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Pressure-controlled magnetism in 2D
molecular layers

Yulong Huang 1 , Arjun K. Pathak 2 , Jeng-Yuan Tsai3, Clayton Rumsey 4,
Mathew Ivill5, Noah Kramer2, Yong Hu1, Martin Trebbin 4,6, Qimin Yan 3 &
Shenqiang Ren 1,3,4,6

Long-range magnetic ordering of two-dimensional crystals can be sensitive to
interlayer coupling, enabling the effective control of interlayer magnetism
towards voltage switching, spin filtering and transistor applications. With the
discovery of two-dimensional atomically thin magnets, a good platform pro-
vides us to manipulate interlayer magnetism for the control of magnetic
orders. However, a less-known family of two-dimensional magnets possesses a
bottom-up assembled molecular lattice and metal-to-ligand intermolecular
contacts, which lead to a combination of large magnetic anisotropy and spin-
delocalization. Here, we report the pressure-controlled interlayer magnetic
coupling of molecular layered compounds via chromium-pyrazine coordina-
tion. Room-temperature long-range magnetic ordering exhibits pressure
tuning with a coercivity coefficient up to 4 kOe/GPa, while pressure-controlled
interlayer magnetism also presents a strong dependence on alkali metal stoi-
chiometry and composition. Two-dimensional molecular interlayers provide a
pathway towards pressure-controlled peculiar magnetism through charge
redistribution and structural transformation.

Two-dimensional (2D) magnetic materials1–4, are ubiquitous in a range
of spintronic applications from data storage and quantum sensing to
spin electronics5–9. Stimuli-responsive atomically thin magnets are key
to device miniaturization because of the favorable tuning capabilities
and profoundly distinct material properties from their bulk
counterparts10–13. Such discovery has ignited the search for high-
performing 2D molecular magnetic alternatives resembling classical
magnets through a bottom-up molecular assembly approach14. Mag-
netic anisotropy and magnetization are governed by molecular
building blocks originating from its structure and symmetry, as well as
intramolecular and intermolecular bond interactions including bond
length and geometries, etc15,16. However, the control of magnetic tex-
tures and anti-symmetric exchange interactions were not observed in
molecular layered magnets, while it is challenging to manipulate

through the synthetic chemistry approach. One potential promising
pathway to harness magnetic anisotropy and magnetization is by
controlling relatively weak interlayer exchange interactions as com-
pared to intralayer through pressure effect17–21.

Results
Here we report the pressure tuning magnetic anisotropy and magne-
tization of 2D layered metal-organic magnet Li0.7Cr(pyz)2Cl0.7 (LCPC,
pyz = pyrazine)22,23 and its potassium substitution KxCr(pyz)2Clx
(KCPC) compound,which exhibitmagneticordering temperatureTc of
510 K and 480K, respectively at ambient pressure and magnetic field
of 5 kOe. Room-temperature magnetic ordering of such 2D molecule-
based magnets arises from the strong d-π* direct spin interactions of
Cr-pyrazine layers, as a result of the antiparallel spins of Cr and N from
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pyrazine24–27. The remnant magnetic moment of Cr in LCPC is esti-
mated as 1.34μB at 5 K22. Nitrogen atoms from pyrazine molecules
contribute the antiparallel spin against that of chromium. With the
introduction of hydrostatic pressure, magnetic interaction increases
due to the enhancement of interlayer coupling from the reduction of
interlayered lattice (Fig. 1a) between magnetic Cr-pyrazine layers. A
representative transmission electron microscopy (TEM) image of
KCPC magnet reveals such 2D layered structure (Fig. 1b). We further
compare the latticedimension effect betweenKCPCandLCPCbecause
potassium possesses a larger ionic radius (152 pm) than that of lithium
cation (90 pm). Indeed, a pronounced pressure effect on themagnetic
exchange interaction is observed in KCPC, where the coercivity coef-
ficient under pressure is defined as the pressurederivative ofmagnetic
coercivity (dHc/dP). The KCPC magnet shows a larger coercivity coef-
ficient of over 4 kOe/GPa at room temperature than that of ~1 kOe/GPa
in LCPC (Fig. 1c). The coercivity coefficient increases with temperature
and shows the positive pressure effect for the measured temperature
range from 5K to 375 K, presenting a at least double pressure effect
compared to other magnets28–31.

