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Evaluating the use of blood pressure
polygenic risk scores across race/ethnic
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We assess performance and limitations of polygenic risk scores (PRSs) for
multiple blood pressure (BP) phenotypes in diverse population groups. We
compare “clumping-and-thresholding” (PRSice2) and LD-based (LDPred2)
methods to construct PRSs from each of multiple GWAS, as well as multi-PRS
approaches that sum PRSs with and without weights, including PRS-CSx. We
use datasets from theMGB Biobank, TOPMed study, UK biobank, and fromAll
ofUs to train, assess, and validate PRSs in groupsdefinedby self-reported race/
ethnic background (Asian, Black, Hispanic/Latino, and White). For both SBP
and DBP, the PRS-CSx based PRS, constructed as a weighted sum of PRSs
developed from multiple independent GWAS, perform best across all race/
ethnic backgrounds. Stratified analysis in All of Us shows that PRSs are better
predictive of BP in females compared to males, individuals without obesity,
and middle-aged (40-60 years) compared to older and younger individuals.

Hypertension is a major risk factor for cardiovascular disease1,2, renal
disease, and overall mortality3, with evidence from Mendelian Ran-
domization studies of a causal effect of blood pressure (BP) and BP-
associated variants on cardiovascular disease (CVD)4,5. Genome-wide
association studies (GWAS) of BP phenotypes, such as systolic BP
(SBP), diastolic BP (DBP), pulse pressure (PP), and hypertension, have
been conducted in various populations, and have identified hundreds
of independent genetic variants associated with BP phenotypes6–13.

Based on such GWAS, Polygenic Risk Scores (PRSs) have been con-
structed for both hypertension and BP phenotypes. These BP PRSs are
associated with BP phenotypes, including rate of BP increase14–16, and
have been shown to predict incident coronary heart disease and
stroke17–22. This demonstrates that BP PRSs may identify at-risk indivi-
duals long before they develop elevated BP. Polygenic scores for var-
ious health outcomes are now being studied for integration in routine
medical care23,24. A fundamental question is whether and at what
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performance threshold to adopt a BP PRS clinically, using it to guide
early intervention via drug treatment or lifestyle changes for those at
greatest genetic risk of progression to hypertension or adverse CVD
outcomes. Answering this question requires assessment of research
inequities due to lagging PRS performance in non-European
populations25–27. This inequity may translate to healthcare inequity if
PRSs trained in European/White populations pass a threshold of clin-
ical utility first, and are of primary benefit to White individuals in
identifying patients at risk of future disease26.

Populations with diverse global ancestries in the US, especially
Hispanic/Latino and Black Americans, are at increased risk of elevated
BP28,29, yet genetic studies have been unevenly and inequitably dis-
tributed globally, yielding fewGWASof BP in relevant populations. It is
therefore important to evaluate PRS performance in multi-ethnic
populations, including admixed populations, such as those repre-
sented in Trans-Omics in Precision Medicine Initiative (TOPMed)25.
Previously, we studied the generalization of PRSs for BP traits from
White toHispanic/Latino andBlackAmericans30.We showed that, even
when utilizing GWAS results from Hispanic/Latino participants to
select variants into the PRS or to compute weights, BP PRSs based
primarily on GWAS results inWhite individuals had poor performance
in Hispanic/Latino individuals. Furthermore, PRSs based on GWAS
results in White participants were only weakly associated with BP
phenotypes in Black Americans. Since then, GWAS based on larger and
more diverse study populations have been published, and additional
methods to take advantage of multiple GWAS in multi-ethnic PRSs
havebeenproposed, includingGWASmeta-analysis andweighted-sum
approaches. Using GWAS meta-analysis as the basis for PRS has been
criticized for potentially obscuring population-specific genetic effects,
and presents the further question of choosing a single reference-panel
population from which to compute linkage disequilibrium (LD, i.e.
correlation between SNPs) to select or adjust the marginal SNP effects
of independent blocks of SNPs. The recently proposed multiPRS31 and
metaGRS32 use a weighted-sum of previously validated and optimized
PRSs. In keeping with this general approach, PRS-CSx33 has been
developed to compute ancestry-specific PRSs based on GWAS per-
formed on populations of distinct genetic ancestries, followed by
summations of the ancestry-specific PRSs.

Environment and lifestyle, as well as gene-by-environment inter-
actions, have been implicated in the BP variability that remains beyond
what current PRSs explain34. Individuals of diverse backgrounds tend
to experience different environments. Cultural environment may
influence diet; sociocultural environment may lead to differential
social adversity, including effects of economic disadvantage and
structural racism35, which may in turn cause or accentuate exposures
such as to stress and environmental pollutants, and impose limits on
leisure-time physical activity, nutrition options, or access to health-
care. These environmental factors may interact with genetic factors,
including unknown or under-researched genetic factors that are
unique to or predominant in certain populations36. Thus, while PRSs
may have different performance across populations due to genetic
architecture factors such as LD structures, PRS associations with their
phenotypes may also differ across population groups such as those
defined by self-reported race/ethnicity due to various gene-
environment interactions. Such environmental exposures may not be
consistently measured at scale, i.e., using the same instruments across
multiple studies.

We sought to evaluate multi-ethnic performance of BP PRSs
constructed using multiple GWAS andmethods. Our study population
included individuals from multiple diverse backgrounds in several
large biobank and consortia studies: Asian or Asian American (Asian),
Black or African American/British (Black), Latino or Hispanic American
(Hispanic/Latino), and White or European American (White). While
these groups correspond to socially-defined racial/ethnic identities,
which are social constructs that may shift according to context and

change over time37,38, these constructs also imply differing distribu-
tions of continental genetic ancestry and admixture39,40. Acknowl-
edging both the social and genetic aspects of these identities, we
describe them as race/ethnic “backgrounds”. We sought to better
understand how PRS performance varies according to race/ethnic
background, thereby shedding light on how the use of standard PRS
methodologies for BP phenotypes may potentially impact health
equity. This approach complements ongoing efforts to refine PRS
methodology, aswell as scientific initiatives to fund research in diverse
genetic backgrounds and admixed populations. Figure 1 provides an
overview of the PRS preparation, as well as hypotheses underlying the
analyses.

