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CFP1 governs uterine epigenetic landscapes
to intervene in progesterone responses for
uterine physiology and suppression of
endometriosis

Seung Chel Yang 1,10, Mira Park 1,10, Kwon-Ho Hong 2, Hyeonwoo La2,
Chanhyeok Park2, PeikeWang3, Gaizhen Li3, Qionghua Chen3, Youngsok Choi 2,
Francesco J. DeMayo4, John P. Lydon5, David G. Skalnik6, Hyunjung J. Lim 7,
Seok-Ho Hong 8,9, So Hee Park 1, Yeon Sun Kim1, Hye-Ryun Kim1 &
Haengseok Song 1

Progesterone (P4) is required for the preparation of the endometrium for a
successful pregnancy. P4 resistance is a leading cause of the pathogenesis of
endometrial disorders like endometriosis, often leading to infertility; however,
the underlying epigenetic cause remains unclear. Here we demonstrate that
CFP1, a regulator of H3K4me3, is required for maintaining epigenetic land-
scapes of P4-progesterone receptor (PGR) signaling networks in the mouse
uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to
complete failure of embryo implantation. mRNA and chromatin immunopre-
cipitation sequencing analyses showed that CFP1 regulates uterine mRNA
profiles not only in H3K4me3-dependent but also in H3K4me3-independent
manners. CFP1 directly regulates important P4 response genes, including
Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the
uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4
resistance, which was rescued by a smoothened agonist. In human endome-
triosis, CFP1 was significantly downregulated, and expression levels between
CFP1 and these P4 targets are positively related regardless of PGR levels. In
brief, our study provides that CFP1 intervenes in the P4-epigenome-tran-
scriptome networks for uterine receptivity for embryo implantation and the
pathogenesis of endometriosis.

CXXC finger protein 1 (CFP1) is an important player in the epigenetic
regulation of genes by inducing trimethylation at histone H3 lysine 4
(H3K4me3) with SETD1, a histone methyltransferase1. H3K4me3 is
mainly found in active promoters and turns chromatin into tran-
scriptionally active euchromatin in the transcription start site (TSS)
and CpG island (CGI)2. When CFP1 binds to unmethylated CpG, it
recruits SETD1A/B to trigger H3K4me3 in the promoters of target

genes to increase gene expression1,3. The deletion of CFP1, SETD1A, or
SETD1B in mice caused embryonic lethality during or after gastrula-
tion, suggesting the roles of SETD1-CFP1 complexes in early mamma-
lian development4,5. Furthermore, the conditional deletion of CFP1
highlighted that CFP1-associated H3K4me3 has fundamental roles in
various biological processes. CFP1-deficient embryonic stem cells
failed to differentiate in vitro because of aberrant H3K4me3 at
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non-methylated CGI promoters, leading to transcriptional
disturbance2,4,6. CFP1 plays an important role in intrathymic T-cell
development and differentiation program of TH17 cells7,8. Recent
studies have also demonstrated that CFP1 is required for epigenetic
modification in non-replicative cells, such as germ cells, in mice9–11.

The endometrium is a highly dynamic organ, and its function and
cyclicity are mainly regulated by ovarian progesterone (P4) and
estrogen (E2). Imbalances between P4 and E2 may cause various gyne-
cological disorders such as endometriosis, repeated implantation
failure, and endometrial cancer12. P4 and E2 activate their nuclear
receptors, progesterone receptors (PGRs), and estrogen receptors
(ESRs) to control the expression of local factors for uterine functions.
PGR-dependent signaling networks for epithelium–stroma interaction
are necessary to promote uterine receptivity for embryo implantation
and decidualization in the uterus13. The fine-tuning of epigenetic
modulation is required for phase-specific transcriptional networks
during the reproductive cycle, embryo implantation, and subsequent
pregnancy14–16. Dynamic changes in histone modifications occur dur-
ing decidualization17,18. Silencing and overexpression of EZH2, a his-
tone methyltransferase for H3K27me3, a repressive histone mark,
disturb the expression of decidualization markers, such as IGFBP1 and
PRL17. For successful parturition, biphasic modes of H3K27me3
dynamics in decidual stromal cells dictate the regulated gene silencing
in the uterine adaptation to pregnancy19. The acetylation and methy-
lation patterns of H3 and H4 in women with endometriotic lesions are
distinct from those of disease-free women20. However, the physiolo-
gical significance of epigenetic regulatorymachineries, such as histone
modification during early pregnancy and the pathogenesis of uterine
disorders, remains largely unexplored.

Endometriosis is a disorder in which endometrial cells grow
abnormally outside the uterus. The surgical removal of the ectopic
endometrial lesionwith hormonal suppression is the current standardof
care; however, these therapies have a high incidence of relapse and
various side effects21,22. Endometriosis affects 10%–15% of women of
reproductive age and is oneof the leading causesof female infertility21–24.
Leading causes of endometriosis include increased E2 response, P4
resistance (decreased P4 response), and/or abnormal epigenetic
regulation25–28. Although decreased P4 response caused by reduced PGR
expression is considered a main cause of endometriosis26,29, the under-
lying cause of the decreased P4 response, even with normal P4 secretion
and PGR expression, has not yet been elucidated.

Altered DNA methylation and histone modification on the genes
for balanced hormone responses were mainly proposed to affect the
endometrial function and the development of endometriosis9,12. The
loss of histone deacetylase 3 (HDAC3) is a result of failures in embryo
implantation and decidualization and caused fibrosis in the endome-
trium, one of the symptoms of human endometriosis with reduced
HDAC3 expression25. However, epigenetic causes of how uterine cells
grow outside the uterus in patients with endometriosis have not been
clearly identified. Using a combination of genetic and pharmacologic
tools and various analyses, we demonstrated that CFP1-dependent
epigenetic regulation is necessary to maintain uterine transcriptional
landscapes for P4 response for a successful pregnancy and prevent
endometriosis with P4 resistance. Thus, this study provides funda-
mental insight into understanding the complex interplay between the
P4-PGR signaling pathway and uterine epigenome–transcriptome
under physiologic and pathophysiologic conditions, such as
endometriosis.