The structural formation and 2D magnetism of LCPC and KCPC
compounds result fromthe redox reaction between an alkalimetal and
the precursor Cr(pyz)2Cl2

22,23. With the formation of LCPC layered
compounds, the bonding breaks between chromium and chlorine ions
in Cr(pyz)2Cl2, while inducing a new layer of LiCl (Fig. 2a). Such

structural transformation from space group Immm24 to P4/mmm22 is
indicated by time-dependent X-ray diffraction (XRD) patterns (Fig. S1).
During the redox reaction, the ultraviolet-visible absorption spectra
are captured when the Cr(pyz)2Cl2 precursor is coordinated with
lithium cation (Fig. 2a). The absorption peak at 550 nm after 44min-
utes suggests the lithiation which is absent in the precursor, while
accompanying with alkali-metal stoichiometry-dependent phase for-
mation from a magnetically soft to hard phase, as shown in Fig. 2b. At
140minutes, a homogenous hard phase is obtainedwith the coercivity
of ~3.7 kOe. The soft magnetic behavior is captured in the in situ
magnetic measurement (Fig. S2), considering as an initial state of
alkali-metal diffusion. A large coercivity is observed at room tem-
perature by the reduction of precursor Cr(pyz)2Cl2 by alkali metals.
The incident room-temperature magnetism indicates the new phase
due to alkali-metal lithiation process.

The 2D layered structure is the peculiar feature of LCPC andKCPC
magnets. The scanning electron microscopic (SEM) images (Fig. 3a, b
and Figs. S3a–f), indicate the layered sheets stacking together and 2D
feature in the LCPC and KCPC magnets. The expanded layered struc-
ture is obtained when alkali metals reduce Cr cation in Cr(pyz)2Cl2
precursor, leaving a large tunable space among interlayers. The alkali-
metal diffusion in Cr-pyz network is confirmed by energy-dispersive
spectra (Fig. S3g, h). The TEM images (Fig. S4) and selected area
electron diffraction (SAED) patterns of LCPC and KCPC sheets (the
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coefficient of inorganic and organic magnets presents the large tunability in LCPC
and KCPC magnets under pressure. The coercivity coefficient is defined as the
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insets in Fig. 3a, b) confirm their high crystallinity and in-plane 2D
structure. The LCPC and KCPC magnets both possess a tetragonal
structure with a space group of P4/mmm22 which is represented by
XRD patterns (Fig. S5). The substitution of lithium by potassium leads
to a larger interlayer spacing. Raman spectra in Fig. 3c show the four
strong internal vibration modes of pyrazine molecule in LCPC and
KCPC magnets, which can be assigned to the in-plane bending of the
pyrazine ring (δring ~650 cm−1), the carbon-hydrogen bond (δCH around
1200 cm−1), and the stretching of pyrazine ring (vring around 1000 cm−1

