-affinity prediction. The binding
measurements are provided on a log-scale, with lower values indicat-
ing stronger binding; see Supplementary Fig. 1 for the distribution of
binding measurements.

We pre-trained four BERTmasked languagemodels, i.e., a protein
language model, an antibody heavy chain model, an antibody light
chain model and a paired heavy-light chain model. The protein lan-
guage model was trained on the Pfam data27, and antibody-specific
language models were trained on human naïve antibodies from the
Observed Antibody Space (OAS) database28 (Supplementary Table 3).

To train sequence-to-affinity models, we investigated two
approaches to predict affinities with uncertainty quantification: an
ensemble method and Gaussian Process (GP)29. Both approaches use
learned knowledge from pre-trained language models and provide
meaningful sequence-to-affinity models from which one can design
high-affinity scFv libraries. We trained separate sequence-to-affinity
models for Ab-14-H heavy-chain variants and Ab-14-L light-chain var-
iants using the corresponding training data. We observed strong
positive correlation between predicted and experimentally measured
binding affinities on the hold-out test data (Supplementary Fig. 2).

To generate high-affinity scFv libraries, a Bayesian-based fitness
landscape was constructed to map the entire scFv sequence to a
posterior probability, i.e., the probability that the estimated binding
affinity is better than the candidate scFvAb-14. This is in contrast to the
fitness landscape that goes directly from sequence to estimated
binding affinity. To perform optimization to maximize the posterior
probability, the choice of sampling algorithm is critical in determining
the library diversity. Three strategies were used: hill climb (HC),
genetic algorithm (GA) and Gibbs sampling. HC is a greedy algorithm
that performs a local search and only finds local maximums. GA is an
evolutionary-based algorithm that is more robust in exploiting the
sequence space further away from the initial sequence. Gibbs sampling
takes sequential actions in a manner that balances exploitation and
exploration and can generate sequences with high diversity.

We applied our sampling approaches to generate heavy chain and
light chain variant scFvs that optimize Ab-14. We also used a Position-
Specific Score Matrix (PSSM)-based method representative of tradi-
tional directed evolution approaches to generate a control sequence
set. The generated sequences from each method are rank-ordered
based on the posterior probability and top sequences are selected.
This resulted in seven scFv libraries per chain: three libraries from
optimizing the ensemble-basedfitness function (namely, En-HC, En-GA
and En-Gibbs), three libraries from optimizing the GP-based fitness
function (namely, GP-HC, GP-GA, GP-Gibbs), and one PSSM library
(Supplementary Figs. 3 and 4). As a sanity check, we also generated
scFv mutants with an average of k = 2 random mutations from the
10 strongest binders of the supervised training data. All sequences
were synthesized and experimentally tested using the same high-
throughput yeast display method as for the training data generation;
Supplementary Tables 4 and 5 provide the exact number of sequences
from each library.

We compared the empirical binding distribution of the training
data with the PSSM library and ML-designed sequences (Supplemen-
tary Fig. 1). ML designs are significantly stronger binders than the
training data. Notably, more than 25% of ensemble-based Ab-14-H
variant designs have stronger measured binding affinities than the
strongest measured binder in the training data, whereas only 0.9% of
PSSM-based Ab-14-H variant designs outperform the strongest mea-
sured binder in the training data.

ML-generated ScFv libraries outperform conventional directed
evolution
We assessed the quality of eachML-derived scFv library by comparing
the binding strength of the best design and the percent of success to
the PSSM-generated library. We define the percent of success as the
percent of scFvs that have a better empirical binding score than the
initial candidate scFv, Ab-14. We chose PSSM libraries as comparators
because they better reflect the traditional optimization process and
are generally better than random mutation libraries (Supplementary
Fig. 5). Table 1 contains characterization of the best binding scFv from
each library. Sequences of these scFvs can be found in the Supple-
mentaryTables 6 and7. Thebest scFvs fromML-optimized libraries are
significantly stronger binders than those from the PSSM library, and
generally have more mutations. The strongest binding heavy-chain
design is from the En-Gen library and binds 28.7-fold stronger than the
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strongest scFv in the PSSM library. The best light-chain design is in the
En-Gibbs library achieving a 7.7-fold improvement over the best scFv
from the PSSM library. Note that the best heavy-chain scFv bindsmuch
stronger to the target than the best light-chain scFv. To investigate
further,we rank-ordered all designed scFvs across different libraries by
the empirically-measured binding affinity and observed that heavy-
chain designs are generally stronger binders than light-chain designs
(Supplementary Fig. 6).

Figure 2 shows the performance and diversity of designed librar-
ies. For Ab-14-H heavy chain designs, with the exception of sequences

in the En-Gibbs library, allML-optimized libraries outperform the PSSM
library in termsofmedianbinding affinity (Fig. 2a), and are significantly
more successful than the 23.8% success of the PSSM library (Fig. 2b).
The En-HC (94.3%) and En-GA (96%) libraries are particularly successful
andoutperformall GP-generatedAb-14Hvariant libraries (59.4–84.2%).
For the Ab-14-L light chain designs, all ML-optimized libraries outper-
form the PSSM library in both median binding (Fig. 2d) and percent of
success whereas the PSSM library is 45.6% successful (Fig. 2e). The
percent of success of GP-based libraries (95.7–99%) further outper-
forms all ensemble-based libraries (67.9–73.5%).