Results
Loss of Cfp1 leads to infertility withmultiple failures in oviductal
embryo transport, P4 uterine responses, embryo implantation,
and decidualization in mice
CFP1 is expressed inmany cells of female reproductive organs, such as
the ovary, oviduct, and uterus (Supplementary Fig. 1). During early

pregnancy, uterine CFP1 expression gradually increased from day 1 of
pregnancy (Day 1) to Day 3. It peaked on Day 4, with the highest
expression in the luminal epithelium. However, its expression is not
directly affected by the regulation of E2 and/or P4 in the mouse uterus
(Supplementary Fig. 1). While Cfp1 is deleted in most cell types in the
female reproductive tract of adult Cfp1f/f;Pgrcre/+ (Cfp1d/d) mice (Sup-
plementary Fig. 2), they showed normal architectures in the gross
morphology and histology of the reproductive tract with regular
estrous cycle (Supplementary Fig. 3a–c). Furthermore, serum levels of
E2 and P4 on Day 4 in Cfp1d/d mice were comparable to those of Cfp1f/f

mice. We also found that Cfp1d/d mice ovulate similar numbers of
oocytes that can fertilize normally, and the fertilized embryos develop
to the blastocyst stage without any aberrations in vitro (Supplemen-
tary Fig. 3d–f). However, implantation sites (IS), blue bands along the
uterus, were not observed in Cfp1d/d female mice on Day 5 (Fig. 1a). In
addition, Cfp1d/d uteri did not show decidual responses to artificial
stimuli, such as oil (Fig. 1b, c). Accordingly, Cfp1d/d female mice did not
produce any pups (Fig. 1d). Interestingly, all blastocysts were found in
the oviduct but not in the uterus ofCfp1d/d mice onDay 4, whereas they
were found in the uterus of Cfp1f/f mice as expected (Fig. 1e–g).

To examine embryo implantation in the uterus of Cfp1d/d mice
with defective oviductal embryo transport, wildtype blastocysts
were transferred to the uteri of Cfp1f/f and Cfp1d/d mice on day 4 of
pseudopregnancy. Distinct IS were observed in Cfp1f/f but not in
Cfp1d/d recipients, and unimplanted blastocysts were retrieved from
Cfp1d/d recipients 24 h after embryo transfer (Fig. 1h, i and Table 1),
indicating that CFP1-deficient uterine environments do not support
embryo implantation. In this aspect, cell proliferation profiles are
aberrant in the uterus of Cfp1d/d mice on Day 4 (Fig. 1j, k), whereas
the levels of E2 and P4 (Supplementary Fig. 3d) and their receptors
(Supplementary Fig. 4) are comparable between Cfp1f/f and Cfp1d/d

mice. Nevertheless, the uterine epithelium persistently proliferates,
and the stroma showed less proliferation potential in the uterus of
Cfp1d/d mice, suggesting that CFP1, as an epigenetic regulator, is
required for proper hormone responses in the uterus for a suc-
cessful pregnancy.

CFP1 regulates uterine mRNA landscapes in both H3K4me3-
dependent and H3K4me3-independent manners
To understand the CFP1-dependent epigenetic regulation on
transcriptional landscapes in the uterus, we performed chromatin
immunoprecipitation sequencing (ChIP-seq) andmRNA sequencing
(mRNA-seq) with the uteri of Cfp1f/f and/or Cfp1d/d mice on Day 4
(Fig. 2). ChIP-seq with antibodies for CFP1 and H3K4me3 provided
evidence that CFP1-binding sites are highly enriched in TSS and CGI,
and H3K4me3 in TSS and CGI was generally reduced in the uterus of
Cfp1d/d mouse (Fig. 2a). De novo motif analysis for CFP1 ChIP-seq
data showed that CFP1 recognizes the CCGG motifs, including CGG
and its reverse complement CCG (Fig. 2b), which are consistent with
the CFP1-binding motifs found in humans30–32. CFP1 binding was
noticeably enriched in extended gene bodies, including promoters
(9%), exons (4%), and introns (38%) in mouse uterus, considering
that the mouse genome consists of promoters (2%), exons (2%),
introns (20%), and intergenic factors (76%) (Fig. 2c). When the
mRNA-seq and H3K4me3 ChIP-seq data in ±2 kilo base pairs (Kbp) of
TSSwere analyzed together, 40.3% of differentially expressed genes
(DEGs) had a reduction in both gene expression and H3K4me3
levels in Cfp1d/d mice (Fig. 2d) as expected from the known actions of
CFP1 on H3K4me3. Generally, the lower gene expression levels are,
the lower the H3K4me3 levels in the +2Kbp TSS region are (Sup-
plementary Fig. 5). However, a significant portion of DEGs (18.2%)
was made up of genes with decreased expression levels and
increased H3K4me3 levels in Cfp1d/d mouse uterus on Day 4, sug-
gesting that CFP1 could promote gene expression in the uterus in
H3K4me3-independent manner.
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AlthoughCFP1 binds to unmethylated CpG and induces H3K4me3
to increase gene expression1,3, the number of significantly down-
regulated (3329) and upregulated (2829) genes in Cfp1d/d mice was
comparable (54% vs. 46%) in DEGs from mRNA-seq (Fig. 2e and Sup-
plementary Fig. 6a). However, gene ontology (GO) analyses showed
that most GO terms (126/132, 95.5%) with false discovery rate (FDR) of
<0.25 were reduced in the uteri of Cfp1d/d mice on Day 4 (Fig. 2f and
Supplementary Fig. 6b). Gene set enrichment analyses (GSEA) showed
that various gene sets associated with P4 response, hedgehog

signaling, cancers, ion channel activities, and stromal cell stimulation
were significantly downregulated in Cfp1d/d uterus (Fig. 2g). Interest-
ingly, the Indian hedgehog (IHH)-dependent smoothened signaling
pathway (SSP) is a well-known P4 downstreampathway that inhibits E2-
dependent epithelial proliferation and further stimulates stromal
proliferation in the uterus33. A heatmap, reverse-transcriptase poly-
merase chain reaction (RT-PCR), and real-time RT-PCR analyses for the
SSP gene set validated that IHH-dependent SSP is significantly down-
regulated in Cfp1d/d mouse uterus on Day 4 (Fig. 2h, i).

Article https://doi.org/10.1038/s41467-023-39008-0

Nature Communications |         (2023) 14:3220 3



CFP1 epigenetically regulates P4 responses through the
IHH-dependent SSP in mouse uterus
To further investigate the epigenetic actions of CFP1 in the uterus, we
tried to identify CFP1 direct target genes by analyzing all sequencing
data together. The CFP1 direct target gene candidates should have
CFP1-binding site(s) and be downregulated in Cfp1d/d uteri. We found
that the putative direct target genes of CFP1 are regulated not only in
H3K4me3-dependent (673 genes) but also inH3K4me3-independent
(423 genes) manner (Fig. 3a and Supplementary Data 1–2). Interest-
ingly, the upstream and downstream genes of IHH-dependent SSP
were included in the list; Ihh,Gli3, andGata2 as H3K4me3-dependent
and Ptch1, Sox17, and Nr2f2 as H3K4me3-independent target genes
(Fig. 3b and Supplementary Data 2). The expression of these genes
was reduced with statistical significance in Cfp1d/d mice (Figs. 2i and
3c). The visualization of sequencing data for Gata2, Ihh, and Sox17
using Integrative Genomics Viewer demonstrated that they all have
CFP1 binding sites, and their expression levels were significantly
reduced in Cfp1d/d uteri. However, H3K4me3 levels were decreased in
extended gene bodies of Gata2 and Ihh, but not in Sox17 (Fig. 3d).
Real-time ChIP PCR reinforced that SETD1 and H3K4me3 were enri-
ched in the promoter regions of Gata2 and Ihh but not in Sox17,
whereas CFP1 is enriched in all of them in Cfp1f/f uterus (Fig. 3e and
Supplementary Table 1). In summary, CFP1 works with SETD1 to
increase H3K4me3 in Gata2 and Ihh promoters but not for Sox17
promoter for their expression in the uterus.