Results
Characteristics of TOPMed participants, UK Biobank Black partici-
pants, MGB Biobank, and All of Us participants are provided in
Supplementary Tables 1, 2, 3, and 4. Supplementary Figs. 1 and 2
provide the observed phenotypic and residual variances of SBP and
DBP stratified by study and race/ethnic background, where residuals
were obtained from models using covariates only (without PRSs).
Residual variance, the denominator in the proportion variance
explained statistic, varied substantially across cohorts, and was
generally lowest in White, higher in Hispanic/Latino and Asian and
highest in Black participants, by up to 25% over White participants.
Estimated global proportions of continental genetic ancestries of
TOPMed-BP participants are visualized in Supplementary Fig. 3. One
can see that Black participants are admixed with primarily African
ancestries and some European ancestries, and Hispanic/Latino par-
ticipants are admixed with substantial European, Amerindian, and
African ancestries. We also see substantial fractions of Middle East-
ern ancestries, potentially in error due to the similarity between
European and Middle Eastern ancestries.

PRS performance by race/ethnic backgrounds
PVE for SBP and DBP PRSs across race/ethnic background groups are
visualized in Figs. 2 and 3 respectively, and the data behind these
figures are provided in Supplementary Data 1 and Supplementary
Data 2. The number of participants in each of the PRS analyses is
provided in Supplementary Table 5. In all background groups, sums of
PRSs performed better than single GWAS PRSs, with the best per-
forming PRS being weighted sums of PRS-CSx ancestry-specific PRSs.
Note that both PRS-CSx1 and PRS-CSx2 outperformed each other in
some settings. Thus, we chose PRS-CSx2 (which used COGENT to
represent theAfrican ancestry component) as the best performing PRS
because it had the highest PVE in a multi-ethnic analysis combining all
race/ethnic groups: for SBP, PRS-CSx2 PVEwas 6.0% compared to 5.4%
for PCS-CSx1, and for DBP PRS-CSx2 PVEwas 5.8% comparedwith 4.9%
for PRS-CSx1. Across race/ethnic backgrounds, the PVE of PRS-CSx2
ranged from 8.0% (SBP) and 7.8% (DBP) inWhite to 3.5% (SBP) and 3.1%
(DBP) in Black individuals. In the primary analysis, where the TOPMed-
BP dataset was used as a reference panel, the LDPred2 PRS based on
UKBB+ ICBP GWAS of European ancestry individuals outperformed
the other single-GWAS PRSs in both White and Hispanic/Latino parti-
cipants, while LDPred2 MVP PRS performed better in Black partici-
pants. In Asian participants, the LDPred2 MVP-based PRS performed
best for SBP whereas the LDPred2 UKB-ICBP performed best for DBP.
In the GitHub repository, we provide estimated PVEs for all compared
PRSs and race/ethnic background groups, as well as corresponding
PRS effect sizes, per standard deviation in TOPMed-BP dataset, as
estimated in the combined TOPMed-BP and UKB Black dataset. Means
and SDs of the PRS-CSx2 PRSs and their component PRSs based on the
TOPMed-BP dataset are provided in Supplementary Table 6 and 7.
Similarly, MGB Biobank-trained PRS summation weights are provided
for all relevant PRSs in the GitHub repository, and for the best per-
forming PRSs in Supplementary Table 8.
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Supplementary Figs. 4 and 5 describe a series of secondary ana-
lyses relating to PRS construction methods. Briefly, training weights
for PRS combination methods using background-specific analysis in
MGBBiobank was not superior to training weights using the complete,
multi-ethnic MGB dataset (Supplementary Fig. 4), and using reference
panel based on individuals with the same continental ancestry as the
individuals used for GWAS had better performance than using amulti-
ethnic reference panel (Supplementary Fig. 5).

Example comparison of PRS distributions across datasets is pro-
vided in Supplementary Figs. 6 and 7. Supplementary Figs. 8 and 9

demonstrate the potential impact of PRS scaling and PRS scaling +
matching approaches between the dataset used for training summa-
tion weights (MGB Biobank) and the dataset used for PRS evaluation
(TOPMed-BP and UKBB Black) on PRS performance in the evaluation
dataset. In brief, without explicitly matching PRS distributions across
datasets, there are clear differences in their distributions between
datasets. However, different scaling and scaling + matching approa-
ches resulted in minimal differences in PVE in TOPMed-BP. In another
sensitivity analysis we raised the values of SBP and DBP in MGB Bio-
bank individuals with history of antihypertensive medication use. The

Fig. 1 | PRS preparation and analyses steps. The left panel shows the GWAS
summary statistics, LD reference panels, computational procedures and PRS
standardization involved in PRS preparation. The right panel describes the major
analytic steps and their associated hypotheses. BBJ Biobank Japan, COGENT Con-
tinental Origins and Genetic Epidemiology Network, GWAS genome-wide associa-
tion study, LD linkage disequilibrium, LDPred Bayesian PRS method (LDPred2 is a

specific software implementation of the LDPred algorithm), MGB Mass General
Brigham, MVP Million Veteran Program, PRS-CSx continuous shrinkage cross-
population PRSmethod, PRS polygenic risk score, PRSice2 software for computing
PRSbasedon the clumping& thresholdingmethodology, TOPMedTrans-Omics for
Precision Medicine, UKBB + ICBP United Kingdom biobank and the International
Consortium of Blood Pressure.
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performance of weighted summations of PRSs in TOPMed remained
similar to the analogous performance in the primary analysis (Sup-
plementary Fig. 10).

PRS distribution is affected by population structure of the
GWAS population
Supplementary Figs. 11 and 12 describe the distributions of the highest
performing single GWAS PRS and multi-PRS, in each TOPMed race/
ethnicbackgroundgroup, andbygroupsdefinedbygenetic ancestry. As
is well known, PRS distributions differ across background groups, due
to differences in allele frequencies. Supplementary Figs. 13 and 14
visualizes the patterns of associations between ancestry-specific allele
frequencies and SNP effect sizes using SNPs from the four GWAS sum-
mary statistics underlying our analyses. For the population that most
closely matches the ancestry distribution of the underlying GWAS, the
figure recapitulates the known results that common SNPs have weaker
effect sizes compared to rare SNPs. This can be seen, for example, in the
“U”-shaped curve observed when plotting SNP effects from the
UKBB+ ICBP GWAS and European-specific allele frequencies from
TOPMed. However, the same organized pattern is not observed when

considering allele frequencies of a differing ancestral population, where
the allele frequencies have essentially been shuffled for some variants,
resulting in a wider distribution of effect sizes at a given frequency. For
MVP GWAS, which is multi-ethnic, the “U”-shaped pattern is roughly
observed for European and African ancestry-specific frequencies, sug-
gesting that multi-ethnic analysis may better localize signal SNPs.