Table 1 | Characterization of the top scFv from each library

Library Best Ab-14-H variant design Best Ab-14-L variant design

Predicted affi-
nity (pM)

Mutational distance to
Ab-14

Fold improvement
over PSSM

Predicted affi-
nity (pM)

Mutational distance to
Ab-14

Fold improvement
over PSSM

PSSM 109.602 4 1.0 113.053 3 1.0

GP-HC 52.179 3 2.1 57.944 3 2.0

GP-GA 20.483 4 5.4 16.454 3 6.9

GP-Gibbs 15.541 4 7.1 98.980 9 1.1

En-HC 3.817 7 28.7 156.090 11 0.7

En-GA 3.923 10 27.9 30.400 17 3.7

En-Gibbs 38.126 15 2.9 14.608 23 7.7

Bold values represent the highest fold improvement over the best PSSM sequences.

a

b

c

d

e

f

Fig. 2 | ML-optimized scFv libraries outperform the PSSM directed evolution
approach with high percentage of success and high diversity. For sequences
with at least 3 (out of 6) empirical binding affinities, averaged values are used as the
ground-truth. The rest of the sequences (with less than 3 empirical measurements)
are considered as un-successful designs. All evaluations are performed over
n = 6510, 5152, 5313, 5284, 5344, 5310, 4879 Ab-14-H variant designs and n = 8188,
5965, 5989, 5987, 5962, 5960, 5950Ab-14-L variant designs generated by PSSM,GP-
HC, GP-GA,GP-Gibbs, En-HC, En-GA and En-Gibbs, respectively (see Supplementary
Tables 4 and 5), where GP and En denote Gaussian Process and Ensemble models,
and HC, GA and Gibbs denote hill climb, genetic and Gibbs sampling algorithms,
respectively. a The violin plot is used to depict summary statistics and empirically
measured affinity distribution of Ab-14-H heavy chain designs (center: median;
limits: 1st and 3rd quartile; whiskers: +/− 1.5 IQR). Affinities of unsuccessful

sequences are set to be 5.48 (the largest assay value of all Ab-14-H variants).
b Percent of sequences that have stronger empirical binding affinity than the
candidate antibody for all the Ab-14-H variant libraries. c Diversity comparison for
all Ab-14-H variant libraries. Data are presented as mean values and +/- standard
deviation to show mutational variability of designed sequences from the initial
candidate scFv. d The violin plot is used to depict summary statistics and empiri-
cally measured affinity distribution of Ab-14-L light chain designs (center: median;
limits: 1st and 3rd quartile; whiskers: +/− 1.5 IQR). Affinities of unsuccessful
sequences are set to be 5.53 (the largest assay value of all Ab-14-L variants).
e Percent of success for all the Ab-14-L variant libraries. f Diversity comparison for
all the Ab-14-L variant libraries. Data are presented asmean values and +/- standard
deviation. Source data are provided as a Source Data file.
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ML-generated libraries can be highly diverse
We measured the library diversity using two mutational distance
metrics: dAb�14

avg (the average distance to the initial Ab-14), and dpw (the
average pairwise distance). The former dAb�14

avg indicates how far the
designs are from the training data and the latter dpw measures the
intra-library diversity. For Ab-14-H variant designs, all ML-optimized
libraries have higher dAb�14

avg than the PSSM library (with dAb�14
avg =3:1).

The ensemble-based libraries also have significantly higher dAb�14
avg

(7.9–15.6) than the GP-based libraries (3.4–3.7), indicating that the
methods are able to extrapolate and design sequences that are far
beyond the training data (Fig. 2c). In particular, sequences in the En-
Gibbs library are on average 15.6 distance away from Ab-14-H and 14.9
distance away from each other (Fig. 2c). However, this increase in
mutational distance comes at the cost of reduced affinity, suggesting
that there is eventually a tradeoff between the two.

For Ab-14-L variant designs, all ML-optimized libraries are sig-
nificantly further away from Ab-14-L than the PSSM library, with
dAb�14
avg = 3:2 for the PSSM library, dAb�14

avg ranging from 4.3 to 7.4 for GP-
based libraries anddAb�14

avg ranging from 12.4 to 21.3 for ensemble-based
libraries (Fig. 2f). With the exception of GP-GA (dpw =4:5), all ML-
optimized libraries have higher dpw (ranging from 6.3 to 22.4) than the
PSSM library (dpw = 5:9). In particular, the En-Gibbs light-chain library
consists of sequences that are on average 21.3 distance away from Ab-
14-L and 22.4 distance away from each other (Fig. 2f).

Figure 3 shows the 2-D embeddings of all scFv libraries and the
training data. We observed a similar trend for both light- and heavy-
chaindesigns, that is, the PSSM library is the closest to the trainingdata
while the ensemble-based libraries are the farthest away from the
training data. More interestingly, all optimization-based libraries
occupy a distinct subspace from the training data and PSSM library,
highlighting the extrapolating power of the various optimization
approaches that we applied. Ensemble-based libraries are highly
divergent and also group distinctly from the other libraries; both the
best heavy- and light-chain designs were discovered via optimizing the
ensemble-extrapolated fitness function, underlining the value of
exploring further away from the initial candidate sequence.

Model performance and sampling diversity are key factors in
generating a quality library
To understand key factors that determine the quality of a generated
library, we evaluated the performance of the two sequence-to-affinity
models, using held-out test data and empirical binding measurements

of our designed sequences (Fig. 4). We compared the Spearman cor-
relation and the mean absolute error (MAE) of model predictions and
measured values. We observed that the ensemble sequence-to-affinity
model does better at predicting affinity than the GP model. When
evaluated on the held-out test data, Spearman correlation scores of
both heavy- and light-chain ensemble models are slightly higher
(heavy-chain model: 0.51; light-chain model: 0.69) than the respective
GP models; see Fig. 4a. When evaluated on designed Ab-14-L variants,
the light-chain ensemble model is also slightly better. The most nota-
ble difference is when evaluating on designed Ab-14-H variants, where
the heavy-chain ensemble model has a Spearman correlation of 0.69
but the heavy-chain GP model performs significantly worse (−0.42).
This is primarily due to the prediction limit of the GP model on
sequences that are far beyond the training data. When evaluated the
MAE of our prediction models with respect to the mutational distance
on designed sequences, we observed a sharp increase in MAE on
sequences with six or more mutations away from Ab-14-H for the
heavy-chain GP model, and on sequences with ten or more mutations
away from Ab-14-L for the light-chain GP model (Fig. 4b). Ensemble
models exhibit no notable increase in MAE as the mutational distance
increases, indicating that the ensemble approach ismore generalizable
to higher-order mutants than the GP model. Nevertheless, GP-based
libraries, when compared to the PSSM library, are significantly more
successful while having comparable sequence diversity (Fig. 2).

