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The global power sector’s low-carbon tran-
sitionmay enhance sustainable development
goal achievement

Kun Peng1, Kuishuang Feng 2, Bin Chen3, Yuli Shan 4, Ning Zhang 1,
Peng Wang5, Kai Fang 6, Yanchao Bai 7, Xiaowei Zou1, Wendong Wei 8,
Xinyi Geng9, Yiyi Zhang 10 & Jiashuo Li 1

The low-carbon power transition, which is key to combatting climate change,
has far-reaching effects on achieving the Sustainable Development Goals
(SDGs) in terms of issues such as resource use, environmental emissions,
employment, and many more. Here, we assess the potential impacts of the
power transition on progress toward achieving multiple SDGs (covering 18
targets across the 17 goals) across 49 economies under nine socioeconomic
and climate scenarios. We find that the low-carbon power transition under the
representative concentration pathway (RCP)2.6 scenarios could lead to an
approximately 11% improvement in the global SDG index score from 54.70 in
2015 to 59.89-61.33 in 2100. However, the improvement would be significantly
decreased to 4.42%-7.40% and 7.55%-8.93% under the RCP6.0 and
RCP4.5 scenarios, respectively. The power transition could improve the overall
SDG index in most developed economies under all scenarios while under-
mining their resource-related SDG scores. Power transition-induced changes
in international trade would improve the SDG progress of developed econo-
mies but jeopardize that of developing economies, which usually serve as
resource hubs for meeting the demand for low-carbon power transition in
developed economies.

The current fossil fuel-dominated power sector accounts for nearly
40% of global annual energy-related CO2 emissions1,2. The low-carbon
transition of the power sector is crucial to tackling climate change and
ensuring the future supply of energy3,4. However, the impacts of power
sector transition are beyond concerns for the climate. Power sector
transition has far-reaching effects on achieving the Sustainable
Development Goals (SDGs)5 in terms of issues such as resource use6,7,

environmental emissions4, employment8, andmanymore9,10. However,
the power transition may alleviate one problem while simultaneously
exacerbating others. For instance, the closure of coal-fired power
plants will reduce cooling water withdrawal (advancing the achieve-
ment of SDG 6: clean water and sanitation)11,12 but cause massive job
losses in the coal power industry and its various ancillary, upstream,
and downstream industries (hindering the achievement of SDG 8:
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decent work and economic growth)13,14. The expansion of low-carbon
power such as wind power and solar energy as substitutes for fossil
fuels can improve countries’ ability to address climate change
(advancing the achievement of SDG 13: climate action)15 while
increasing demand for criticalmaterials (hindering the achievement of
SDG 12: responsible consumption and production)16,17. Thus, there is a
need to understand the impacts of the power transition on global SDG
progress in terms of multiple aspects.

Previous studies have primarily focused on the impacts of specific
national or regional power sector transitions on a single aspect of
sustainable development, such as regional employment18, economic
growth19, natural resource use20,21, and greenhouse gas and pollutant
emissions22. Additional work is required to reflect the impacts of the
power transition on SDG progress, particularly the environmental,
social, and economic implications (trade-off or synergies) of a power
sector transition and its impact on each region with respect to the
multiple SDG goals. For instance, Wang et al.23 found that developing
Asia’s short-term coal power plan has not yet included the impact on
the regional sustainable use of water resources, whichmay exacerbate
water shortages in Asia (hindering the achievement of SDG 6: clean
water and sanitation) if no strategy is designed to reduce coolingwater
use. Second, a power transition in one region affects not only the
achievement of local SDGs but also SDG progress in other regions via
interregional trade. The expansion of renewable power or the reduc-
tion of fossil fuels in the electricity mix in one country might lead to
changes in environmental pollution, resource consumption, and
employment embodied in products and services from global supply
chains, thus potentially influencing other regions’ achievement of the
SDGs24. Some researchers have conducted initial investigations and
found that European renewable energy directives may potentially
harm forests in tropical countries, such as Indonesia and Brazil,
through the wood trade (hindering the achievement of SDG 12:
responsible consumption and production)25. Thus, exploring the role
of international trade in regional SDG progress is vital for preventing a
power transition at the expense of SDG achievement in other regions.

In this work, we make a methodological contribution by coupling
the global change assessment model (GCAM)26, multiregional input-
output (MRIO) analysis27,28 and the SDG approach29 to examine the
direct and supply chain effects of power transitions throughout the
worldon achieving regional andglobal SDGsby2100, including thenet
environmental and socioeconomic changes. Given its simplicity and
transparency compared with other economic system accounting
methods such as the computational general equilibrium model30–32,
MRIO analysis is selected and used to capture the direct and supply
chain effects of power sector activities on environmental and socio-
economic changes. The GCAM is used to simulate the power transition
pathways in a scenario framework33–35, in line with the shared socio-
economic pathways (SSPs, e.g., SSP1, SSP2, and SSP5)36,37 and repre-
sentative concentration pathways (RCPs, e.g., RCP2.6, RCP4.5, and
RCP6.0)38,39. The selected pathways aremeant not to cover all possible
power sector futures but to demonstrate the effects of some power
transition choices on SDG achievement in our analysis. Among many
integrated assessment models (IAMs), the GCAM is selected for its
transparency and credibility in multimodel, multiscale analysis, in
which it is either soft- or hard-coupled to other models with different
focuses and often greater resolution in power sectors26,40. Specifically,
the GCAM and the MRIO model can achieve complementary advan-
tages in scenario analysis41. The MRIO model can provide cross-
regional impact analysis of the power sector in the base year, while the
GCAM, as an IAM, canprovide notonly future changes in the size of the
power sector but also future trends in some parameters that can be
used in the MRIO model (such as CO2 emissions per unit of electricity
generated in the power sector and blue water consumption). Finally,
the changes in environmental and social-economic indicators driven
by power transitions are translated into SDGprogress using theUnited

Nations SDG approach. Our findings demonstrate that the low-carbon
transition of the global power sector could enhance overall SDG per-
formance with enormous regional disparities in the individual targets
of the SDGs.