P4-PGR induces stromal cell proliferation and inhibits epithelial cell
proliferation via the activation of SSP downstream of Gata2, Sox17, and
Ihh inmouse uterus onDay 4 (Fig. 3b). However, P4 could not inhibit E2-
dependent epithelial proliferation and facilitate stromal cell prolifera-
tion in the uteri of ovariectomized (OVX) Cfp1d/d mice (Fig. 3f, g) in line
with the results on Day 4 (Fig. 1k). Since defective SSP could cause
aberrant cell proliferation in Cfp1d/d uteri, we tried to rescue this phe-
notype with SAG, a smoothened agonist, in these mice. An intrauterine
delivery of SAG successfully rescued aberrant epithelial proliferation in
the uteri of OVX Cfp1d/d mice treated with E2 and P4 (Fig. 3f and 3g).
Furthermore, SAG significantly restored the decreased expression
levels of genes in SSP and its downstreamgenes, such asGli1, Gli2, Nr2f2,
andHand2, inCfp1d/d uteri to the levels inCfp1f/f uteri (Fig. 3h).Whenour
mRNA-seq datasets were compared with other P4-related tran-
scriptomic data (GSE118264, GSE40661, and GSE178541)13,34,35,

comparative analyses showed that significant numbers of DEGs inCfp1d/
d uterus overlap with DEGs in other P4-related datasets (Supplementary
Fig. 7). Collectively, these results suggest that CFP1 loss disturbs the
epigenetic maintenance of P4-PGR signaling pathways in the uterus.

CFP1 is required for P4 function to inhibit the growth of ectopic
endometriotic lesions in mice
Endometriosis can occur possibly via a decreased P4 response, and
some patients with endometriosis show P4 resistance even with
normal PGR expression36–39. To further evaluate CFP1 function for
uterine P4 responses, we established a mouse model of endome-
triosis with some modifications from previous reports25,26. When P4
was given with E2, the size of ectopic lesions was significantly
smaller than with E2 alone, although the number of ectopic lesions
was not different (Supplementary Fig. 8a, b). Ectopic lesions were
mainly observed on organs with highly developed blood vessels,
such as the small intestine, kidney, uterus, and fat pad (Supple-
mentary Fig. 8c). When small pieces of Cfp1f/f and Cfp1d/d uterus as
endometriotic lesions were transplanted to wildtype recipients
(Fig. 4a), P4 effectively suppressed the E2-induced growth of Cfp1f/f

but not Cfp1d/d ectopic lesions even if the number of ectopic lesions
was not affected by Cfp1 genotypes (Fig. 4b–e). The mRNA expres-
sion ofGata2, Sox17, and Ihhwas also significantly downregulated in
Cfp1d/d ectopic uterine lesions (Fig. 4f). When SAG was administered
to rescue P4 resistance and/or insensitivity in Cfp1d/d ectopic uterine
lesions, P4 suppressed the size of Cfp1d/d ectopic lesions in the
endometriosis model (Fig. 4b–e), suggesting that CFP1 is required
for proper P4 responses to suppress ectopic growth of uterine tis-
sues in mice.

Downregulation of the epigenetic factorCFP1maybe associated
with endometriosis in humans
To further evaluate the potential actions of CFP1 on the pathogenesis
of endometriosis in humans, we analyzed datasets (GSE51981) of the
endometria of patients with endometriosis (endometriosis group,
n = 77) and healthy women (control group, n = 71) from a previous
study40. While no correlation exists between the expression levels of
CFP1 and PGRmRNAs,GATA2, SOX17, and IHHmRNA expression levels
were positively correlated with that of CFP1 (Fig. 5a) and PGR mRNA
(Supplementary Fig. 9a) regardless of endometrial pathologic

Fig. 1 | Cfp1d/d mice suffer from aberrant epithelial cell proliferation and com-
plete failure of embryo implantation and decidualization. a Representative
photographs of uteri with IS (black arrowheads) in Cfp1f/f and Cfp1d/d mice onDay 5.
n = 4 to 5 biologically independent samples per genotype. Data are presented as
mean values with SD. Statistical analyses were performed using the unpaired Stu-
dent’s t-tests. **p <0.01. b Artificial decidualization responses in hormone primed
Cfp1f/f and Cfp1d/d OVX mice. The decidual response was determined by the uterine
weight of the oil-injected (black arrowheads)/non-injected uterine horn. n = 3 to 4
biologically independent samples per genotype. Data are presented asmean values
with SD. Statistical analyses were performed using the unpaired Student’s t-tests.
**p <0.01. c Microscopic images of alkaline phosphatase staining of artificially
decidualized Cfp1f/f and Cfp1d/d uteri. Scale bar, 100 µm. d Litter size of Cfp1f/f and
Cfp1d/d female mice that were mated with fertile male mice for 8–10 weeks. The
numbers above the bars indicate the number of mice with litter/total number of
mice examined in each group. Data are presented as mean values with SD. Statis-
tical analyses were performed using the unpaired Student’s t-tests. **p <0.01.

e–h Impairment of the embryo transport from the oviduct to the uterus in Cfp1d/d

female mice. Percentage graph (e) and microscopic images (g) of embryos recov-
ered fromuteri and/or oviducts inCfp1f/f andCfp1d/d mice onDay 4. Scale bar, 50 µm
in (f). g Schematic image of Cfp1d/d oviduct in themorning of Day 4. Representative
histological images ofCfp1d/d oviduct (ampulla and isthmus)whereblastocystswere
found even in the morning of Day 4. Scale bar, 50 µm. Figure was created with
BioRender.com. h Experimental scheme of embryo transfer. i Representative
photographs of uteri with IS (black arrowheads) in pseudopregnant Cfp1f/f and
Cfp1d/d recipients after transferring wildtype blastocysts. Scale bars, 50 µm. Figure
was created with BioRender.com. j, k Immunofluorescent staining of KI67 to
examine uterine cell proliferation in Cfp1f/f and Cfp1d/d mice on Day 4. Scale bar,
50 µm. Bl blastocyst, S stroma, M muscle cells, E epithelium, GE glandular epithe-
lium, LE luminal epithelium. n = 6 to 7 biologically independent samples per gen-
otype. Data are presented as mean values with SD. Statistical analyses were
performed using the unpaired Student’s t-tests. **p <0.01.