and v’ring ~1600 cm−1). The vibrationmodes that appearbelow600cm−1

are assigned to Cr-N (Fig. S6). These assignments are based on Raman
scattering data of isolated pyrazine molecule32 and metal-pyrazine
complexes of similar frameworks33. It should be noted that the δring
and vring modes in LCPC shift to lower frequencies compared to those
in KCPC; while the δCH and v’ring modes present an opposite shift. Such
difference in Raman data of pyrazine molecules also occurs in metal-
pyrazine complexes where the one of a high-spin state shows a lower
Ramanvibration frequencycompared to theoneof a low-spin state33,34.
The frequency shift in LCPC and KCPC could be ascribed to charge
redistribution on pyrazine molecules due to the modified interlayer
magnetic interaction. The alkali-metal-induced changes in electronic
structure are also shown in Fourier-transform infrared (FTIR) spectra.
Figure 3d presents the FTIR spectra of LCPC and KCPC magnets at
room temperature which share a common adsorption peak at
995.2 cm−1. The LCPC magnet shows the vibrational modes of tetra-
hydrofuran ligand35–37 at 1051.1 cm−1 and 890.8 cm−1, which shift to
1058.5 cm−1 and get diminished in KCPC magnet, respectively. The
same peak shift is also observed in the adsorption mode at 760.4 cm−1

in LCPC magnet and 767.8 cm−1 in KCPC magnet. Besides, thermal
effect on KCPC magnet (Fig. S7) is weaker than that in LCPC as
reported in our previous study23. Therefore, alkali-metal substitution
modifies not only crystal lattice, but also the feature of electronic
structure.

The ionic radii and composition of alkali-metal cations in the
ordered lattice dictate magnetic anisotropy and magnetization of
molecular layered magnets. Figure 4a shows the magnetic field-
dependent magnetization of LCPC and KCPC magnets at room tem-
perature, where the LCPC exhibits a larger coercivity and a higher
magnetization. In addition, the LCPC shows a higher Tc than that of
KCPC magnet (Fig. 4b), resulting from a large spacing from the
potassium cations. With decreasing temperature, both coercivity and
magnetization are enhanced in KCPC magnet (Figs. S8, 9), while the
coercivity can reach 12.6 kOe at 10K. First-order reversal curves
(FORCs) and derived diagrams reveal inhomogeneity, switching field
distribution and coercivity distribution of magnetic materials38. Fig-
ure 4c, d show the FORCs of LCPC and KCPC magnets, respectively,
which are measured by increasing external magnetic field H from a
reverse field Hr to the maximum field of 18 kOe at room temperature.
From the major magnetization curve measured in a largest magnetic
field range, the coercivity of LCPC magnet is 8.9 kOe at ambient
pressure, which is larger than that of KCPCmagnet. Themagnetization
M on each FORC is varied byH andHr, therefore the FORCdistribution
function ρ is a second-order derivative of magnetization,
ρ ðH,Hr Þ= � ∂

∂Hr
ð∂M∂HÞ. As exhibited in Fig. 4e, f, the function ρ of LCPC

and KCPC magnets are plotted with the axes of H and Hr. In the FORC
diagram of LCPC magnet (Fig. 4e), a remarkable and narrow spot
appears around (H, Hr) = (9.5 kOe, −9.5 kOe), corresponding to the
magnetization curves of large slopes. The grey line of Hr = −H crosses
over the narrow FORC spot of LCPCmagnet, implying the coercivityHc

can be reachedwhen the appliedHr has the samemagnitude ofHc. The
non-fully symmetric FORC spot of LCPC magnet indicates that the
appearance of Hc demands a much larger Hr. In the FORC diagram of
KCPCmagnet (Fig. 4f), anequalHr can allow the appearance ofHc since
the spot is perfectly symmetric with respect to the line of Hr = −H. The
FORC spot region in KCPC magnet is longer and closer to the origin

point than that in LCPCmagnet, revealing a smaller coercivity and less
homogeneity of magnetic domains in the former.