Results
The integrated assessment framework design for the power
transition
In this study, an integrated assessment framework is designed to
examine the direct and supply chain effects of power transitions
throughout the world on the achievement of regional and global SDGs
from 2015 to 2100. This framework includes three main modules: a
base module, a scenario module and an SDG simulation module
(Fig. 1). The base module is used to describe the direct and supply
chain effects of the global power sector, including the environmental
and socioeconomic impacts; the scenario module is able to simulate
the global power transition pathways and provide some of the para-
meters (for example, environmental impact per unit of electricity
generated) for future evolutions for base module 1; and the SDG
simulation module is designed to translate the changes in environ-
mental and socioeconomic indicators into global SDG progress.

The basemodule is based on the EXIOBASE MRIOmodel42, which
supports modeling the environmental and socioeconomic impacts of
10 main categories of power production subsectors, including coal
power, gas power, nuclear power, hydroelectricity, wind power, pet-
roleum and other oil derivatives power, biomass and waste power,
solar photovoltaic (PV), solar thermal, and geothermal power. These
environmental and socioeconomic indicators representing the SDGs
include carbon dioxide (CO2) emissions, sulfur oxide (SOX) emissions,
nitrogen oxide (NOX) emissions, particulate matter (e.g., PM2.5 and
PM10) emissions, blue water withdrawal, blue water consumption,
material use (fossil fuel, biomass, metal, and nonmetal), employment,
value-added, taxes, and wages. MRIO analysis is selected for its trans-
parency and credibility in analyzing the impacts of the power sector on
the entire upstream and downstream value chain.

The scenario module based on the GCAM can simulate the
global power transition pathways in a new scenario framework, and
it has been frequently used to study energy43 and climate change
issues44,45. The new scenario framework combines alternative path-
ways of socioeconomic development (i.e., SSPs) with pathways of
future radiative forcing and their associated climate changes (i.e.,
RCPs). The SSPs are defined along two different dimensions: chal-
lenges to adaptation and challenges to climate mitigation. To take
into account the general trend of globalization, SSPs with high
(SSP5), medium (SSP2), and low levels (SSP1) climate mitigation
challenges but with relatively low challenges to adaptation (SSP1 and
SSP5) are considered. SSP2 is chosen as an intermediate path. In
terms of the RCPs, three levels of scenarios (RCP6.0, RCP4.5, and
RCP2.6Wm–2) are selected. RCP8.5 is excluded because it is inten-
ded to explore an unlikely high-risk future. As the available evidence
does not yet indicate that the world has seriously committed to
achieving the 1.5 °C goal46, RCP1.9 is not included. In general, the
selected pathways (SSP5 + RCP6.0, SSP5 + RCP4.5, SSP5 + RCP2.6,
SSP2 + RCP6.0, SSP2 + RCP4.5, SSP2 + RCP2.6, SSP1 + RCP6.0,
SSP1 + RCP4.5 and SSP1 + RCP2.6.) are meant not to cover all possi-
ble power sector futures but to demonstrate the effects of some
socioeconomic development and climate actions on the power
transition in our analysis. Another important role of the scenario
module is to provide future trends in some parameters in the MRIO
model (such as CO2 emissions per unit of electricity generated in the
power sector and bluewater consumption). The heterogeneity of
parameter changes in different power sectors of different regions is
comprehensively considered based on their previous characteristics
and future possible conditions of socioeconomic and technological
development in the selected SSP + RCP scenarios. The description of
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the parameter changes at the sector level is shown in Supplementary
Data 1–7.

The SDG simulation module can translate the changes in envir-
onmental and socioeconomic indicators driven by the power transi-
tion into global SDG progress. After the results are output in the base
module and scenario module, the SDG simulation module uses the
SDG approach to transform and standardize the data. The role of data
transformation is to transform the direct impact into an impact per
capita or per unit of GDP. The role of standardization is to make the
converted data comparable.

The environmental and socioeconomic impacts of the global
power sector transition
Figure 2 shows the percentage changes in global total environmental
emissions, resource use, and socioeconomic impacts (the basic

indicators used to evaluate SDG progress) driven by the global power
transition under nine different scenarios: SSP5 + RCP6.0, SSP5 +
RCP4.5, SSP5 + RCP2.6 SSP2 +RCP6.0, SSP2 +RCP4.5, SSP2 +RCP2.6,
SSP1 + RCP6.0, SSP1 + RCP4.5 and SSP1 + RCP2.6.

We find that the global power transition has the strongest CO2

emission reduction effect under the RCP2.6 scenarios. For example,
global CO2 emissions in 2015–2100 (34.85 Gt in 2015) would decrease
by 31.17%, 32.09%, and 31.64% under SSP5 + RCP2.6, SSP2 +RCP2.6 and
SSP1 + RCP2.6, respectively, which ismuchhigher than thoseunder the
RCP6.0 and RCP4.5 scenarios (Fig. 2a). The discrepancy in emissions
under different scenarios is mainly based on the assumptions of dif-
ferent energy mixes of electricity production (Supplementary Data 7).
Given the stronger pollution controls in the future47,48, all the projec-
tions show decreasing trends of NOX (Fig. 2b), SOX (Fig. 2c), and PM
(PM2.5 and PM10) emissions (Fig. 2d).