Estimated effect sizes and PVE of BP PRS stratified by major BP
determinants in All of Us
We further validated the top-performing PRS (PRS-CSx2) in the All of
Us dataset. Supplementary Table 4 characterizes the study population.
Over than 20% of All of Us participants use antihypertensive medica-
tions. Figure 4 provides the estimated effect sizes and PVEs in each
race/ethnic background, demonstrating similar pattern to the
TOPMed-BP dataset, but lower PVEs, and slightly higher PRS perfor-
mance in theHispanic/Latino group compared to theWhite group (the
data behind the figure is provided in Supplementary Data 3). Supple-
mentary Fig. 15 describes similar results, from analysis stratified by
groups defined by a combination of self-reported race/ethnicity and
genetic similarity. Results across corresponding groups between Fig. 4

Fig. 2 | SBP variance explained by compared SBP PRSs. Estimated variance
explained (PVE) by all compared SBP PRSs in the TOPMed-BP datasets (and UKBB
Black individuals), stratified by race/ethnic background. The height of each bar
represents the estimated PVE from association analysis of the PRS with SBP in the
given stratum. Intervals represent the 95% confidence intervals based on the 2.5%
and 97.5% distribution percentiles from bootstrap performed using unrelated
individuals. The left column corresponds to PRSs constructed based on single
GWAS, and the right columncorresponds to PRS summation approaches. PRS-CSx1
and PRS-CSx2 refer to implementations of PRS-CS in which either MVP (PRS-CSx1)
or COGENT (PRS-CSx2) GWAS summary statistics were used in place of an African

ancestry GWAS. The sample sizes used in each of the analyses represented by the
different bars in the figure are provided in Supplementary Table 5. BBJ Biobank
Japan, GWAS genome-wide association study, LDPred Bayesian PRS method
(LDPred2 denotes a specific software implementation of the LDPred algorithm),
MVPMillionVeteran Program, PRS-CSx continuous shrinkage cross-population PRS
method, PRS polygenic risk score, PRSice2 software for computing PRS based on
the clumping & thresholding methodology, PVE percent variant explained, SBP
systolic bloodpressure, TOPMedTrans-Omics for PrecisionMedicine, UKBB + ICBP
United Kingdom biobank and the International Consortium of Blood Pressure.
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and Supplementary Fig. 15 are fairly similar and it is not clear that
grouping individuals while accounting for genetic similarity results in
improvedPRSperformance. Supplementary Figs. 16 and 17 provide the
corresponding results from analyses stratified by hypertensive medi-
cation use, showing that the associations between BP PRSs and BP
traits remained about the same in non-medication users as in the pri-
mary analysis, but with slightly lower effect sizes. PRS associations are
weaker, but still present, in participants who use antihypertensives.
When stratifying by major BP determinants (age, sex, and BMI), per-
formance and PRS effect sizes varied by strata. The patterns were
largely similar across background groups, so for simplicity, Fig. 5
focuses on the multi-ethnic analysis while Supplementary Figs. 18–21
provide results by race/ethnic background. One can see that SBP PRS
associations are stronger in females (PVE 3.4%, beta = 3.8) compared to
males (PVE 2.5%, beta = 3.3), in non-obese (PVE 3.5%, beta = 3.7) com-
pared to obese (PVE 2.3%, beta = 3.3) individuals, and in individuals
aged 41-60 (PVE 3.5%, beta = 4.1) compared to those younger (PVE
2.6%, beta = 2.8) or older (PVE 2.7%, beta = 3.6). The PRS-CSx2 DBP PRS
exhibits similar patterns. These stratified performancepatterns seen in
the multi-ethnic analysis most closely match those seen in the White

participants, whereas in the Supplement we show that, while broadly
similar, for other groups some patterns were changed or attenuated.
For example, male/female and obese/non-obese performance were
generally more similar, while relative performance was better in
younger (age < 40) Black participants for SBP and DBP, and younger
Asian participants for DBP. The data behind Fig. 5 is provided in Sup-
plementary Data 4. Multi-ethnic analysis stratified by both medication
use and BP determinants follow similar patterns to the multi-ethnic
analysis: among non-medication users (Supplementary Fig. 22) the
associations remain similar to the primary analysis results in Fig. 5, but
with somewhat attenuated effect size estimates, while in medication
users (Supplementary Fig. 23) the associations are weaker. Notable
difference is that amongmedication users, BP PRS PVE is highest in the
stratum of individuals ages 40 or less, unlike in those who do not use
medications.

BP PRS are associated with prevalent clinical outcomes in All
of Us
We also tested the association of SBP and DBP PRS with prevalent
clinical outcomes in All of Us, and compared them with our

Fig. 3 | DBP variance explained by compared DBP PRSs. Estimated variance
explained by all compared DBP PRSs in the TOPMed-BP datasets (and UKBB Black
individuals), stratified by race/ethnic background. The height of each bar repre-
sents the estimated PVE from association analysis of the PRSwith SBP in the given
stratum. Intervals represent the 95% confidence intervals based on the 2.5% and
97.5% distribution percentiles from bootstrap performed using unrelated indivi-
duals. The left column corresponds to PRSs constructed based on single GWAS,
and the right column corresponds to PRS summation approaches. PRS-CSx1 and
PRS-CSx2 refer to implementations of PRS-CS in which either MVP (PRS-CSx1) or
COGENT (PRS-CSx2) GWAS summary statistics were used in place of an African

ancestry GWAS. The sample sizes used in each of the analyses represented by the
different bars in the figure are provided in Supplementary Table 5. BBJ Biobank
Japan, DBP diastolic blood pressure, GWAS genome-wide association study,
LDPred Bayesian PRS method (LDPred2 denotes a specific software imple-
mentation of the LDPred algorithm), MVP Million Veteran Program, PRS-CSx
continuous shrinkage cross-population PRS method, PRS polygenic risk score,
PRSice2 software for computing PRS based on the clumping & thresholding
methodology, PVE percent variance explained, TOPMed Trans-Omics for Preci-
sion Medicine, UKBB + ICBP United Kingdom biobank and the International
Consortium of Blood Pressure.
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previously-developed hypertension PRS (HTN-PRS) which combined
PRSs based each on a single multi-ethnic SBP, DBP, and hypertension
GWAS using clump-and-threshold PRSice methodology, as well with a
newly developed weighted sum of the PRS-CSx2 SBP and DBP PRSs.
Results are provided in Supplementary Fig. 24, and further Supple-
mentary Figs. 25 and 26 report results from analyses stratified by
antihypertensive medication use. In primary analysis, all PRSs were
associated with the outcomes. AUC of the PRS associations with
hypertension were similar and equal 0.71 for SBP, DBP, and SBP and
DBP weighted sum, and slightly lower (0.70) for HTN-PRS. SBP and
DBP PRS weighted sum had the strongest association p-value with
hypertension. Similarly for other outcomes, including type 2 diabetes,
chronic kidney disease, coronary artery disease, atrial fibrillation, and
heart failure, associations were fairly similar across PRSs. Results were
inconsistent in analyses stratified by antihypertensive use. For exam-
ple, HTN-PRS was associated with multiple outcomes (type 2 diabetes,
chronic kidney disease, and heart failure) among medication users,
while other PRSs were not. However, both SBP and DBP PRS and their
weighted sum were (weakly) associated with chronic kidney disease
among non-medication users, while HTN-PRS was not. Given the width
of the confidence intervals, we do not have sufficient power to make
strong conclusions.