Figure 5a shows the hydrostatic pressure effect on layered
molecular magnets to control magnetic interaction at both intra- and
interlayer. In the Cr-pyrazine layer, the reduced lattice along a- and b-
axes modifies magnetic interaction bridged by pyrazine molecules.
Meanwhile, the shortened dimension along the c-axis enhances inter-
layer magnetic coupling. Magnetic hysteresis (M-H) loops of LCPC
magnet present enhanced magnetism under hydrostatic pressures at
375 K (Fig. 5b), as well as at lower temperatures (Fig. S10). The coer-
civity Hc of LCPC magnet at 375 K increases from 4.3 kOe to 5.5 kOe
with an increase of pressure from 0.200GPa to 1.242GPa. The mag-
netization of LCPC magnet is increased up to 31.6 emu/g (375 K) and
45.1 emu/g (5 K) at 50 kOe under 1.242GPa (Fig. S10). The enhanced
magnetic coercivity andmagnetization in the LCPCmagnet result from
the spin coupling of the Cr-pyrazine interlayers. The temperature-
dependent magnetic susceptibility of KCPCmagnet under hydrostatic
pressure reveals a large enhancement in magnetism with the pressure
increasing from 0.147 GPa to 0.664GPa. This enhancement is rever-
sible as indicated by the reduced magnetic susceptibility of the KCPC
magnet after decreasing pressure to 0.427GPa (Fig. 5c). Similar pres-
sure enhancement is also observed in KCPCmagnets (Fig. S11–13). The
coercivity Hc of KCPC magnet develops with the hydrostatic pressure
and temperature, as shown in Fig. 5d. Instead of a linear Hc-P depen-
dence in LCPC magnet for all temperatures, KCPC magnet shows a
large and nonlinear coercivity increase with hydrostatic pressure. An
anomaly appears in KCPC magnet at 0.664GPa where the Hc largely
increases for 325K and 375 K. Such enhancement in coercivity and
magnetization is almost absent in the precursor Cr(pyz)2Cl2 (Fig. S14),
which is magnetically ordered below 55 K24. The negligible pressure
effect in the precursor Cr(pyz)2Cl2 is unexpected since its 2D mono-
layer is calculated for an enhanced magnetic ordering temperature of
350K39.

The pressure results in repeatable jumps in magnetization of
layered KCPCmagnet (Fig. 6 and Fig. S11–13). The hydrostatic pressure
of 0.147GPa induces the sharp jumps in magnetization at H1 = 23Oe
and H2 = 931Oe in theM-H loop of KCPC magnet (Fig. 6a) that are not
present in the ambient pressure. At these magnetic fields, magnetiza-
tion flip occurs rapidly in KCPCmagnet. With the hydrostatic pressure
increasing to 0.488GPa, H1 maintains while H2 shifts to 28Oe. Such
sharp magnetization flip can be regarded as the Barkhausen jump40,41,
which could be caused by the rapid changes of the size and orientation
of magnetic domain. Similar jumps in single-layer SrRuO3 can be
manipulated by He-ion irradiation41. With increasing the hydrostatic
pressure to 0.664GPa, the Barkhausen jump is absent in KCPCmagnet
at 375 K; meanwhile, a classic and smoothM-H loop appears withHc of
2.1 kOe. This smoothM-H loop maintains up to 0.752GPa with a small
kink at zero magnetic field. The jump in magnetization indicates that
the magnetic domain is tuned by hydrostatic pressure at the same
thermodynamic scale. The temperature-dependent M-H loops reveal
the thermodynamic jump in magnetization under a constant pressure
of 0.664GPa in KCPC magnet (Fig. 6b). With the decrease of the
temperature to 325 K, the jump in magnetization appears with
H1 = −0.5 kOe, while exhibiting a smaller coercivity Hc of 1.2 kOe at
325 K than that of 2.0 kOe at 375 K. At a lower temperature of 300K,
the jump in magnetization exists at multiple magnetic fields,
H1 = −0.6 kOe, −1.9 kOe, −2.6 kOe and H2 = 1.8 kOe, while the KCPC
magnet shows a smoothM-H loop at 5 K withHc of 10.9 kOe. The jump
in magnetization exists in a range of temperature and pressure, sug-
gesting ametamagnetic behavior. Wide-angle X-ray scattering (WAXS)
patterns reveal the sharper and stronger peaks in the KCPC after
pressure (Fig. 6c and S15), indicating a higher crystallinity due to the
pressure effect. The obtained peaks (012), (013), (231), and (133) in
KCPC after pressure are shifting to a higher scattering vector q com-
pared to those of the pristine sample (the inset in Fig. 6c), revealing a
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decreased d-spacing from the pressure effect. The peaks shift and the
similar profile pattern fromWAXS suggests the same crystal symmetry
(tetragonal, P4/mmm) in KCPC samples before and after pressure.