Our scenario analysis shows that blue water consumption will
continue to grow by 2100 under the SSP5 and SSP2 scenarios, mainly
due to the expansion of nuclear, biomass, or gas power, in contrast to
the decrease in blue water consumption under the SSP1 scenarios
(Fig. 2f). However, industrial blue water withdrawal would gradually
decrease under all scenarios due to the extensive application of cir-
culating cooling technology (Fig. 2e).

Along with higher demand for electricity in the future, all sce-
narios are accompanied by increasing use of materials, such as bio-
mass, metal, and nonmetal minerals for power transitions (Fig. 2h),
except for a decrease in fossil fuels (Fig. 2g). However, the power
sector would consume much less fossil fuel and more biomass, metal,
and nonmetalminerals under the RCP2.6 scenarios comparedwith the
results under other scenarios.

In terms of the socioeconomic impacts of power production
and the power transition, we could see a significant increase in
employment, value-added, wages, and taxes (Fig. 2i–l) under all
scenarios due to the high future demand for electricity. As the per
unit of installed capacity of renewables can generate more jobs than
that of coal power49, our results show that power generation and the
power transition under the RCP2.6 scenarios (the most ambitious
scenario with renewables generation) may bring more job oppor-
tunities compared with the results under the RCP6.0 and
RCP4.5 scenarios.

The impacts of the power transition on achieving global SDGs
Here, we translate the changes in environmental and socioeconomic
indicators into global SDG progress using the United Nations SDG
approach (see theMethods section). Our analysis shows that the global
SDG index score, defined as the overall performance in achieving all
individual SDG targets evaluated, would increase in the medium term
and the long term under all scenarios. For example, the global SDG
index scorewould increase from54.70 in 2015 to 58.01 (6.05%) in 2050
and 61.33 (12.13%) in 2100 under SSP1 + RCP2.6 (Supplementary
Table 1). Advances in technology and efficiency in electricity genera-
tion play a dominant role in the global SDG performance of the power
sector. However, in the short term, the continued growth of fossil
power may hinder global SDG progress. For example, the global SDG
index score in 2030 would reach a lower level under the
SSP5 scenarios, decreasing to 54.17 (−0.97%), 54.59 (−0.20%), and
54.60 (−0.19%) under SSP5 + RCP6.0, SSP5 + RCP4.5 and SSP5 +
RCP2.6, respectively.

By 2030, most individual SDG target scores would not change
significantly (Fig. 3). However, with the rapid expansion of renewable
power, progress toward achieving SDG 7.2 (increase substantially the
share of renewable energy in the global energy mix) increases sig-
nificantly, with a range of 30.48% (SSP5 + RCP6.0) to 80.16% (SSP1 +
RCP2.6). In contrast, global progress toward achieving SDG 9.4 (pro-
mote clean and sustainable industrialization) and SDG 13.2 (integrate
climate change measures into national policies, strategies, and
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planning) would be stalled, mainly due to further growth in CO2

emissions from fossil electricity.
By 2050, progress toward achieving most individual SDG targets

would accelerate under all scenarios (Fig. 3). SDG 7.2 is the top indi-
cator of improvement, with a range of 58.95% (SSP5 + RCP6.0) to
179.52% (SSP1 + RCP2.6). The changes in progress toward achieving
SDG 1.1 (eradicate extreme poverty for all people everywhere), SDG 2.3
(enhance agricultural productive capacity), SDG 3.9 (reduce the
number of deaths and illnesses from hazardous chemicals and air,
water and soil pollution and contamination), SDG 4.3 (ensure equal
access for all women and men to affordable and quality technical,
vocational and tertiary education, including university), SDG 6.4
(ensure sustainable withdrawals and supply of freshwater), SDG 8.4

(improve resource efficiency in consumption andproduction), SDG8.5
(achieve full and productive employment), SDG 11.6 (reduce the
adverse per capita environmental impact of cities), SDG 12.2 (achieve
the sustainable management and efficient use of natural resources),
SDG 14.1 (prevent and significantly reduce marine pollution of all
kinds, in particular from land-based activities, including marine debris
and nutrient pollution), and SDG 15.1 (ensure sustainable use of ter-
restrial ecosystems) are below or approximately 5%. However, the
power transitionwill createmore jobs formen, and the rate of increase
inwageswill be less than that in value-added, leading to a slight decline
(less than 4%) in equality-related indicators, i.e., SDG 5.5 (ensure
women’s full and effective participation and equal opportunities for
leadership at all levels of decision making in political, economic and
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public life) and SDG 10.4 (adopt policies, especially fiscal, wage and
social, protection policies, and progressively achieve greater equality).
Looking forward to 2100, progress toward achieving most individual
SDGs is more obvious (Supplementary Fig. 1).

The impacts of the power transition on achieving regional SDGs
Among the various SSP +RCP combinations, we select three pathways,
i.e., SSP1 + RCP2.6, SSP2 + SSP4.5, and SSP5 +RCP6.0, for projecting

regional SDG index scores. The selected pathways do not cover all
possible futures; rather, they represent different levels of power
transition, including the business-as-usual (SSP2 +RCP4.5) pathway,
renewable-based (SSP1 + RCP2.6) pathway, and fossil fuel-based
(SSP5 + RCP6.0) pathway.

The changes in the SDG index score vary significantly across
economies (Fig. 4). In general, the higher the GNI per capita is, the
more inclined an economy is to improve its SDG index score in the
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short term and medium term, and vice versa. In either 2030 or 2050,
the average level of SDG improvement in developing economieswill be
lower than that in developed economies under all scenarios. Under
SSP5 + RCP6.0, developing economies will even experience a decline
(0.59 in 2030, 0.02 in 2050) in the average SDG index score as they
continue touse fossil fuels in largequantities. In the long term, the SDG
improvement level of developing economies will exceed that of
developed economies.

