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Hierarchical fluctuation shapes a dynamic
flow linked to states of consciousness

AngLi 1,14 , Haiyang Liu2,3,14, Xu Lei 4,5,14, Yini He6,QianWu 6,7, YanYan 8,
Xin Zhou6, Xiaohan Tian6, Yingjie Peng1, Shangzheng Huang1, Kaixin Li1,
Meng Wang6, Yuqing Sun6, Hao Yan 9,10, Cheng Zhang11, Sheng He1,
Ruquan Han2 , Xiaoqun Wang1,6,7,12 & Bing Liu 6,7,13

Consciousness arises from the spatiotemporal neural dynamics, however, its
relationship with neural flexibility and regional specialization remains elusive.
We identified a consciousness-related signature marked by shifting sponta-
neous fluctuations along a unimodal-transmodal cortical axis. This simple
signature is sensitive to altered states of consciousness in single individuals,
exhibiting abnormal elevation under psychedelics and in psychosis. The
hierarchical dynamic reflects brain state changes in global integration and
connectome diversity under task-free conditions. Quasi-periodic pattern
detection revealed that hierarchical heterogeneity as spatiotemporally pro-
pagating waves linking to arousal. A similar pattern can be observed in
macaque electrocorticography. Furthermore, the spatial distribution of prin-
cipal cortical gradient preferentially recapitulated the genetic transcription
levels of the histaminergic system and that of the functional connectome
mapping of the tuberomammillary nucleus, which promotes wakefulness.
Combining behavioral, neuroimaging, electrophysiological, and tran-
scriptomic evidence, we propose that global consciousness is supported by
efficient hierarchical processing constrained along a low-dimensional macro-
scale gradient.

The stream of consciousness, as delineated by William James, is an
ever-flowing mental continuity of subjective experiences. A conscious
brain is capable of adapting, learning, and guiding for future actions in
a constantly evolving environment. During natural sleep or

pharmacological anesthesia, consciousness seems to be attenuated or
absent; under psychedelics or psychosis, distortions can occur.

Revealing the complex but orchestrated brain organization
underlying these global brain states (i.e., different levels of
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consciousness) is essential to understanding the neuralmechanismsof
consciousness1. The spatiotemporal organization properties of spon-
taneous brain activity, which is considered to constantly provide top-
down predictive models for future interactions during perception2,3,
may offer essential insights into consciousness across different con-
ditions (e.g., during anesthesia and sleep) and species. Resting-state
fMRI (rsfMRI), as the widely used technique in humans to map the
spatiotemporal patterns of spontaneous brain signals, has detected
highly reproducible intrinsic functional brain networks4, which largely
reflect anatomical organization, individual-specific5 and task-evoked6

information. Breakdown in consciousness are accompanied by intri-
cate changes in various aspects of the intrinsic functional organization,
such as long-distance interactions7–9, anti-correlated structures10, and
patterns of brain coordination11,12. Therefore, uncovering the temporal
and spatial aspects of spontaneous brain activity in different global
brain states are crucial for understanding the unified brain functional
organization of consciousness levels.

Temporal variability/flexibility, which quantifies the dynamic
range of ongoing brain activities, is increasingly being recognized as a
beneficial factor for the adaptability of neural systems13–15. For
instance, greater variability of BOLD signals has been reliably observed
in younger healthy individuals16 and associated with more efficient
performance in cognitive tasks13,14,17. According to computational
models18, the variability of spontaneous activity arises from the
dynamic system’s noise-induced transitions between multistable
attractors19 orfluctuation arounda critical line proximal to instability20.
Generally, this variability reflects and supports the exploration of a
broader brain dynamical repertoire. Conversely, deterministic task
stimuli limits the flexibility and quenches signal variability21,22. In the
spatial domain, resting-state BOLD variability is not randomly dis-
tributed but recapitulates the relative expression of cell markers for
input-modulating somatostatin and output-modulating parvalbumin
interneurons23, which plays an important role in mediating cortico-
cortical communication24. Taking these into account, we consider that
neural variability organized in an intrinsic spatial arrangement, i.e., the
integration of space and time, would be optimal for conscious pro-
cessing and be sensitive to changes of brain states. Consequently, we
hypothesize that a topographically organized neural variability pattern
may orchestrate the rise and fall in global states of consciousness.
Importantly, this hypothesis prompted us to focus on the search for a
temporal-spatial nested signature rather than a specific neuroanato-
mical location as a determinant of consciousness.

To test this, we incorporated several different fMRI paradigms
that capture altered states of consciousness, fromdeep sleep or under
anesthesia to alert wakefulness. First, we systematically investigated
how spatiotemporally embedded variability across the neocortex
changes in three conditions–dexmedetomidine-induced sedation,
normal sleep, and resting-state scanning, in which a proportion of
individuals tend to naturally fall asleep inminutes. The results revealed
a common hierarchical shift in spontaneous cortical activity. Second,
to validate the signature, we collapsed the spatiotemporal dynamics
into a simple, low-dimensional index to delineate the hierarchical
fluctuation at the level of minutes. The hierarchical index was further
tested for different energetic states (i.e., caffeine or fasting) of a single
densely sampled subject, volunteers who had been administered a
psychedelic drug, and individuals with neuropsychiatric disorders.
Subsequently, using fMRI data from the Human Connectome Project25

(HCP), we showed that the hierarchical fluctuation covaried with the
global integration topology, connectome complexity, and an infra-
slow propagation wave previously implicated in arousal
modulation26,27. Similar hierarchical signatures can also be observed in
macaques basedonECoG recordings. In addition, spatial analysis using
the genetic transcriptome from the Allen Human Brain Atlas28 and
high-resolution HCP 7T fMRI data suggested a contribution from the
hypothalamic TMN region that regulates wakefulness.

Results
Hierarchical cortex-wide fluctuations reflect ongoing states of
consciousness
We examined whether there is a consciousness-related topological
pattern of neural variability at the group level using three independent
fMRI datasets, each of which engaged a distinct task-free paradigm:
anesthesia, sleep, and drowsiness during resting-state scans. We
operationalized neural variability as the standard deviation of low-
frequency BOLD signal for each voxel/vertex across time. The cortical
map was z-normalized to emphasize the spatial heterogeneity.

In Dataset 1 (Fig. 1a; “Methods”), we compared the cortical neural
variability from 21 healthy volunteers across three conscious states:
wakefulness, dexmedetomidine-induced sedation, and recovery
(paired t-statistic contrast shown in Fig. 1b and Supplementary Fig. 1).
Dataset 2 comprised the resting-state fMRI data from a large sample of
healthy subjects from the HCP project. Previous research has
demonstrated that individuals would generally exhibit a decrease in
alertness over the course of the scan at the population level29,30.
Therefore, we divided each resting-state run from HCP data into
nonoverlapping time windows (50 volumes, 24 windows), and two
different time windows were paired to form 276 (24 × (24 − 1)/2) dif-
ferent combinations, with the time interval ranging from 1 to 23
intervals. The larger interval of two windows was inferred to have a
higher possibility of a decrease in vigilance. To measure the group-
level pattern of alertness dropping, Spearman’s rank r was calculated
between the normalized low-frequency BOLD variability and the time
interval across 1,084,128 (276 combinations × 4 runs × 982 individuals)
pairs of states/time windows (Fig. 1d–e, “Methods”, Supplementary
Fig. 2). In Dataset 3, we analyzed simultaneous EEG–fMRI data from 6
healthy volunteers over a period of sleep around 2 h, to investigate
how changes in the low-frequency BOLD variability pattern (Fig. 1g, h)
correlate with manually labeled sleep stages. Specifically, the awake,
N1, N2 and slow-wave sleep states were encoded as four distinct levels
in order to quantify the rank correlation with the fMRI maps (Meth-
ods). As a result, we observed a consistent pattern across these three
experiments (Fig. 1j), suggesting that there is a common cortex-wide
signatureof consciousness.At thenetwork level, this patternmanifests
as an allocation of neural variability varying from the high-order31

(Fig. 1k–m, default mode, control, and limbic networks) to low-level
networks (Fig. 1k–m, visual and sensorimotor networks).

Previous studies32,33 have well-documented the existence of a
principal functional gradient in the human brain. This gradient
explains the greatest variance in the functional connectome and cap-
tures the cortical processing hierarchy, spanning from primary sen-
sory to transmodal areas. In addition, T1w/T2w mapping has been
shown to provide a non-invasive correlate of the anatomical hierarchy
based on the structural profiles34. To quantitatively characterize our
observations, we performed a cortex-wide spatial comparison
between the consciousness-related patterns and the main functional
gradient derived from thedense functional connectomedata (Fig. 1c, f,
i), as well as T1w/T2w mapping (Supplementary Fig. 3). Statistical sig-
nificance was assessed using 10,000 spatially permutation-based null
models; specificity was strengthened by controlling for other func-
tional gradients andwithin individual Yeo’s networks31 (Supplementary
Figs. 3–5).

Characterizing hierarchical dynamics in single individuals
Next, we aim to test whether the topologically altered spontaneous
cortical activities can be compressed to capture the graded changes of
the levels of consciousness, elucidating its reproducibility and power
at the individual level. Therefore, we defined a univariate ‘hierarchical
index’ as the rank correlation between the spatial distribution of cor-
tical BOLD variability and the group-level principal functional gradient
(“Methods”). This hierarchical index can provide a proxy for the
topological shift of cortical neural variability, using the group-level

Article https://doi.org/10.1038/s41467-023-38972-x

Nature Communications |         (2023) 14:3238 2



gradient as an empirical map, which differs from studies focusing on
the individual-level perturbation of functional gradients33,35. In Dataset
1, we found that the hierarchical index exhibited significant difference
across three conscious states, showing a consistent reduction in 20 of
21 participants fromwakefulness to sedation (Fig. 2a). In Dataset 2, the
hierarchical index was calculated for abovementioned 24 non-
overlapped windows in each resting-state run; as a result, significant
decrease occurs in 37.4% of the individual runs across time (Fig. 2b,
uncorrected P <0.05). Interestingly, the average index across the four
runs significantly associated with inter-individual differences relating
to vigilance, such as in sleep quantity, impulsivity, response time, and
accuracy during task fMRI (Fig. 2b, Supplementary Table 1). In Dataset
3, we compared the trajectories in the hierarchical index and the sleep
staging information manually labeled by experts, high synchrony can
be observed across all 6 individuals (“Methods”, Fig. 2c, rs = 0.75-0.89,

Ps <0.0001); the individual-level correlation can be replicated in an
independent simultaneous EEG–fMRI sleep dataset36 (“Methods”,
Supplementary Fig. 6). To validate the signature at a longer timescale,
we analyzed the resting-state fMRI data from the MyConnectome
Project37 (Dataset 4, “Methods”). This resource provides a longitudinal
assessment of fMRI acquisition and self-report states for a single
individual more than one year. According to an earlier work37, 84 ses-
sions were included in our analysis. As a result, the hierarchical indices
in the fed/caffeinated session were considerably higher than those in
the fasted/uncaffeinated session, enabling a univariate classification
accuracy over 80% (Fig. 2d, Mann–Whitney u test; P < 0.0001). The
hierarchical index also associated with daily fluctuations in fatigue
(averaged score of “drowsy”, “sleepy”, “sluggish”, “tired”; Fig. 2e) and
heightened attention (averaged score of “attentive”, “concentrating”,
“lively”; Fig. 2f), based on self-report measures (“Methods”).