Raman spectroscopy measurement was conducted on pristine
KCPC bulk sample and the one after hydrostatic pressure, as shown in
Fig. 6d. The stretching (vring) and in-plane bending (δring) modes of
pyrazine ring shift to lower frequencies, while the in-plane bending of
carbon-hydrogen bond (δCH) and the stretching of pyrazine ring (v’ring)
shift to higher frequencies after pressure. The δring and v’ring peaks are
red- and blue-shifted by ~1.1 and 3.0 cm−1, respectively. The hardened
vibrational modes could be attributed by the shorter C-H bond length
and smaller pyrazine ring in the compressedKCPC lattice, which is also
consistent to the shift of WAXS peaks. In organic-based magnets,
molecular arrangements can be largely tuned by pressure. Copper
pyrazine dinitrate shows a pressure-induced structural transition42,
while pyrazine molecular crystal can change its molecular orientation
in the crystal under pressure43. Therefore, the soft ligands of pyrazine
molecules as magnetic superexchange pathways result in enhanced
tunability in magnetism. In this context, first-principles simulations
were conducted to reveal interlayer and intralayer pressure effect by
compressing crystal lattice along c axis (mode A, uniaxial) or both a

and b axes (mode B, biaxial), respectively (Fig. 6e). In mode A, an
enhanced magnetic moment of Cr-pyz layer is observed up to a
compression ratio of 10% due to the decrease in magnetic moment of
pyrazine, while the magnetic moment on Cr is almost unchanged
(Fig. 6f and S16, 17). On the contrary, a decrease in magnetic moment
of Cr-pyz layer occurs in mode B, indicating the interlayer pressure
effect (mode A) is the dominant factor for the observed enhanced
magnetic behavior in KCPC under pressure. The bond length of Cr-N
slightly decreases in both modes A and B, implying the intramolecular
deformation of pyrazine (Fig. 6g). Even if shortened by the compres-
sion, the distance of Cr-Cl still maintains long enough to avoid che-
mical reaction (Fig. S17). Therefore, the deformation of the soft ligand
pyrazine plays a crucial role in determining the magnetism in KCPC
under hydrostatic pressure.

Discussion
The simulation results rule out the possibility of a pressure-induced
structural transition in KCPC magnet. In our experiments, the hydro-
static pressure is below 1GPa, corresponding to a compression ratio of
~2.2%44. In metal-pyrazine coordinated molecular magnets42,45–47, the
pressure-induced structural transition is usually at much higher
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pressure, i.e., 6 GPa. The structural changes below 1GPa often come
from the modifications of bond length and angle without the sym-
metry change42,45. Therefore, according to our experimental and
simulation results, the lattice change is suggested to induce the pres-
sure effect on KCPC. The understanding of such sharp jumps in mag-
netization is unsettled, even though several mechanisms have been
proposed for this behavior in different inorganic systems48. In the
metamagnetic materials, magnetic field-dependent orbital ordering49,
martensitic-like transformation50, and magnetic field-induced spin
flop51 are considered as possible origination of sharp jumps in mag-
netization. Here, the enhanced crystallinity of KCPC magnet by pres-
sure may facilitate the possibility of magnetic field-induced spin flop.
In conventional 2D inorganic magnets (like CrI3)

2,12,52, layer-dependent
studies on physical properties revealed ferromagnetism in monolayer

structure, and antiferromagnetic intralayer coupling in bilayer CrI3
53.