Some economies that currently rely on fossil fuels can also
achieve SDG improvements in the short to medium term when they
adopt rapid transition strategies. For example, Estonia, which is a
country that completely relies on fossil fuels for power generation,
would experience the largest increase in the SDG index score by 2050
under all scenarios, with a range of 2.15 (SSP5 + RCP6.0) to 6.91
(SSP1 + RCP2.6), due to significant expansion of renewable power to
substitute for coal power under the European Climate Law50. This

Fig. 3 | Global individual SDG target score changes in 2030 and 2050.
RCP2.6 scenarios for a 2030 and b 2050, RCP4.5 scenarios for c 2030 and d 2050,
and RCP6.0 scenarios for e 2030 and f 2050. Note: Global individual SDG target
score changes in 2100 are shown in Supplementary Fig. 1. The individual SDG
targets include SDG 1.1 (eradicate extreme poverty for all people everywhere), SDG
2.3 (enhance agricultural productive capacity), SDG 3.9 (reduce the number of
deaths and illnesses fromhazardous chemicals and air, water and soil pollution and
contamination), SDG 4.3 (ensure equal access for all women andmen to affordable
and quality technical, vocational and tertiary education, including university), SDG
5.5 (ensure women’s full and effective participation and equal opportunities for
leadership at all levels of decision-making in political, economic and public life),
SDG 6.4 (ensure sustainable withdrawals and supply of freshwater), SDG 7.2
(increase substantially the share of renewableenergy in the global energymix), SDG
8.4 (improve resource efficiency in consumption andproduction), SDG8.5 (achieve

full and productive employment), SDG 9.4 (promote clean and sustainable indus-
trialization), SDG 10.4 (adopt policies, especially fiscal, wage and social, protection
policies, and progressively achieve greater equality), SDG 11.6 (reduce the adverse
per capita environmental impact of cities), SDG 12.2 (achieve the sustainable
management and efficient use of natural resources), SDG 13.2 (integrate climate
changemeasures into national policies, strategies and planning), SDG 14.1 (prevent
and significantly reducemarine pollution of all kinds, in particular from land-based
activities, including marine debris and nutrient pollution), SDG 15.1 (ensure sus-
tainable use of terrestrial ecosystems), SDG 16.7 (ensure responsive, inclusive,
participatory and representative decision-making at all levels), and SDG 17.1
(strengthen domestic resource mobilization, including through international sup-
port to developing countries, to improve domestic capacity for tax and other
revenue collection).

−4

−2

0

2

4

S
D

G
 In

d
ex

 S
co

re
 C

h
an

g
e

Developing Economies Developed Economiesa

20
30

−4
−2

0
2
4
6
8

10

S
D

G
 In

d
ex

 S
co

re
 C

h
an

g
e

b

20
50

In
di

a
R

oW
 A

fri
ca

In
do

ne
si

a
R

oW
 A

si
a 

an
d 

Pa
ci

fic
R

oW
 E

ur
op

e
So

ut
h 

Af
ric

a
Bu

lg
ar

ia
R

oW
 A

m
er

ic
a

C
hi

na
Br

az
il

R
om

an
ia

R
us

si
a

M
ex

ic
o

R
oW

 M
id

dl
e 

Ea
st

Tu
rk

ey
C

ro
at

ia
H

un
ga

ry
Po

la
nd

La
tv

ia
Li

th
ua

ni
a

Sl
ov

ak
ia

C
ze

ch
 R

ep
ub

lic
C

yp
ru

s
Es

to
ni

a
G

re
ec

e
Po

rtu
ga

l
Sl

ov
en

ia
Ta

iw
an

M
al

ta
Sp

ai
n

So
ut

h 
Ko

re
a

Ita
ly

Ja
pa

n
Fr

an
ce

Be
lg

iu
m

G
er

m
an

y
C

an
ad

a
Fi

nl
an

d
Au

st
ria

U
ni

te
d 

Ki
ng

do
m

N
et

he
rla

nd
s

Ire
la

nd
Sw

ed
en

D
en

m
ar

k
Au

st
ra

lia
U

ni
te

d 
St

at
es

Lu
xe

m
bo

ur
g

N
or

w
ay

Sw
itz

er
la

nd

−4
−2

0
2
4
6
8

10
12
14

S
D

G
 In

d
ex

 S
co

re
 C

h
an

g
e

c

21
00

SSP5+RCP6.0
SSP2+RCP4.5
SSP1+RCP2.6

0.04 0.31

-0.59

0.56 0.68
0.29

1.19 1.28
0.99

Global
Developed
Economies

Developing
Economies

0.64 0.93

-0.02

1.37 1.48 1.11

3.19 3.22 3.12

3.14 3.07 3.30
4.00 3.76

4.56
5.97 5.61

6.79

Mean SDG Index Score Change
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developed economies (i.e., high-income economies) and 15 developing economies
(Supplementary Table 2).
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result verifies that strict climate legislation can effectively improve the
sustainable development level of regions that are highly dependent on
fossil power. In contrast, under SSP5 + RCP6.0, Indonesia, Brazil, and
rest of the world (RoW) Africa will experiences declines of 3.34, 3.09,
and 1.81, respectively, in their SDG index score because fossil fuel
power would grow substantially in these emerging economies and
climate change-related SDG (SDG 9.4 and SDG 13.2) progress would be
hampered (Fig. 4a).