While ML-guided exploration of sequence space allows for identi-
fication of more scFvs with optimized binding, we postulate that if this
set comes from diverse sequence space, it will also have diverse
development properties thus limiting the chance of correlated down-
streamdevelopment failure.Weobserved that a goodpredictionmodel
is necessary but not sufficient to generate a diverse library with high
affinity. Equally important to the prediction model is the choice of
sampling algorithm. When using the ensemble-extrapolated fitness
landscape to engineer 14-Ab-H, hill climb and genetic algorithms found
scFvs with significant (28.7 and 27.9-fold, respectively) increases in
binding over the best PSSM-sampled scFv (Table 1), and both methods
were highly successful (94.3% and 96% success, respectively); see
Fig. 2a, b. However, when combinedwith theGibbs sampling algorithm,
the best scFv sampled was only 2.9-fold better (Table 1), and the library
was generally unsuccessful (Fig. 2a, b). With the diversity metrics of the
En-Gibbs-generated sequences almost double that of the En-HC and En-
GA libraries, it indicates that the significant increase in diversity of the
En-Gibbs library has a detrimental effect on library affinity due to the

a b

2.9 fold 
dAb-14=15

27.9 fold
dAb-14=10

28.7 fold 
dAb-14=7

dAb-14=4

2.1 fold 
dAb-14=3

5.4 fold
dAb-14=4

7.1 fold 
dAb-14=4

Ab-14-H

Ab-14-L

dAb-14=3

2.0 fold
dAb-14=3

6.9 fold
dAb-14=3

1.1 fold
dAb-14=9

0.7 fold
dAb-14=11

3.7 fold
dAb-14=17

7.7 fold
dAb-14=23

Fig. 3 | T-SNE sequence embedding of ML-libraries, PSSM library and the
training data reveals distinct sampled sequence subspaces. The t-SNE embed-
dings allow visualization of the sequence space by embedding sequences onto 2-D
space, while approximately preserving the edit distance between sequences. GP
and En denote Gaussian Process and Ensemble models, and HC, GA and Gibbs
denote hill climb, genetic and Gibbs sampling algorithms, respectively. a 2-D

embeddings of Ab-14-H variants. b 2-D embeddings of Ab-14-L variants. The initial
candidate sequenceAb-14 ismarkedwith a diamondmarker. The best scFv variants
from each library are marked in circles. The best ML-generated scFvs are labeled
with fold improvement over the best PSSM scFv and the mutational distance from
the candidate Ab-14 scFv. The best PSSM scFv is labeled with mutational distance
only. Source data are provided as a Source Data file.
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eventual limit of themodel predictability on sequences that are deemed
too far from the training data (Fig. 2c). Interestingly, when engineering
the light chain (14-Ab-L), the En-Gibbs combination found the strongest
binder (7.7-fold improvement over PSSM) with a striking 23 mutations
from the Ab-14-L sequence (Table 1). For the ensemble-based libraries,
as the library diversity increased, so too did the binding strength of its
top scFv (Fig. 2f and Table 1). En-HC, the least diverse ensemble-
generated 14-Ab-L library, was the only library that failed to contain an
scFv outperforming the top PSSM-generated scFv (Table 1). In this
instance, the increased library diversity is beneficial, suggesting the
value in exploring away from the initial candidate sequence. Hence, to
avoid unsuccessful library designs while still being able to explore suf-
ficiently high orders of mutants, it is important to control the diversity
of sampled sequences via parameter tuning of the sampling algorithm
and have the ability to explore the tradeoff between performance and
diversity in silico prior to experimental testing.

Bayesian-based approach provides insights prior to experi-
mental testing
We defined an in silico performancemetric that quantifies the binding
performance of a library prior to experimental testing. With the
Bayesian approach, the fitness score is the posterior probability of a
sequence in the library having a stronger binding affinity than the
candidate scFv Ab-14. We average the individual fitness scores of the
full library to come up with our metric - an estimate of the probability
of success (i.e., the estimated percent of sequences having a better
binding performance than the threshold value). We first evaluated the
utility of the metric on the hold-out test data from the training scFv
library as we vary the threshold value that defines strong binders and
show the estimated percent of success matches well to the actual
percent of success (Supplementary Fig. 7).

We applied the metric (estimated percent of success) to the
designed libraries and ranked them. We compared the library ranking
based on the estimated and measured percent of success (Supple-
mentary Table 8). For PSSM and ensemble-based libraries, the pre-
dicted rankings match well to the actual rankings with a rank
correlation of 0.8. For ranking PSSM andGP-based libraries, themetric
predicts all rankings correctly for Ab-14-H variant libraries and a rank
correlation of 0.8 for Ab-14-L variant libraries. Moreover, we observed
that the estimated percent of success captures well the relative per-
formance of designed libraries for both heavy- and light-chain designs
(Supplementary Figs. 8 and 9).

We then sought to extend the application of the in silicometric to
comparing the choice of optimizing one CDR to optimizing all three

simultaneously. For this comparison, designswere generated using the
genetic algorithm sampling over the ensemble-extrapolated fitness
landscape. We observed that designing all heavy-chain CDRs leads to
sequences with higher estimated percent of success than when
designing individual CDRs (Supplementary Fig. 10).

Based on these findings, we demonstrate that the performance
metric can be used to understanddesign choices and explore tradeoffs
between performance and diversity, and in the future to inform library
selection and parameter tuning prior to experimental testing.

