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How soluble misfolded proteins bypass
chaperones at the molecular level

Ritaban Halder1,10, Daniel A. Nissley1,9,10, Ian Sitarik1,10, Yang Jiang 1, Yiyun Rao2,
Quyen V. Vu 3, Mai Suan Li3,4, Justin Pritchard 5,6 & Edward P. O’Brien 1,7,8

Subpopulations of soluble, misfolded proteins can bypass chaperones within
cells. The extent of this phenomenonandhow it happens at themolecular level
are unknown. Through a meta-analysis of the experimental literature we find
that in all quantitative protein refolding studies there is always a subpopula-
tion of soluble but misfolded protein that does not fold in the presence of one
or more chaperones, and can take days or longer to do so. Thus, some mis-
folded subpopulations commonly bypass chaperones. Using multi-scale
simulation models we observe that the misfolded structures that bypass var-
ious chaperones can do so because their structures are highly native like,
leading to a situationwhere chaperones do not distinguish between the folded
and near-native-misfolded states. More broadly, these results provide a
mechanismbywhich long-time scale changes in protein structure and function
can persist in cells because some misfolded states can bypass components of
the proteostasis machinery.

Some soluble, misfolded proteins can bypass the refolding action of
chaperones in vivo according to folding and functional assays1–3.
Typically, in these assays the protein of interest is purified after it has
been expressed either heterologously or constitutively from different
synonymous messenger RNA (mRNA) variants. A synonymous mRNA
variant is an mRNA molecule where one or more codons have been
replaced by a synonymous codon, which does not alter the encoded
protein’s primary structure but alters themRNA’s nucleotide sequence.

For example, introducing synonymous mutations into the Chlor-
amphenicol acetyltransferase (CATIII) enzyme decreased its specific
activity by 20%4. Since the specific activity is an ensemble average over
the soluble fraction of proteins, it can be inferred that these synon-
ymousmutations caused a portion of the soluble proteinmolecules to
shift into a misfolded ensemble with decreased activity. Many other
examples of this phenomenon exist. The ability of soluble FREQUENCY

(FRQ) protein to bind to its partner protein ‘White Collar-2’ (WC-2) was
decreased by half when a synonymous variant of FRQ was produced1.
Since FRQ was expressed in vivo, this indicates that chaperones
sometimes fail to catalyze the proper folding of soluble, misfolded
FRQ protein molecules.

In many of these studies, alternative explanations for the forma-
tion of soluble misfolded proteins have been ruled out. Most of these
studies have characterized the properties only of soluble protein
through the use of centrifugation, ruling out influences from insoluble
aggregates. Many also controlled for changing expression levels, rul-
ing out the possibility that it is changing in protein levels causing this
phenomenon. Gel assays ruled out the presence of truncated protein
forms in a number of studies. Finally, in some studies, native gels,
analytical ultracentrifugation, or size-exclusion chromatography were
run to rule out the presence of higher-order, non-native oligomers.

Received: 24 March 2022

Accepted: 24 May 2023

Check for updates

1Department of Chemistry, Pennsylvania StateUniversity, University Park, PA 16802, USA. 2Molecular, Cellular and Integrative Biosciences Program, TheHuck
Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. 3Institute of Physics, Polish Academy of Sciences; Al. Lotnikow
32/46, 02-668Warsaw, Poland. 4Institute for Computational Sciences and Technology;Quang Trung Software City, Tan ChanhHiepWard, District 12, Ho Chi
Minh City, Vietnam. 5Department of Biomedical Engineering, Pennsylvania State University, State College, PA 16802, USA. 6Huck Institute for the Life
Sciences, Pennsylvania State University, State College, PA 16802, USA. 7Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life
Sciences, Pennsylvania State University, University Park, PA 16802, USA. 8Institute for Computational and Data Sciences, Pennsylvania State University,
University Park, PA 16802, USA. 9Present address: Department of Statistics, University of Oxford, Oxford OX1 3LB, UK. 10These authors contributed equally:
Ritaban Halder, Daniel A. Nissley, Ian Sitarik. e-mail: epo2@psu.edu

Nature Communications |         (2023) 14:3689 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1100-9177
http://orcid.org/0000-0003-1100-9177
http://orcid.org/0000-0003-1100-9177
http://orcid.org/0000-0003-1100-9177
http://orcid.org/0000-0003-1100-9177
http://orcid.org/0000-0002-9863-0486
http://orcid.org/0000-0002-9863-0486
http://orcid.org/0000-0002-9863-0486
http://orcid.org/0000-0002-9863-0486
http://orcid.org/0000-0002-9863-0486
http://orcid.org/0000-0001-7749-4473
http://orcid.org/0000-0001-7749-4473
http://orcid.org/0000-0001-7749-4473
http://orcid.org/0000-0001-7749-4473
http://orcid.org/0000-0001-7749-4473
http://orcid.org/0000-0001-9809-3273
http://orcid.org/0000-0001-9809-3273
http://orcid.org/0000-0001-9809-3273
http://orcid.org/0000-0001-9809-3273
http://orcid.org/0000-0001-9809-3273
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38962-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38962-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38962-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38962-z&domain=pdf
mailto:epo2@psu.edu


Complete details of which controls were performed for eachof a set of
twenty experimental studies are provided in Supplementary Data 1.