Regional power transitions could also lead to synergies and trade-
offs between different individual SDGs (Fig. 5). Regarding synergies,
scenario SSP1 + RCP2.6 shows that more than 90% of the economies
considered would have an increase in more than 15 individual SDG
scores by 2100 simultaneously. However, there are differences
between some individual SDGs and the SDG index. For example, South
Africa’s SDG index score would increase by 10.65 in 2100, but due to
the increase in material use during the transition, its SDG 8.4 score
would fall by 0.24. In addition, the power transition will improve all
individual SDG scores in some economies, such as Romania and
Mexico.

The effects of power transition-related changes in international
trade on achieving the SDGs
Power transitions will not only change the scale and patterns of
international trade but also exert effects on the environmental emis-
sions, resource consumption, employment, value added, wages, and
taxes embodied in exports and imports, thus influencing SDG perfor-
mance in different regions. Power transition-induced changes in
international trade would improve overall SDG performance
(0.49–0.95%) globally between 2015 and 2100 (Fig. 6a). However, the
overall impact would be rather limited, as the amount of traded
commodities and services (measured by monetary value) related to
the power sector accounts for only less than 2% of international trade.
Socioeconomic-related SDG (SDG 10.4) performance would have the
highest degree of improvement (2.28–6.55%), mainly due to the
increase in wages embodied in renewable power-related trade
(Fig. 6k). Employment-related SDG (SDG 8.5) performance would be
improved, mainly because of the expansion of labor-intensive renew-
able power sectors (Fig. 6i). However, all scenarios would show a
decline (0.04–0.13%) in the average scores of material use-related
SDGs (SDGs 8.4 and 12.2) due to the increase in power production-
related resource use met by international trade (Fig. 6h, m).

From a regional perspective, more than 70% of economies would
improve their SDG performance under all scenarios (Fig. 6). However,
the material use-related (SDGs 8.4 and 12.2) and environmental
emissions-related SDGs (SDG 11.6) performance of developing
economies with rich fossil energy and material resources, such as the
those in the Middle East, would be impeded by international trade, as
the expansion of power production results in an increase in the power
sector-related resource consumption and environmental emissions
embodied in international trade.

Discussion
This study performs a quantitative analysis of the impacts of power
sector transition on global and regional performance on achieving
multiple SDGs. We find an improvement in global SDG index scores
(the average score of 18 selected SDG targets) during the 2015–2100
period under all nine combination scenarios. The power transition
brings increases of 4.42–7.40%, 7.55–8.93%, and 9.48–12.13% in global
SDG index scores under the RCP6.0, RCP4.5 and RCP2.6 scenarios,
respectively. However, the change in the regional individual SDG score
is not always consistent with the change in the average SDG index
score. For instance, for 15 out of 49 economies, the resource-related
SDG (SDGs 8.4 and 12.2) scores will become worse if the current fossil-
dominated power structure transitions to a renewables-dominated
power structure (SSP1 + RCP2.6). Moreover, we conduct a sensitivity

analysis to assess the sensitivity of the SDG scores to lower and upper
bounds settings for normalization of indicator values. We select SDG
scores change in 2100 as a proxy to present the results of our sensi-
tivity analysis. Their detailed settings are shown in Supplementary
Information, and the results are shown in Supplementary Fig. 2.

According to the SustainableDevelopmentReport 2020, progress
toward achieving the SDGs by 2030 lags far behind the schedule pre-
designed by the UN29. One of the main reasons is that there is a lack of
understanding of the interactions between SDGs, which is essential to
making trade-offs between the SDGs and advancing the achievement
of the overall SDGs with minimal efforts10,51. Our research reveals the
SDG synergies and trade-offs in global and regional power transitions,
providing insights into advancing the power transformation and
improving the current SDG “dilemma”.

Our results demonstrate that whether global SDG performance
can be improved will be determined by developing economies’ power
transition. Themain reason is that fossil power contributes tomeeting
more than 70% of the electricity demand in developing economies. As
a result of the gradual expansion of the population and economy, the
electricity demand of developing economies will increase by
81.6–112.3% between 2015 and 2050, which is much higher than the
increase in developed economies (23.2–28.4%). If power generation in
developing economies is still dominated by fossil fuels, there will be a
large amount of greenhouse gas and pollutant emissions, as well as a
large amount of water resources, fossil fuel, and mineral depletion,
thus posing great threats to global SDG progress.

Promoting the clean and low-carbon power transition in devel-
oping economies is crucial to global SDG progress. Meanwhile, due to
the different levels of economic development and the different power
structures, different developing economies need to take varying
measures.

For Africa, the continent with the lowest income (gross national
income) per capita, the greatest challenge it faces inmaking the power
transition is the lack of sufficient financial support52. For example, the
African low-carbon electricity transition cannot be achieved without
investments in power growing by two and a half times through 2040
according to the International Energy Agency (IEA)1. Given the limited
financial capacity and financial constraints of the utilities of govern-
ments, private sources of finance will be critical to bridge investment
gaps. However, more than 1/3 of Sub-Saharan African countries, such
as Nigeria and Sudan, do not allow for private sector participation in
electricity generation or networks, which greatly jeopardizes the
decarbonization of electricity in these areas1. For the smooth transition
of these regions, private investment needs to be appropriately intro-
duced to avoid financing gaps. In addition, blending international
concessional capital with private capital has been proven to be parti-
cularly effective in Africa. Since 2015, blended finance has an average
of approximately $9 billion annually around the world. Africa has
accounted for the main transactions, attracting over 60% in 202053.

For China and India, the two largest coal-fired power producers in
the world, a rapid transition away from unabated coal use is essential.
Recent regional trends reflect a shift in coal power prioritization from
theUS and the EU tomany fast-developing countries in Asia, especially
China, and India54. Thus, specific policy efforts that targeted coal-
power production reduction are critical, for example, reductions in
multilateral development banks’ financing of coal projects and
national limits on coal consumption.