Discussion
We demonstrate, in a head-to-head comparison with a conventional
directed evolution strategy, scFvs designed with our ML approach are
significantly stronger binders, especially at high levels of diversity,
where, remarkably, our models are able to accurately predict binding
affinity for extremely high ordermutants. Notably, after a single round
of design-build-test cycle, we are able to generate a heavy-chain scFv
that binds 28.7-fold stronger than the strongest scFv in the PSSM
library (Table 1). Most of ML-designed scFvs are improvements over
the candidate scFv Ab-14; more than 90% of the empirically evaluated
En-GA and En-HC heavy-chain scFvs are successful as compared to less
than 20% of success for the PSSM library (Fig. 2). Moreover, the
ensemble-based method is able to explore a significantly larger
sequence space; the average mutational distance of heavy-chain
ensemble libraries ranges from 7.9 to 15.6 as compared to 3.17 of the
PSSM library (Figs. 2 and 3). The conventional approach could even-
tually find a binder as strong as the best binder found with our ML
approach. However, this is not guaranteed. At the minimum, it would
require at least one additional design-build-test cycle. A single cycle of
our process is on the order of a few months, making the conventional
approach significantly less time and cost efficient in the best case. The
conventional method is unlikely to ever reach equivalent percent of
success and diversity metrics. Future work with the intent of quanti-
fying the cost and time saving of integrating machine learning meth-
ods in therapeutic development to discover better therapeutics faster
would support broader adoption of such methods and should be
pursued.

Libraries generated through our method also have diverse bio-
physical properties as computed using BioPython30 (Supplementary
Fig. 11). This allows for the selection of multiple preclinical candidates,
uncorrelated in their downstream failure modes, such that if one fails,
the entire pipeline is not likely to fail for the same reason. In the future,
biophysical properties that are known to be associated with develop-
ability or physiochemical properties can be included in the library

a b
Hold-out Test Data Designed Variants

Fig. 4 | Sequence-to-affinitymodel evaluation.All evaluationswereperformedon
sequences with at least 3 (out of 6) empirical binding affinities and the averaged
values are used as the ground-truth. GP denotes Gaussian Process. a Regression
performance on hold-out test data and on the designed libraries; the ensemble
model ismore predictive than the GPmodel on both datasets.b PerformanceofGP
and ensemble models with respect to mutational distance from Ab-14. Data are
presented in mean absolute error (MAE) and +/-SEM. The sample sizes of Ab-14-H
variants for mutational distances ranging from 1 to 18 are n = 93, 1337, 4485, 5009,
834, 296, 1316, 2400, 2855, 2304, 418, 53, 131, 148, 152, 124, 71, 33, respectively. The

sample sizes of Ab-14-L variants for mutational distances ranging from 1 to 26 are
n = 258, 1784, 3696, 6287, 4168, 2097, 2037, 1748, 932, 675, 1042, 1095, 1109, 888,
933, 1447, 1632, 1090, 1025, 1063, 1317, 1168, 741, 341, 86, 18, respectively. Ensemble
models are more robust at extrapolating mutationally distant scFvs while the GP
models do not predict well on sequences that aremutationally far away fromAb-14.
Note that the error bar of the heavy-chain ensemble model shows a non-trivial
increase on sequences that are twelve or more mutations away from Ab-14, sug-
gesting that the model’s predictability decreases with increase in mutational dis-
tance. Source data are provided as a Source Data file.
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design criteria, such as designing strong binders within specific iso-
electric point or hydrophobicity ranges. We also believe that our fra-
mework is applicable to any task aiming to maximize or minimize a
characteristic of an scFv, such as minimizing off-target binding or
maximizing neutralization. Pending data availability, we see ML-based
multi-objective scFv optimization as an approachable task and viable
option for streamlining scFv development.

We separately explored our model performance as a function of
the amount of training data and demonstrated additional data,
expectedly, results in improved performance31. However, after about
7000 measurements, additional measurements result in less sig-
nificant performance increases. For this work, we trained our super-
vised sequence-to-affinity models on all measurements that were
available to us, but future engineering attempts may optimize use of
financial resources by increasing the number of cycles or number of
candidate scFvs to be optimized while reducing the number of mea-
surements per cycle per candidate scFv. Because of cost limitations
associated with DNA synthesis, we chose to generate our training data
by introducing k = 1, 2, or 3 randommutations, but ourmodels are able
to successfully extrapolate much further than that. Future workwould
benefit from an improved understanding of the way in which training
data is generated, if there is dependence on the choice ofmodel, and if
performing multiple measurement cycles impacts the choice. We also
compared the performance of sequence-to-affinity models with and
without pretrained language models28. We found that models fine-
tuned from pretrained languagemodels outperformmodels without a
pretrained language model, as well as simpler encoding methods like
PSSM-based encoder. The Pfam pretrained language model performs
better than OAS pretrained language models. We postulate that
learning from the more diverse protein sequences captures higher
level biological principles that can be transferred and refined more
effectively to antibody specific tasks such as affinity prediction.

Recently, other works have presented general purpose pre-
trained generative language models for antibody design18,19. By train-
ing on natural antibody repertoires, Shin et al.19 were able to design
antibody libraries that display good physical properties and are enri-
ched for binders. In the future, our approach can be combined with
these by using a pre-trained generative language model to design the
initial mutagenesis library used for training our supervised learning
approach. Our initial analysis indicates that this approach is likely to
increase the success rate of the initial library by several fold. Further-
more, pre-trained models could also condition on features of the tar-
get epitope to design target-specific initial libraries that are then fine-
tuned with our framework.

We demonstrate the ability to rapidly design large libraries of
potently binding scFvs, but our framework also extends to other
domains of protein engineering where large scale functional muta-
genesis screens are being applied. Our framework is neither scFv nor
binding-specific and, therefore, can be applied to engineer other
proteins for other functional properties. We expect machine learning
approaches like ours, combined with high throughput mutagenesis
screens, will soon become the standard in protein engineering.