Table 1 | Embryo implantation in pseudopregnant Cfp1f/f and Cfp1d/d recipients after blastocyst transfer

Genotype of embryo Genotypes of recipients No. of recipients (No. of transferred
embryos)

No. of mice with
IS (%)

No. of IS (%) No. of blastocysts recov-
ered (%)

Wildtype Cfp1f/f 5 (76) 5 (100.0) 7.2 ± 1.9 (47.4) N.A.

Cfp1d/d 8 (126) 0 (0.0) 0 (0.0) 0.4 ± 0.7 (2.4)

No number, IS implantation site, N.A. not applicable.
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conditions. We further analyzed a subset of GSE51981, i.e., endometria
of women with mild and severe endometriosis in the mid-secretory
phase where P4 is dominant (Fig. 5b). In patients with mild endome-
triosis, the expressionprofiles of PGR,CFP1, and P4 target genes are not
different from those of the control group. However, there was a sta-
tistically significant reduction in their expression levels in patientswith
severe endometriosis (Supplementary Fig. 9b). Among patients with

severe endometriosis, some had a comparable level of PGR but a low
level of CFP1 (circled red, Fig. 5b). In these patients, the expression
patterns of GATA2, SOX17, and IHH mRNAs were significantly
decreased. It suggests that aberrantly reduced expression of CFP1may
be associatedwith endometriosis via abnormal P4 response in patients
with normal PGR expression. We also performed immunohistochem-
istry and real-time RT-PCR for these genes in endometrial samples
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from patients with severe endometriosis and disease-free control
women in the secretory phase. The eutopic and ectopic endometria
from patients with endometriosis showed decreased expression levels
of CFP1, GATA2, SOX17, and IHH mRNAs compared with the endome-
trium from the control group (Fig. 5c, d), suggesting that reducedCFP1
expression may disturb epigenetic landscapes that mediate P4-PGR
signaling pathways in human endometrium, often leading to
endometriosis.

Discussion
Many gynecological diseases are caused by abnormally reduced P4
response; however, the underlying epigenetic aberration for the
imbalanced steroid hormone responses has not been clearly eluci-
dated. We demonstrate that CFP1-associated epigenetic regulation is
required for maintaining appropriate P4 responses for embryo
implantation and decidualization in the uterus and inhibiting the
ectopic growth of endometrial lesions outside the uterus. Cfp1d/d mice
exhibit a wide spectrum of infertility, including defective oviductal
embryo transport, abnormal uterine cell proliferation, and complete
failure of embryo implantation and decidualization (Fig. 1). These
phenotypes suggest that epigenetic regulation through H3K4me3 is
involved in the sequential events of female reproduction. A recent
study supported those spatiotemporal dynamics of H3K4me3 in the
uterine genome are needed to be well controlled for early pregnancy.
In mice without MENIN (Men1d/d mice), a member of the H3K4
methyltransferase complex, defective decidualization compromised
fertility, whereas embryo implantation normally occurs41. Impaired
decidualization in Men1d/d mice was caused by reduced Bmp2 expres-
sion by abnormally increased FGF2 signaling41. In Cfp1d/d uterus on Day
4, Fgf2 expression aberrantly increased because of a decrease in Ihh-
dependent SSP that antagonizes FGF2 signaling, although the Bmp2
expression did not decrease (Fig. 3). While MLL1/2 complexes that
contain MENIN catalyze H3K4 methylation in a gene- and cell-specific
manner, SETD1–CFP1 complexes are the leading H3K4 methyl-
transferases among the six histone methyltransferases, SETD1A/B,
MLL1/2, andMLL3/49,41. This is consistent with the fact thatCfp1d/d mice
show a wider spectrum of infertile phenotypes than Men1d/d mice,
suggesting that CFP1-dependent epigenetic regulation may work on
thewider area of the genome. For example, we found an impairment of
the oviductal embryo transport in Cfp1d/d mice, which was not
observed in Men1d/d mice. Embryo transport in the oviduct could be
interrupted by abnormalities in cilia movement, fluid secretion, and
smooth muscle contraction42,43. Since Cfp1 was mainly deleted in non-
ciliated epithelial cells of the isthmus, but not in ciliated ones, which
are positive for acetylated tubulin in the ampulla of Cfp1d/d oviduct by
Pgr-Cre (Supplementary Fig. 2e, f), embryo retainment in the oviduct
could result from abnormalities in fluid secretion and smooth muscle
contraction44, but not from cilia movement. While the epigenetic
changes for fluid secretion are largely unknown, histone marks to
promote transcription, such as H3K4me3 and H3K27 acetylation
(H3K27ac), are enriched at promoters of genes driving muscle con-
traction on the advance of labor onset in the myometrium45.

CFP1-dependent epigenetic regulation has been investigated in
various biological events. The conditional deletion of Cfp1 in mouse
hematopoietic cells resulted in severe defects during hematopoiesis
with complete loss of lineage-committed progenitors and mature
cells46. CFP1 is also required for thymocyte survival, the balanced dif-
ferentiation between Th17 and Treg cells7,8, and the phagocytic and
bactericidal activity of macrophages47. Since Pgr is expressed in var-
ious immune cells, including macrophages48, dendritic cells49, and
T cells50, Cfp1 was supposed to be deleted in immune cells as well as
uterine cells in Cfp1d/d mice. Immune cells play important roles during
pregnancy51. However, immune-relatedgene setswere not significantly
altered inCfp1d/dmouse uterus onDay 4 (Fig. 2g). Furthermore, normal
fertility was observed in mice (Cfp1f/f;LysMcre/+) in which Cfp1 is deleted
in the myeloid lineage cells, such as monocytes and macrophages,
using LysM-Cre (Supplementary Table 2), suggesting that phenotypes
observed inCfp1d/dmice are notdirectly associatedwithCFP1 functions
in immune cells. Recently, the function of CFP1–SETD1 complexes for
epigenetic reprogramming during germ cell development has been
investigated. CFP1-mediated H3K4me3 is required for maintaining
chromatin accessibility for transcriptional activities during oocyte
development, and oocyte-specific deletion of Cfp1 caused reduced
H3K4 methylation levels and globally downregulated transcription
activities, in turn, leading to multiple defects in the meiotic division
and maternal–to–zygotic transition10. Furthermore, CFP1 participates
in regulating the expression of paracrine factors for communication
between theoocyte and surroundinggranulosa cells for follicle growth
and ovulation52. The conditional deletion of Setd1b in the oocyte also
caused the dysregulation of transcription factors for oogenesis,
including Obox transcription factors, leading to oocyte maturation
defects and infertility53. CFP1 deletion before the onset of meiosis with
Stra8-Cre in male mice caused complete infertility with the sperma-
togenic arrest at the MII stage11, suggesting that CFP1-mediated
H3K4me3 plays a role in meiosis and cell fate decision.