Three fundamental questions arise from these observations: How
common is it for soluble,misfoldedproteins tobypass chaperones?How
long does it take for these misfolded states to fold? And, finally, how do
somemisfolded proteins avoid the refolding action of chaperones at the
molecular level? These are biologically important questions because the
answer to thefirst twoquestions could impactourunderstandingofhow
protein homeostasis is maintained in cells. The answer to the final
question would help to explain how synonymous mutations can have
long term impacts on protein structure and function in vivo.

To address these questions, we carried out a meta-analysis of the
experimental literature focused specifically on in vitro studies where
quantitative measurements can be carried out with appropriate con-
trols (Fig. 1a and Supplementary Data 1). We find that subpopulations
of soluble, misfolded proteins unaffected by the presence of chaper-
ones are the norm rather than the exception and estimate that in the
absence of side reactions, these misfolded states likely take days or
longer to fold. To answer the thirdquestion,weusecoarse-grained and
all-atom molecular dynamics to simulate the interactions of newly
synthesized proteins with the post-translational chaperones GroEL,
DnaK, andHtpG (Fig. 1b–f) and identify how somemisfolded states can
energetically and structurally bypass these chaperones.

Results
Soluble misfolded proteins bypass the E. coli chaperone
machinery in vitro
We carried out ameta-analysis of the experimental literature reporting
time-courses of protein refolding and acquisition of function (Fig. 1a

and Supplementary Data 1). We focus on in vitro studies because they
are capable of controlling for a number of factors that are currently not
possible to control for in vivo. A typical experiment involves splitting a
purified protein sample into two test tubes, applying a denaturant
(such as urea) to one sample, then performing a dilution jump
experiment to initiate protein refolding andmeasuring the time course
of the fraction of functional protein. For such a study to make it into
our analysis we require: (i) that the signal be normalized by the activity
of the non-denatured protein sample; (ii) that centrifugation be per-
formed before the start of the experiment to remove insoluble
aggregates; and (iii) that the fraction of native/functional protein be
measured in the presence of one or more chaperones.

Twenty papers spanning three decadesmeet these criteria5–24 (see
Table 1 and Supplementary Data 1). Five different chaperones are
represented in these studies – GroEL (HSP60), DnaK (HSP70), HtpG
(HSP90), HSP33 andHdeA – and nine different client proteins –Malate
dehydrogenase, Rhodanese, Luciferase, Rubisco, Aconitase, Peptidase
Q, Interferon gamma, Dihydropicolinate synthase, and Galactosidase.
Eighteen of these studies measured protein folding in the presence of
one chaperone, and two studies used two different chaperones. The
duration of the time-courses monitoring refolding in these studies
ranged from 30minutes to 600minutes, with an average of 150min-
utes and a median of 140minutes. Details are summarized for each
study in Table 1, extensive details are reported in Supplementary
Data 1, and time courses reproduced in Supplementary Fig. 1. Standard
chemical or thermal denaturation procedures are followed in these
studies that are unlikely to cause chemical damage to these proteins
during the time course of the experiments. Some experiments were
performed in triplicate suggesting random experimental errors, such

GroEL

Client protein

GroEL

Fig. 1 |Meta-analysis of protein refolding studies and representations ofGroEL,
DnaK, HtpG, and client proteins. a Through a meta-analysis of the experimental
literature we find an appreciable fraction (indicated by the red shaded region of
each subplot) of protein molecules bypass chaperones in vitro even though they
are not folded (i.e., have not regained activity), and take a minimum of days or
longer to reach their folded functional state. b Cartoon models of the native state
reference structures for six proteins whose interactions with GroEL/DnaK/HtpGwe
model. Helix, sheet, and loop regions are colored light purple, orange, and grey,
respectively. c Unfolded, misfolded, and folded conformations were generated by

synthesizing each protein using a coarse-grain ribosome-nascent chain complex.
After ejection from the ribosome the nascent proteinmay remain unfolded, reach a
misfolded state, or fold. These conformational statesmay then interactwith several
post-translational chaperones such as GroEL, DnaK and HtpG. d Characteristic
structures in both the bound and unbound states of GroEL (white space-filling
model) and Isochorismate synthase (brown cartoon).eRepresentative structures in
both bound and unbound states of HtpG and Purine nucleoside phosphorylase and
f Representative structures in both bound and unbound states of DnaK and Purine
nucleoside phosphorylase.
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as sticking of proteins to the plastic tips, tube walls or cuvette walls,
should average out.