Even in trilayer CrI3, ferromagnetic order is restored. However, the key
chemical composition, intra- and interlayer bonding, and structural
differences between inorganic and metal-organic magnets present a
significant challenge for layer-dependent studies in molecular-based
magnets. It would be worth exploring a possible metamagnetic effect
similar to that in bilayer CrI3 from antiferromagnetic to ferromagnetic
intralayer interaction54. Since atomically thin samples are very attrac-
tive for understanding their intrinsic magnetic order, such layer-
dependent studies are still worth exploring once their large-size crys-
tals are available for exfoliation.

In summary, room-temperature molecular layered magnets
exhibit pressure-controlled magnetism with the coercivity coefficient
dHc/dP up to 4 kOe/GPa. The stoichiometry and composition-
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dependentmagnetism reveal the alkali-metal reduction roles in the 2D
metal-organic coordinatedmagnets. The coercivity andmagnetization
show the large pressure tunability in molecular layered magnet due to
the increased magnetic coupling from the Cr-pyrazine interlayers and
the deformation of soft ligand pyrazine molecule. In the layered KCPC
magnet, spin crossover may occur as high-spin CrII (S = 2) transition to
low-spinCrII (S = 1) state. Electron transfer could also bepossiblewithin
the intra- and interlayer of Cr-pyrazine, while pressure induces charge
redistribution between Cr and pyrazine by transferring charge from
CrII to pyrazine for the formation of CrIII (S = 3/2). This electron transfer
can be facilitated through the structural transformation of CrIII-Cl due
to the pressure effect. The alkali-metal reduction and hydrostatic
pressure pave a pathway toward the understanding of room-
temperature 2D magnetism in molecule-based systems.

Methods
Preparation of LCPC and KCPC magnets
The solvothermal method22,23 was used to prepare the LCPC and KCPC
magnets. 231.3mg 1,2-dihydroacenaphtylene and some lithium (for
LCPC) or potassium (for KCPC)metals weremixed together by adding
8ml tetrahydrofuran (THF) solvent. The mixture solution was stirred
for three hours and then filtered. A 20ml glass bottle was used to
contain 5ml THF solvent and 200mg Cr(pyz)2Cl2 powder, as well as
the filtered solution of alkali-metal cations. Then, the solution in the
glass bottle was stirred for five days. The final product was cleansed
and centrifuged twice with THF solvent, then kept in a vacuum
chamber overnight to get dried LCPC and KCPC powders.

Fourier-transform infrared spectra
Transmittance spectra of LCPC and KCPC magnets were collected on
an Agilent Cary 630 FTIR spectrometer in anN2 glovebox. The samples
also were annealed at different temperatures and then used for FTIR
measurements.

Structural and morphologic characterizations
A Rigaku Ultima IV (40 kV, 44mA) was used to characterize the crystal
structures of LCPC andKCPCmagnets byX-raydiffraction. The surface
morphology was measured on Carl Zeiss AURIGA (200 kV) Field
Emission Scanning Electron Microscope. The element analysis was
determined by Oxford Energy-dispersive X-ray Spectrometer (EDS).
JEOL JEM 2010 was used to collect the high-resolution transmission
electron microscopic images and selected area electron diffraction
patterns.

Wide-angle X-ray scattering
X-ray scattering exposures in the wide-angle regime were performed
on a Xenocs Xeuss 3.0 instrument. Exposures were obtained utilizing a
Cu Kα microfocus source (λ = 1.542 Å) collimated with two sets of
scatter less slits under vacuum. Sample to detector distance was cali-
brated using Silver (I) Behenate. SAXS patterns were recorded as a
function of the scattering angle 2θ using a hybrid-pixel detector (Eiger
2R-1M) Samples were encapsulated in 1mm disk washers and sealed
with Kapton® (polyimide) film. Exposures were performed in trans-
mission mode with additional exposures performed for an empty cell
without a sample to allow for proper background subtraction of the
scattering contribution by Kapton®. Exposures were obtained over a
period of 30 seconds. 2D detector images were reduced to 1D scat-
tering profiles via azimuthal averaging and corrected for detector
geometry, flatfield, and beam transmission through the sample. Cor-
rections for Bragg intensities (both polarization and absorption) were
performed using data analysis tools in XSACT55.