Fig. 1 | Shared spatial signature of cortex-wide BOLD amplitude relating to
anesthesia, sleep, and vigilance. a Schematic diagram of the dexmedetomidine-
induced sedation paradigm; z-normalizedBOLD amplitudewas compared between
initial wakefulness and sedation states (n = 21 volunteers) using a two-sided paired
t-test; fMRI was also collected during the recovery states and showed a similar
pattern (Supplementary Fig. 1). b Cortex-wide, unthresholded t-statistical map of
dexmedetomidine-induced sedation effect. For the purposes of visualization as
well as statistical comparison, the map was projected from the MNI volume into a
surface-based CIFTI file format and then smoothed for visualization (59412 ver-
texes; same for the sleep dataset). c Principal functional gradient captures spatial
variation in the sedation effect (wakefulness versus sedation: r =0.73,
Pperm < 0.0001, Spearman rank correlation). d During the resting-state fMRI
acquisition, the level of vigilance is hypothesized tobe inverselyproportional to the
length of scanning in a substantial proportion of the HCP population (n = 982
individuals). e Cortex-wide unthresholded correlation map between time intervals
and z-normalized BOLD amplitude; a negative correlation indicates that the signal

became more variable along with scanning time and vice versa. f The principal
functional gradient is correlated with the vigilance decrease pattern (r =0.78,
Pperm < 0.0001, Spearman rank correlation). g Six volunteers participated in a 2-h
EEG–fMRI sleep paradigm; the sleep states weremanually scored into wakefulness,
N1, N2, and slow-wave sleep by two experts. h The cortex-wide unthresholded
correlation map relating to different sleep stages; a negative correlation corre-
sponds to a larger amplitude during deeper sleep and vice versa. i The principal
functional gradient is associated with the sleep-related pattern (r =0.58,
Pperm < 0.0001, Spearman rank correlation). j Heatmap plot for spatial similarities
across sedation, resting-state drowsiness, and sleep pattens. k–m Box plots
showing consciousness-relatedmaps (b–e) in 17 Yeo’s networks31. In each box plot,
the midline represents the median, and its lower and upper edges represent the
first and third quartiles, andwhiskers represent the 1.5 × interquartile range (sample
size vary across 17 Yeo’s networks, see Supplementary Fig. 3). Each network’s color
is defined by its average principal gradient, with a jet colorbar employed for
visualization.
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Collectively, the results demonstrate that the hierarchical dynamics of
cortical variability can characterize reproducible changes in single
individuals under different conditions and timescales over minutes,
hours, and days, and potentially across individuals.

Hierarchical dynamics in psychedelic and psychotic brains
Having studied trajectories of the signature across wakefulness,
anesthesia, and sleep, we next aimed to investigate whether it can be
sensitive to other altered states of consciousness. Here, we focused on
two related situations:38–40 (i) psychotomimetic effects of drugs which
inducing altered subclinical psychotic-like experiences; (ii) individuals
with psychiatric disorders whose conscious processing might be
impaired. To evaluate this, we used Dataset 5 (see Methods), which
included 15 healthy subjects undergoing repeated fMRI scans under
the influence of lysergic acid diethylamide (LSD) or placebo in a
balanced-order, within-subjects design41. Interestingly, we found that
the hierarchical indices were significantly higher in the LSD condition
than in the placebo condition across 15 subjects (Fig. 3a, P <0.01, Two-
way ANOVA).We then associated the hierarchical index with clinical
symptoms across the individuals with psychiatric disorders (either
schizophrenia, bipolar disorder or attention-deficit/hyperactivity

disorder) within the Consortium for Neuropsychiatric Phenomics
dataset42 (Dataset 6, “Methods”). Correspondingly, we found that the
hierarchical index was significantly associated with inter-individual
psychotic symptoms, particularly those symptoms which can be
induced by psychedelics (such as hallucinations, Fig. 3b). Abnormally
higher hierarchical index can be observed during the resting-state in
individualswith schizophrenia and bipolar disorder (Fig. 3c), but not in
those with attention-deficit/hyperactivity disorder. We replicated the
group difference in an independent Chinese cohort which includes
individuals with schizophrenia (Dataset 6, Fig. 3c). These results sug-
gest that the deviation of the hierarchical signature is potentially
detrimental and characterizes abnormal states of conscious
processing.

Complex brain integration and differentiation
Multiple theories43–46 suggest that conscious experiences require both
functional integration as well as diversity. In light of these earlier the-
ories, we speculate that hierarchical dynamics would accompany a
flexible connectome reconfiguration in cortical integration/coordina-
tion and diversity during the resting state. Therefore, we employed a
modified version of global signal (GS) topology to specifically quantify

Fig. 2 | Low-dimensional hierarchical index tracks fluctuations in multiple
consciousness-related brain states. a The hierarchical index distinguished the
sedation state from wakefulness/recovery at the individual level (**P < .01, wake-
fulness versus sedation: t = 6.96, unadjusted P = 6.6 × 10−7; recovery versus seda-
tion: t = 3.19, unadjusted P =0.0046; no significant difference was observed
between wakefulness and recovery; two-sided paired t-test; n = 21 volunteers, each
scanned in three conditions).bTop: distributionof the tendency of the hierarchical
index to drift during a ~15min resting-state scanning in HCP data (982 individuals ×
4 runs; *P <0.05, unadjusted, Pearson trend test); a negative correlation indicates a
decreasing trend during the scanning; bottom: partial correlation (controlling for
sex, age, and mean framewise distance) between the hierarchical index (averaged
across four runs) and behavioral phenotypes. PC1 of reaction time and PSQI
Component 3 were inverted for visualization (larger inter-individual hierarchical
index corresponds to less reaction time and healthier sleep quality). c The hier-
archical index captures the temporal variation in sleep stages in each of six

volunteers (gray line: scores by expert; blue line: hierarchical index; Pearson cor-
relation). The vertical axis represents four sleep stages (wakefulness = 0, N1 = −1,
N2 = −2, slow-wave sleep = −3) with time is shown on the horizontal axis (Subject 2
and Subject 4 were recorded for 6000 s; the others summed up to 6750 s); For the
visualization, we normalized the hierarchical indices across time and added the
average value of the corresponding expert score. d Distribution of the hierarchical
index in the Myconnectome project. Sessions on Thursdays are shown in red color
(potentially high energic states, unfasting / caffeinated) and sessions on Tuesdays
in blue (fasting/uncaffeinated). Applying 0.2 as the threshold corresponding to a
classification accuracy over 80% (20 of 22 Tuesday sessions surpassed 0.2; 20 in 22
Thursday sessions were of below 0.2) e–f The hierarchical index can explain intra-
individual variability in energy levels across different days (two-sided unadjusted
Spearman correlation). The error band represents the 95% confidence interval.
Source data are provided as a Source Data file.
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the spatial inhomogeneity of cortex-wide integration/coordination
(Methods). Specifically, we computed the mean cortical signals to
capture themost prominent dynamics across the cortex, with peaks of
high amplitude indicating a high degree of spatial homogeneity at that
moment47. As depicted in Fig. 4a, the GS topology characterizes the
degree of integration with global cortical dynamics for a given cortical
region.

To temporally decompose distinct patterns of cortex-wide coor-
dination, we analyzed 9600 cortical maps of time-resolved GS topol-
ogy from 100 unrelated participants in HCP (4 runs for each person
and 24 nonoverlapped windows each run; see “Methods”). We found
that the hierarchical index can explain the distinct patterns of the GS
topology: a higher index corresponds to a GS topology that spatially
resembles the cortical hierarchy (Fig. 4b, r = 0.55, P <0.0001); the
relationship between the two variables reflects the two-cluster differ-
entiation of GS topologies using K-means approach (Fig. 4b,

“Methods”). TheGS topology difference between two stateswas highly
analogous to the cortical hierarchy (Fig. 4e, r =0.89, State 1: higher
hierarchical index, and global signal ‘integrated’ with higher-order
regions; State 2: opposite). Importantly, no individual was entirely
assigned to state 1 or state 2, with the proportion of state 1 occupied
52.3 ± 18.8% across the 100 unrelated subjects (Supplementary Fig. 7a).
Control analyses suggest that the clustering and result were primarily
driven by changes in brain state rather than individual differences and
can be replicated in independent subjects (Supplementary Figs. 7 and
8). As an alternative, a weighted strength approach was applied as a
proxy for functional integration/coordination. The node-wise weigh-
ted strength was developed based on the graph-theoretical concept of
degree, which aims to quantify the global functional connectivity to
other regions. Following the same clustering pipeline, we found that
the two approaches yielded a similar clustering solution (“Methods”,
Supplementary Fig. 9). To measure the functional diversity, we

Fig. 3 | Hierarchical index in psychedelic and psychotic brains. a LSD effects on
the hierarchical index across 15 healthy volunteers. fMRI images were scanned
three times for each conditionof LSDadministration and a placebo. During the first
and third scans, the subjects were in an eye-closed resting-state; during the second
scan, the subjects were simultaneously exposed to music. A triangle (12 of 15 sub-
jects) indicates that the hierarchical indices were higher across three runs during
the LSD administration than in the placebo condition. b Left: relationship between
the hierarchical index and BPRS positive symptoms across 133 individuals with
either ADHD, schizophrenia, or bipolar disorder (r =0.276, P =0.0012, two-sided
unadjusted Spearman correlation). The error band represents the 95% confidence
interval of the regression estimate. Right: correlation between the hierarchical

index and each item in BPRS positive symptoms (*P<0.05, **P <0.01, two-sided
unadjusted Spearman correlation; see Source Data for specific r and P values).
c Left: the hierarchical index across different clinical groups from the UCLA dataset
(SZ schizophrenia, n = 47; BP bipolar disorder, n = 45; ADHD attention-deficit/
hyperactivity disorder, n = 41; HC healthy control, n = 117); right: the hierarchical
index across individuals with schizophrenia (n = 92) and healthy control (n = 98)
from the PKU6dataset. In each box plot, themidline represents themedian, and its
lower and upper edges represent the first and third quartiles, and whiskers repre-
sent the 1.5 × interquartile range. *P <0.05, **P<0.01, two-tailed two-sample t-test.
Source data are provided as a Source Data file.
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performed an entropy-based analysis deriving the connectome and
temporal entropy for above time-resolved brain states (Fig. 4c,
“Methods”). Both measures, especially connectome entropy, were
considerably higher during the periods of State 1 compared with State
2, and associated with higher hierarchical index (Figs. 4d, 4f).

The results suggest that during resting states with a higher hier-
archical index, cortical activity exhibits more complex cortex-wide
coordination compared to the ‘GS topology stereotype’ dominated by
sensory cortices48. This is associated with increased functional diver-
sity in the connectome and temporal fluctuations, which may support
cognitive demands during high vigilance.

Relationship to the infra-slow cortex-wide propagation
phenomenon
Hierarchical heterogeneity may involve in the processing of infra-slow
arousal regulation. Recent fMRI studies have consistently revealed an
infra-slow global wave26,27,49 that intrinsically propagates along the
macroscale functional gradient and that is relevant to arousal and
autonomic fluctuations. Based on a data-driven quasiperiodic pattern
(QPP) analysis26, the most primary recurring spatiotemporal pattern
lasts approximately 20 s. However, it is unclear that how the infra-slow
global wave propagates across different states of overall vigilance.
Based on our results, we speculate that during higher states of vigi-
lance, such a spatiotemporal wave would more favorably ‘propagate’
to the association cortex to modulate large-scale activities and com-
plete an unabridged QPP cycle.