In all of these studies, there is always a fraction of soluble
protein that does not attain a folded, functional state by the last
time point. The percentage of molecules that did not fold ranged
from a low of 6% to a high of 70% (Table 1, Fig. 1a and Supple-
mentary Data 1). Since structure equals function, these percen-
tages indicate there is an appreciable fraction of protein
molecules that are soluble, misfolded, and kinetically trapped in

solution. Thus, there is always a subpopulation of soluble pro-
teins that misfolds and whose folding is not catalysed by the
presence of these chaperones. One example is shown in Fig. 2,
where the unfolded client protein Rhodanese is incubated with
GroEL/GroES, DnaK, and co-chaperones GrpE and DnaJ. In this
example, even 150minutes after refolding was initiated with a
dilution jump, a little more than 25% of soluble Rhodanese
remains misfolded.

Refolding of soluble, misfolded states take days or longer
The folding time courses reported in the literature allow us to
roughly estimate how long it takes for the subpopulation of soluble,
misfolded states to fold and function. Applying to the experimental
time courses a double exponential fit, representing folding to the
native state through two parallel pathways, one fast and one slow
(see Methods, Supplementary Fig. 1, Supplementary Note 1 and
Supplementary Table 1), and interpreting the slower characteristic
time scale as the folding time of the soluble misfolded fraction, we
estimate that these states typically take days or longer to properly
fold. (The very slow characteristic time scales beyond 24 h, reported
in Supplementary Table 1, have large unquantifiable errors, and
should only be interpreted as indicating folding takes several days or
more to occur. See also Methods Section.) Thus, we conclude that
these soluble misfolded states convert to the native state very slowly
on biological time scales.

Depletion of ATPbyGroEL does not explain the lack of refolding
Many chaperones, including GroEL/GroES, require ATP during their
catalytic cycles. It is possible then that the 6–70% ofmolecules that we
conclude are trapped in soluble misfolded states in our meta-analysis
are the result of inactive chaperones due to ATP depletion during the
experiments. To test this, we solved the time-dependent Master
Equations for a simplified model of ATP-dependent protein refolding

Table 1 | Meta-analysis of proteins that remain soluble and misfolded in the presence of chaperones using Eq. 1. See also
Supplementary Table 1

Protein name Chaperone(s) %Misfolded and solu-
ble (a1 in Eq. 1)

Slow folding time
constant, (min)