In addition, given that climate change is affecting the world as a
whole and given that low-carbon technologies in most developing
countries are still in their early stages, developed economies can
consider supporting the power transition in developing economies
through renewable power technology transfer, as most of the patents
associated with renewable energies are privately owned55.

Transforming the power sector to low-carbon energy under
RCP2.6 (or rapid low-carbon power transition) is verified to bring
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enormous co-benefits for global SDG performance overall. However,
the situation differs from one region to another. The achievement of
most individual SDGs in some economies, such as Germany and Spain,
can be advanced by a rapid low-carbon power transition. This result
indicates that the current and stated transition strategies of these

countries are relatively sustainable. Notably, however, the power
transition may lead to local SDG conflicts in some economies. For
example, the Indian government’s clean energy transition strategies
(solar capacity addition targets are accompanied by the retirement of
thermal capacity) will create job opportunities primarily (60% of total)
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cannot be quantified by MRIO, therefore, is not shown here.
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located in the western and southern parts of India (advancing the
achievement of SDG 8.5: achieve full and productive employment),
while leading to job losses being concentrated in the coal-mining
states located in eastern India (hindering the achievement of SDG
8.5)56. Thus, a comprehensive review of the cross-regional impact of
the power transition in large economies, such as the United States and
India, is recommended to reduce regional imbalances from the tran-
sition. Meanwhile, specific development plans for subregional low-
carbon power transitions are needed.

For most countries, a rapid low-carbon transition may cause
conflicts between individual SDGs and progress toward achieving
them (where progress toward achieving one goal hinders progress
toward achieving another), which needs great attention. For example,
the expansions of wind power and PV power in the United States will
increase the demand for metals and nonmetals and undermine its
achievement of SDG 8.4. In response to the material requirement or
bottleneck for the future deployment of low-carbon power technolo-
gies, it is critical to increase the secondary supply of materials (recy-
cling) instead of expanding mineral exploitation. Given the low rate of
recycling ofmaterials and the high recycling costs in thepower sector7,
more efforts with regard to the centralized recovery of retired elec-
trical equipment and the development of technologies with lower
costs and higher recovery rates need to be made.

Our results also indicate that the international trade associated
with the low-carbon transition of the power sector has a limited
effect on the average SDG performance at the global scale, but it
may profoundly affect the SDG process of individual countries. This
means that cross-national inequities in SDG progress may be exa-
cerbated due to the expansion of renewable power or the reduction
of fossil fuels in the electricity mix. For example, under the
SSP2 + RCP2.6 scenario, by 2050, 42.13% of metal use increases
(hindering the achievement of SDGs 8.4 and 12.2) in RoW America
will be caused by the power transition in the country itself, and the
remaining 57.87% will be driven by the ripple effects of the low-
carbon transition in other countries (advancing the achievement of
SDGs 9.4 and 13.2) through global supply chains. This result
emphasizes the global systemic effects of the power transition,
which calls for supply chain management when formulating power
transition strategies to facilitate best practices in minimizing the
impacts on achieving the SDGs.

Limitations and caveats apply to our study. First, our study is
limited by the scope of our model and data. Although the EXIOBASE
MRIOmodel andGCAMare diverse enough to cover the entire list of 17
SDGsandmost of the key areasof sustainabledevelopment pertaining,
they do not cover all systems (e.g., biodiversity and human health).
Thus, our research does not capture the full complexity of inter-
linkages with the SDGs. Future research can further extend the model
scope and data availability to explore the contribution of the power
transition to SDG progress. Second, the nine selected scenarios in our
study are used only as illustrative archetypes and are not intended to
cover all future possibilities. Third, since we mainly focus on the
impact of the power transition on SDG progress, the global trade
patterns (from 2015) are assumed to remain the same for all scenarios
and years to eliminate any possible confounding effects of changes in
the global supply chain.

Methods
Scenarios of future power generation by region and technology
In this study,wederive futurepower transitionpathways under a range
of climate mitigation scenarios from the GCAM. The GCAM is a global
model that simulates the behavior of and interactions between five
systems: the energy system, water, agriculture and land use, the
economy, and the climate. It has been widely used to produce sce-
narios for international and national assessments26. Market equili-
brium is the core operating principle for the GCAM, which solves for a

set of market prices so that supply and demand are balanced in all
these markets across the model.

Nine scenarios are selected across two aspects to analyze future
global power generation by region and technology based on reports
by the Intergovernmental Panel Climate Change (IPCC)57. One aspect is
the SSPs36, which were developed along the dimensions of challenges
to mitigation and adaptation to climate change and can sufficiently
cover the relevant socioeconomic dimensions. The other aspect is the
RCPs38, which represents the ambition of climate policies. Each SSP +
RCP combination (SSP5 + RCP6.0, SSP5 + RCP4.5, SSP5 + RCP2.6,
SSP2 +RCP6.0, SSP2 +RCP4.5, SSP2 +RCP2.6, SSP1 + RCP6.0, SSP1 +
RCP4.5, and SSP1 + RCP2.6.) represents an integrated scenario of
future climate and societal change and can be used to investigate the
global and regional power transition effort required to achieve that
particular climate outcome. In detail, the GCAM directly provides the
regional (32 regions globally), renewable, nuclear, fossil fuel and with/
without carbon capture and storage (CCS)-specific power generation
every 5 years from 2015 to 2100.