P4 antagonizes E2 action on epithelial proliferation and promotes
stromal cell proliferation to prepare uterine receptivity for embryo
implantation and decidualization13,54. P4 increased the expression of
Gata2, Sox17, and Ihh in epithelial cells to trigger SSP in the stroma on
Day 4 in mice13,33,34, all of which were downregulated in Cfp1d/d mice
(Figs. 2 and 3). As a result, uterine epithelial cells aberrantly pro-
liferated and failed to prepare embryo implantation on Day 4 in Cfp1d/d

mice (Fig. 1). The expression of gene sets related to P4 response, IHH-
dependent SSP, and stromal cell stimulation was significantly reduced
in Cfp1d/d mice (Fig. 2g). Furthermore, SAG successfully rescued
abnormal uterine cell proliferation in Cfp1d/d mouse uterus (Fig. 3).
They all indicate that disturbed P4–PGR–SSP signaling pathway is the
main cause of complete failure of embryo implantation and decid-
ualization in Cfp1d/d mice. In fact, mice without Gata2, Sox17, or Ihh
phenocopied all these uterine defects observed in Cfp1d/d mice13,33,34. In
addition, SAG restored decidualization and abnormal uterine cell
proliferation in Ihh cKO mice33. PGR is decreased in Gata2-deficient
uteri, but it is necessary tomention thatmice deficient in Sox17, Ihh, or
Cfp1 had normal PGR expression. Although reduced PGR expression

Fig. 2 | CFP1 epigenetically regulates uterine transcriptome via H3K4me3 on
Day 4. a Tag density of CFP1 binding and H3K4me3 peaks were calculated on ±3
Kbp window centered on TTS and CGI regions of all RefSeq (mm10) genes in Cfp1f/f

and/or Cfp1d/d mouse uteri on Day 4 for heatmap and graph data. b CFP1-binding
sequence logo of the top 10 motifs identified using de novo motif discovery.
c Distribution of the genetic features across the mouse genome and CFP1-binding
peaks in Cfp1f/f mouse uterus on Day 4. d Correlation between H3K4me3 promoter
(TSS± 2 Kbp) enrichment conditions and gene expression in the mouse uterus on
Day 4 (Cfp1d/d versus Cfp1f/f). Each dot represents a differentially expressed gene
with statistical significance (p <0.05, normalized data average, log2 > 3). e Volcano
plot to compare expression profiles from the Cfp1f/f vs. Cfp1d/d in the uterus on Day

4. f Pie chart summarizing upregulated or GO term in Cfp1f/f versus Cfp1d/d mouse
uterus on Day 4. g GSEA to identify downregulated GO term and curated gene sets
in Cfp1f/f versus Cfp1d/d mouse uterus on Day 4. Gene sets with an FDR q-value of
<0.25 (red dotted line) were considered significant. h GSEA enrichment plot and
heatmap of the “GO Regulation of smoothened signaling” gene set from RNA-seq
data of Cfp1f/f and Cfp1d/d mouse uterus on Day 4. The color spectrum from blue to
red indicates low to high expression. i RT-PCR and Real-time RT-PCR analyses for
IHH-dependent SSP genes (red colored in h). n = 8 biologically independent sam-
ples per genotype. Data are presented as mean values with SD. Statistical analyses
were performed using the unpaired Student’s t-tests. **p <0.01.
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appears to be the main cause of P4 resistance that contributes to the
pathogenesis of endometriosis29,38,55, some studies have reported
comparable levels of PGR in eutopic36,38 or ectopic56 endometria of
women with endometriosis. This suggests that the epigenetic aberra-
tion in PGR downstream pathways could be involved in the patho-
genesis of endometriosis57. Essentially, the activation of PGR
downstream pathways with SAG rescued the abnormal epithelial pro-
liferation inCfp1d/d uterus (Fig. 3) and suppressed the ectopic growthof
Cfp1d/d uterine lesions with P4 resistance in the endometriosis model

(Fig. 4). Aberrant epithelial proliferation was also found in the endo-
metrium of patients with endometriosis25,58. Considering impaired P4-
PGR signaling without PGR reduction (Supplementary Fig. 4) in Cfp1d/d

mice reflects P4 resistance, disturbed CFP1-associated H3K4me3 could
contribute to P4 resistance that often leads to endometriosis in
humans.

CFP1 mainly works to increase the expression of target genes
through H3K4me3-dependent manners7,52. Accordingly, 40.3% of
DEGs in Cfp1d/d uteri were downregulated with reduced H3K4me3
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levels (Fig. 2d). However, a substantial portion of downregulated
DEGs had even higher H3K4me3 levels (18.2%). Although CFP1 is an
evolutionally conserved epigenetic regulator to work with SETDs for
H3K4me3 fromyeast tomammals, recent studies have suggested that
CFP1 could collaborate with epigenetic modulators other than
COMPASS (complex associated with SET1) complexes, such as DNA
methyltransferases (DNMTs) and HDACs, in a context-dependent
manner.WhenCFP1/SETD1orMLL1/2 binds toDNA, theyhamperDNA
methylation by blocking the access of DNMT3A59. CFP1 interacts with
and recruits DNMT1 to suppress aberrant transcription re-initiation or
silence specific genes2,60. The expression of Dnmt1 and Dnmt3a
increased gradually in the mouse uterus during early pregnancy61.
They suggest that the H3K4me3-independent gene expression in
Cfp1d/d uteri could be associated with reduced DNA methylation. In
addition to DNMTs, CFP1 could interact with HDAC1/2 complexes to
regulate fertility and development in C. elegans. CFP1 recruits the
HDAC complex to H3K4me3-rich promoter regions to deacetylate
chromatin62. CFP1-dependent H3K4me3 is necessary to recruit his-
tone acetylase(s) for H3K9ac dynamics in mouse embryonic stem
cells6, suggesting that CFP1-associated H3K4me3 cross-talks with
histone acetylation. Interestingly, higher P4 levels in in vitro fertili-
zation cycles on the day of hCG administration altered various epi-
genetic marks, including H3K9ac, H3K9me2, and H3K27me3, in the
endometrium63, suggesting that histone modifications and P4-PGR
signaling influence each other in the endometrium. The epithelial
cells in endometriotic lesions expressed a higher level of EZH2, the
enzyme responsible for a repressive mark H3K27me3, which P4
upregulates64. MLL1 is directly regulated by P4–PGR signaling in the
uterus and MLL1 and H3K4me3 both decreased in the eutopic endo-
metrium of patients with endometriosis65. Furthermore, the expres-
sion of HDAC3, one of HDACs that reduce gene expression, was
significantly lower in the endometrium of patients with endome-
triosis. The loss of HDAC3 inmice leads to infertility that results from
embryo implantation failures with defective decidualization possibly
through the aberrant activation of Col1a1 and Col1a2 genes that
promote fibrosis with decreased ESR and PGR in the uterus25. In
summary, our results suggest that aberrant epigenetic regulation in
CFP1-deficientmiceprovides a uterine environmentwith P4 resistance
that leads to infertility caused by multiple failures and endometriosis
(Fig. 6). This study is of great significance to provide an underlying
epigeneticmechanismof P4 resistance in the endometrium that could
lead to endometriosis in humans.