k2 (min−1) k2,
Upper bound

k2,
Lower bound

Reference
number

Aconitase GroEL 57 103 2.18 × 10−3 2.22 × 10−3 2.14 × 10−3 5

Peptidase Q* GroEL 19 104 1.65 × 10−4 0.36 × 10−2 1.9 × 10−23 6

Luciferase* HSP70/DnaK 8 1022 9.34× 10−22 2.55 × 10−14 4.67 × 10−22 7

Luciferase HSP33 43 1016 1.71 × 10−16 1.72 × 10−16 1.39 × 10−33 8

Rhodanese GroEL, Dnak, GrpE 26 1016 1.80× 10−16 3.74 × 10−20 1.21 × 10−16 9

Malate dehydrogenase* Hdea 50 1018 4.90× 10−18 4.62 × 10−4 4.54 × 10−22 10

Luciferase HSP70, HSP90 35 102 1.50 × 10−2 1.58 × 10−2 1.43 × 10−2 11

Rhodanese* HSP60 26 1019 1.06× 10−19 2.21 × 10−19 5.31 × 10−20 12

Malate dehydrogenase* cpn60 27 1023 5.62 × 10−23 1.11 × 10−3 2.81 × 10−23 13

Rhodanese* GroEL 17 103 9.80× 10−3 4.40× 10−2 2.06 × 10−20 14

Rubisco† GroEL 38 102 7.80× 10−2 8.18 × 10−2 7.44 × 10−2 15

Rubisco GroEL 70 1020 4.82 × 10−20 2.85 × 10−14 7.27 × 10−19 16

Luciferase HSP70, HSP90 40 1019 9.85 × 10−19 4.58 × 10−16 6.46 × 10−19 17

Rubisco* GroEL 10 1012 1.01 × 10−12 9.72 × 10−3 5.95 × 10−26 18

Rubisco GroEL 23 1023 2.07 × 10−23 3.58 × 10−13 1.03. × 10−23 19

Interferon GroEL 25 103 7.23× 10−3 7.71 × 10−3 6.80× 10−3 20

Galactosidase HSP70/DnaK 43 1022 2.19 × 10−22 7.75 × 10−15 1.09 × 10−22 21

Rubisco GroEL 14 1014 3.14 × 10−14 4.73 × 10−13 1.90 × 10−25 22

Malate dehydrogenase GroEL 6 1013 1.39× 10−13 3.19 × 10−13 6.96 × 10−21 23

Rhodanese GroEL 20 1020 9.34× 10−16 2.92 × 10−20 1.97 × 10−20 24
†This rate constant has units of h−1 rather than min−1.
*These upper and lower bounds on the slowest rate constant were obtained using the error bars reported in the original study. If the original study did not report error bars, we assumed 1%
uncertainties on the original data points.

Fig. 2 | An example time course of reactivation/refolding of soluble rhodanese
in amixture of the chaperonesDnaJ/K,GroEL, andGrpE.Rhodanesewas initially
unfolded using guanidine hydrochloride and refolding then monitored after a
dilution jump and the addition of chaperones. Note that >25% of Rhodanase (red
shaded region) is unable to reach its fully folded conformation even in the presence
of these chaperones during the time course of the experiment. A kinetic fit (Eq. 1)
indicates this subpopulation will take 1016min (2.35 × 1014 years, 95% Confidence
Interval [2.24 × 1014 years, 6.94 × 1014 years] assuming 1%error in themeasurements)
to fold. Experimental data were extracted from ref. 9 Fig. 4a using PlotDigitizer (see
Supplementary Data 1).
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byGroEL (seeMethods). Thismodel considersGroEL-catalyzed folding
under several assumptions including only the unfolded state of the
client protein binds GroEL. Using this simplified model of GroEL-
dependent folding, we re-fit the experimental data for the nine data
sets involving GroEL (Supplementary Fig. 2) and computed the time-
dependentprobability of being in a non-native state,Psim

NN ðtÞ.Wefind, in
general, excellent agreement between the kinetic model and experi-
mental data, with Pearson R2 in the range of 0.99 (Supplementary
Fig. 2) for all but the two poorest fits. These poor fits, for the experi-
ments from Refs. 5 and 20 are likely due to two factors: (i) we do not
consider reverse transitions from the misfolded and folded states to
the unfolded state and (ii) we use the same estimated rate parameters
for all proteins based on global averages since protein-specific rate
information is not available.

Having verified the model, we next predicted the concentra-
tion of ATP as a function of time for each of the nine experiments
given the reported initial concentrations (Supplementary Table 2).
In each study, the initial concentration of ATP is ≥1000 μM, and
our model indicates that GroEL/GroES utilizes between
50–300 μM of ATP during the experiments (Supplementary
Table 2 and Supplementary Fig. 2). Therefore, there is a large pool
of free ATP available at the final time point. These results are
consistent with experiments that measured ATP consumption by
GroEL of around 50 μM, indicating that ample ATP remains after
the time course is completed (see Fig. 5b in ref. 24). We conclude
that ATP depletion leading to chaperone inactivity does not con-
tribute to the lack of refolding observed in the original
experimental data.

GroEL decreases the amount of misfolding
GroEL promotes protein folding6,25. Therefore, our kinetic model of
GroEL should reflect this in the fit parameters φF and φM (Eq. 7 and
Supplementary Fig. 2) that correspond, respectively, to the fraction of
client protein molecules that partition either into the folded or mis-
folded state eachGroEL cycle. Comparing these to the samequantities
in the absence of GroEL we find that φM Bulkð Þ is always greater than
φM (Supplementary Table 3, Eq. 7). This means that folding yield is
enhanced andmisfolding reduced in the presenceof GroEL. This result
is not surprising given GroEL’s well established foldase activity, but it
serves to illustrate the model yields sensible results, and also allows
quantification of the partitioning into these misfolded states.