Quantifying the environmental and socioeconomic impacts of
the power transition
The MRIO model is used to quantify the environmental and socio-
economic impacts of the power transition. This model captures both
the direct and indirect (supply chain) effects of ten power production
subsectors (including coal power, gas power, nuclear power, hydro-
electricity, wind power, petroleum and other oil derivatives power,
biomass and waste power, solar PV, solar thermal, and geothermal
power) on CO2 emissions, SOX emissions, NOX emissions, PM emis-
sions (PM2.5 and PM10), blue water withdrawal, blue water consump-
tion, material use (fossil fuel, biomass, metal, and nonmetal),
employment, value-added, tax and wages.

The basic framework of the MRIO model is as follows:

X= I� Að Þ�1F ð1Þ

whereX= Xr
i

� �
n× 1,X

r
i is the total output of the ith sector in region r. I is

the identity matrix. A= Ars
ij

h i
n×n

is the technical coefficient matrix, Ars
ij

is given by Ars
ij =Z

rs
ij =X

s
j , in which Zrs

ij represents the monetary value

flows from the ith sector in region r to the jth sector in region s and Xs
j

is the total output of the jth sector in region s. I� Að Þ�1 is the Leontief
inverted matrix (L). F is a column vector of the row sums of matrix
Y= Yrs

i

� �
n×m, which is the final demand matrix, and Yrs

i represents the
final demand of region s for the goods and services of the ith sector
from region r.

The direct impacts of power production subsectors can be cal-
culated using the following equation:

Dt
k =E

t
k*G

t
k ð2Þ

whereDt
k is the direct impacts of power production subsector k in year

t,Et
k is the direct impact intensity (the direct impact per unit total

output) of subsector k in year t, andGt
k is the total output of subsector

k in year t. In addition, we assume that the direct impacts change
proportionately to total output Gk and the direct impact intensity Ek

between the modeled year t + 1 and the previous year t considered in
the analysis given by the scenarios.

Dt + 1
k = Et + 1

k =Et
k

� �
* Gt + 1

k =Gt
k

� �
×Dt

k ð3Þ

The indirect environmental and socioeconomic impacts of power
production subsectors are evaluated based on the intermediate inputs
from other sectors into the power sectors using the following
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equation:

Rt
k =

bf tkLt cX0t
k

ð4Þ

where Rt
k is the indirect impacts of power production subsector k in

year t, f tk is a vector of the direct impact intensity for all economic
sectors (set the direct impact intensity of power production subsector
k to zero) in all regions in year t, and Lt is the Leontief inverted matrix
in year t. Since we only need the output of power production sub-
sectors, we create column vector X0, composed of zeros and Xr

i at the

appropriate positions for power production subsector k. In addition,
we assume that the indirect impacts change proportionately to total
outputGk and the direct impact intensity fk between themodeled year
t + 1 and the previous year t considered in the analysis.

Rt + 1
k = f t + 1k =f tk

� �
* Gt + 1

k =Gt
k

� �
*Rt ð5Þ

In general, in our study, MRIO analysis involves three types of
coefficients, including direct impact intensities, the Leontief inverted
matrix, and the total output of power sectors. First, the three types of

Table 1 | Indicators selected for quantifying the impacts of the power transition on achieving SDGs

SDGs Targets Indicators illustration

Goal 1. No poverty 1.1 Eradicate extreme poverty for all people everywhere 1.1.1 GDP per capita

Goal 2. Zero hunger 2.3 Enhance agricultural productive capacity 2.3.1 Agricultural value added per capita

Goal 3. Good health and
well-being

3.9 Reduce the number of deaths and illnesses from hazardous che-
micals and air, water, and soil pollution and contamination

3.9.1 SOX emissions of per capita

3.9.2 NOX emissions of per capita

3.9.3 PM (PM2.5 and PM10) emissions of per capita

Goal 4. Quality education 4.3 Ensure equal access for all women and men to affordable and
quality technical, vocational, and tertiary education, including
university

4.3.1 Education services size of per capita

Goal 5. Gender equality 5.5 Ensure women’s full and effective participation and equal oppor-
tunities for leadership at all levels of decision-making in political, eco-
nomic, and public life

5.5.1 Ratio of male to female employment rate

Goal 6. Clean water and
sanitation

6.4 Ensure sustainable withdrawals and supply of freshwater 6.4.1 Water-use efficiency: blue water consumption
per GDP

6.4.2 Level of water stress: blue water withdrawal
(industry) as a proportion of available freshwater
resources

Goal 7. Affordable and clean
energy

7.2 Increase substantially the share of renewable energy in the global
energy mix

7.2.1 Renewable energy share in the power generation

Goal 8. Decent work and eco-
nomic growth

8.4 Improve resource efficiency in consumption and production 8.4.1 Domestic material use per capita: metal use, non-
metallic minerals use, fossil fuels use and biomass use
per capita

8.4.2 Domestic material use per GDP: metal use, non-
metallic minerals use, fossil fuels use and biomass use
per GDP

8.5 Achieve full and productive employment 8.5.1 Unemployment rate

Goal 9. Industry, innovation,
and infrastructure

9.4 Promote clean and sustainable industrialization 9.4.1 CO2 emissions per unit of value added

Goal 10. Reduced inequalities 10.4 Adopt policies, especially fiscal, wage, and social, protection
policies, and progressively achieve greater equality

10.4.1 Labor share of GDP

Goal 11. Sustainable cities and
communities

11.6 Reduce the adverse per capita environmental impact of cities 11.6.1 Annual mean levels of fine particulate matter (e.g.
PM2.5 and PM10) in cities (population weighted)

Goal 12. Responsible con-
sumption and production

12.2 Achieve the sustainable management and efficient use of natural
resources

12.2.1 Domestic material use per capita: metal use, non-
metallic minerals use, fossil fuels use, and biomass use
per capita