Therefore, we analyzed the resting-state fMRI data from the 100
participants in the HCP who showed the greatest reduction in the

hierarchical index across four runs (average Pearson’s r < −0.49,
“Methods”) and truncated their initial and terminal 400 frames as
coarse proxies for the high and low vigilance states, respectively. To
determine the primary QPP event in the population, we downloaded a
recently published QPP template26 which was generated using an
optimized, computationally expensive algorithm based on vertex-wise
cortical data. As shown in Fig.5a, the primary QPP manifests as a
dynamic cycle of activation and deactivation which spatially following
themacroscale gradient, lasting approximately 21.6 s (30 volumes). To
match the possible QPP events, we applied a sliding window approach
to iteratively compare correlation between the template and each
spatiotemporal flattened segment with a temporal step of 1 TR. Seg-
ments were identified as QPP events whose local maxima exceeding
the threshold (r =0.4), resulting hundreds of events detected for the
100 subjects (Fig. 5a, b; “Methods”; initial states: 785 events, terminal
states: 993 events). We extracted the average time series from the top
and bottom 20% cortical hierarchy regions with QPP events and found
that almost all low-order fluctuations exhibited similar dynamics,
resembling the typical trajectory in the group template (Fig. 5c, e).
However, the high-order fluctuations bifurcated into distinct modes
(Fig. 5d): typical or atypical trajectories (Fig. 5f). The great majority of
trajectories were ‘typical’ in the initial 400 frames (i.e., higher vigi-
lance). The proportion of ‘atypical’ trajectories significantly increased
during the terminal 400 frames, suggesting that such waves were
disregarded in the regulation of high-order networks. Meanwhile, the
lower-order regions had larger fluctuations and thus dominated the
global signal. With regard to functional connectivity within the QPP
events, the initial periods exhibited more anticorrelation structures

Fig. 4 | Complex and dynamic brain states unveiled by global signal topology
and the hierarchical index during rest. a Simplified diagram for dynamic GS
topology analysis. b two-cluster solution of the GS topology in 9600 time windows
from 100 unrelated HCP individuals. Scatter and distribution plots of the hier-
archical index; the hierarchical similarity with the GS topology is shown. Each point
represents a 35 s fragment. State 1 has significantly larger hierarchical index
(P <0.0001, two-sided two-sample t-test) and hierarchical similarity with GS
topology (P <0.0001, two-sided two-sample t-test) than State 2, indicating a higher
level of vigilance and more association regions contributing to global fluctuations;
meanwhile, the two variables aremoderately correlated (r =0.55, P < 1 × 10−100, two-
sided Spearman correlation). c For a particular brain region, its connectivity
entropy is characterized by the diversity in the connectivity pattern. d Left: Higher
overall connectivity entropy in State 1 than State 2 (P = 1.4 × 10−71, two-sided two-

sample t-test, nstate 1 = 4571, nstate 2 = 5021). Right: higher overall connectivity
entropy in stateswith a higher hierarchical index (top 20% versus bottom 20%; P < 1
× 10−100, two-sided two-sample t-test, nhigh = 1920, nlow = 1920). *P <0.0001. In each
box plot, the midline represents the median, and its lower and upper edges
represent the first and third quartiles, and whiskers represent the 1.5 × interquartile
range. e, Difference in GS topology between State 1 and State 2 spatially recapitu-
lates the principal functional gradient (r =0.89, P < 1 × 10−100), indicating that the
data-driven GS transition moves along the cortical hierarchy. f Distribution of
Pearson’s correlation between the hierarchical index and mean connectivity
entropy across 96overlappingwindows (24per run) across 100 individuals. Inmost
individuals, the hierarchical index covaried with the diversity of the connectivity
patterns (mean r =0.386). Source data are provided as a Source Data file.
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between the internal (default mode and control networks) and exter-
nal systems (attention and sensory networks) and were greatly
diminished by the end of the scanning session (Fig. 5g, h). This antic-
orrelation structure was previously considered to be a signature for
the waking state in comparison with anesthesia50 or disorders of
consciousness51. The result showed a significant heterogeneity in the
infra-slow wave primarily in the higher-order areas across different
brain states.

Hierarchical dynamics in macaque electrocorticography
BOLD signal fluctuation reflects localized changes in neural activity
indirectly through a complex neurovascular coupling52,53. In this
work, we ascribed the observed hierarchical signature to altered
patterns of neural activities rather than to the physiological baseline.
Previous experimental studies53,54 suggested that local field potential
gamma power could mediate the BOLD signals and localized coor-
dination of neural activities. Furthermore, considering the cross-
species conservation of the large-scale cortical hierarchical
architecture in primates, here we hypothesize that the similar sig-
nature for global states of consciousness can be observed based on
gamma band power fluctuations in macaque electro-
corticography (ECoG).

We tested this idea using openly available data from the Neuro-
tycho project55,56 (Dataset 7), including large-scale, spatially resolved
electrophysiological recordings in two densely sampled macaques
across different states: awake (both eyes-opened and eyes closed),
sleep, and anesthesia conditions. Following a similar approach to
human fMRI data, we constructed a channel-channel functional net-
work based on temporal fluctuations of gamma band-limited power

(BLP), and then calculated the cortical functional gradients using a
diffusion embedding algorithm. Despite the sparse sampling of
implanted electrodes in the two macaques and their considerable
disparity (“Methods”, Supplementary Fig. 10), the calculated principal
gradients in each macaque revealed a clear unimodal-transmodal
hierarchy across the neocortex (Fig. 6a, b), which is consistent with a
recent study27. To statistically compare the cortical neural variability
based on gamma BLP, we temporally segmented the ECoG recordings
into multiple nonoverlapped windows (150 s, “Methods”) and per-
formed group comparisons of z-normalized maps between distinct
states of consciousness. As a result, the patterns of neural
variability varied significantly along the macroscale hierarchy during
sleep and anesthesia, in comparison with the awake states (Fig. 6c-f,
Chibi: rawake vs sleep = 0.61, r recovery vs anesthesia = 0.58; George: rawake vs

sleep = 0.84, r recovery vs anesthesia = 0.57). Similarly, we calculated a low-
dimensional hierarchical index based on gamma BLP and found the
score can significantly distinguish different conditions (Fig. 6g, h).
These findings suggest that the hierarchical shifting observed in elec-
trophysiological and BOLD signals may underlie a shared neural
mechanism of neural variability. Subsequently, we extended the QPP
analysis to themacroscale, cortex-wide gamma BLP fluctuations, using
a time window of 20 s to determine the recurrent spatiotemporal
patterns. For eachmacaque, a propagating wavewas revealed thatwas
analogous to that found using human fMRI data (Fig. 6i, j, Supple-
mentary Fig. 11a, b). Meanwhile, the average spectrogram of the
gamma-BLP QPP events comprised the loss of mid-frequency activity
as well as concurrent increases in low-frequency power and resembled
a pattern of sequential spectral transitions (SSTs, as shown in Fig. 6k, l).
SST events were identified by momentarily increases in delta power

Fig. 5 | fMRI quasiperiodic pattern manifested in different vigilance states. a A
cycle of spatiotemporal QPP reference from Yousef & Keilholz;26 x-axis: HCP tem-
poral frames (0.72 s each), y-axis: dot product of cortical BOLDvalues and principal
functional gradient. Three representative frames were displayed: lower-order
regions-dominated pattern (6.5 s), intermediate pattern (10.8 s) and associative
regions-dominated pattern (17.3 s). b A schematic diagram to detect QPP events in
fMRI. The sliding window approach was applied to select spatiotemporal frag-
ments, which highly resemble the QPP reference. c, d, Group-averaged QPP events
detected in different vigilance states (initial and terminal 400 frames, respectively).
For this visualization, the time series of the bottom 20% (c, blue) and top 20%
(d, red) of the hierarchy regions were averaged across 30 frames. Greater color

saturation corresponds to the initial 400 frames with plausibly higher vigilance.
Line of dashes: r =0.5. e, f, Distribution of the temporal correlations between the
averaged time series in the template and all the detected QPP events. Left: higher
vigilance; right: lower vigilance. For the top 20%multimodal areas, an r threshold of
0.5 was displayed to highlight the heterogeneity between the two states. g Mean
correlation map of Yeo 17 networks across QPP events in different vigilance states.
Left: higher vigilance; right: lower vigilance. h A thresholded t-statistic map of the
Yeo 17 networks measures the difference in Fig. 5g (edges with uncorrected P < .05
are shown, two-sided two-sample t-test). Source data are provided as a Source
Data file.
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and are suggested to be involved in arousal modulation57. Specifically,
the resemblance between the gamma-BLP QPP and the SST average
patterns is more evident during eye-closed and sleeping conditions
(Supplementary Fig. 11c, d) when the SST pattern was reported to be
more stereotypical57. As a recent work suggesting the gamma com-
ponent of SSTs to be a travelingwave27, it seems that enhanced cortical
excitability and the emergence of slow oscillations tend to couple
together, resulting in the gamma and delta components in both the
gamma-BLP QPP and SST. Unlike the anticorrelation in the fMRI QPP
pattern26, the average gamma-BLP signals of low- and high-order
regions primarily increased in the first half (Fig. 6k, l). Using the peak
difference between the low- and high-order regions, we observed that
a relatively larger gamma BLP tended to emerge in the high-order
cortex during higher levels of consciousness (Fig. 6m). Remarkably,
this peak difference was predictive of subsequent global changes in
delta power during eye-closed and sleeping conditions when SST-like
patterns were evident (“Methods”; Fig. 6n). These results indicate a

heterogeneous regulation of the gamma-BLP wave in distinct states of
consciousness: a higher gamma BLP propagating (from the unimodal)
to the high-order cortex is associated with the subsequent emergence
or suppression of cortical slow oscillations.

Implication of histaminergic system
Previous animal studies have suggested that the ascending reticular
activating system (ARAS) plays a crucial role in supporting
consciousness58,59. Therefore, we hypothesize that specific ARAS neu-
rotransmitter circuits (such as the histaminergic, cholinergic, and
noradrenergic systems) may be preferentially involved in hierarchical
heterogeneity across the cortex. To test the hypothesis, we performed
a cross-modal analysis to search for genetic transcriptomes that were
unimodally-transmodally distributed based on the Allen Human Brain
Atlas (Methods). While this approach cannot reveal a causal link, it has
the potential to yield plausible biological mechanism for macroscale
imaging markers widely utilized by recent studies60–63.

Fig. 6 | Hierarchical dynamics in macaque electrocorticography. a, b Principal
embedding of gamma BLP connectome for Monkey Chibi and Monkey George. For
this visualization, the original embedding value was transformed into a ranking
index value for each macaque. c, d Cortex-wide unthresholded t-statistical map of
the sleep effect for two monkeys. The principal functional gradient spatially asso-
ciated with the sleep altered pattern (Chibi: n = 128 electrodes; George: n = 126
electrodes; Spearman rank correlation). Error band represents 95% confidence
interval. e, f Cortex-wide unthresholded t-statistical map of anesthesia effect for
two monkeys. Principal functional gradient correlated with anesthesia-induced
pattern (Chibi: n = 128 electrodes; George: n = 126 electrodes; Spearman rank cor-
relation). Error band represents 95%confidence interval.g,hThe hierarchical index
was computed for a 150-s recording fragment and can distinguish different con-
scious states (*P <0.01, two-sided t-test). From left to right: eyes-openwaking, eyes-
closed waking, sleeping, recovering from anesthesia, and anesthetized states
(Chibi: ns = 60, 55, 109, 30, 49 respectively; George: ns = 56, 56, 78, 40, 41,

respectively). i A typical cycle of gamma-BLP QPP in Monkey C; x-axis: temporal
frames (0.4 s each), y-axis: dot product of gamma-BLP values and principal func-
tional gradient. The box’s midline represents the median, and its lower and upper
edges represent the first and third quartiles, and whiskers represent the 1.5 ×
interquartile range. jRepresentative framesacross 20 s. Forbetter visualization, the
mean value was subtracted in each frame across the typical gamma-BLP QPP
template.k, l, Spectrogramaveragedover high- and low-order electrodes (top 20%:
left; bottom: right) inmacaqueC across several sleep recording (k) and awake eyes-
open recording sessions.m Peak differences in gamma BLP between high- and low-
order electrodesdifferentiatewaking and sleeping conditions (Chibi, *P <0.01; two-
sided t-test; eye-opened: n = 213; eye-closed: n = 176; sleeping: n = 426). n The peak
difference in gamma BLP (in the initial 12 s) predicts the later 4 s nonoverlapping
part of the change in average delta power across the cortex-wide electrodes
(Monkey Chibi: awake eye-closed condition, Pearson correlation). Error band
represents 95% confidence interval for regression.
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After identifying the top associated genes (Supplementary
Tables 2 and 3), we found that theHDC (histidine decarboxylase, which
is the unique enzyme catalyzing the decarboxylation of histidine to
form histamine) gene was one of the most prominent genes (Fig. 7a-b-
d, ranked 3rd). The leading position of the HDC gene was well repli-
cated using another two independent analysis pipelines (Supplemen-
taryTables 4 and 5): (i) It ranked 5th basedon the pipeline byAnderson
and colleagues23; (ii) it showed the 9th largest variance by Neurovault
platform. Moreover, the spatial distributions of the expressions of the
HDC and HRH1 (histamine receptor H1, administration of histamine or
H1 receptor agonists can induce wakefulness) genes are highly corre-
lated (Fig. 7c, Pperm < .0001, see “Methods”). It is evident that hista-
minergic system help sustain wakefulness. The tuberomammillary
nucleus (TMN) in the posterior hypothalamus is the major source of
brain histamine and widely project histaminergic neurons to the cer-
ebral cortex64,65. Therefore, the result implies that the molecular
genetic basis of histaminergic function is spatially nonuniform along
the cortical hierarchy, and we hypothesize that this relationship may
extend to the TMN connectome architecture. To test this hypothesis,
we applied a recently developed hypothalamus atlas66 and high-
resolution 7T resting-state fMRI data from the HCP (Dataset 8) to cal-
culate group-level functional connectome pattern between the TMN
and the cortical regions. As a result, we found that the TMN exhibited
the most prominent spatial association with the principal functional
gradient (Fig. 7e) across 13 hypothalamic regions, followed by the
preoptic-anterior hypothalamus and dorsomedial hypothalamus, both
of which play a role in sleep-wakefulness regulation67,68. These results,
derived from both transcriptome and functional connectome data,
provide preliminary evidence linking the histaminergic system to
hierarchical dynamics across the neocortex.