Discussion
We performed an in-depth evaluation of BP PRS associations with BP
phenotypes in diverse populations, using varying methodologies
reflective of current PRS construction practices, in conjunction with
the largest available single-ancestry and multi-ethnic GWAS. This

manuscript expands upon prior work in its focus on multi-ethnic,
multi-ancestry populations. Similar to our recently published paper
about a multi-ethnic HTN-PRS17, our intent was to develop PRSs that
are useful across individuals regardless of both their genetic make-up
and their race/ethnic identity, while acknowledging that PRS perfor-
mance may be related to these factors. In prior work, we considered
summary statistics from multi-ethnic GWASs, trained a HTN-PRS
summing trait-specific SBP, DBP, and hypertension PRS without
weights, and used TOPMed as a primary dataset, and included a
longitudinal and incidence analyses. Here, we developed PRSs based
on multiple PRS methods and multiple GWAS summary statistics,
evaluated themacross population strata, andutilizedmultiple datasets
to further assess PRS performance by strata defined by important
determinants of BP.

Our hypothesis that multi-ethnic GWAS can yield PRS with
superior performance to single-ancestry GWAS and meta-analysis was
partially confirmed. For White and, perhaps contrary to expectation,
Hispanic participants, the highest-performing single-GWAS PRS was
obtained using LDPred2 along with the UKBB + ICBP GWAS consisting
solely of European ancestry individuals. For Black and Asian partici-
pants, the best-performing single-GWAS PRS was based on the multi-
ethnic MVP GWAS. PVE performance differed substantially by race/
ethnic background and was lowest in Black participants, correspond-
ing to the smaller GWAS sample size for African continental ancestry.
The highest performing PRS for each race/ethnic background, among
single- and multi-GWAS PRSs, was the PRS-CSx1, using fixed weights
across background groups trained in the MGB Biobank). While we did
not report results for PRS based on meta-analysis of the four GWAS

Fig. 4 | Association of SBP and DBP PRS with BP measures stratified by race/
ethnic background in the All of Us dataset. The figure visualizes the estimated
associations (betas in units of mmHg per 1 SD increase in the PRS, standardized
according to TOPMed; provided numerically and visualized as points in the forest
plot) and 95% confidence intervals (CIs; provided both numerically and visualized
as the intervals in the forest plot) of the best performing SBP and DBP PRSs as
selected in the TOPMed dataset (PRS-CSx2), in All of Us, stratified by race/ethnic

background. The figure also provides the sample sizes, in each stratum, association
p-values computed based on a two-sided 1-degree of freedomWald test, and PVEs.
Analyses were adjusted for age, sex at birth, BMI, self-reported race/ethnicity, and
the first 10 PCs of genetic data. DBP diastolic blood pressure, PRS-CSx continuous
shrinkage cross-population PRS method, PRS polygenic risk score, PVE percent
variance explained, SBP systolic blood pressure, TOPMed Trans-Omics for Preci-
sion Medicine.
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contributing to this manuscript due to differences in outcome scales,
multi-PRS approaches provide a useful alternative as they do not
depend on scaling of the outcome in individual GWAS. It is a topic of
future work to meta-analyze summary statistics from different GWAS
bypotentially rescaling the effect sizes to bring them to the same scale.

Importantly for clinical adoption of PRSs for BP and other
important phenotypes, current PRS performance differs by race/eth-
nic background in a systematic way. Achieved performance largely
tracks available sample size fromunderlyingGWAS, again emphasizing
the need for additional recruitment of GWAS participants from under-
represented groups. This is in line with other reports25,41,42. Secondary
analyses suggest that relative PVE performance across race/ethnic
background groups may also be driven in part by differences in BP
distributions, covariate distributions and effects, and age-dependent
BP trajectories.

PRS distribution diverges by race/ethnic background. These
effects are attributable to differential patterns of allele distribution
(frequency and LD) across the groups with respect to the fixed PRS
estimated allelic effect weights, and can potentially bias PRS associa-
tions and interpretations, and their interpretation in multi-ethnic stu-
dies. These ancestry-specific distributional effects have been
consistently noted before17,25. PRS distribution changes by genetic
ancestry highlight the difficulty in using PRS to determine disease risk
in admixed individuals.

Consistent with expectation, PRS based on the largest GWAS,
UKBB+ ICBP, trained in individuals of European ancestry, out-
performed other PRS and achieved the highest PVE performance

overall, when evaluated on White participants in the TOPMed test
cohort. Surprisingly, performance of the UKBB + ICBP PRS in Hispanic/
Latino participants was roughly equivalent, perhaps due to large pro-
portion of European ancestry in Hispanic/Latino admixed
populations39.

Perhaps more surprisingly, the performance of the UKBB + ICBP
PRS was also relatively high among Asian and Black participants,
compared with other alternatives, exceeding the performance of BBJ
(Japanese population), and roughly equaling the performance of MVP
(multi-ethnic population). This suggests the PRS performance benefits
to both the target ancestry and other ancestries of large-sample
underlying GWAS analyzing, here about ~700K individuals, from a
common continental ancestry. Nonetheless, for all groups, perfor-
mance ofmulti-GWASPRS exceeded that of the best-performingbased
single-ancestry GWAS. However, current methodology to borrow
strength acrossGWASof different continental ancestries is not capable
of making up the difference and equalizing performance for under-
represented background groups. This points to the likely persistence
of performance inequalities across race/ethnic backgrounds, unless
funding is allocated to equalize representation of continental
ancestries.