Methods
Animals
All mice used in this study were maintained in accordance with the
policies of the CHA University Institutional Animal Care and Use
Committee (No150083). Adult (8–10 weeks of age) C57BL/6 mice,
provided by Orient Bio (Gapyeong, Gyeonggi, Korea), were housed

under temperature- and light-controlled conditions with the light on
for 12 h daily and fed ad libitum. Cfp1f/f mice were kindly provided by
Dr. David G. Shkolnik’s laboratory1. First, Cfp1f/f mice were mated to
Pgrcre/+ mice to generate Cfp1f/+;Pgrcre/+ mice66. Then, these mice were
crossed to generate Cfp1d/d and Cfp1f/f mice. Genotyping PCR was
performed by genomic DNA extracts from tail biopsies (Supplemen-
tary Table 3).

Vaginal smear analysis and fertility test
Estrous cyclicity was evaluated in mature Cfp1f/f and Cfp1d/d female
mice by daily analysis of vaginal smears over 2 weeks between 8:00
and 9:00 AM. The estrous cycle stage (proestrus, estrus, metestrus,
and diestrus) was determined based on the presence of vaginal cor-
nified epithelial cells and nucleated epithelial cells/total vaginal cells.
To evaluate reproductive performance, mature Cfp1f/f and Cfp1d/d

female mice (n = 4 per genotype) were individually bred to wildtype
males with proven fertility. The numbers of litters and pups were
recorded for 2 months.

Serum E2 and P4 level measurement
Blood samples were collected on Day 4 (9:00 AM) from the heart of
Cfp1f/f and Cfp1d/d female mice (n = 5 to 9 per genotype). First, the
mouse blood was sampled without anticoagulant and transferred to a
sterile empty tube. Next, the mouse blood was centrifuged at 1500 × g
for 15min at 4 °C. Separated serum was transferred into a new sterile
empty tube. Serum levels of mouse E2 and P4 were measured by
radioimmunoassay67.

Ovulation, fertilization, and preimplantation embryo
development
Cfp1f/f and Cfp1d/d female mice were bred to wildtype males with
known fertility. The morning of the vaginal plug observation was
designated as Day 1. The mice were sacrificed on Day 2, and their
oviducts were flushed to evaluate the number and fertilization
potential of ovulated oocytes (n = 7 per genotype). In addition,
fertilized 2-cell embryos were cultured up to the blastocyst stage in
20ml droplets of KSOM (Millipore, Danvers, MA, USA) covered
with oil (SAGE In-Vitro Fertilization, Inc., Trumbulla, CT, USA) in a
petri dish.

Hormone treatments
To investigate time-dependent actions of E2 or P4 on the expression of
Cfp1 in C57BL/6 mice uterus, adult (8–10 weeks of age) female mice
were OVX, rested for 14 days, and then subcutaneously injected with
either vehicle (sesame oil, 0.1mL/mouse; Acros, NJ, USA), E2 (100 ng/
mouse, Sigma–Aldrich, St. Louis, MO, USA) or E2 + P4 (2mg/mouse,
Sigma–Aldrich). After hormone injection, the mice were sacrificed at
various time points (0–24 h) and the uterus was collected for real-time
RT-PCR (n = 4 to 6 per each group).

Fig. 3 | CFP1-dependent epigenetic regulation intervenes in important uterine
P4 responses via H3k4me3-dependent and H3k4me3-independent manners in
mice. a Venn diagram of identifying genes that overlapped in datasets between
CFP1-binding sites on their extended gene bodies (2 Kbp upstream and 200bp
downstream of TSS and CGI), downregulated gene in Cfp1d/d mice (>1.5 folds), and
downregulated H3K4me3 sites in Cfp1d/d mice (>1.5 folds) on Day 4. b Schematic
cartoon to show the epithelium–stroma crosstalkmediated by SSP. c Real-time RT-
PCR analyses of upstream and downstream genes in IHH-dependent SSP (Gata2,
Sox17, Nr2f2, Hand2, Fgf2, and Fgf18). n = 8 biologically independent samples per
genotype. Data are presented as mean values with SD. Statistical analyses were
performed using the unpaired Student’s t-tests. *p <0.05, **p <0.01. d Integrative
Genomics Viewer screenshots that show the distribution of CFP1 binding,
H3K4me3 site, and RNA expression intensity in Gata2, Sox17, and Ihh of Cfp1f/f and
Cfp1d/d mouse uterus on Day 4. eReal-timeChIP PCR for detectingCFP1, SETD1, and
H3K4me3, binding on Gata2, Sox17, and Ihh in the uterus of Cfp1f/f and Cfp1d/d mice

on Day 4. n = 3 biologically independent samples per genotype. Data are presented
as mean values with SD. Statistical analyses were performed using the unpaired
Student’s t-tests. *p <0.05, **p <0.01. f Immunofluorescent staining of KI67 in the
uterus of the OVX Cfp1f/f and Cfp1d/d mice treated with E2 and/or P4 for 24h. At 3 h
after E2 or E2 + P4, one uterine horn was injected with SAG and the other one with
PBS. Green and red indicate KI-67 and the nucleus, respectively. S stroma, GE
glandular epithelium, LE luminal epithelium. Scale bar, 50 µm. g Percentages of
KI67-positive cells in (f). n = 4 biologically independent samples per genotype. Data
are presentedasmeanvalueswith SD. Statistical analyseswereperformedusing the
unpaired Student’s t-tests. *p <0.05, **p <0.01. h Real-time RT-PCR analyses of SSP
genes (Gli1, Gli2, Nr2f2, and Hand2) 3 h after SAG injection. n = 8 biologically
independent samples per genotype. Data are presented as mean values with SD.
Statistical analyses were performed using the multiple comparisons.
*p <0.05, **p <0.01.
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Tissue preparation
Female reproductive organs under various conditions, such as early
pregnancy, ovarian steroid hormone treatment, and artificial decid-
ualization, were dissected and then fixed in 4% paraformaldehyde.
Fixed tissues were washed, dehydrated, and embedded in paraplast
(Merck KGaA, Darmstadt, Germany). Paraffin-embedded tissues
were sectioned to 5 μm thickness using a microtome, stained with
hematoxylin and eosin (Sigma–Aldrich), and observed by light
microscopy.