Discussion
In this study, we revealed a fundamental yet simple phenomenon by
utilizing a variety of experimental paradigms (i.e., sleep, anesthesia,
drowsiness, psychedelia, and psychiatric disorders), designs (intra-
and inter-subject variability), timescales (changed over the course of
several minutes or more than one year, i.e., the MyConnectome Pro-
ject), imaging modalities, and species: the shifting of global states of
consciousness is along a hierarchical continuum of cortical neural
variability (Fig. 8a). Adhering to this principle, the multidimensional
spatiotemporal patterns of cortical activity can be mapped to a low-
dimensional signature (Fig. 8b), allowing for individual-level char-
acterization of different states of consciousness. The signature exhi-
bits significant elevations in potentially abnormal states of
consciousness such as psychedelia and in individuals with psychiatric
disorders (Fig. 8c). Subsequently, we show that the hierarchical sig-
nature aligns with complex patterns of functional coordination and
diversity underpinning vivid wakefulness (Fig. 8d, left). Furthermore,
we suggest that the hierarchical heterogeneity is modulated by spa-
tiotemporal waves of cortical activities, as well as likely involvement of
the histaminergic system (Fig. 8d, right). Combining behavioral, neu-
roimaging, electrophysiological, and transcriptomic evidence, our
results suggest that global state of consciousness is supported by
efficient hierarchical processing that can be constrained along a low-
dimensional macroscale gradient.

Although most theories of consciousness primarily focus on
conscious contents69 (subjective experience), exploring global states
can further our comprehension of how neural mechanisms support
various conscious experiences in a general way1, thereby providing
new clues for the development of theoretical frameworks. With
regard to the ongoing debate among theories of consciousness
concerning the neuroanatomical location of consciousness1,45,70 (i.e.,
whether it is situated in the frontal or posterior regions of the brain),
our data indicates that, at least at the global state level, conscious-
ness may not be dependent on a specific location in Euclidean space,

but rather associates with low-dimensional computational patterns
in topological space. The observed cortical topology suggest that
global states of consciousness probably rely on a global availability
of hierarchical information processing, particularly in top-down
modulation from its high-order extreme. We speculate that this
hierarchical and top-down mechanism manifest a basic, general
principle that is supported by different theories of consciousness
from various perspectives. According to the higher-order theory71

(HOT), conscious experience relies on meta-representations, where
lower-order representations of perceptual signals can only be inte-
grated into conscious perception when they are targeted by higher-
order meta-representations. Therefore, effective hierarchical pro-
cessing would play a crucial role in ensuring the integrity of meta-
representational operations. Global neuronal workspace theory72

(GNW) predicts the existence of a set of interconnected cortical
neurons (workspace), which intrinsically situate in higher hierarchies
to receive bottom-up information and can flexibly mobilize or sup-
press local processors through descending projections. The work-
space neurons can select, amplify, and widely broadcast information
to other processors, thus rendering it consciously accessible.
Because the GNW does not specialize in localization but rather
assumes a broadly distributed workspace, it is consistent with our
results, suggesting that the workspace may be mapped continuously
across the cortical processing hierarchy; the top-down feedback
mechanism is also inferred as indispensable for a conscious system in
Integrated Information Theory43 (IIT), which defines consciousness as
the quantity of irreducible integrated information generated from
complex systems. On the other hand, the analysis of time-resolved
connectome reconfiguration accords with the concept of the
dynamic core hypothesis44 (an early formulation of IIT), which
highlights both neural integration and complexity for supporting
consciousness.

We observed that the signature was significantly elevated in the
presence of psychedelics and was associated with positive symptoms
of psychosis, such as hallucinations and delusions. Building on pre-
vious research indicating that top-down mechanisms interact with
sensory signals along a cortical hierarchy to shape perception3, we
postulate that this signaturemay serve as amarker of hierarchical top-
down processing in healthy individuals, whose fluctuation would fall
within a certain range. Deviations from this rangemay lead to aberrant
conscious processing. For instance, prior studies have demonstrated
that individuals with psychosis tend to rely more heavily on top-down
processing from prior knowledge3,73, while in contrast, top-down
processing is impaired in disorders of consciousness74. Nevertheless,
further research is necessary to validate this postulation, by utilizing a
perceptual task paradigm and examining data from individuals with
and recovering from disorders of consciousness.

Recent studies have unified spatiotemporally recurring
waves26,27,57 observed in BOLD and gamma BLP signals as an intrinsic
physiological process associated with arousal. Extending previous
work, we suggest that the infra-slow propagation wave as a hetero-
genous event relating to global states of consciousness. Specifically,
during high vigilance, the waves were more spatiotemporally stereo-
typical. In contrast, even in the presence of larger fluctuations that
started in the sensory cortices, the propagation appeared to be
interrupted in the higher-order regions. We postulate that such slow,
autonomic processing stabilizes wakefulness mainly by modulating
the large-scale cortical activities of the higher-order association cor-
tices. The failure of thismodulationmay facilitate the transition toward
unconsciousness and promote slow oscillations relating to sleep and
memory consolidation. Therefore, the global coordination activity
would bifurcate into a typical mode (i.e., anticorrelation organization)
and an atypical mode (i.e., increased delta power in SSTs) depending
on the higher-order networks. This accords with several previous
observations, such as larger sensory-dominant fluctuations
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Fig. 7 | Histaminergic system and hierarchical organization across the neo-
cortex. a Z-normalized map of the HDC transcriptional landscape based on the
AllenHumanBrain Atlas and theHumanBrainnetomeAtlas109.b, cGene expression
pattern of the HDC is highly correlated with functional hierarchy (r =0.72,
Pperm < .0001, spearman rank correlation) and the expression of the HRH1 gene
(r =0.73, Pperm < .0001, spearman rank correlation). Error band shows 95% con-
fidence interval for regression. Each region’s color is defined by its average prin-
cipal gradient, and a plasma colormap is used for visualization. d Distribution of
Spearman’s Rho values across the gene expression of 20232 genes and the

functional hierarchy.HDC gene and histaminergic receptors genes are highlighted.
e Spatial association between hypothalamic subregions functional connection to
cortical area and functional gradient across 210 regions defined by Human Brain-
netome Atlas. The tuberomammillary nucleus showed one of themost outstanding
correlations. From left to right: tuberomammillary nucleus (TM), anterior hypo-
thalamic area (AH), dorsomedial hypothalamic nucleus (DM), lateral hypothalamus
(LH), paraventricular nucleus (PA), arcuate nucleus (AN), suprachiasmatic nucleus
(SCh), dorsal periventricular nucleus (DP), medial preoptic nucleus (MPO), peri-
ventricular nucleus (PE), posterior hypothalamus (PH), ventromedial nucleus (VM).

Fig. 8 | A summary model of findings in this work. a A schematic diagram of our
observations based on a range of conditions: Altered global state of consciousness
associates with the hierarchical shift in cortical neural variability. Principal gra-
dients of functional connectome in the resting brain are shown for both species.
Yellow versus violet represent high versus low loadings onto the low-dimensional
gradient. b Spatiotemporal dynamics can be mapped to a low-dimensional hier-
archical score linking to states of consciousness. c Abnormal states of

consciousness manifested by a disruption of cortical neural variability, which may
indicate distortedhierarchical processing.dDuring vividwakefulness, higher-order
regions show disproportionately greater fluctuations, which are associated with
more complex global patterns of functional integration/coordination and differ-
entiation. Such hierarchical heterogeneity is potentially supported by spatio-
temporal propagating waves and by the histaminergic system.
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(dominating global signal) during drowsiness75–77 and elevated activity
of default mode areas preceding pupil dilation78.

As an evolutionarily conserved system, histaminergic neurons play
a prominent role in sustaining wakefulness64 through their projections
from hypothalamic TMN to a wide array of cortical and subcortical
regions. A recent study found that histaminergic neurons canbroadcast
dual inhibitory-excitatory signals throughout the neocortex through
GABA-histamine axons79. In this work, we observed a spatial correlation
between the low-dimensional functional hierarchy, histaminergic
molecular markers, and the TMN functional connectome, suggesting a
potential role of thehistaminergic system inmodulatingheterogeneous
dynamics across the cortex. Further evidence is needed to establish
direct causality, such as brain stimulation in animal models.

The principal gradient of dense functional connectome and T1w/
T2w ratio maps were utilized as surrogates of cortical hierarchy. Both
had a fine resolution and had previously been shown to be coupled
with the anatomy of the hierarchy, such as defined by feedforward and
feedback projections34. To better reflect hierarchical organization in
the functional domain, the principal gradient map was chosen in our
main analyses. A recent fMRI study characterized a hierarchical sig-
nature based on transfer entropy (measuring information flow), which
yields a similar macroscale pattern80. Unlike the abovementioned
anatomically or functionally defined hierarchies, a recent whole-brain
computational modeling study81 reported an altered diversity of
‘intrinsic ignition’ (capability of a region to propagate neuronal activ-
ity) induced by anesthesia as an indicator of hierarchical disruption.
Previous task-based studies have supported that the hierarchical sen-
sory processing is disrupted during loss of consciousness, as evi-
denced by the absence of higher-order cortical responses to auditory
stimuli and a hierarchical attenuation of language processing82. Inter-
estingly, after reviewing previous fMRI studies which tried to localize a
consciousness-specific region, we found that most of the reported
regions were distributed in areas with extreme gradients, regardless of
their anatomical nonconvergence (Supplementary Table 6).

Several limitations should be noted. First, the level of conscious-
ness is an ambiguous construct83, and our study neglected conscious-
ness as amultidimensional phenomenon. It is also an oversimplification
to attempt to unify physiological sleep, pharmacological sedation, and
psychedelic states into the same framework, and mechanisms that
might distinguish them were not fully investigated. It is worth noting
that the effect size of the vigilance map is relatively low. This could
potentially be increased by providing additional information, such as
using self-reported questionnaires to assess whether participants were
prone to becoming sleepy while scanning. Second, our time-resolved
state and recurring QPP analyses in humanwere restricted to HCP fMRI
data, whichmight introduce biases into our hypothetical explanation of
other conditions. Nevertheless, the analysis of the QPP has been
extended to the ECoG data of macaques in different conditions. Third,
wedid not address howchoices of differentMRI scanners, head coils, or
acquisition parameters could systematically influence the spatial dis-
tributionof temporal noise and thehierarchical index,which could limit
the potential application of cross-scanner generalization.