Methods
Training data for language models
Weused sequences fromPfam27 andObservedAntibody Space (OAS)28

databases to train four separate language models (i.e., a protein lan-
guage model, an antibody heavy chain model, an antibody light chain
model and a paired heavy-light chainmodel). The Pfam is a database of
curated protein families containing raw sequences of amino acids for
individual protein domains.We use the same data splits as provided in
TAPE8. The train, validation and test splits contain 32,593,668,
1,715,454 and 44,311 sequences, respectively. The full OAS database
contains immune repertoires fromover 75 studies containing a diverse
set of immune states. We curated only studies with naïve human

subjects and removed redundant sequences across the studies. This
results in 37 studies containing 270,171,931 heavy chain sequences,
9 studies containing 70,838,791 light chain sequences, and 3 studies
containing 33,881 heavy-light sequence pairs. The train, validation and
test sequences are split based on studies. Given that there are limited
heavy-light sequence pairs in the OAS data, to train the paired heavy-
light chain model, we used all the data from OAS heavy chains, OAS
light chains and OAS heavy-light sequence pairs. For sequence pairs
withmissing heavy or light chain, we left themissing chain as an empty
sequence. Supplementary Table 3 summarizes the number of
sequences in train, validation and test data for the four languagemodel
training datasets.

Training BERT language models
We used the BERT masked language model23 to encode protein/anti-
body sequences (Supplementary Fig. 12). The BERT model estimates
the probability of an amino acid sequence pðxÞ by considering the
probability distribution over each amino acid at each position condi-
tioned on all other amino acids in the sequence, that is,

pðxÞ =
Yi = L

i = 1
pðxi∣x1::: xi�1, xi + 1::: xLÞ ð1Þ

where xi represents the ith amino acid in the sequence of length L. We
pretrained four separate BERT language models, i.e., a protein lan-
guage model, an antibody heavy chain model, an antibody light chain
model and a paired heavy-light chain model, using the Pfam data and
OAS data. Specifically, BERT masked language models were trained
with 768 input embedding size, 24 hidden layers, 1024 hidden size,
4096 intermediate feed-forward size and 16 attention heads. All the
other architecture details are fixed to their default values used in
BERT8,23 with Adam optimization32. We trained the language model to
predict randomly masked amino acids in a single sequence or a
sequence pair (Supplementary Fig. 12). For training the protein
languagemodel, antibody heavy chainmodel and antibody light chain
model, the input is a single sequence of amino acids. For training the
paired heavy-light chain model, the input is a concatenation of heavy
and light sequences separated by a special token. Token type IDs are
set to 0 for the ‘CLS’ token, 1 for the heavy chain amino acids and 2 for
the light chain amino acids to identify two types of chains. Position IDs
are set to be the integer position of the amino acidwithin its respective
chain. The Pfam language model was initialized randomly. All other
languagemodels were initialized with the pre-trained Pfammodel. For
all models, the learning rate is set to 10−5, batch size is 1024 and the
warm-up step is 10,000. One training epoch is defined as one full
iteration over all the sequences in the training data. All models were
trained until convergence of the cross-entropy loss value (which is
evaluated on the validation data after every epoch), or until the
maximum number of epochs, 10, was reached. All models were
implemented in PyTorch33 and trained on NVIDIA Volta V100 GPUs
using a distributed compute architecture.

The standard average perplexity score is used to evaluate the
languagemodel performance on the hold-out test data. The perplexity
measures how well the trained language models are at predicting the
masked tokens. Lower values indicate better performance. The aver-
age perplexities of the 4 language models on the respective test data
are 13.15 for the Pfam model, 1.56 for the heavy-chain model, 1.43 for
the light-chain model and 1.16 for the paired model. When evaluated
on the OAS light-chain test data, the average perplexities of the 4
language models are 7.47, 16.40, 1.43 and 1.42, respectively. When
evaluated on theOASheavy-chain test data, the average perplexities of
the 4 language models are 12.20, 15.30, 1.56 and 1.56, respectively.

Training sequence-to-affinity models via transfer learning
To prepare the training data25, we randomly split the sequences in the
initial Ab-14-H variant library and Ab-14-L variant library into train/
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validation/test sets with 0.8/0.1/0.1 split. Since the experimental assay
on the initial random scFv library was conducted in triplicate25 (each
scFv sequence has 3 measurements), the average value of all mea-
surements corresponding to the same scFv is used. An assay with an
emptymeasured binding affinity indicates that it is beyond the limit of
detection and is deemed a poor binder.We considered twooptions for
howmissing values are treated: dropping the assay with missing value
or imputing it with the median value of all assays of the same
candidate chain.

We trained separate target-specific sequence-to-affinity models
for Ab-14-Hvariants andAb-14-L variants.Weusedmodelfine-tuning as
away to transfer knowledge learned frompre-trained languagemodels
to predicting sequence affinities. We investigated two approaches,
which in addition to affinity prediction, provide estimates of predic-
tion uncertainties: an ensemble method and Gaussian Process (GP).
Both approaches use learned knowledge from pretrained language
models and provide meaningful sequence-to-affinity models from
which one can design a diverse antibody library.

The ensemble model consists of 16 different trained regression
models that were fine-tuned from the 4 pretrained language models
with two different regression loss functions and two different data
preprocessing steps (Supplementary Table 9). The two loss functions
used were the mean squared error (MSE) and the mean absolute error
(MAE) between the predicted affinities andmeasured affinities. For the
data preprocessing step, we used two options for treating missing
values: dropping the assay with missing value or imputing it with the
median value. To train a regression model, we fine-tuned the pre-
trained BERT language model (initially trained on massive sequence
data without affinity measurements) by adding a linear regression
decision head to theBERTmodel and continuing to train it on a smaller
set of scFv sequences with experimental binding measurements. The
outputs of the ensemble model are the mean and the standard
deviation of the outputs of the 16 regression models.

While the ensemble method is known to enhance predictive per-
formance, GP is another powerful technique used for quantifying
uncertainties. For the GP model, we used the pretrained heavy-chain
languagemodel to train theGPmodel for the heavy chain sequence-to-
affinity model and the pretrained light-chain language model for the
light chain sequence-to-affinity GP model. Sequences were repre-
sented by first concatenating the learned vector representations of
each amino acid from the pretrained language model, and then per-
forming principal component analysis (PCA) to reduce the vector
dimension to 1024. The GPmodel was trained on these reduced vector
representations. Assays with missing values were imputed with the
median value in the data preprocessing step. The trained GP model
outputs a mean and a standard deviation of the binding affinity
prediction.