Early pregnancy and embryo implantation
Pregnancy was evaluated by the presence of a vaginal plug on the
next morning after breeding with a fertile male. The pregnant mice
were sacrificed on various days of pregnancy from Day 1 to 5, and
their uterine horns were collected and processed for the following
experiments (n = 4 to 6 per each group). IS were detected by
intravenous (i.v.) injection of 1% Chicago Sky Blue (in saline) on the
morning of Day 5, and the number of IS demarcated by blue spots
was recorded68.
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Embryo transfer
Embryo transfer was performed as previously described with some
modifications69. Four-week-old C57BL/6 mice were given intraper-
itoneal (i.p.) injections of 5 IU PMSG (Sigma–Aldrich) followed by i.p.

injections with 5 IU hCG (Sigma–Aldrich) and then mated with fertile
malemice to obtain the embryos for embryo transfers. The blastocysts
were transferred to the uteri of either pseudopregnant day 4Cfp1f/f and
Cfp1d/d recipient mice, which were mated with vasectomized C57BL/6
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male mice. Embryo implantation was evaluated by an i.v. injection
(0.1mL/mouse) of Chicago Sky Blue (1% in saline, Sigma–Aldrich) 24 h
after embryo transfer.

Artificial decidualization
Artificial decidualization was experimentally induced, as previously
described, with somemodifications69. Adult (8–10 weeks of age) Cfp1f/f

and Cfp1d/d female mice were OVX and rested for 14 days and then
received daily injections of 100 ng E2 for 3 days (n = 3 to 4 per geno-
type). After 2 days of resting, the mice were then treated with daily
injections of 1mg P4 and 10 ng E2 for 3 days. At 6 h after the last
injection, oneuterine hornwas traumatizedby the injectionof 50μLof
sesame oil. Mice were given daily injections of P4 (1mg) + E2 (10 ng)
following trauma. The weight of stimulated and non-stimulated uter-
ine horns was recorded 4 days after the oil infusion. The fold increase
in uterineweights and alkaline phosphatase staining served as an index
of decidualization.

Intrauterine delivery of SAG
SAG (Abcam, Cambridge, UK), a smoothened agonist, was applied to
rescue aberrant uterine cell proliferation and gene expression in
Cfp1d/d female mice33. Adult (8–10 weeks of age) Cfp1f/f and Cfp1d/d

female mice were OVX and rested for 14 days. Each OVX mouse was
treated with 2mg P4 for 2 days and then 2mg P4 and E2 60 ng/mouse
on the third day. At 3 h after E2 and P4 injection, 10μL of vehicle (PBS)
and SAG (1000 nM) inPBSwere injected intraluminally in eachhornof
the uterus. Mice were sacrificed at 3 or 21 h after SAG injection
depending on experimental conditions, and the uterus was collected

for real-time RT-PCR and immunofluorescence staining (n = 8 per
each group).

RNA extraction, RT-PCR, and real-time RT-PCR
Total RNA was extracted from mouse uteri under various conditions
(n = 3 to 8 per each group) using Trizol Reagent (Invitrogen Life
Technologies, San Diego, CA, USA) according to the manufacturer’s
protocols. The first-strand cDNA was synthesized from 1 µg of total
RNA usingM–MLV reverse transcriptase (Promega, Madison, WI, USA)
and RNasin Ribonuclease inhibitor (Promega). Synthesized cDNA
(10 ng) was utilized for PCR with specific primers at optimized cycles
(Supplementary Table 4). To quantify expression levels, real-time RT-
PCR was performed using the SYBR green dye (iQ SYBR Green
Supermix, Bio-Rad, Hercules, CA, USA), as previously described68. To
compare transcript levels between samples, a standard curve of cycle
thresholds for several serial dilutions of a cDNA sample was estab-
lished and then used to calculate the relative abundance of each gene.
Then, valueswere normalized to the relative amounts ofRpl7 cDNA. All
reactions were performed in duplicates.

Western blotting
Uterus tissues (n = 4 to 6 per each group) were lysed in lysis buffer
including PRO-PREP (iNtRON, Seongnam, Korea) solution and 1X
phosphatase inhibitor (Roche Applied Sciences, Indianapolis, IN, USA).
The protein samples (20μg/lane) were then separated by 8% SDS-
PAGE, transferred onto nitrocellulose membrane (Bio-Rad), and
blocked with 5% non-fat milk (Bio-Rad) in TBS (Bio-Rad) containing
0.1% Tween 20 (Sigma–Aldrich). Antibodies used forWestern blotting,
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Fig. 6 | A schematic illustration of CFP1 function in P4-epigenome-transcriptome networks for uterine physiology. CFP1 function to maintain P4-PGR signaling for
embryo implantation during early pregnancy and suppression of endometriosis in the uterus.
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immunostaining, and/or ChIP were summarized in Supplementary
Tables 5 and 6. The signals were developed using an ECL Western
blotting substrate kit (Bio-Rad) and detected using a Chemidoc XRS+
(Bio-Rad) with Image Lab software.