Collectively, our work suggests that global states of conscious-
ness can be conceptualized as a topological signature derived from
spontaneous cortical activities. This is supported and validated
through multiple lines of evidence, including cross-species general-
ization, abnormal conditions, functional integration and diversity, as
well as potential mechanisms involving spatiotemporal waves and the
histaminergic system.

Methods
Data and preprocessing
Dataset 1: dexmedetomidine-induced sedation. Twenty-one healthy
male volunteers (age: 26.4 ± 2.1 years; right-handed; body mass index:
21.7 ± 1.9) were recruited from Capital Medical University, Beijing,

China. To ensure the safety of the experiment, all included volunteers
were at an American Society of Anesthesiologists (ASA) physical status
I or II. The exclusion criteria included: (1) the presence of metal
implants in the body, (2) the presence of intracranial lesions or sys-
temic comorbidities, (3) a history of general anesthesia, (4) a history of
drug abuse or alcohol abuse, (5) an allergy to dexmedetomidine, (6)
claustrophobia, and/or (7) left-handedness. The experiment protocol
was approved by the Institutional Review Board of Beijing Tiantan
Hospital, Capital Medical University, China. After being informed of
the relevant details of the study, all subjects signed written informed
consent to their participation. More details can be found in our
registered clinical trial at clinicaltrials.gov (registration number:
NCT03343873).We didnot consider sex-specific effects inour study, as
limited prior research has indicated significant sex differences in the
global state of consciousness.

All volunteers were instructed to fast before the experiment (at
least 6 h from solids and 2 h from liquids). Due to its minor effect on
respiratory inhibition, dexmedetomidine was used as the anesthetic
drug to induce the sedation states. Specifically, dexmedetomidine was
administered throughan intravenous catheter inserted into a vein in the
right hand, initially with a bolus at 1μg/kg/h over 15min and subse-
quently by a 0.6μg/kg/h continuous intravenous infusion to maintain
sedation. Simultaneous, continuous monitoring, including heart rate,
arterial pressure, pulse oxygen saturation, respiratory rate, and elec-
trocardiography, was applied throughout all the experiments (Supple-
mentary Table 7). The Observer’s Assessment of Alertness/Sedation
(OAA/S) scale and Ramsay sedation scale (RSS) were used to evaluate
the sedation level. The subjects were judged to be awake or to be fully
recovered if they responded readily to verbal commands or to their
name being spoken in a normal tone (RSS score of 2; OAA/S scale score
of 5). Subjects were judged to be under moderate sedation if they had
lethargic responses to verbal commands and to their name being spo-
ken in a normal tone or if they responded only after their name was
called loudly (RSS scoreof 3–4;OAA/S scale scoreof 3–4). RSS andOAA/
S scale verbal commands were repeated twice during each assessment.
All the subjects wore headphones throughout the experiment andwere
thus spoken to through an MRI speaker. All communications occurred
between MRI acquisitions, and the subjects were instructed to respond
verbally. These operations were conducted by two certified anesthe-
siologists with complete resuscitation equipment available.

Resting-state fMRI data were recorded using an echo-planar
imaging (EPI) sequence in a SiemensMedical Systems Prisma 3.0 TMRI
system at Beijing Neurosurgical Institute. The scanning parameters
were as follows: TR = 2000 ms; TE = 30ms; field-of-view = 192 × 192
mm2; acquisition matrix = 64 × 64; flip angle = 75°; slice thickness =
4mm;voxel size = 3× 3 ×4.4mm3. The subjectswere scanned for 6min
40 s across each of the three conscious states: normal wakefulness
(RSS score, 2; OAA/S Scale score, 5), moderate sedation (RSS score,
3–4; OAA/S Scale score, 3–4), and recovery of consciousness (RSS
score, 2; OAA/S Scale score, 5).

The fMRI data were preprocessed using an open-assess MATLAB
toolbox BRANT v3.3584.The standardized pipeline included: (i) slice
timing correction, fixing the temporal shifts of different slices; (ii)
within-subject EPI image realignment, estimating and spatially cor-
recting for head motions; (iii) spatial normalization to the Montreal
Neurological Institute (MNI) standard space and resampling to a
3 × 3 × 3mm3 resolution; (iv) nuisance regression, regressors included
linear trends, averaged signals, and their first-order temporal deriva-
tives within the whitematter and cerebrospinal fluid regions, aswell as
Friston’s 24 head motion parameters85 (3 rotation and 3 translation
parameters, 6 parameters one time point before, and the 12 corre-
sponding squared items); (v) bandpass filtering, the residuals of the
regression models were bandpass-filtered (0.01–0.08Hz) to further
suppress low-frequency drifts and physiological noises such as
breathing and heartbeat.
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Dataset 2: 3T resting-state data. The resting-state fMRI data were
acquired as part of the HCP S1200 release86. We analyzed functional
imaging data acquired from a 3T Siemens Skyra scanner using multi-
band EPI. Participants with 4 runs of resting-state datawere included: 4
runs in REST1 and REST2 sessionwith right-to-left (run 1 and run 3) and
left-to-right (run 2 and run 4) phase encoding. Each run lasted 14min
and 33 s (TR = 720ms; TE = 33.1ms; field-of-view = 208 × 180 mm2;
acquisition matrix = 104 × 90; flip angle = 52°; slice thickness = 2mm;
voxel size = 2 × 2 × 2 mm3). Within-scanner sleep during resting-state
scanning is commonly reported. Based on a previous study that used
combined EEG–fMRI trained classifiers during sleep stages, nearly one
third of subjects were determined to have not maintained their
wakefulness for over 3 min29. Thus, we speculate that subjects were
predisposed to decreased alertnesswhen close to the end of scanning.
Although such speculation cannot be generalized to all individuals,
such an effect could be overwhelming at the population level.

Resting-state fMRI data was processed based on the HCP-pipeline
using the CIFTI grayordinate-based framework, and spatially struc-
tured physiological noise was corrected using the ICA + FIX method,
which can be assessed in the HCP repository. Such an ICA-based
approach87 is effective for cleaning structured noise and provided a
different denoising strategy beyond nuisance regression in this
research. The signal was further cleaned with a Butterworth filter
within 0.01–0.08Hz. Finally, 982 individuals (462 male/520 females;
mean age, 28.7 ± 3.7 years) with complete four resting-state runs
without large motion (mean framewise distance <0.3mm) were
included in our study. To ensure that the results obtained from the
surface domain and volume space were comparable, we also included
additional ICA-FIX-denoised resting-state fMRI volumetric data of 100
unrelated subjects from the Extended HCP rfMRI dataset (Supple-
mentary Fig. 12). The description of the behavioral phenotypes in HCP
was detailed elsewhere25. Items belonging to alertness (Pittsburgh
Sleep Questionnaire), in-scanner task performance, and cognition
were selected for further analyses. To summarize the overall reaction
time of the in-scanner tasks, the principal component analysis was
conducted to items that tapped to reaction times (such as median
reaction time during tasks; with more than 950 individuals available).
Only the first PC was used because it explained 30.8% of the variance
and positively correlated with all the items included, whereas the
second PC only explained 17% of the variance.

Dataset 3: Simultaneous EEG–fMRI during sleeping. Young healthy
volunteers (18–25 years) were enrolled via online advertisement. To
ensure their safety, participants with a history of any psychiatric or
neurological illness were excluded from the experiment; and partici-
pants with normal sleep quality were considered according to the
Pittsburgh Sleep Quality Index (PSQI). Each subject provided written
informed consent after a detailed explanation of the study protocol.
No intake of alcohol or caffeine was allowed on the scanning day. The
sleeping experiment started at approximately 01: 00 local time. Each
participant was asked to lie down and fall asleep on the scanner bed.
The experimenter checked the participant’s sleeping condition
through a microphone every 8 min. The response of the participant
was recorded through an MRI-compatible multiple button-press box.
Participants who failed to sleep did not continue with the experiment.
The 2 h of sleeping scanning (nine 12.5min runs) did not start until the
participants were nonresponsive. All experiments were in accordance
with the Declaration of Helsinki. The study protocol was approved by
the Ethics Committee of Southwest University, China.

Sleep fMRI data were acquired using a 3T Siemens Trio scanner at
the Sleep and Neuroimaging Center at Southwest University,
Chongqing, China. Head movements were minimized by using a
cushioned head fixation device. A T2‐weighted gradient echo‐planar
imaging (EPI) sequence was applied, with the scanning parameters as
follows: TR = 1500ms; TE = 29ms; field-of-view = 192 × 192 mm2;

acquisition matrix = 64 × 64; flip angle = 90°; slice thickness = 5mm;
voxel size = 3 × 3 × 5.5 mm3. To access sleep stages during fMRI
scanning, simultaneous EEG–fMRI recordings were conducted by a 32‐
channel MRI‐compatible Brain Products system (BrainAmp MR plus,
Brain products, Munich, Germany). The channel position was in
accordance with the international 10/20 system, and all impedances
were below 10 kΩ. The FCz point was used as the reference for online
signal collection, and the sampling rate was 5 kHz. To ensure the
temporal stability of the EEG acquisition in relation to the switching of
the gradients during the MR acquisition, we used a SyncBox (SyncBox
MainUnit, Brain Products GmbH, Gilching, Germany) to synchronize
the amplifier system with the MRI scanner’s system. The EEG amplifier
was a non-magnetic MRI-compatible EEG system and was charged by a
rechargeable power pack placed outside the scanner bore. The
amplified and digitized EEG signal was transmitted to the recording
computerwithfiber optic cables. The computerwasplacedoutside the
scanner room, and the adapter (BrainAmp USB-Adapter, Brain pro-
ducts, Gilching, Germany) converted the optical signal into an electric
signal.

Sleeping fMRI data was preprocessed based on the BRANT stan-
dardized pipeline. The original EEG recording was processed using the
Vision-Analyzer software (Version 2.0, Brain Products, Inc., Munich,
Germany). Appling the average template subtraction procedure, we
first removed the fMRI gradient and ballistocardiographic artifacts
from the original EEG signal. Then the EEG data were downsampled to
250Hz and digitally filtered within the 0.1-45Hz band using a Cheby-
shev II-type filter. Furthermore, the residual fMRI gradient and ballis-
tocardiographic artifacts, ocular artifacts, and the muscle activity
artifact from the EEG data were eliminated through temporal inde-
pendent component analysis (ICA). After removing severe artifacts, six
EEG channels (O1, O2, F3, F4, C3, C4) were selected for manual sleep
staging by two experts, with a time window of 30 s. Each segmented
epoch was classified into awake, N1, N2, or slow-wave sleep condition
according to the 2017 AASMmanual88. Then, the 6 (out of 22; 1 male/5
females; mean age, 21.6 ± 1.3 years) volunteers with the most con-
sistent sleeping trajectories, as labeled by two experts, were included
in the further analyses.