Selection of GroEL client proteins that populate long-lived
misfolded states
Misfolded states can either be short-lived or long-lived26. Those that
quickly equilibrate to their native conformation are unlikely to have a
long-term influence on biochemical and cellular behavior. We there-
fore searched a dataset of simulations of E. coli proteins27,28 for those
that (i) are experimentally known to bindGroEL, and (ii) populate long-
lived misfolded conformations (Fig. 3). We identified six proteins,
isochorismate synthase (Fig. 3a), enolase (Fig. 3b), galactitol-1-
phosphate dehydrogenase (Fig. 3c), transcription factor 1 (Fig. 3d),
S-adenosylmethionine synthetase (Fig. 3e), and purine nucleoside
phosphorylase (Fig. 3f) that are confirmed GroEL clients and each
display long-lived misfolded states based on comparison of a running
average of their fraction of native contacts (Qmode, see Methods) to
native state simulations (Fig. 3).We can see in themisfolding trajectory

Fig. 3 | Long-livedmisfolded states of six E. coli proteins used in the chaperone
binding simulations. a Time series of Qmode for a misfolded trajectory of iso-
chorismate synthase during coarse-grain simulation of protein synthesis (green
shaded region), nascent protein ejection from the ribosome (too narrow to view on
plot), and post-translational dynamics (purple shaded region). The red dashed line
indicates the value of 〈QNS

mode〉, the mean Qmode of the native state ensemble (see
Methods). A structural alignment of the long-lived misfolded state at the end of
post-translational dynamics (cyan) with the native state (grey) is shown as an inset,
showing these are near-nativemisfolded states.b Sameas (a) but for theQmode time
series of Enolase Domain 2, which persists in a misfolded state. Enolase Domains 1
(residues 1–127) and 2 (residues 128–432) are displayed in magenta and cyan,
respectively. c Same as (a) but for theQmode time series of amisfolded trajectory of

galactitol-1-phosphate dehydrogenase. d Same as (a) but for the Qmode time series
of a misfolded trajectory of Transcription Factor 1. e Same as (a) but for the Qmode

time series of S-adenosylmethionine synthase Domain 3 from a misfolded trajec-
tory. S-adenosylmethionine synthase Domains 1 (residues 1–10 and 137–233), 2
(residues 11–105 and 234–270), and 3 (residues 106–136 and 271–384) are displayed
inmagenta, green, andcyan, respectively. f Sameas (a) but for theQmode time series
of a misfolded trajectory of purine nucleoside phosphorylase. Inset with white
background shows zoomed in view of the final 30ns of the simulation, demon-
strating the native state is not reached. The misfolded structures displayed in
(a)–(f) were used as the initial conformations for the chaperone binding simula-
tions involving interactions with long-lived misfolded states.
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shown in Fig. 3f of purine nucleoside phosphorylase, for example, that
this molecule obtains almost all of its native contacts, but there are no
fluctuations that allow it to reach the average number of native con-
tacts in simulations started from the native state (red line in Fig. 3f).
This indicates that in this single molecule trajectory the protein is
kinetically trapped in a near native misfolded state. In trajectories that
fold, the native state average is obtained. The previous simulations27

indicate that between 20% and 94% of the synthesis trajectories of
these proteins misfold, and for almost all these proteins entangle-
ments are the predominant cause of misfolding (Supplementary
Table 4).

Misfolded states have similar binding affinities to GroEL, DnaK
and HtpG as the native ensemble
We next asked how it is possible that long-livedmisfolded proteins are
able to bypass the post-translational cellular chaperonemachinery. To
address this question we used coarse-grained Langevin dynamics to
calculate the dissociation constant between the chaperone GroEL and
three distinct conformational states of client proteins: folded, unfol-
ded, and the long-lived misfolded state. In addition to GroEL, we also
consider the binding of purine nucleoside phosphorylase to the cha-
perones DnaK and HtpG (Fig. 1c). It has been found that HtpG on its
own does not fold proteins but acts downstream with DnaK29,30.

We find, as expected, that the unfolded ensembles of all six client
proteins are more likely to bind to GroEL than their native state
ensembles (Fig. 4 and Supplementary Table 5). For all client proteins,
the KD values of their unfolded state are always less than the native
state value, ranging from 4 to 20-fold smaller than the native state

value. For example, transcription factor 1’s unfolded state KD is 20-fold
smaller than its native state KD, meaning it binds 20 times stronger to
the chaperone.

In contrast, the KD values of the folded and misfolded states are
statistically indistinguishable, evidenced by the overlap of the 95%
confidence intervals in Fig. 4 with zero and the p-values > 0.05 repor-
ted in Supplementary Table 6. Thus, the misfolded and folded states
for all of the proteins have the same or highly similar affinities for
interacting with GroEL. We conclude that long-lived misfolded states
can bypass GroEL, DnaK, and HtpG because they exhibit no excess
interaction with these chaperones beyond that of the native state
ensembles’ interaction propensity.