Immunohistochemistry and immunofluorescence analysis
Paraffin-embedded tissues were sectioned to 5 µm thickness using a
microtome. Uterine sections were deparaffinized and rehydrated.
Endogenous peroxidase was inactivated with 3% H2O2. Sections were
subjected to antigen retrieval in 0.01M sodium citrate buffer (pH 6.0).
Nonspecific staining was blocked using protein block serum (Dako,
Carpinteria, CA, USA) for 1 h. Sections were incubated with primary
antibodies at 4 °C overnight. On the following day, sections were
incubated with appropriate secondary antibodies for 1 h at room
temperature. Sections were counterstained using Topro-3-iodide
(TOPRO; Life Technologies, Carlsbad, CA, USA) and mounted. For
immunohistochemistry, DAB reagent (Vector Laboratories, Inc., Bur-
lingame, CA, USA) was applied to visualize signals. Images were
observed under a microscope (Carl Zeiss, Oberkochen, Germany) and
analyzed using ZEN software (Carl Zeiss).

mRNA-seq and data analysis
Libraries were prepared from 2 μg of total RNA in Cfp1f/f and Cfp1d/d

mouse uterus on Day 4 using the SMARTer stranded mRNA-Seq kit
(Clontech Laboratories, Inc., USA). mRNAs were used for the cDNA
synthesis and shearing, following the manufacturer’s instructions
(n = 3 pools: 3 mice per each pool). The Illumina indexes were used,
and the enrichment step was conducted with PCR. The RT (read
count) data were processed based on the quantile normalization
method using EdgeR within R70 utilizing bioconductor. The align-
ment files were also used for assembling transcripts, estimating
their abundances, and detecting differential expression of genes or
isoforms using cufflinks. These are performed using
Bowtie2 software. We also used the fragments per kilobase of exon
per million (FPKM) fragments to determine the expression levels of
the gene regions. Gene classification was based on searches made
by GSEA, and heatmaps of the unsupervised hierarchical clustering
and DEGs were produced using MeV software.

CFP1 immunoprecipitation
Immunoprecipitation of CFP1 protein using CFP1 antibodies was per-
formed with the manufacturer’s instructions using immunoprecipita-
tion kit (Abcam). In addition, CFP1 Western blotting following
immunoprecipitation was performed to evaluate the specificity of
CFP1 antibodies used for CFP1 ChIP-seq for Cfp1f/f uterine samples
(Supplementary Fig. 10). On Day 4, uterine horns of Cfp1f/f and Cfp1d/d

mice were cut vertically, and epithelial and stromal cells were sepa-
rated from the smooth muscles (n = 4 to 5 per each group). Then,
tissues were incubated in a lysis buffer with protease inhibitors and
mixed on a rocker at 4 °C for 1 h. The tissue extracts were transferred
to a fresh tube, and a predetermined amount of antibodies was added
on a rocker at 4 °C for 4 h. After antibody binding, protein A/G
Sepharose beads were added on a rocker at 4 °C for 1 h. Next, protein
A/G Sepharose beads were collected, washed, and eluted. The protein
of interest was purified by low-speed centrifugation at 4 °C and used
for Western blotting.

ChIP and real-time ChIP PCR
ChIP analysis was performed with a slight modification of the manu-
facturer’s instructions using the ChIP-IT Express Enzymatic kit (Active
Motif, Carlsbad, CA, USA). On Day 4, Cfp1f/f and Cfp1d/d mouse uterus
horns were cut, and epithelial and stromal cells were separated from
the uterine smooth muscles (n = 3 pools: 3 mice per each pool). Then,
epithelial and stromal cells were fixed in DMEM high-glucose media
containing 1% formaldehyde and then made into single cell slurry

through an electric homogenizer. DNA fragments between 150 and
500 bp were obtained by enzymatic shearing cocktail after lysis cell
and nuclei isolation through lysis buffer and Dounce homogenizer.
Antibodies were added in sheared chromatin, and immunoprecipita-
tion was performed overnight at 4 °C. Immunoprecipitated DNA was
utilized for real-time ChIP PCR with specific primers (Supplementary
Table 1). To quantify the enrichment level in ChIP-seq data, real-time
ChIP PCR was performed with iQTM SYBR Green Supermix (Bio-Rad)
on BIO-RAD iCycler using immunoprecipitated DNA. All PCR reactions
(10% input, CFP1, SETD1, H3K4me3, and normal IgG) were duplicated
(n = 3 to 4 per each group).

ChIP-seq and data analysis
The library was constructed using NEBNext® UltraTM DNA Library
Prep Kit for Illumina (New England Biolabs, UK) according to the
manufacturer’s instructions. Briefly, the choppedDNAwas ligatedwith
adaptors. After purification, the PCR reaction was conducted with
adaptor-ligated DNA and index primer for multiplexing sequencing.
The library was purified using magnetic beads to remove all reaction
components. The library sizewas assessed byAgilent 2100bioanalyzer
(Agilent Technologies, Amstelveen, Netherlands). High-throughput
sequencing was performed as paired-end 100 sequencing using Hig-
Seq 2500 (Illumina, Inc. USA). ChIP-seq metaplots and heatmaps were
analyzed using DeepTools software.

Experimentally induced mouse model of endometriosis
Recipient (wild type) and donor (Cfp1f/f and Cfp1d/d) female mice
(8–10 weeks of age) were primed with 5 IU PMSG (Sigma–Aldrich) for
48 h to stimulate uterine growth. After inhalation anesthesia, the
uterine hornwas collected fromdonormice andvertically openedwith
scissors in a petri dish containing warmed Dulbecco’s phosphate-
buffered saline (37 °C). The uterine horn was cut into small pieces of
approximately 1 mm2 and injected into the peritoneum of the OVX
recipient mice. After transplantation of uterine tissues in recipient
mice, E2 (100 ng/mouse), P4 (2mg/mouse), PBS, and/or SAG were
injected every 3 days. At 15 days after transplantation, the volume and
number of ectopic lesions were measured, and ectopic lesions were
collected for real-time RT-PCR.

Human endometrial sampling
Control (n = 7) and endometriotic endometrial tissues (n = 5) were
collected from patients who underwent hysteroscopy–laparoscopy
surgery to evaluate endometrial abnormalities, including endome-
triosis in the Department of Obstetrics and Gynecology of the First
Affiliated Hospital of Xiamen University. The sample collection and
studies reported here were approved by the ethics committee of
Hospital of Xiamen University (XMYY-2021KYSB044), and all parti-
cipants signed the informed consent. Endometriotic lesions were
obtained from women (aged 25–35 years) suffering from ovarian
endometriosis, confirmed by laparoscopy and histopathology.
These patients had regular menstrual cycles and were recruited
without hormone treatment for at least 3 months before surgery.
All samples were collected during the luteal phase of the
menstrual cycle.

Statistical analysis
GraphPad Prism version 8 software (GraphPad Software, La Jolla, CA,
USA) was used for statistical analyses. All values are represented as
mean± standard deviation. Statistical analyses were performed using
the unpaired Student’s t-tests, and p < 0.05was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Raw data files are deposited in the NCBI Gene Expression Omnibus
database under Super Series accession number GSE219104. The Sup-
plementary Fig. 7 data re-analyzed in this study are available in the
GSE118264 database13, GSE40661 database34, and GSE178541
database35. All other data supporting the findings of this study are
available within the paper and its Supplementary Information. Source
data are provided with this paper.
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