To strengthen the reliability of the sleep-related results, we
included a publicly available simultaneous EEG–fMRI dataset36,89 from
OpenNeuroplatform for validation (ds003768). Briefly, the dataset has
33 healthy participants (17 males/16 females; mean age, 22.1 ± 3.2
years) collected at Pennsylvania State University. fMRI data was
acquired by an EPI sequence: TR = 2100ms, TE = 25ms, slice thickness
= 4mm, slices = 35, FOV = 240mm, in-plane resolution = 3mm×3mm.
The fMRI data in sleep sessions was preprocessed using the BRANT
standardizedpipelinementioned above. EEGdatawere collected using
a 32-channel MR-compatible EEG system from Brain Products, Ger-
many. The sleep staging was performed by a Registered Polysomno-
graphic Technologist. The sleep staging was conducted by a
Registered Polysomnographic Technologist. Similarly, the evaluation
was based on six EEG channels (O1, O2, F3, F4, C3, C4) with each epoch
lasting 30 s. Someepochswhichyieldeduncertain resultsweremarked
as “uncertain” and those with artifacts too large for reliable scoring
were labeled as “unscorable”. The individuals with more than 10
epochs labeled with “unscorable” or “uncertain” were excluded. In
contrast to our dataset (collected after midnight), sleeping states in
this dataset were mainly attributed to wakefulness, N1, and N2 (with
only sporadic attributions of N3 stage), resulting in a more limited
range of variation. As an illustration, sub-08 was predominantly
assigned to wakefulness, with only sporadic occurrences of N1 stage.
The sleep stage was encoded as ranked number (wakefulness: 0,
N1 stage: -1, N2 stage: -2, slow-wave sleep stage: -3). To facilitate reliable
analysis at the individual level, we selected 6 individuals with the lar-
gest variance in sleep stages for validation (subjects 1–6: sub-09, sub-
10, sub-15, sub-24, sub-27, sub-28; Supplementary Fig. 6).
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Dataset 4: the MyConnectome project. We downloaded the raw
resting-state fMRI and behavioral data of the MyConnectome Project37

from OpenNeuro database (ds000031), comprising a deeply sampled
phenotyping of a single individual (a Caucasian male; 45 years old at
study; right-handed) over a period of 18months. Scan sessions 14–104
were included in the analysis (84 sessions according to a previous
work37), which were from the original acquisition period of the study
using a Siemens Skyra 3 T scanner at the University of Texas. In each
session, 10min of resting-state data were acquired using a multiband
EPI sequence,with the followingparameters: TR = 1160ms; TE= 30ms;
field-of-view = 240 × 240mm2; acquisitionmatrix = 96 × 96; flip angle =
63°; voxel size = 2.4× 2.4 × 2 mm3, 68 slices (64 slices after session 27).
The fMRI data was preprocessed using the BRANT standardized
pipeline but without the option of slice timing correction.

The Myconnectome Project provides a unique opportunity to
study the longitudinal, intra-individual effects of physical and psy-
chological factors on brain function. Scans were mostly performed on
either Tuesdays or Thursdays at 0730 h. Before each Tuesday scan, the
subject fasted and had no caffeine intake; on Thursdays, the subject
was always fed and caffeinated. Thus, we inferred that the subject was
in a relatively low state of energy both physically and psychologically
during the Tuesday scans. To quantify the brain state linking to a
neuroimaging session, we also assessed the self-reported Positive and
Negative Affect Schedule (PANAS-X) questionnaires, which were
administered after each scan. As referenced in a previous work90, the
arousal-related factors were categorized as those associated with
fatigue (average scores: “drowsy”: Q28; “sleepy”: Q57; “sluggish”: Q58;
and “tired”: Q62) or heightened attention (average scores: “attentive”:
Q11; “concentrating”: Q18; and “lively”: Q43) and were further com-
pared across the different days.

Dataset 5: psychedelic state. The functional imaging data for the
psychedelic state was collected and analyzed in a previous study41 and
was recently made available on the OpenNeuro database (ds003059).
This resource included 15 healthy volunteers (11 male/4 females; mean
age, 30.5 ± 8.0 years) who were all examined under conditions of both
placebo and LSD administration. In these two conditions, each indivi-
dual was scanned three times: the first and third runs were a common
eyes-closed resting-state paradigm, and the second scan was accom-
panied by listening to music. More information about data acquisition
and preprocessing can be found elsewhere41. Briefly, a gradient echo
planer imaging sequence was used to acquire BOLD-weighted fMRI
data (TR = 2000 ms, TE = 35ms, field-of-view = 220mm, acquisition
matrix = 64 × 64, parallel acceleration factor = 2, flip angle = 90°). 35
oblique axial slices were acquired in an interleaved fashion, each
3.4mm thick with zero slice gap (3.4mm isotropic voxels). Each BOLD
scan lasted 7 min. Because the released data did not include raw
functional MRI images, we used the preprocessed data directly.
Notably, this preprocessed pipeline rigidly controlled head motion
using de-spiking, motion-related nuisance regression, and bandpass
filtering (0.01–0.08Hz) and has been demonstrated to have minimal
motion effect on functional connectivity41.

Dataset 6: neuropsychiatric disorders. We analyzed data from the
UCLA Consortium for Neuropsychiatric Phenomics42, which was
obtained from the OpenNeuro database (ds000030). Specifically, 117
healthy subjects (62 males/55 females; mean age, 30.1 ± 8.6 years), 47
individuals with schizophrenia (35 males/12 females; mean age,
36.5 ± 8.8 years), 45 individuals with bipolar disorder (26 males/19
females; mean age, 35.0 ± 9.0 years), and 41 individuals with ADHD (21
males/20 females; mean age, 32.4 ± 10.5 years) were included in our
study. All participants were asked to give written informed consent for
their inclusion, following procedures approved by the Institutional
Review Boards at UCLA and the Los Angeles County Department of
Mental Health. All patients underwent behavioral and symptom

assessments, including the Brief Psychiatric Rating Scale (BPRS).
Resting-state data was scanned using an echo-planar imaging (EPI)
sequence from a 3 T Siemens Syngo scanner at UCLA (TR = 2000 ms,
TE = 30ms, field-of-view = 192mm, acquisition matrix = 64 × 64, flip
angle = 90°, voxel size = 3× 3 × 4 mm3, 34 slices), lasting for 304 s. In
addition, 92 individuals diagnosed with schizophrenia (57 males/35
females;mean age, 27.4 ± 6.7 years) and 98 healthy controls (53males/
45 females; mean age, 25.8 ± 5.3 years), whose data were collected
fromPekingUniversity SixthHospital, China,were further analyzed for
an independent validation. A consensus diagnosis of schizophrenia
was made by two experienced senior psychiatrists according to the
Diagnosis and Statistic Manual of Mental Disorders, fourth edition
(DSM-IV) criteria for schizophrenia or schizophreniform disorder and
finally diagnosed with schizophrenia after being followed up for at
least six months. All patients had significant positive symptoms: more
than four on at least three of seven positive itemsbased on the Positive
andNegative SyndromeScale. The studyprotocolwas approvedby the
Medical Research Ethics Committees of the local hospitals and written
informed consent was obtained from all participants and/or their legal
guardians. Detailed clinical information was provided in our previous
work91. Eightminutes of resting-state fMRI data were acquired using an
EPI sequence with the following parameters: TR = 2000 ms; TE = 30
ms; acquisition matrix = 64 × 64; flip angle = 90°; slice thickness =
4mm; voxel size = 3.4375 × 3.4375 × 4.6 mm3. The fMRI preprocessing
(UCLA and PKU6) is based on the BRANT platform and can be found
elsewhere91. Subjects with high motion during the scanning were
excluded (translation > 3mm or rotation > 3°).

Dataset 7: macaque EcoG recordings. We downloaded the macaque
electrophysiological recordings from the NeuroTycho resource. The
acquisition details and experimental procedures can be found in pre-
vious publications55,56. Briefly, a chronically implanted customized 128-
channel EcoG electrode array was employed to record neural activity
in the left hemisphere. The sampling rate was 1 kHz using the Cerebus
data acquisition system (Blackrock, UT, USA). We analyzed the EcoG
data from two adultmacaquemonkeys (Chibi: Macaca fuscata;George:
Macacamulatta) acquired under different conditions: the awake, eyes-
closed resting-state (Chibi: in 12 sessions, lasting 150min; George: in
13 sessions, lasting 153min), the awake, eyes-opened resting-state
(Chibi: in 12 sessions, lasting 164min; George: in 12 sessions, lasting
148min), the sleeping state (Chibi: in 7 sessions, lasting 326min;
George: in 6 sessions, lasting 233min), the anesthetized state (Chibi: in
8 sessions, lasting 132min; George: in 9 sessions, lasting 117min), as
well as the eyes-opened, recovered state (Chibi: in 7 sessions, lasting
96min; George: in 9 sessions, lasting 109min). Some sessions were
labeled withmore than one condition, and each condition lastedmore
than 5min. Under the sleep state, the experimental room was kept
quiet and dark for up to 1.5 h, and the monkeys were conducted to sit
calmlywith an eyemask. Slowwave oscillation appeared intermittently
during natural sleep. Immediately following the sleep condition, the
eyes-closed condition was collected with the light turned on. For the
eyes-open waking state, there was no eye mask. In the anesthesia
experiment, several agents (ketamine, medetomidine, or propofol)
were applied to induce loss of consciousness; and the anesthetized
state was collected after a monkey no longer responded to manip-
ulation of the monkey’s hand or to touching the nostril or philtrum
with a cotton swab.

The line noise was removed at 50Hz using notch filtering.
According to the previous work, two channels from monkey George
were excluded due to stubborn artifacts57. The multitaper spectral
estimation was applied to generate spectrograms for 1–100Hz power
in 1 Hz frequencybins. Thewindow sizewas 1 s (0.2 s step size), and the
number of tapers was set to 5. Next, we transformed the power spec-
trogram into decibels using a logarithmic function and normalized
each frequency bin by removing the temporal mean of the power.
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Band-limited power (BLP) was calculated by averaging the normalized
spectrogram within defined frequency ranges: delta 1–4Hz;
alpha–beta 5–30Hz; and gamma 40–100Hz. BLP signals were further
bandpass-filtered (0.01–0.08Hz) using the Butterworth filter, and a
forward-backward digital filter was implemented to eliminate any
phase delay.

Dataset 8: High-resolution 7T resting-state fMRI. To finely char-
acterize the functional connectivity of the hypothalamic system, we
applied resting-state fMRI data, which were acquired from a 7T Sie-
mens Magnetom scanner using a multiband sequence in HCP. 177
participants (70 male/107 females; mean age, 29.4 ± 3.3 years) with 4
full resting-state runswere included: 4 runs inREST1 andREST2 session
with posterior-to-anterior (run 1 and run 3) and anterior-to-posterior
(run 2 and run 4) phase encoding. Each run lasted 16min (TR = 1000
ms; TE = 22.2ms; field-of-view = 208 × 208 mm2; acquisition matrix =
130 × 130; flip angle = 45°; slice thickness = 1.6mm; voxel size = 1.6 × 1.6
× 1.6 mm3). We started our analyses used on 7 T preprocessed fMRI
data after ICA-FIX in the HCP repository, and volume-based images
were used to cover the full hypothalamus. The preprocessed fMRI data
retained a spatial resolution of 1.6 × 1.6 × 1.6mm3 andwas a part ofHCP
new release in 2018, which had been fixed from the incorrect
unwrapped direction in the fMRIVolume pipeline.

A recently developed hypothalamic atlas66 was applied to deline-
ate the segmentation of the hypothalamus, including 13 hypothalamic
structures: anterior hypothalamic area, arcuate nucleus, dorsal peri-
ventricular nucleus, dorsomedial hypothalamic nucleus, lateral hypo-
thalamus, medial preoptic nucleus, paraventricular nucleus,
periventricular nucleus, posterior hypothalamus, suprachiasmatic
nucleus, supraoptic nucleus, tuberomammillary nucleus, and ven-
tromedial nucleus. Considering the potential spatialmismatchof small
hypothalamic divisions, we performed a binary dilation for each sub-
region with a cube connectivity of 1 to moderately expand the shape,
resulting in 75 voxels (from 18 voxels, tuberomammillary nucleus) with
a spatial resolution of 1.6 × 1.6 × 1.6 mm3. The time series within the
dilated hypothalamicmaskwere averaged. For the cortical regions, we
derived voxel-wise time series based on fMRI data smoothed with a 6
mm3 FWHM kernel. All signals were temporally cleaned by a Butter-
worth filter within 0.01–0.08Hz. Subsequently, the voxel-wise FC
between the hypothalamic divisions and the cerebral cortex was cal-
culated by Pearson’s correlation for each run and averaged across all
176 individuals.