As a quality check,we compared someof these values to literature
values. Experimentally, client protein-GroEL KD values have been
measuredon the order ofmicro to nanomolar (SupplementaryData 2).
Our simulated KD’s are in this range, having values of 20 to 790
micromolar. Experimentally reported ratios of native to unfolded KD’s
range from 2- to 30-fold (Supplementary Data 2). Our simulated KD’s
similarly range 4 to 20-fold. Thus, our simulation model is recapitu-
lating realistic KD magnitudes and relative differences between two
different conformational ensembles, giving more weight to the mole-
cular insights of our model.

As a technical aside, we tested whether our results were arising
from finite size effects31–33 of the simulation environment. To do this,
we reran all the simulations allowing only excluded volume interac-
tions between the client protein and GroEL (Supplementary Table 7),
and calculated two sets of odds ratios. First, we calculated the odds
ratio (Eq. 4) that the unfolded state and folded state interact with
GroEL with and without the attractive term of the Lennard-Jones
equation present. In all cases the odds ratio is statistically greater than
1 (Table 2), indicating the primary driving force for unfolded-state
binding to GroEL in excess of the folded ensemble is from attractive
interactions, not the larger-relative size of the unfolded state in the
finite simulation volume (Table 2). Second, we calculated the odds
ratio (Eq. 5) of misfolded to folded state binding to GroEL with and
without attractive interactions. We find that these ratios are statisti-
cally no different than 1, meaning that neither size differences nor
interaction differences contribute to differences in native and mis-
folded state GroEL binding. Thus, the differences in KD’s we observe
have little influence from finite-size effects.

A spectrum of chaperone binding affinities for different con-
formational states
We have only considered three conformational states of proteins.
However, proteins populate anensemble of conformations in solution.
Therefore, we expect a range of KD values for different configurational
states of the client protein. To estimate this range of KD’s, we gener-
ated a set of representative conformations by first simulating the heat

Fig. 4 | Dissociation constant (log2 KD) of the unfolded, misfolded, and folded
states of client proteins to the chaperones, at 310K. The folded state KD is used
as a reference. Shown for the six client proteins is the log2(KD,X/KD,Folded) ratio
(where X=Misfolded or Unfolded) between the chaperone GroEL and the unfolded
ensemble relative to the folded ensemble (U/F, orange circles) and misfolded to
folded ensemble (M/F, blue squares). On the x-axis EntC, Isochorismate synthase;
Eno, Enolase; GatD, Galactitol-1-phosphate dehydrogenase; YciO, Transcription
factor 1; MetK, S-Adenosylmethionine synthetase, PndA, Purine nucleoside phos-
phorylase, with GroEl ( + GroEL), HtpG ( +HtpG) or DnaK ( +DnaK) present. Error
bars represent the 95% confidence intervals about the mean values of 10 inde-
pendent simulations of each protein conformations. The dotted grey line at
log2(KD,X/KD,Folded) = 0 occurs when KD,X =KD,Folded. Differences between orange
versus blue points for each protein are statistically significant (maximum p-value is
10−7, computed using a two-tailed Permutation Test, see Supplementary Table 6).
Negative log2(KD,X/KD,Folded) values mean KD,X is smaller than KD,Folded (strong
binding). Note well, the KD’s of the misfolded and folded states are not statistically
different, demonstrated by the overlap of the 95% CI with zero and p >0.05.

Table 2 | Odd’s ratios between probabilities of binding in the
unfolded, misfolded, and folded states with and without
attractive Lennard-Jones interactions (see Eq. 4 & 5)

Client protein PU,on
PU,off

� �
PF,on
PF,off

� � p-value‡
PM,on
PM,off

� �
PF,on
PF,off

� � p-value

Isochorismate synthase 2.1 8 × 10−5 0.75 0.12

Enolase 4.4 1 × 10−8 0.84 0.04

Galactitol-1-phosphate-dehydrogenase 3.9 5 × 10−7 1.7 0.001

Protein Transcription factor 1 4.5 2.2 × 10−8 1.2 0.10

S-adenosylmethionine synthetase 2.8 1.3 × 10−6 1.1 0.49

Purine nucleoside phosphorylase 2.4 1.1 × 10−7 1.2 0.10
‡p-values were calculated using a two-tailed Student’s t-test with α =0:05.
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denaturation of isochorismate synthase and then temperature
quenching to 310K to initiate refolding (see Methods). Next, we sam-
pled 20 different conformations across a range of Q and Rg (radius of
gyration) values that were sampled in these refolding simulations
(Supplementary Fig. 3). Finally, we calculated the KD value for each of
these conformations interacting with GroEL and plotted them as a
function of Q (Supplementary Fig. 3b).