ML-extrapolated fitness functions
To generate a high affinity scFv library in silico, we used a Bayesian-
based acquisition function extrapolated from the sequence-to-affinity
model to construct the scFv fitness landscape. In contrast to non-
Bayesian settings where the sequence is mapped directly to estimated
affinity, the fitness function is defined to be a mapping from the entire
scFv sequence to a posterior probability,

fðxÞ=pðaffðxÞ<σ∣xÞ, ð2Þ

that the estimated binding affinity aff(x) of the sequence x is
better than the threshold σ. The threshold was set to the averaged
assayed value of Ab-14 in the training data. Assuming a Gaussian dis-
tribution, f(x) canbecomputedusing themeanand standarddeviation
of theprediction from the trained sequence-to-affinitymodel. For each
scFv chain (Ab-14-H and Ab-14-L), we computed two fitness functions,
extrapolated from the ensemble model and GP model, respectively.

The proposed fitness function captures the model uncertainty during
the optimization and enables us to estimate the performance of our
antibody designs prior to experimental testing.

Optimization strategies via sampling
The goal is to sample scFv sequences with the highest extrapolated
fitness value f(x). The optimization was performed using 3 different
sampling algorithms: a greedy algorithm called hill climb (HC)34, an
evolutionary algorithm called genetic algorithm (GA)35 and Gibbs
sampling36. We initialized the HC and GA sampling processes using the
10 strongest binders (seed sequences) from the supervised training
data and the Gibbs sampling using the strongest binders from the
training data.

For the hill climb algorithm, we initialized the optimization by
randomly mutating a seed sequence with an expected number of k = 2
mutations. At each step, the algorithm performs a local search around
the current sequence and samples the next sequence that has the
highest fitness value. The search continues until it can no longer find a
sequence that has a better fitness value than the current sequence. We
defined the local search space to be the 1000 mutants of the current
sequence, consisting of all the k = 1 mutations and random k = 2
mutations. The greedy-basedhill climbwas run 100 timeswith random
restart around a random seed sequence.

The genetic algorithm (GA) is an evolution-based search heuristic,
where the fittest individuals are selected to produce offspring of the
next generation. We initialized the population with a random seed
sequence from the top 10 binders. Parents were chosen from the
current population based on the Wright-Fisher model of evolution37

where members of the current population become parents with a
probability exponential to their fitness values, that is, p(x)~exp(f(x)/β).
Sequences with high fitness have more chances to pass their genes to
the next generation. A single-point crossover was performed on two
parent sequences randomly selected from the parent population, and
followed by randomly mutating individual child sequences with an
expected k = 1 mutation. The algorithm was terminated when it no
longer produced new sequences (the population converged). The
algorithm was run 100 times; each was initialized from a random seed
sequence. The parameter β was set to be 0.2 for the ensemble-based
fitness function and0.5 for theGP-based fitness function. Note that the
selection of parameter value β directly affects the diversity of gener-
ated sequence designs. Depending on the design needs, one can tune
this parameter to adjust the overall library diversity. Due to limited
understanding of the extrapolation power of MLmodels at the time of
sequence design, the β parameter was manually selected around its
default value used in FLEXS38. Future work in applying the proposed in
silico performance metric (see the Result section) to explore the tra-
deoffs between library diversity andpercent of successwould facilitate
the selection of the β parameter.

Gibbs sampling is aMarkovChainMonte Carlo (MCMC) algorithm
that samples a sequence according to some joint distribution by
generating random variates from each of the full conditional dis-
tributions. We initialized the algorithm from the top seed sequence
(the sequence with the strongest binding affinity in the training data).
At each step, we randomly selected a position i in the sequence,
sampled a mutant x̂i at the selected position with a conditional prob-
ability,

pðxi∣x1, . . . xi�1, xi + 1, . . . xLÞ, ð3Þ

and updated the sequence by replacing the ith token with the sampled
token x̂i. The conditional probability was defined to be exponential to
the fitness values, that is,

pðxi∣x1, :::, xi�1, xi + 1, :::, xLÞ∼ expðγ*fðxÞÞ: ð4Þ
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The Gibbs sampling was run once with 30,000 iterations. The
value γ was set to be 18 for the Ab-14-H ensemble-based fitness func-
tion, and 20 for both the Ab-14-L ensemble- and GP-based fitness
function. Multiple γ values were used to sample the Ab-14-H GP-based
fitness function. This is due to the limited number of sequences that
can be sampled at any specific γ value for the given fitness function. To
ensure that enough sequences canbe sampled,weused γ = 10, 3, 2, and
ran the Gibbs algorithm three times to sample a sufficient number of
sequences.

ML-optimized ScFv libraries
For each scFv chain (Ab-14-H variants and Ab-14-L variants), we con-
structed two fitness functions extrapolated from the ensemble and GP
model, respectively. For each fitness function, we performed optimi-
zation using three sampling strategies. This resulted in 6 libraries per
chain: 3 libraries from optimizing the ensemble-based fitness function
(namely, En-HC, En-GA and En-Gibbs), and 3 libraries from optimizing
the GP-based fitness function (namely, GP-HC, GP-GA, GP-Gibbs). We
then rank-ordered the generated sequences based on their fitness
score per library and selected the top 6000 sequences per library for
experimental validation. Supplementary Figs. 3 and 4 show the dis-
tribution of the designed sequenceswith respect to variousmutational
distances to demonstrate the library diversity: (1) mutational distance
to the candidate scFv Ab-14, and (2) pairwise mutational distance in a
library. The first distance metric measures the number of mutations
the designed antibodies are from Ab-14. The second distance metric
measures the intra-library diversity.