BOLD variability
It has recently been proposed that moment-to-moment brain signal
variability is more informative than static metrics such as mean signal
values13. We calculated BOLD variability (also termed low-frequency
BOLD amplitude) as the standard deviation of temporally filtered time
series (0.01–0.08Hz), at the voxel-/vertex-wise level. The frequency
band is a default parameter in the standardized BRANTpipeline. Based
on Parseval’s theorem, such a temporal metric is mathematically ana-
logous to the amplitude of low-frequency fluctuations (ALFF) calcu-
lated in the frequency domain92 (Eqs.1–2):
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We also calculated the fractional amplitude of low-frequency
fluctuation93 (fALFF), which measures the ratio of power in the low-
frequency range to total power across the frequency range. The intra-

and inter-subject hierarchical index and spatial distribution based on
fALFF are very similar to those based on BOLD variability (Supple-
mentary Fig. 13).

Consciousness-related cortical patterns
We tested whether the consciousness-related pattern of the BOLD
signal amplitude was consistent across different paradigms. Impor-
tantly, to characterize the spatial heterogeneity, rather than using an
overall absolute value, the amplitude map was normalized into a z-
score at the voxel/vertex level. Specifically, the HCP resting-state fMRI
data was analyzed across all the cortical surface vertices in the CIFTI
format, and the anesthesia and sleep fMRI data were analyzed across
the cortical voxels in MNI space. In this way, three cortex-wide maps
were generated and spatially compared using fMRI data collected
under anesthesia, during sleep, and in the resting state.

Dexmedetomidine-induced sedation. The map in Fig. 1b was formed
using the t-statistic values between the z-score BOLD amplitudes in
sedation and wakefulness using a paired sample t-test (n = 21,
FWHM=6 mm3). The pattern is highly consistent with that obtained
using the contrast between states in sedation and recovery (Supple-
mentary Fig. 1).

Vigilance decreases. The map in Fig. 1e was formed using the
Spearman’s rank r between the z-score BOLD amplitude and the time
interval. Practically, each HCP run was divided into 24 nonoverlap-
ping time windows of 50 frames each, and then the pairwise differ-
ence in amplitude was calculated. This approach resulted in up to
276 differed maps for each run, with the time interval ranging from 1
to 23 intervals. The larger interval was inferred to have a higher
possibility of a decrease in vigilance. Collectively, for each cortical
grayordinate, the Spearman’s rank r was calculated using 1,084,128
(276 combinations × 4 runs × 982 individuals) points. We also iden-
tified 100 most representative subjects (exhibiting the greatest
reduction of hierarchical index across four resting-state runs) to
generate a new vigilance map (Supplementary Fig. 14), and the pat-
tern was highly comparable to those obtained using all individuals
(shown in Fig. 1e).

Sleep. The map in Fig. 1h was formed using the Spearman’s rank
correlation between the z-score BOLD amplitude and the sleep stages
manually labeled by an expert (150 s interval; wakefulness: 0, N1 stage:
−1, N2 stage: −2, slow-wave sleep stage: −3). Data from six volunteers
was concatenated in the temporal resolution of 100 frames (150 s,
FWHM=6 mm3), and the sleep score was calculated by simply aver-
aging across the five labeled epochs of sleep stages (from 0, −1,
−2, or −3).

Statistical testing of spatial correlation
To test the statistical significance of the spatial correlations, we con-
trolled the effects of spatial autocorrelation using generated null
models (a schematic diagramwas presented at Supplementary Fig. 4).
For analyses in Fig. 1c-f-i as well as Supplementary Fig. 3, we projected
the vertex-wise principal functional gradient data onto the 32k_fs_LR
sphere space and generated 10,000 spatially rotated null maps for
calculating P value in permutation tests. Specifically, the Alexander-
Bloch approach94 was applied to generate spatially constrained null
distributions by applying random rotations for spherical projection of
the brain. This is a recommendmethod based on a recent study which
evaluating of the effectiveness of 10 null models in mitigating the
effects of spatial autocorrelation. For Figs. 7c and 7e, since sampling
was not conducted directly in the surface space, we employed the
Vázquez-Rodríguez method95, an adaptation of the Alexander-Bloch
approach for parcellated brain data, to generate 10,000 null models
and present permutation-based P values.
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Hierarchy analysis
Definition of cortical hierarchy/gradient. Cortex-wide maps of the
principal FC diffusion values and T1w/T2w ratios were used to char-
acterize the macroscale hierarchical organization of the human brain.
The principal FC diffusion, also called principal functional gradient,
represents the main area of variance in functional connectivity and is
spatially locating along the sensorimotor-to-transmodal axis. The
functional gradient was calculated via diffusion map embedding, a
non-linear manifold learning approach, based on the HCP S1200
group-average resting-state fMRI dense connectivity. The embedded
space was constructed by a random walk process on a pairwise cosine
similarity graph of dense coordinate’s FC pattern. The algorithm is
controlled by the parameter α =0.5, which can balance the global and
local relationship between nodes constructed in the embedded space.
The eigenvectors of the transitionmatrix on this graphwere defined as
diffusion coordinates. The detailed procedures were described in
Margulies et al.32. In our work, we derived the top nine eigenvectors:
the first eigenvector, which explains themost variance, was utilized for
most of the analyses, while the 2nd to 9th eigenvectors were used for
the control analysis in relation to three consciousness-related maps
(Supplementary Fig. 5, the eigenvalues exhibited a sharp drop after the
9th component). The T1w/T2w ratio mapping, which was proposed as
an in vivo measurement to index the gray-matter myelin content and
anatomical hierarchy, was also downloaded from the HCP S1200
group-average data release.

Diffusion map for macaque. To achieve an individual-level principal
gradient for the gamma-band connectome, we used the BrainSpace
toolbox96 (version 0.1.1) implemented in Python. Consistent with
previous work27, we analyzed fMRI data obtained during the awake,
eye-closed resting state. First, a functional connectivity matrix was
established via computing the pairwise Pearson’s correlation
between the time series of the gamma-band power across channels. A
cosine kernel was then used to construct an affinity matrix for the
averaged FC map across sessions for each macaque. The diffusion
map was conducted using the pipeline described above based on
BrainSpace (diffusion embedding, alpha = 0.5, sparsity = 0.9). The
generated diffusion maps of the two macaques were visually analo-
gous to those found in a previous work27. However, unlike in human
fMRI acquisition, the implanted electrodes in the twomacaques were
sparsely sampled, and there was a considerable disparity between
them. As illustrated in Supplementary Fig. 10, macaque Chibi and
macaque George have a higher proportion of electrodes distributed
in themedial motor and visual cortices, respectively, whichmay have
augmented the internal functional connection ratios of the motor
and visual networks to some extent, thus resulting in certain dis-
crepancies in the gradient pattern in the motor and visual cortices.
Nevertheless, it is essential to note that both the two cortical maps
can reflect the large-scale unimodal-transmodal organization, and
thus are highly correlated with the neural variability of gamma-BLP in
different conscious states.

Hierarchical index. The hierarchical index was defined as the Spear-
man’s r between the principal functional gradient and the normalized
low-frequency BOLD amplitude across the entire cortex. This simple
indicator describes how spontaneous fluctuations shift along the
macroscale functional hierarchy across time. For the volume-based
fMRI data (Dataset 1 and Datasets 3-6), the surface-based gradient in
HCP fsLR32k was transformed into MNI volumetric space using the
‘-metric-to-volume-mapping’ command in Connectome Workbench,
using the ribbon constrained mapping algorithm option. The ribbon
gradient map in MNI space was spatially equivalent to the image
released in NeuroVault from Margulies et al.32. (r > 0.99, https://
neurovault.org/images/24346/). For 3THCP resting-state fMRI dataset,
we used surface-based ICA-FIX denoised data based on CIFTI

grayordinate-based framework in the main analysis. We further
examined whether the intra-subject temporal trajectory and the inter-
individual difference of the hierarchical index were comparable
between surface- and volume-based fMRI data. As illustrated in Sup-
plementary Fig. 12, we found that the temporal trajectory of the sur-
face- and volume-basedhierarchical indexwas highly consistent across
five randomly chosen subjects; likewise, the individual variation of the
hierarchical index was observed to remain stable across 100 unrelated
individuals.

Complex brain state analysis
Wehypothesized that the low-dimension flowof the hierarchical index
is associated with distinct global brain states. In this part, resting-state
fMRI data from the HCP dataset was analyzed while considering: (i) its
high signal-to-noise ratio, temporal resolution, and large sample size;
and (ii) that it can reveal rich dynamics in global conscious states,
ranging from vivid waking states to natural light sleep29. Specifically,
we divided the 1200 frames of each HCP run into 24 nonoverlapped
36 s windows across 100 unrelated individuals (up to 9600 fragments)
to explore the tempo-spatial heterogeneity of global signal topology as
well as brain complexity. For the investigation of the dynamic brain
state, a window length between 30 and 60 s has been found to be
reasonable and has been widely used in previous studies97.

Unsupervised learning of GS topology. Here, we calculated the time-
resolved GS topology in each nonoverlapped window. The global
signal was defined as the average BOLD signal across all the cortical
vertexes. A GS topography map was calculated using the Pearson
correlation between the global signal and time series for each
grayordinate-based vertex across the cortex. Subsequently, the spatial
correlation of the GS topology between each fragment was calculated
as a 9600 × 9600 similarity matrix, and a data-driven K-means algo-
rithm with Euclidean distance was applied. A two-cluster solution was
applied, given its larger silhouette coefficient metric (from 2 to 10
clusters). Notably, the intention of the unsupervised learning was not
to demonstrate that brain states are perfectly natural clusters but to
decompose spatially heterogeneous patterns of GS topologies across
time. To examine whether the clustering is primarily driven by indivi-
dual difference, we computed the proportion of 96 sliding windows
(24 nonoverlapped windows × 4 runs) of each subject that were
assigned to state 1, leaving the remaining windows assigned to state 2.
We found that no individual was entirely assigned to state 1 or state 2,
with the proportion of state 1 occupied 52.3 ± 18.8% across the 100
unrelated subjects (Supplementary Fig. 8a). This preliminary evidence
suggests that the k-means analysis was not mostly driven by differ-
ences between individuals. To furtherminimize the potential impact of
individual differences, we repeated the subsequent analysis using a
balanced subset of data: for each individual, the unmatched time
windows would be removed randomly to ensure the proportion of
state 1 and state 2 are equal. The results in Supplementary Fig. 8b, c
were highly consistent with those shown in Fig. 4, despite the equal
distribution of windows across the two states. Furthermore, we con-
ducted a two-cluster k-means analysis of global signal topology at
individual level, independently for 100 unrelated subjects, each with a
sample size of 96 (24 nonoverlapping windows × 4 runs). To char-
acterize the stability of the clustering results, we compared the
individual-level clustering with the group-level clustering in terms of
spatial similarity in comparison with 10,000 null models considering
spatial autocorrelation. We found that the clustering based on the
individual level was significantly correlatedwith the group-level spatial
correlation (Supplementary Fig. 8d, state 1: averaged r =0.57; state 2:
averaged r =0.52). Considering the limited sample size of the indivi-
dual clustering, we randomly selected 5 individuals and repeated the
same experiment 100 times, finding that the clustering results were
highly correlated with the group-level analysis using 100 subjects

Article https://doi.org/10.1038/s41467-023-38972-x

Nature Communications |         (2023) 14:3238 15

https://neurovault.org/images/24346/
https://neurovault.org/images/24346/


(Supplementary Fig. 8e, state 1: averaged r = 0.88; state 2: aver-
aged r =0.81).

To characterize functional integration/coordination, we also used
a nodal strength approach to measure the pattern in which cortical
regions are temporally connected. For each time window, we applied
the 200 parcellation Schaefer atlas98 and Pearson correlation to con-
struct a cortical functional network (200 × 200). Node strength is
defined as the sum of weights of links connected to the node.