To better understand the role of underlying phenotypic variance
and GxE effects in quantifying PRS performance, we studied PRS per-
formance by strata of important BP determinants in the validation
dataset All of Us. This follows reports by others demonstrating that
PRS performance may differ across population segments defined by
environmental and clinical factors43. Indeed, PRS performance varied

Fig. 5 | Associations of BP PRSs with BP measures stratified by age range,
obesity and sex at birth in the All of Us dataset. The figure visualizes the esti-
mated associations (betas in units of mmHg per 1 SD increase in the PRS, standar-
dized according to TOPMed; provided numerically and visualized as points in the
forest plot) and 95% confidence intervals (CIs; providednumerically and visualized as
the intervals in the forest plot) of the best performing SBP and DBP PRSs as selected
in the TOPMed dataset (PRS-CSx2) with their respective phenotypes in All of Us,

stratified by major hypertension risk factors. The figure also provides the sample
sizes, in each stratum, association p-values computed based on a two-sided 1-degree
of freedom Wald test, and PVEs. Analyses were adjusted for age, sex at birth, BMI,
self-reported race/ethnicity, and the first 10 PCs of genetic data. DBP diastolic blood
pressure, PRS-CSx continuous shrinkage cross-population PRS method, PRS poly-
genic risk score, PVE percent variance explained, SBP systolic blood pressure,
TOPMed Trans-Omics for Precision Medicine.
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by age, sex, and obesity strata, affirming the need to account for these
factors as well as other sources of heterogeneity by cohort when
evaluating and utilizing PRS to predict phenotypes that have strong
age and other clinical and environmental dependencies. In supple-
mental analyses, the above-described stratified PRS performance pat-
terns were seen more clearly in White and Hispanic backgrounds than
in Asian and Black backgrounds, again suggesting a role for more
complex environmental and GxE effects.

This study has several notable strengths. We have attempted to
characterize the performance of BP PRS developed based on largest
available GWAS summary statistics and modern analytic methods for
studies involving multiple ancestries and reported backgrounds. We
specifically compared performance of PRS by self-reported race/
ethnic background, rather than calculated genetic ancestry because
at a time when PRS are coming closer to clinical use, we focus on
investigating whether PRS perpetuate a socially constructed racial
bias and highlight equity issues for BP PRS related to these social
identities. Specifically, the use of race/ethnic background groups
reflects potential clinical application, where PRS may be trained and
adopted based on reported background rather than more complex
models of genetic ancestry and admixture patterns. We identified
and produced PRS from a variety of large-scale GWAS in diverse
populations to enhance PRS to reflect the unique genetic archi-
tecture of BP in the various genetic ancestries represented in the
reported backgrounds. We followed standard practices for clumping
and thresholding based PRS construction as well as newer Bayesian
model-based PRS, and investigated a few approaches to address
multi-ancestry populations, including multi-ancestry GWAS and
weighted and unweighted PRS summations, where we used the
independent MGB Biobank dataset to estimate summation weights.
However, we note that the MGB Biobank is limited in being a biobank
population, that tends to have more measures related to hospital-
based encounters (compared to cohort studies that have baseline
and periodic surveys of all individuals). Thus, both BP phenotypes
andmedication data are “noisy”, and better PRS combinationweights
could potentially be developed. We also investigated the effect of
background-specific vs multi-ancestry LD reference panels. We fol-
lowed TOPMed best practices44 for genetic analyses involving diverse
ancestries and reported social racial groupings. Specifically, we
accounted for differential intercepts and heteroskedasticity by
reported race/ethnic background. We tested the predictive cap-
ability of each of these PRS in the portion of the TOPMed-BP dataset
that did not overlap with the training GWAS, and finally validated the
top performing PRSs in a the All of Us, multi-ethnic, validation study.
In secondary analysis we evaluated PRS associations with prevalent
clinical outcomes in All of Us, with further stratification by anti-
hypertensive medication use. While this analysis is useful in that it
provides evidence for the potential use of BP PRSs in capturing risk
that relates to specific outcomes, it is limited in that we did not
evaluate associations with incident outcomes. Also, in future work,
phenotypes and study samples should be further elaborated with
specific, pre-defined, relevant exclusion and inclusion criteria to
yield useful insights for future application in clinical care.

This work highlights challenges to address in developing PRSs for
diverse populations. First, consistent with other work, these results
underline the clear need to recruit to genetic studies individuals who,
combined, fully represent the diversity of the underlying population,
including oversampling to achieve adequate power. Second, the
results imply a continued need to evaluate and improve methods to
account for the ancestry-dependent distribution of PRS. Con-
sequences on PRS include bias, miscalibration, and loss of precision.
To better correct these biases, it would be useful to compare con-
ditioning on PCs to other methods, e.g. those based on proportion
ancestry for admixed populations. Third, more data collection and
methodology are needed to develop PRSs that are useful in diverse

populations by appropriately accounting for environmental factors
that may vary in distribution by background group and may be
involved in GxE interactions, in addition to genetic ancestry distribu-
tions. Because race/ethnic background tend to be a proxy for social
adversity and racial discrimination, as well as additional environment
and lifestyle factors, training and calibration of PRS by reported race/
ethnicity could induce bias or perpetuate discrimination, including in
individuals identifying with one group but who are relative outliers in
their genetic ancestralmake-up, or lead to situationswhereGxE effects
driven by group-specific exposures are interpreted as immutable
ancestry-specific genetic effects. On the other hand, such grouping
may be useful for prediction and early intervention precisely because
typical exposures across the lifespan, that modify genetic effects, may
bemore similarwithin socially-constructed groups. Ideally riskmodels
would disaggregate objective properties of genetic ancestry (admix-
ture, underlying ancestry-specific allele frequency and LD structures)
from social adversity and other environmental factors that vary by
background group.

In summary, we found that combining multiple PRSs based on
different GWAS is useful, and PRS-CSx software that computes
ancestry-specific PRS, which are then combined, leads to strong PRSs
that performwell across race/ethnic background strata. Our work also
suggests that to improve PRS performance across race/ethnic back-
grounds requires understanding all factors driving performance: not
only PRS characteristics driven by population structure, but also
cohort effects, differing distributions of age and other covariates by
race/ethnic background, aswell asGxE effects, including those that are
due to genetic or environmental factors more prevalent in certain
backgrounds. Construction and evaluation of BP PRS risk models for
clinical use may need to appropriately account for all these factors to
avoid perpetuating research and healthcare inequity.