Evolution directed libraries
We built two baseline libraries based on conventional directed evolu-
tion strategies: random mutations and the PSSM-based method. The
random mutation library was constructed by randomly mutating
amino acid tokens from the seed sequences in the training data with a
k = 2 average number of mutations. Using this method, 2097 Ab-14-H
heavy-chain variants and 477 Ab-14-L light-chain variants were gener-
ated for experimental testing.

For the PSSM-based library, we used sequences in the training
data with measured affinities that are as good or better than the can-
didate scFv Ab-14. We fitted the PSSM by counting the occurrence of
each amino acid at each position in the CDRs with a small pseudo-
count. The fitted PSSM is amatrix of probability scores for each amino
acid at each position, representing the statistical patterns of the
training sequences that are better thanAb-14.We thendrew samples to
generate designs based on the fitted PSSM. Contrary to the random
mutation approach, the PSSM-based approach is not restricted to a
pre-defined mutational distance and could generate sequences that
are potentially far from the candidate antibody if the computed PSSM
allows. The PSSMmethod resulted in 7748Ab-14-Hheavy-chain variant
designs and 8257 Ab-14-L light-chain variant designs that were sent for
experimental testing. Supplementary Fig. 5c, f shows the distribution
of the generated sequences with respect to the mutational distances.

Experimental validation of designed sequences
We used an engineered yeast mating assay to empirically measure the
relative binding strength of our ML-designed sequences. Yeast pep-
tone dextrose (YPD), yeast peptone galactose (YPG), and synthetic
drop out (SDO) media supplemented with 80mg/mL adenine were
made according to standard protocols. Suppliers used for our yeast
media are as follows: Bacto Yeast Extract (Life Technologies), Bacto
Tryptone (Fisher BioReagents), Dextrose (Fisher Chemical), Galactose
(Sigma-Aldrich), Adenine (ACROS Organics), Yeast Nitrogen Base w/o
Amino Acids (Thermo Scientific), SC-His-Leu-Lys-Trp-Ura Powder
(Sunrise Science Products), Yeast Synthetic Drop-out Medium Sup-
plements (Sigma-Aldrich), L-Histidine (Fisher BioReagents),

L-Tryptophan (Fisher BioReagents), L-Leucine (Fisher BioReagents),
Uracil (ACROS Organics), and Bacto Agar (Fisher BioReagents).

AlphaSeq compatible plasmids encoding yeast surface display
cassettes were constructed by Twist Bioscience and resuspended at
100ng/µL in molecular grade water (Corning). 100 ng of plasmid was
digested with PmeI enzyme (NEB) for 1 hr at 37 °C to linearize, leaving
chromosomal homology for integration into the ARS314 locus at both
the 5’ and 3’ ends39. Yeast transformations were performed with
Frozen-EZ Yeast Transformation Kit II (Zymo Research) according to
manufactures instructions. Yeast were plated on SDO-Trp plates and
grown at 30 °C for 2-3 days. Successful transformants were struck out
onto YPAD plates and grown overnight at 30 °C.

To validate protein expression, yeast were inoculated in YPAD and
grown overnight at 30 °C. Yeast were labelled with FITC-anti-C-myc
antibody (Immunology Consultants Laboratory, Inc.) in PBS (Gibco) +
0.2% BSA (Thermo Fisher Scientific) for 30minutes at RT. Yeast were
pelleted and resuspended in PBS+0.2% BSA and read on a LSRII
cytometer.

To construct the DNA library, a 300 bp oligonucleotide pool
synthesized by Twist Bioscience was resuspended at 20 ng/µL in
molecular grade water (Corning). Libraries were PCR amplified from
the oligonucleotide pool using KAPA DNA polymerase (Roche). The
oligonucleotide amplification fragmentwas inserted into the seed scFv
backbone using Gibson isothermal assembly (NEB), as well as a second
DNA fragment containing a randomized DNA barcode. The assembled
barcoded antibody DNA library was PCR amplified. Fragments were
runon a0.8%agarose gel and extractedusingMonarchGel Purification
kit (NEB).

For the yeast library transformation, MATa AlphaSeq yeast were
grown for 16 hours in YPAGmedia to induce SceI expression39. All spin
steps were performed at 3000 RPM for 5minutes. Yeast were spun
down and washed once in 50mL 1M Sorbitol (Teknova) + 1mMCaCl2
(Sigma-Aldrich) solution. Washed yeast were resuspended in a solu-
tion of 0.1M LiOAc (ACROS Organics)/1mM DTT (Roche) and incu-
bated shaking at 30 °C for 30minutes. After 30minutes, yeast were
spun down and washed once in 50mL 1M Sorbitol + 1mM CaCl2
solution. Yeast were resuspended to a final volume of 400 µL in 1M
Sorbitol + 1mM CaCl2 solution and incubated with DNA for at least
5minutes on ice. Yeast were electroporated at 2.5 kV and 25 uF
(BioRad). Immediately following electroporation, yeast were resus-
pended in 5mL of 1:1 solution of 1M Sorbitol:YPAD and incubated
shaking at 30 °C for 30minutes. Recovered yeast cells were spun
down and resuspended in 50mLof SDO-Trpmedia and transferred to
a 250mLbaffledflask. 20 µL of resuspended cells were plated on SDO-
Trp to determine transformation efficiency. Both the flask and plate
were incubated at 30 °C for 2-3 days. After 2-3 days, transformation
efficiency was determined by counting colonies on the SDO-Trp plate.