12.2.2 Domestic material use per GDP: metal use, non-
metallic minerals use, fossil fuels use, and biomass use
per GDP

Goal 13. Climate change 13.2 Integrate climate change measures into national policies, strate-
gies, and planning

13.2.1 CO2 emissions intensity of forest areas

13.2.2 CO2 emissions intensity per capita

13.2.3 CO2 emissions intensity per GDP

Goal 14. Life below water 14.1 Prevent and significantly reduce marine pollution of all kinds, in
particular from land-based activities, including marine debris and
nutrient pollution

14.1.1 NOX emissions intensity of sea transport

14.1.2 SOX emissions intensity of sea transport

Goal 15. Life on land 15.1 Ensure sustainable use of terrestrial ecosystems 15.1.1 Water-use efficiency: blue water consumption
per GDP

15.1.2 Level of water stress: blue water withdrawal
(industry) as a proportion of available freshwater
resources

Goal 16. Peace, justice, and
strong institutions

16.7 Ensure responsive, inclusive, participatory, and representative
decision-making at all levels

16.7.1 Proportions of female in public institutions

Goal 17. Partnerships for
the goals

17.1 Strengthen domestic resource mobilization, including through
international support to developing countries, to improve domestic
capacity for tax and other revenue collection

17.1.1 The percentage share of tax revenues in GDP
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coefficients in base year 2015 are calculated based on the EXIOBASE 3
database. Second, we simulate the coefficient changes in future sce-
narios in combination with GCAM. We use the changes in the scale of
electricity generation and the impact per unit of electricity generation
in the GCAM to represent the changes in the total output of power
sectors and direct impact intensities in the MRIO model, respectively.
As predicting how global trade patterns will change falls beyond the
scope of our study, following a previous study58, we do not make
assumptions about variations in the Leontief inverted matrix. Finally,
more information on the data inputs and coefficients has been added
to the Supplementary Data (Supplementary Data 1-7).

Translating the changes in environmental and socioeconomic
indicators into SDG progress
Step 1: Indicator selection. The indicators selected for the SDGs in this
study are from the Global Indicator Framework for Sustainable
Development Goals59 developed by the United Nations’ Inter-Agency
and ExpertGroupon SDG Indicators, two reports titled “Indicators and
a Monitoring Framework for the Sustainable Development Goals”29

and “Sustainable Development Report 2020”60 published by the Uni-
ted Nations’ Sustainable Development Solutions Network, and a study
entitled “Assessing progress towards sustainable development over
space and time”61 published in Nature. We review all SDG indicators
and select SDG indicators (Table 1) based on the following three cri-
teria: (1) criterion 1 (relevance): the indicators are likely to be affected
by the power transition; (2) criterion 2 (comparability): the indicators
can be quantified across organizational levels and temporal scales; and
(3) criterion 3 (data): the data for quantifying the indicators are avail-
able. Ingeneral, 18 targets and27 indicators canbeused to evaluate the
SDG index, which covers all 17 SDGs. More information on indicator
selection can be found in the Supplementary Information (Supple-
mentary Table 3).

Step 2: Bound selection. Using 2015 as the baseline year, we calcu-
late the score of the selected SDG indicators for all 49 countries/
regions in EXIOBASE 3. The procedure consists of the following
steps: To ensure data comparability across different SDG indicators,
each indicator data point is rescaled from 0 to 100, with 0 indicating
the worst performance and 100 denoting the optimum perfor-
mance. Given that rescaling is very sensitive to extreme (outlier)
values on both tails of the data distribution, we follow the methods
proposed by the Sustainable Development Report 2020 to deter-
mine the upper bound and lower bound of each SDG indicator. We
define the data at the bottom 2.5th percentile of all economies’ SDG
indicator performances for a given SDG indicator as the minimum
value (0) and the data at the upper 2.5th percentile as the maximum
value (100) for normalization to remove the effect of extreme
values. This bound selectionmethod is consistent with the approach
recommended by the Organization for Economic Cooperation and
Development (OECD) for comparing indicator performances and
has been used by SDG research articles and the Sustainable Devel-
opment Report60. In addition, we use relevant absolute quantitative
thresholds for some SDG indicators, such as “zero emissions” and
“absolute gender equality”.

Step 3: Normalization of indicator values. After determining the
upper and lower bounds, we rescale the selected SDG indicator values
across economies to a scale of 0 to 100 using Eq. (6):

Z 0 =
Z �min Zð Þ

max Zð Þ �minðZ Þ ð6Þ

where Z represents the raw data value for a given SDG indicator. Min
and max are the bounds for the worst and best performance, respec-
tively. Z 0 denotes the normalized value for a given SDG indicator.

Step 4: Calculation of SDG index scores. We calculate global and
regional SDG index scores with the arithmetic mean of the individual
SDG target scores. Following the approach used in the Sustainable
Development Report 202060 and previous research24, all 18 SDG tar-
gets are weighted equally in producing the aggregate measure since
there is no a priori reason to give one measure greater weight than
another. In addition, we conduct a sensitivity analysis to assess the
sensitivity of the SDG index scores to lower and upper bound settings
for normalization of the indicator values. The objective of our sensi-
tivity analysis is to confirm that our conclusions are robust to the
bound settings.

Data availability
The data generated in this study are provided in Supplementary
Information, Supplementary Data and Source Data file. The data used
forMRIO analysis are from EXIOBASE database (https://www.exiobase.
eu/). The input data for scenario analysis are provided in Supplemen-
tary Data and also available on Zenodo: https://doi.org/10.5281/
zenodo.790480862. Source data are provided with this paper.

Code availability
Codes for this work canbe acquired at https://doi.org/10.5281/zenodo.
790480862.
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