Methods
This analysis used multiple datasets. The primary evaluation dataset is
the TOPMed-BP, which was used for developing some of the PRSs,
assessing PRSs, and study of genetic ancestry-related patterns in PRSs
and their associations. All PRSs were standardized according to means
and standard deviations (SDs) estimated in the TOPMed-BP dataset.
Second, we used the Mass Genetic Brigham (MGB) Biobank to train
weights formulti-PRS combinations (weighted sums of PRSs). Third, we
used Black individuals from the UK Biobank to complement TOPMed
individuals self-reported as Black, because the available sample sizewas
small after eliminatingoverlapwithoneof theGWAS summary statistics
used. Finally, we used the All of Us dataset for final validation of PRS
performance and effect size estimation in an independent dataset of
diverse individuals from theU.S. All of Us validationwas applied only on
the highest performing PRSs in the main evaluation dataset. UK Bio-
bank, MGB Biobank, and All of Us methods are provided in Supple-
mentary Note 1. Below we describe the TOPMed-BP dataset;
information about other datasets is provide in the Supplemen-
tary Note 2.

The TOPMed-BP dataset
The TOPMed-BP dataset includes 62,501 individuals from 15 parent
population-based studies. Individuals are categorized into four race/
ethnic “background” identity groups, based on self- or study-
identification. We used BP phenotypes that were harmonized by the
TOPMed Data Coordinating Center (DCC), according to its published
methodology45 based on data downloaded from dbGaP. For each
cohort, we generally used BP phenotypes, covariates, and medication
data from the first available exam, to maximize the sample size. We
studied SBP and DBP. As accepted elsewhere in genetic studies of BP
phenotypes, SBP and DBP values were raised by 15mmHg and
10mmHg, respectively, in individuals using antihypertensive
medications46.
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Genome sequencing
Weused genetic data fromwhole genome sequencing via the TOPMed
program47 freeze 8 release. The TOPMed Data Coordinating Center
constructed a kinship matrix estimating recent genetic relatedness,
the corresponding sparse kinshipmatrix, wherevalueswere set to zero
when the genetic relationship was estimated to be more distant than
4th degree relatedness, as well as providing genetic principal compo-
nents (PCs), using the PC-Relate algorithm48. Information about gen-
ome sequencing, allele calling, and quality control in TOPMed is
provided in https://www.nhlbiwgs.org/topmed-whole-genome-
sequencing-methods-freeze-8. In Supplementary Note 1, we describe
genetic ancestry inference for TOPMed participants. We used the
inferred genetic ancestry for secondary analyses using genetic
ancestry-defined groups, and to apply the GAFA algorithm49 and
compute ancestry-specific allele frequencies.

Training GWAS of BP phenotypes
Table 1 provides information about GWAS that we used for summary
statistics to construct PRS. The largest GWAS, UKBB+ ICBP, was of
757,601 individuals of European ancestry, and the smallest GWAS,
COGENT, was of 31,155 individuals of African ancestry and African and
European admixture. All GWAS in Table 1 are non-overlapping with
each other. Because COGENT is relatively small for PRS construction,
we only used it when combining information from the four GWAS in
multi-PRS approaches. We did not meta-analyze results across GWAS,
because effect size estimates were on different scales, due to trans-
formation of outcomes in the different GWAS. Both UKBB + ICBP and
COGENT have overlapping individuals with some of our TOPMed
cohorts (Table 1). We excluded such individuals from TOPMed-BP PRS
assessment when developing PRSs using information from these
GWAS. Supplementary Table 1 in the Supplementary Information
provides sample sizes used when constructing PRS based on each of
the GWAS summary statistics used and the multi-PRS methods.

Quality control on summary statistics
Weexcluded fromconsideration SNPswithMAF <0.01 in theTOPMed-
BP dataset and/or in the discovery GWAS (shown in Table 1), as well as
SNPs that did not pass quality control filters in TOPMed and SNPs with
missing values in at least 1% of TOPMed-BP individuals. Note that we
did not directly filter SNPs basedonaHardy-Weinberg Equilibrium test
in TOPMed, as other quality control filters already address Mendelian
inconsistencies (see link in the above subsection for quality control
measures in TOPMed).

PRS construction based on a single GWAS
We constructed PRSs using the clump-and-threshold method imple-
mented in PRSice2 software version 2.3.1.e50 and using the linkage-
disequilibrium based approach implemented in LDPred251,52, imple-
mented in the bigsnpr v1.0.11 R package. Following quality control, we

re-coded the variant positions (via the UCSC hg19 to hg38 chain file)
and alleles (using PRSice software to perform allele flipping and
remove ambiguous alleles) to match those in the TOPMed data (build
hg38). Then, we applied PRSice using data from each of the GWAS in
Table 1 other than COGENT. We used p-value thresholds of 5 × 10−8,
1 × 10−5, and 1 × 10−2 for SNP inclusion. For clumping, we used the
combined TOPMed-BP dataset as a reference panel for Linkage Dis-
equilibrium (LD), and set clumping parameters to R2 = 0.1 and distance
= 1000Kb, so that if a variant was selected into the PRS, other variants
with LD higher than 0.1 R2 and within 1000Kbwere removed. For each
GWAS, this resulted in three PRSice PRS, one for each p-value thresh-
old. We also used LDPred2-Auto to train PRSs. For computational
feasibility in LDPred2 we were required to limit the number of SNPs
available to approximately one million, so we selected only SNPs
appearing in HapMap53. Once weights were computed using LDPred2,
we constructed the PRS using PRSice2. In a sensitivity analysis, we also
stratified TOPMed-BP individuals by race/ethnic background to create
separate background-specific reference panels for computing LD, and
re-computed PRSice2 and LDPred2 PRSs. Similarly, in secondary ana-
lysis we evaluated the potential value in using LD reference panel that
closely resemble the study population used in GWAS. To facilitate
comparing effect sizes across background-specific and multi-ethnic
analyses, each PRS was scaled and centered to have mean 0 and var-
iance 1 in the TOPMed-BP dataset, computed using all individuals.
Measures such as p-values and variance explained are not affected by
rescaling.