Ultraviolet-visible-near-infrared spectroscopy measurements. Agi-
lent Cary 7000 spectrophotometer was used to measure UV-Vis-NIR
spectra of LCPC and KCPC magnets.

In-situ M-H loop measurements. The Vibrating Sample Magnet-
ometer (VSM, MicroSense EZ7-380V) VSM equipment with an open
environment was used to conduct in-situ M-H loops measurements by
using a sample holder with a reaction cell. The precursor Cr(pyz)2Cl2
and lithium solution are loaded into a reaction cell, which is immedi-
ately amounted onto a sample holder for measurement. A measure-
ment sequence was run to repeatedly measure MH loops without
changing measurement parameters. Each obtained M-H loop shows
different features corresponding to its time order of completion.
When the precursor Cr(pyz)2Cl2 and lithiumsolutionweremixed in the
reactioncell, the lithiation reactionoccurs. Themagnetic development
of the precursor is monitored by continuous M-H measurement from
the very beginning. Thus, we present the in-situ M-H loops of LCPC
magnet, revealing the magnetic transformation during the reaction
process.

Ambient magnetic properties measurements
Ambient magnetic properties of LCPC and KCPC magnets were mea-
sured on a Vibrating Sample Magnetometer (VSM, MicroSense EZ7-
380V) for high temperatures from 300K to 530K and a Physical
Properties Measurement System EverCool II (PPMS, Quantum Design)
for low temperatures from 8K to 300K. All the samples were sealed in
epoxy and measured immediately. A room-temperature magnetism
was still observed after 50 days (Fig. S18).

Magnetic measurements under hydrostatic pressure
Pressure-dependent magnetization at different temperatures and
magnetic field M (T, H) were measured using a Physical Property
Measurement System (PPMS Dynacool, Quantum Design, Inc. USA)
with VSM option employing a Cu-Be cell manufactured by HMD (type
CC-SPr-8.5D-MC4) with lead wire loaded together with the sample as
an internalmanometer. Daphneoilwasused as apressure-transmitting
medium. The magnitude of applied hydrostatic pressure was deter-
mined by examining the superconducting transition temperature of
lead. Magnetic hysteresis loops from 5T to –5 T and temperature-
dependent magnetic susceptibility from 5K to 390K were measured
under different hydrostatic pressures.

Spectroscopy measurements
Raman spectra of LCPC and KCPC magnets were collected on
Renishaw inVia Raman Microscope. The samples were sealed in a
quartz cube for protection. The excitation wavelength is 785 nm.

Computational methods
All calculations were performed by using the Vienna Ab initio Simu-
lation Package (VASP)56 based on the density functional theory
(DFT)57,58. We used the screened hybrid-functional of
Heyd–Scuseria–Ernzerhof (HSE) with default mixing parameter of 25%
and a standard range-separation parameter of 0.2 Å–159,60. To calculate
the spin density near the nuclei, the projector-augmented-wave
method (PAW)61,62 and a plane-wave basis set were used. The plane-
wave energy cutoff was set to 520 eV and a 3 × 3 × 3 Γ centered k-point
grid was used. Magnetic moments (in units of μB) were computed by
integrating the local spin densities on spheres around the atoms with
Wigner-Seitz radii given by 1.588 Å, 1.323 Å, 0.370 Å, 0.863 Å, 0.741 Å,
and 1.111 Å for K, Cr, H, C, N, and Cl, respectively, as implemented in
VASP. The structural relaxations have been performed for all the sys-
tems investigatedwhich were converged until the force acting on each
ion was less than 0.1 eV/Å. The convergence criterion for total energy
for structural relaxations was 10−5eV.

Data availability
All relevant experimental data are presented in the paper and
the Supplementary Information. Additional data related to this paper
can be provided by the corresponding author upon request.
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