For nanopore barcode mapping, genomic DNA from yeast
libraries was extracted using Yeast DNA Extraction Kit (Thermo Fisher
Scientific) following themanufacturer’s instructions. A single round of
qPCR was performed to amplify a fragment pool from the genomic
DNA containing the gene through the associated DNA barcode. qPCR
was terminated before saturation to minimize PCR bias, generally
between 15-20 cycles. The final amplified fragment was concentrated
with KAPA beads (Roche), quantified with a Quantus (Promega),
prepped with an SQK-LSK-110 ligation kit (Oxford Nanopore) and
sequenced with a Minion R10 flow cell (Oxford Nanopore) following
the manufacturer’s instructions. Each sequencing read was aligned to
the set of expected antibody sequences from the in silico antibody
library using minimap240 to determine the mapping between DNA
barcodes and antibody sequence; only DNA barcodes with at least 2
reads observed were considered, and each DNA barcode was matched
to the most common minimap2 antibody match among its
constituent reads.
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Library-on-library AlphaSeq assays were performed. Two mL of
saturated MATa and MATalpha library were combined in 800mL of
YPAD media and incubated at 30 °C in a shaking incubator. Six tech-
nical replicates were performed. After 16 hr, 100mL of yeast culture
was washed once in 50mL of sterile molecular grade water (Corning)
and transferred to 600mL of SDO-lys-leu with 100 nM ß-estradiol
(Sigma-Aldrich) for 24 hr. After 24hr, 100mL of yeast was transferred
to fresh SDO-lys-leu with 100 nM ß-estradiol for an additional 24 hr. In
addition to the antibody libraries described above, control yeast
strains comprising a small network of BCL2-family proteins39 were
included in each experiment to act as a set of standards for which BLI-
derived interaction affinities were known a priori.

To prepare the library for next-generation sequencing, genomic
DNA was extracted using Yeast DNA Extraction Kit (Thermo Fisher
Scientific) followingmanufacturer’s instructions. qPCRwas performed
to amplify a fragment pool from the genomicDNAand to add standard
Illumina sequencing adaptors and assay specific index barcodes. qPCR
was terminated before saturation to minimize PCR bias, generally
between 23-27 cycles. The final amplified fragment was concentrated
with KAPA beads (Roche), quantified with a Quantus (Promega), and
sequenced with a NextSeq 500 sequencer (Illumina).

Sequencing data were analyzed to identify the MATa and
MATalpha barcode pairs present among diploid yeast. The observed
number of sequencing reads for each MATa/MATalpha combination
were normalized according to frequency among haploid yeast to
account for uneven distribution of the input populations. Each aα pair
was then assigned a score representing the ratio of observed sequen-
cing reads to expected sequencing reads assuming random mating. A
linear regression was performed comparing these normalized
sequencing scores to known affinities for the control yeast strains and
this regressionwas utilized to assign estimated affinities to all other aα
pairs for each mating replicate.

Supplementary Tables 4 and 5 summarize the number and per-
centage of sequences present in the experimental data for Ab-14-H and
Ab-14-L designs, respectively. All generated data with experimental
affinity measurements are made publicly available for research use26.
To use the experimentally collected affinity data for evaluating the
performance of designed scFv sequences, we only consider designs
that are present in the experimental data. For sequences that are
present in the affinity data and have at least three out of six empirical
affinity values, the values are averaged and used as ground-truth
measured affinities. Sequences with two or fewer empirical measure-
ments are considered poor binders, and are included in the perfor-
mance evaluation as un-successful designs.

T-SNE Embedding
T-Distributed Stochastic Neighbor Embedding (t-SNE)41 is used to
visualize high-dimensional scFv sequences while approximately pre-
serving the edit distance between sequences. Specifically, we first
encode all scFv sequences using a one-hot encoder; for any pair of one-
hot encoded scFv sequences, the L1-norm between them equals the
edit distance. Then we apply the t-SNE dimensionality reduction to
project one-hot encoded sequences into a 2-D space as shown in Fig. 3.
Python scikit-learn package42 was used to perform t-SNE with the L1-
norm and PCA initialization43. For Ab-14-H variants, the perplexity and
learning rate are set to be 500 and 200, respectively. For Ab-14-L
variants, the perplexity and learning rate are set to be 500 and 500,
respectively.

Biophysical property calculation, statistical analysis of libraries
For the biophysical property analysis of designed libraries, we com-
puted isoelectric points and hydrophobicity, which are physico-
chemical descriptors known to influence the solution behavior of
antibodies. These properties were calculated based on the sequences
of the heavy and light chain variants in each library using BioPython30.

Specifically, for the heavy chain, we concatenated each heavy-chain
design with the fixed light-chain sequence; for the light chain, we
concatenated the fixed heavy-chain sequence with each light-chain
design. Isoelectric points were calculated using pK values44–46. Hydro-
phobicity was calculated using the Kyte & Doolittle index47. The
hydrophobicity score of each amino acid was averaged over the
sequence of each variant to give an overall hydrophobicity score for
each sequence. Supplementary Fig. 11 shows the distribution of iso-
electric and hydrophobicity.

Statistics and reproducibility
All statistical calculations were performed within the computation
environment Python (v3.8). No statistical method was used to deter-
mine the training data size and the size of designed sequences for
each library. The training data size was chosen as the maximum
number of sequences our budget for experimental measurements
allowed for, while being statistically sufficient for analysis and
machine learning models. The number of designed sequences for
each library was chosen to be 6000, which is statistically sufficient for
analysis and method comparison. All designed sequences and con-
trols were tested. Sequences that were unsuccessfully mapped in the
haploid step (thus no binding measurement is available) were exclu-
ded from the analysis. The random library generation was rando-
mized at k = 1,2 or 3. The PSSM-based sequences were randomly
sampled based on the PSSM statistics. The empirical validation was
conducted blindly by individuals lacking knowledge of whichmethod
generated a given design. Language model-based scFv feature
representations, sequence-to-affinity models and fitness landscapes
were reproducible.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data, including both the training data and designed sequences,
generated in this study have been deposited to Zenodo under https://
doi.org/10.5281/zenodo.7783546. Both datasets are under Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International
Public License (“CC BY-NC-SA 4.0”). Note: We do not recommend
combining the training data set and the set of designedmeasurements
into a single dataset. Even though both are from the same measure-
ment system, the dynamic range is different between the two sets (as
expected) potentially resulting in disagreement between the reported
values for a sequence that exists in both sets. Source data are provided
with this paper.

Code availability
Code48 is available on github: https://github.com/AIforGreatGood/
biotransfer and on Zenodo under https://doi.org/10.5281/zenodo.
7927152 for academic and/or non-profit internal research purposes.
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