PRS constructions based on multiple GWAS
We constructed sums of PRSs based on different GWAS. When
using independently constructed PRS, we had four PRSs based
on UKBB + ICBP (PRS1), MVP, (PRS2), BBJ (PRS3), and COGENT
(PRS4) GWAS; after centering and scaling each component PRS in the
TOPMed-BP dataset, simple PRS sum = PRS1 + PRS2 + PRS3 + PRS4.
Similarly, we have weighted PRS sum = w1PRS1 +w2PRS2 +
w3PRS3 +w4PRS4. Weights were trained using the MGB Biobank, as
described below. To limit the number of possible combinations, we
always generated these sums using GWAS-specific PRSs that were
constructed with the same approach (LDPred2-Auto, or PRSice using
the same p-value threshold for SNP inclusion). In addition, we used the
PRS-CSx software version v1.0.0 to train ancestry-specific effect sizes
and create ancestry-specific PRS, and combined them as sums in the
sameway. PRS-CSx takes summary statistics frommultipleGWAS. Each
GWAS is assigned an ancestry and a reference panel that matches this
ancestry; we used the provided UK Biobank reference panels. Because
the software only accommodates one GWAS per ancestry, we trained
two sets of PRS using PRS-CSx (PRS-CSx1, and PRS-CSx2). In both sets,
we paired UKBB+ ICBP with the European ancestry reference panel,
and BBJ with the East Asian panel, however, for PRS-CSx1, we paired
MVP with the African reference panel, while for PRS-CSx2 we paired

Table 1 | Training GWAS used as references for PRS construction

GWAS name Reference Trait and sam-
ple size

Population Overlap with
TOPMed

MVP PMID: 305784186 SBP n = 318,492
DBP n = 318,891

Multi-ethnic (69.1% non-Hispanic White, 18.8% non-Hispanic Black, 6.7% Hispanic,
0.77% non-Hispanic Asian and 0.85% non-Hispanic Native American

None

BBJ PMID:2940301057 SBP n = 136,597
DBP n = 136,615

Japanese None

UKBB + ICBP PMID:302246537 SBP n = 757,601
DBP n = 757,601

European and European American 13,516

COGENT PMID: 284988549 SBP n = 31,155
DBP n = 31,155

African and African American 9708

UKBB + ICBPUnited Kingdombiobank and the International Consortiumof Blood Pressure,MVPMillion Veteran Program, BBJ Biobank Japan,COGENTContinental Origins andGenetic Epidemiology
Network.
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COGENT with the African reference panel. Each PRS-CSx training run
resulted in a set of three ancestry-specific PRSs, which were combined
with weighted and unweighted sums as described before for the
GWAS-specific PRS. For PRS-CSx, as for LDPred2, we used only
HapMap SNPs.

TrainingofPRS summationweightsusingMassGeneralBrigham
(MGB) Biobank
We obtained genomic data and health information for 36,434 unre-
lated individuals from the MGB Biobank, a biorepository of consented
patient samples at MGB. Detailed methods are provided in the Sup-
plementary Information. SBP and DBP values were medians of those
recorded in the health records. In sensitivity analysis, we adjusted
these values for medication use as described for TOPMed individuals.
Individuals were identified as ever users of antihypertensive medica-
tions if they had recordsof using antihypertensive combinations, other
antihypertensives, alpha or beta blockers, diuretics, peripheral vaso-
dilators, angiotensin ii inhibitor, calcium channel blockers, or direct
renin inhibitor. Age was the current age, and obesity was the current
inferred status using the natural language processing algorithm of the
MGB Biobank. We computed all developed PRSs in MGB Biobank
participants, scaled them using mean and SDs computed in the
TOPMed-BP dataset, and performed association analyses using linear
models with SBP/DBP as outcomes, regressed on current age, sex,
race/ethnic background, obesity status, genotypic batch, and the first
10 PCs of genetic data, as well as the PRSs to combine. PRS linear
combination weights (w1, …, w4 or w1, w2, w3) were extracted as the
estimated regression coefficients of the respective PRSs. In primary
analysis, PRS combination weights were trained using regression
restricted to individuals from the race/ethnic background used for PRS
evaluation in the TOPMed-BP dataset. In secondary analysis, we com-
pared this to an approach that uses all available individuals fromMGB
Biobank to train the PRS combination weights, addressing the possi-
bility that small sample sizes of non-White race/ethnic backgrounds in
MGB Biobank will yield suboptimal combination weights compared to
the larger sample size of the multi-ethnic, though majority White,
sample.

In another secondary analysis, we investigated differences in
distributions of PRSs across datasets, which can be artificially caused
by differences in imputation panels and imputation quality across
SNPs used, in addition to real differences in allele frequencies in the
source populations25,54. Particularly, we assessed whether attempting
to scale or “scale + match” the PRS distributions across datasets
(TOPMed-BP, MGB Biobank, and UKBB Black as described later) will
affect the PRS combination weights computed in MGB Biobank such
that performance of PRS summations in TOPMed-BP analysis. This
analysis is reported in the Supplementary Information.

Association analysis of PRSswithBPphenotypes in theTOPMed-
BP dataset
To estimate PRS effect sizes, we used linear mixed models, as
implemented in the GENESIS R package55 version v2.16.1 to estimate
the association between the PRS and the corresponding trait, with
relatedness modelled via a sparse kinship matrix. All models were
further adjusted for sex, age, age2, BMI, smoking status (ever, never,
or current smoker), the first 11 genetic PCs, and combinations of
study and race/ethnic background (e.g. we had ARIC-Black, ARIC-
White specific intercepts when evaluating PRS association in a multi-
ethnic sample) and study site when relevant. Similarly, we accounted
for differences in variances across groups defined by combinations
of study and self-identified race/ethnic background using a hetero-
geneous residual-variances model56. For comparability across groups
and datasets, effect sizes are reported per SD of the PRSs, where SDs
were computed once over all individuals from the multi-ethnic
TOPMed-BP dataset.

PRS performance measures
We examined performance of each PRS stratified by race/ethnic
background. Performance was assessed by percent variance explained
(PVE). PVEwas computedusing only unrelated individuals (selected via
the pcairPartition function in the R GENESIS package) successively
eliminating one individual from each pair with TOPMed kinship coef-
ficient greater than 2�4:5 ≈4:4%). In these individuals, PVE was calcu-
lated according to:

PVE = 1�
^σ2
prs

^σ2
null

 !
× 100%, ð1Þ

Where ^σ2
prs is the residual variance in the model that includes the

covariates and the PRS, and ^σ2
null is the residual variance in the model

that includes only covariates. We computed confidence intervals
based on 1000 bootstrap samples, using the percentile method.