Weobserve a rangeofKD values in Supplementary Fig. 3b, from50
to 600 µM, with a trend of increasing KD with an increasing fraction of
native contacts. Below Q < 0.4 (i.e., less structured) entangled states
are uncommon, and these less structured states exhibit stronger
binding to GroEL. Above Q > 0.4 (i.e., more structured) misfolded
entanglements aremore commonand somehave aKD similar to that of
the native state (compare, for example, the values of red data points
(entangled) around Q~0.8 and black circles (folded) at Q~0.9 in Sup-
plementary Fig. 3b). Other entangled states have values different than
the native state. Thus, we conclude that non-native and misfolded
states can have a range of KD values, some similar to the native state,
butmany not. The greatest predictor appears to be hownative-like the
non-native state is. Next, we selected nine different conformational
states with Q ranging from 0.5 to 0.95 amongst those initial set of
twenty structures such that four of them are entangled and performed
unrestrained simulations at 310K.Wefind that all four entangled states
are not able to fold, remaining kinetically trapped throughout the
course of the simulation (Supplementary Table 8). On the other hand,
the five states with no entanglement all reach the native state during
these simulations. These results indicate our model realistically pre-
dicts a range of KD values depending on how folded the protein is.
Further, the slow refolding of entangled states highlights why they are
more likely to be biologically relevant than fast-folding non-native
states.

Conclusions are robust to changes in model resolution, binding
definition, and initial conditions of refolding
To test if our conclusions are dependent onmodel resolution we back-
mapped each of the ten coarse-grain folded, unfolded, and misfolded
conformations of Isochorismate synthase bound to GroEL to an all-
atom representation (Fig. 5b and c) and ran 2-ns all-atom simulations in
explicit water for each of these 30 systems (see Methods). We then
calculated the average interaction energy between Isochorismate
synthase andGroELduring the simulations.Wefind that the interaction
energy of the unfolded, misfolded, and folded states are, respectively,
−609.5 kcal/mol (95% CI: [−631.0:−588.0]), −351.3 kcal/mol (95% CI:
[−370.5:−332.2]), and −291.6 kcal/mol (95% CI: [−308.3:−35.9]) (Fig. 5a).

Thus, regardless of model resolution, the misfolded state interaction
energies with GroEL are more similar to the folded state than the
unfolded state.

We tested whether the contact threshold value (Supplementary
Table 9) for defining a chaperone bound state alters our conclusions.
To do this we calculate isochorismate synthase’s KD with GroEL as this
threshold is varied. We find that our conclusions are unchanged
(Supplementary Fig. 4). We also tested whether most of the misfolded
states we observe in co- and post-translational folding simulations are
seen in temperature quench simulations. For this purpose, we chose
the client protein S-adenosylmethionine synthetase and heated it in
the computer above its melting temperature and then quenched the
temperature to 310K. We then constructed a log probability plot as a
function of two order parameters (Q and G, Eq. 6). Comparing these
two plots for temperature quench and co/post-translational folding
simulationswe see that 7 out of the 9metastable conformational states
are the same in both (Supplementary Fig. 5). We note that the mis-
folded structures used in this study for S-adenosylmethionine syn-
thetase were selected from the highly populated metastable state 2
(Supplementary Fig. 5c, d, yellow) that is present in both ensembles
generated by refolding and by synthesis on the ribosome. This
demonstrates that most misfolded states are populated in both pre-
parationmethods, and the general conclusions of the study are robust.

Misfolded states bypass chaperones because they are structu-
rally similar to the native state
To understand the structural origins of our binding results we char-
acterized the size, interface, and how native-like each conformational
ensemble was by calculating, respectively, the ensemble-averaged
radius-of-gyration, solvent accessible surface area, and fraction of
native contacts. We observe (Table 3) that the unfolded ensemble is
consistently larger and has more exposed surface area than the native
state for all client proteins, explaining why it binds more strongly to
GroEL, DnaK, and HtpG. In contrast, the misfolded states are much
more similar to the native state than they are to the unfolded state.
Averaging across all client proteins, the misfolded state is typically 8%
larger than the native state (characterized by the percent difference in
Rg), has 90% of the native contacts formed, and has a surface area that
is only 14% larger than the native state on average. Thus, themisfolded
states have structural properties that are similar to the native state,
explaining why they interact with these chaperones to a similar degree
as the native state.