Connectivity and temporal entropy. As mentioned above, for each
nonoverlapping window of an individual, we acquired a 200 × 200
function network defined by the Pearson’s correlation between each
pair of Schaefer ROIs. Connectivity entropy was then used to describe
the distribution diversity of the functional connectivity. To quantify
the amount of uncertainty in each brain state, we adopted Saenger
et al.’s method99 to transform the functional connectivity values for
each node into discrete bins (n = 10) and calculated the normalized the
Shannon entropy for each ROI’s probability distribution. The con-
nectivity entropy was calculated according to the following Eq. 3:

H = �
Xn

i = 1

pilog pi

� �

logðnÞ ð3Þ

In addition,weused sample entropy tomeasure the regularity and
complexity of the temporal fluctuation. Specifically, the time series
was divided into chunks of m or m+ 1 timepoints each. The chunks
were then compared to find the Chebyshev distance between them.
The parameter r was set as the threshold to determine whether two
chunks were similar. The sample entropy was defined as Eq.4:

H = � log
A
B

ð4Þ

in which A is the number of chunks of length m+ 1 having a
Chebyshev distance less than r (B refers to the number of similar
chunks of length m). We usedm = 2 considering the length of time (N
less than 10m), and r =0.5multiplied by the standard deviation of time
series accounting for the amplitude variations of signals. Such para-
meters were previously used in resting-state fMRI studies100,101.

Global and physiological nuisance signals
The interpretation of the global signal is quite obscure, and its spatial
contribution is structurally heterogeneous across the brain. The GS
topography was shown to be aberrant in schizophrenia47, bipolar
disorder102, and epilepsy103, and can be significantly modulated by
external stimuli104. Applying K-means clustering on time-resolved GS
topography, we suggest that the reconfiguration of the GS topography
reflects a large-scale, dynamic integration linking to vigilance states
during rest. Thus, the GS regression strategy may reduce such dyna-
mical topography across time, which probably distorts state-
dependent analyses105 but strengthens trait-like functional
representations106. Additionally, we showed that the GS regression
procedure has minimal effect on the hierarchical index (Supplemen-
tary Materials). Using HCP data that included simultaneous physiolo-
gical recordings, we demonstrated that regressing out the respiratory
and cardiac cycles did not influence our key results (Supplementary
Materials). An additional analysis was also performed to evaluate the
potential effects of head motion (Supplementary Materials). Critically,
our results based on macaque electrocorticography data largely miti-
gated the concerns potentially introduced by motion artifacts and
physiological nuisance data in human fMRI results.

Recurring spatiotemporal pattern analysis
Spontaneous BOLD fluctuations manifest as one of a few recurring
spatiotemporal patterns. Of these, one of the most investigated is a
quasiperiodic pattern (QPP) described byMajeed et al.107. ThisQPPwas

identified by recursively matching and averaging similar segments of
resting-state fMRI time series. The primary QPP involves a dynamic
cycle of activation and deactivation that spatially follows the macro-
scale gradient (from the task positive network to the default mode
network) and lasts approximately 20 s. For the human fMRI data, we
directly applied a representative spatiotemporal template tomatch all
possible QPP events. This template is publicly available from a recent
study26 that conducted an optimized, computationally expensive
algorithm to detect QPP events based on HCP S900 subjects. Only
cortical regions were included when generating this group template.
Consistent with this previous work26, we applied a sliding window
approach to iteratively compare the correlation between the template
(30 volumes, ~21.6 s) and eachflattened ‘segment’with a temporal step
of 1 TR. To reduce computational complexity, we analyzed the ROI-
based average time series to identify QPP events using the Schaefer
200 parcellation map. Spatiotemporal segments were identified as
QPP events whose local maxima exceeded the threshold (r =0.4). In
this analysis, our purpose was not to demonstrate the cortex-wide
propagation patternor its role in arousalmodulation, which have been
revealed previously, but to studywhether the previously reportedQPP
exhibits significant heterogeneous modes in different vigilance states.
To achieve this, 100 HCP individuals with themost protruding drifts in
hierarchical scores during 4 resting-state scans were included. For
each of 400 scans (100 individuals × 4 runs), the first third and the last
third of the timewere categorized into twodifferent vigilance states. In
this way, wewere able to perform theQPP analysis on 400 high-quality
fMRI scans in two different global states while avoiding introducing
individual difference. There are twomajor obstacles that prevented us
from performing a human QPP analysis beyond the HCP data: (i) The
QPP analysis is based on a recurring spatiotemporal pattern lasting
approximately 20 s, which has been reliably identified in previous
studies26,27,107. However,mostof the human fMRI datasetsweusedhave
a repetition time of around 2 s, so only about 10 time points can be
used for the calculation of spatiotemporal cycles. In contrast, the HCP
dataset contains up to 30 time points (TR =0.72 s), providing a more
robust basis for analysis. (ii) In addition to the limited time points
available inmost human fMRI datasets, the HCP data have significantly
more fMRI runs. This larger sample size is advantageous when
attempting to compare QPP across different states.

We next conducted an exploratory QPP analysis for the filtered
gamma-band (40–100Hz) power from themacaque ECoG recordings.
For each macaque, we established a representative spatiotemporal
template during the awake, eyes-closed resting state, considering: (i)
previous studies that suggested arousal shifts were linked to global
fMRI signals in the eyes-closed condition76, and (ii) that the template
couldbe independently used todetectQPPevents in other states (such
as during sleeping and eyes-opened condition) for comparing QPP
heterogeneity. We downsampled the temporal resolution into 0.4 s,
and 50 timepoints (20 s) were then set as the segment duration. Based
on the C-PAC package108, a standard QPP algorithm was applied to
reveal the recurrent spatiotemporal patterns. A threshold r of 0.4 was
used when building the template. Practically, the results were not
sensitive to thresholds of r from 0.2–0.5. We found that the QPP
templates could be reliably derived andwere visually similar in the two
monkeys. To match the QPP templates from the two monkeys, we
applied a phase-adjusting procedure by shifting a few timepoints for-
ward and backward. As shown in Fig. 6j and Supplementary Fig. 11, the
QPP template resulted in the propagation of activity along the mac-
roscale functional gradient. Across the 50 timepoints, the weighted
signals along the principal functional embedding achieved a high
temporal correlation (r =0.99) between the two monkeys. The QPP
template for each macaque was subsequently used to detect QPP
events in other states. In eachQPP event, we calculated the gammaBLP
peakdifferencebetween the top and bottom 20 channels based on the
cortical gradient to quantify the relative excitability of the high-order
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cortex. The peak difference was calculated within the initial 12 s when
the gamma BLP was most evident, and the delta signals in the sub-
sequent 4 s were averaged across all channels.

Imaging transcriptomic analysis
To examine which transcriptomic expression recapitulates the cortex-
wide map of the functional hierarchy, we assessed the Allen Human
Brain Atlas (AHBA)28, a spatially comprehensive dataset of human
transcriptional profiles. The gene expression data were acquired from
post-mortem tissues in six donors without a history of psychiatric or
neuropathological disorders. The donors were a 24-year-old African
American male (H0351.2001), a 39-year-old African American male
(H0351.2002), a 57-year-old European-ancestry male (H0351.1009), a
31-year-old European-ancestry male (H0351.1012), a 49-year-old His-
panic female (H0351.1015), and a 55-year-old European-ancestry male
(H0351.1016). Further details are provided at http: //www.brain-
map.org.

Instead of the Schaefer’s parcellation, the Human Brainnetome
Atlas109 was used to spatially define the samples, because it was
developed in volumetric space. Thus, it is more suitable for matching
samples from the Allen Human Brain Atlas, whose anatomical location
was provided in MNI space. We then aligned the gene expression data
from the AHBA dataset into the 105 left cortical regions defined in the
Human Brainnetome Atlas, using the standard workflow embedded in
the abagen toolbox110. Specifically, the probe that exhibited the most
consistent pattern of regional variation across donors was selected to
index the gene expression. Using a scaled robust sigmoid normal-
ization approach, expression values within each brain sample were
normalized across genes and then normalized for each gene across
samples for eachdonor. The anatomical information for the left cortex
was used to match the hemisphere and tissue class designation pro-
vided by AHBA. Finally, the average normalized values of all samples
encompassed within each parcel was defined in the left hemisphere
Human Brainnetome Atlas, resulting in 105 expression values for each
of 20,232 genes across the left cortex. The spatial association between
the gene expression and the functional gradient across 105 brain
regions was calculated by Spearman’s rank correlation.

A note on brain parcellations
In the section ‘hierarchical cortex-wide fluctuations reflect ongoing
states of consciousness’, a network parcellation of Yeo’s 17 networks
was used to interpret the results, and themain analyseswere performed
in an atlas-free manner (e.g., in the sections ‘characterizing hierarchical
dynamics in single individuals’ and ‘hierarchical dynamics in psyche-
delic and psychotic brains’). In the section ‘complex brain integration
anddifferentiation’, we computed temporal andconnectivity entropyat
the regional scale based on the Schaefer atlas and further compared the
results with those from the Brainnetome atlas (Supplementary Fig. 15).
In the section ‘relationship to the infra-slow cortex-wide propagation
phenomenon’, we performed the QPP analysis using the time series
derived from both the Schaefer parcellation (Fig. 6) and the Brainne-
tomeatlas (Supplementary Fig. 16). The resultswere highly comparable.
The analysis in the section ‘hierarchical dynamics in macaque electro-
corticography’ was based entirely on the macaque electrodes. In
the section ‘implicationof histaminergic system’, we reported that three
different pipelines all showed a highly spatially positive association
between HDC gene expression and the main functional gradient: (i)
using the Brainnetome atlas and the Abagen toolbox, ranked 3rd; (ii)
using the surface pipeline of the Schaefer atlas provided by Anderson
et al.23, ranked 5th (Supplementary Table 5); (iii) the atlas-free pipeline
on the Neurovault website, ranked 9th in terms of variance explained
(Supplementary Table 6). We performed the analysis based on both the
Schaefer parcellation (Supplementary Fig. 17) and theBrainnetomeatlas
(Fig. 7) for the analysis of hypothalamic functional connectivity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed 3T and 7T resting-state fMRI, and group-
average dense functional connectivity data are available from the
Human Connectome Project (https://www.humanconnectome.org/
study/hcp-young-adult/document/1200-subjects-data-release). Simul-
taneous EEG–fMRI validation data during sleep, collected by Gu et al89,
can be downloaded at https://openneuro.org/datasets/ds003768/
versions/1.0.9. The preprocessed MyConnectome Project data, origin-
ally analyzed here37, is publicly available at https://openneuro.org/
datasets/ds000031/versions/00001. The preprocessed fMRI data
during placebo and LSD conditions, first reported by Carhart-Harris
et al.41, can be accessed at https://openneuro.org/datasets/ds003059.
The resting-state fMRI of the Consortium for Neuropsychiatric Phe-
nomics dataset is available at https://openneuro.org/datasets/
ds000030/. The macaque ECoG data during anesthesia and sleep
can be found at http://neurotycho.org/expdatalist/listview?task=78.
TheQPP template, generated in a previous work26, can be downloaded
at https://github.com/GT-EmoryMINDlab. The human gene expression
was from the Allen Human Brain Atlas (https://human.brain-map.org/
static/download) and analyzed with abagen toolbox (version 0.0.8,
https://abagen.readthedocs.io/en/stable/). Other raw data are not
publicly available due to data privacy laws and can be requested from
the corresponding author. The data supporting the calculation of
hierarchical index are available at Zenodo: https://doi.org/10.5281/
zenodo.7855130 Source data are provided with this paper.

Code availability
The BRANT toolbox (version 3.35) for fMRI data preprocessing is
available at https://github.com/kbxu/brant. The documentation and
code for generating spatially constrained null models are available at:
https://github.com/netneurolab/markello_spatialnulls. QPP analysis
was performedwith code available here: https://github.com/FCP-INDI/
C-PAC/blob/main/CPAC/qpp/qpp.py. The code used to compute the
Shannon and Sample Entropy is available in the package NeuroKit2
(version 0.1.1, https://neuropsychology.github.io/NeuroKit/). The
K-means clustering algorithm implemented in our study is based on
the scikit-learn library (version 1.1.1, https://scikit-learn.org/stable/
modules/clustering.html#k-means). Code to calculate hierarchical
index at both volumetric and surface space in our work is available at
Zenodo repository: https://doi.org/10.5281/zenodo.7855130.
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