Assessment of population structure effects on alleles and PRS
As explained in the Supplementary Note 1, for each TOPMed-BP par-
ticipant, we computed an estimated proportion of their alleles inher-
ited from seven continental genetic ancestries: Europe, Africa,
America, East Asia, South Asia, Middle East, and Oceania. We applied
the method GAFA49 to compute ancestry-specific allele frequencies to
variants with p-value < 0.01, clumped with R2 = 0.1 and distance =
1000Kb, based on any of the GWAS used (SNP selection and clumping
was done based on each GWAS separately). We excluded Oceania
ancestry because of the small effective sample size and rescaled pro-
portionof other ancestries so that they sum to 1 in individuals who had
small fraction of Oceania ancestry. For each of the primary genetic
ancestries represented in individuals in our dataset, i.e. European,
African, East Asian, and American, we visualized the estimated SNP
effect sizes versus effect allele ancestry-specific frequency. Combining
information across SNPs, we visualized the distribution of selected
PRSs across race/ethnic background group in the TOPMed-BP dataset,
as well as across groups defined by continental genetic ancestry.
Groups defined by genetic ancestry were made up of participants for
whom at least 80% of their alleles had been assigned above to the
corresponding genetic ancestry. In this visualization we included only
the best-performing single-GWAS PRS and best-performingmulti-PRS.

Analysis of BP PRS associations in UKBB individuals with Black
identity
To increase the number of Black participants in the dataset used for
PRS evaluation, we incorporated individuals from the UK Biobank
study, as described in detail in the Supplementary Information. Briefly,
we used self-reported race/ethnic background (UKBB Data-Field
21000) to select 8646 individuals who self-reported as “Black or
Black British” or “White and Black Caribbean” or “White and Black
African” study-defined ethnic identities, whichwere the ethnicities that
referenced Black identity. We constructed the various PRSs in UKBB
Black individuals summing over the same geneticmarkers andweights
used in the TOPMed-BP dataset. Associations of PRS with SBP and DBP
in UKBB individuals were meta-analyzed with the associations esti-
mated in TOPMed-BP Black individuals. Additional information on
genetic analysis in the UKBB, including secondary analysis evaluating
scaling and matching between TOPMed-BP and UKBB, is provided in
the Supplementary Information.

Validation of PRS associations and evaluation of performance
across strata of BP determinants in All of Us
We used the independent All of Us dataset to further study effect
estimates and variance explained by the PRSs. Variance explained, our
primary performance measure, depends on phenotypic variance. As
we hypothesized that some groups have larger phenotypic variances
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due to environmental exposures, we studied potential differences in
variance explained of PRS across different stratifications of study
individuals. First, in TOPMed, we computed phenotypic variances, as
well as residual variances after regressing the phenotype on baseline
covariates, across race/ethnic backgrounds, and in sensitivity analysis,
across groups based on self-reported race/ethnicity and further
refined according to genetic similarity. Second, inAll of Us, because BP
phenotypes change with age and different participating studies and
race/ethnic background groups may have different age distributions,
we fit models that evaluate PRS effect sizes and performance by strata
of age, sex, and BMI. Age strata were defined by ≤40, 40–60, and >60;
sexwas stratified tomale and female according to sex at birth, and BMI
was stratified to obesity (BMI ≥ 30) and non-obesity (BMI < 30) strata.
These comparisons and analyses focused on the PRS with highest
performance in the main analysis, determined by an analysis in the
combined, multi-ethnic population (with adjustment to self-reported
race/ethnic background). In secondary analysis we further report
association analyses stratified by hypertension medication use. More
details are provided in the Supplementary Information.

PRS associations with prevalent clinical outcomes in All of Us
In a secondary analysis, we estimated the association of the best per-
forming SBP and DBP PRSs with multiple prevalent clinical outcomes
in the All of Us dataset: hypertension, type 2 diabetes, chronic kidney
disease, coronary artery disease, atrial fibrillation, and heart failure,
see Supplementary Information for details. The standard concept
names used to define these outcomes are provided in Supplementary
Table 9. Data was prepared using Python 2.7. We compared these
associations to (1) our previously developed “HTN-PRS” for hyperten-
sion based on PRS summation of clump-and-threshold constructed
PRS frommulti-ethnic GWAS of SBP, DBP, and hypertension, as well as
(2) a weighted combination of the best performing SBP andDBP PRS in
the current work, with weights estimated in a regression of hyper-
tension over the twoPRS in theMGBBiobank, adjusted for current age,
sex, race/ethnic background, obesity status, genotypic batch, and the
first 10 PCs of genetic data. As in all other analyses, compared PRSs
were standardized based on their mean and SD in the TOPMed-BP
dataset. For these associations we also computed a prediction mea-
sure, the area under the receiver operating curve (AUC) using the
pROC version 1.16.2 R package. Associations were estimated based on
combined sample and stratified by hypertension medication use.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TOPMed freeze 8 WGS data and harmonized BP phenotypes are
available by application to dbGaP according to the study specific
accessions:

Amish: “phs000956”, ARIC: “phs001211“, BioMe: “phs001644”,
CARDIA: “phs001612”, CFS: “phs000954”, CHS: “phs001368”, COPD-
Gene: “phs000951”, FHS: “phs000974”, GENOA: “phs001345”, GenSalt:
“phs001217”, HCHS/SOL: “phs001395, JHS: “phs000964”, MESA:
“phs001211”, THRV: “phs001387”, WHI: “phs001237”. Summary statis-
tics from MVP BP GWAS are available from dbGaP by application to
study accession “phs001672”. The summary statistics from the
UKBB+ ICBP BP GWAS are available at https://grasp.nhlbi.nih.gov/
FullResults.aspx. The summary statistics from the COGENT BP GWAS
are available at https://tarheels.live/cogentkidney/main/gwas-cogent-
bp/. The summary statistics from the BBJ BP GWAS are available at
http://jenger.riken.jp/en/. MGB Biobank genotyping and phenotypic
data are available toMass General Brigham investigators with required
approval from the Mass General Brigham Institutional Review
board (IRB).

Data from the NIH All of Us study are available via institutional
data access for researchers who meet the criteria for access to con-
fidential data. To register as a researcher with All of Us, researchers
may use the following URL and complete the laid out steps: https://
www.researchallofus.org/register/. Researchers can contact All of Us
ResearcherWorkbench Support at support@researchallofus.org. Data
needed to construct the selected BP PRSs generated in this study are
publicly available on the Zenodo repository https://doi.org/10.5281/
zenodo.7908793, and include variants, alleles, and weights for each of
the PRS based on GWAS of SBP and DBP, mean and SD computed
based on the TOPMed-BP dataset, and code to generate the PRS from
plink files using PLINK v1.9. Data used to generate Figs. 2–5 are pro-
vided with this paper as Supplementary Datasets 1–4.

Code availability
We provide developed scripts used to perform analyses described in
the paper and code to construct the BP-PRSs in the GitHub repository
https://github.com/nkurniansyah/BP_PRS, and the Zenodo repository
https://doi.org/10.5281/zenodo.7908793.
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