The reason why these particular misfolded states are kinetically
long-livedwas previously explained27,34. Thesemisfolded states involve

Fig. 5 | The average interaction energy between Isochorismate synthase and
GroEL in an all-atom, fully solvated model. a The average all-atom interaction
energy between GroEL and unfolded, misfolded, and folded Isochorismate syn-
thase. Each interaction energy is the average from ten independent simulations.
Error bars are 95% Confidence Intervals. Even in the higher resolution model, the

misfolded state interactswithGroEL similarly to the native state as compared to the
unfolded state. Snapshot from the simulations of Isochorismate synthase bound to
GroEL in the b coarse-grained (before backmapping) and c all-atom (after back-
mapping) representations.
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non-native changes in non-covalent lasso entanglements. A non-
covalent lasso entanglement involves two structural components: a
geometrically closed protein backbone loop, and a N- or C-terminal
segment that threads through that loop. The loop is closed by a non-
covalent native contact. Some 70% of globular proteins contain non-
covalent lasso entanglements35. A non-native change of entanglement,
characterized by our metric G (see Eq. 6 and Methods), means that a
protein that forms one of these self-entanglements in the native state
does not form it in the misfolded state, while a protein that does not
formone of these self-entanglements in the native state does form it in
themisfolded state. Each of the sixproteinswe simulatedmisfolds into
states that exhibit a non-native gain of entanglement relative to the
native state. When such non-native changes of entanglement occur in
near-native misfolded states, it is an energetically costly and slow
process to reach the native state because the protein must unfold to
allow the correct entanglement state to be achieved. An illustration of
a non-native gain of entanglement (which is present in its misfolded
conformation that we simulated) is illustrated for protein Enolase in
Fig. 6, where the arrow points to the crossing point of the threading
segment through the loop in Fig. 6a. The entanglements in the other
five client protein are illustrated in Supplementary Fig. 6 through 10.

Misfolded states in simulations are consistent with Limited
Proteolysis Mass Spectrometry data
We compare the consistency of the misfolded states observed in our
simulations with Limited Proteolysis Mass Spectrometry (LiP-MS)
data36 which reports on specific proteinase K (PK) cut sites in a protein
that have changes in peptide abundance upon chemical refolding37

(Supplementary Table 10). We can only compare two of the proteins
we simulated with the LiP-MS data because the others lack PK cut sites
due to low coverage or inconsistent cut sites across time points. We
first identify a set of metastable states with conformational and tem-
poral clustering along the Q and G order parameters34 followed by a
topological analysis of the most probable structures in each meta-
stable state to determine the unique changes in self-entanglement
observed in our simulations (Supplementary Tables 11 and 12). We
examined the consistency between an entangled conformation and

the set of LiP-MS peptides with significant changes in abundance as
measured by both primary structure overlap and the consistency of
changes in solvent exposure relative to the native state. A permutation
test with randomly selected peptides derived from the theoretical
distributionof all possible PK cut sitesfinds that 2-out-of-11 and 10-out-
of-19 of these entangled conformations for S-Adenosylmethionine
synthetase and Enolase respectfully, are consistent with the experi-
mental data beyond random chance with p-values less than 0.05
(Supplementary Table 13). In particular, PK cut sites A60, G317, and
Q343 in S-Adenosylmethionine synthetase and P129, M151, M170,
G363, and L383 in Enolase have the most statistical significance with
the observedmisfolded states across all 3 LiP-MS refolding timepoints
(Supplementary Fig. 11). The consistency in the overlap of experi-
mentally observed changes in solvent exposure and our predicted
changes in self-entanglement for Enolase is of particular interest in
light of the decades-old evidence that it can adopt stable, soluble
misfolded conformations38,39.

Discussion
Using a combination of published experimental data, kinetic model-
ing, and multi-scale simulations we have answered a number of basic
molecular biology and biochemistry questions concerning protein
structure and function in vivo. The observations that synonymous
mutations can have long-term effects on protein structure and func-
tion in vivo strongly imply that soluble, misfolded subpopulations
persist in cells and that chaperones do not catalyze their folding on
biologically relevant time scales. This motivated us to re-analyze the
last several decades of literature to examine if there was quantitative
in vitro data to test this inference. We indeed find that in every single
in vitro experiment in which there are fairly rigorous controls and
normalization there is always a subpopulation of soluble, misfolded,
less-functional proteins that do not fold in the presence of chaperones.
These subpopulations can be as high as 70% of the total protein
molecules in solution. Applying a kinetic model to the experimental
time courses, we estimate these soluble misfolded states can take a
minimum of days or longer to fold in the presence of chaperones.
Thus, the in vivo and in vitro data indicate the same phenomenon:
some soluble, misfolded proteins can bypass the chaperone machin-
ery for long periods.

These results do not mean that all misfolded and non-native
conformations bypass chaperones. At equilibrium, proteins adopt an
ensemble of distinct structures with different probabilities, existing on
a continuum from more to less ordered and hence, for globular pro-
teins, span from exposing less to more hydrophobic surface area.
Thus, some protein conformations will be more or less likely to
interact with chaperones, and hence different misfolded conforma-
tions will have different affinities for chaperones. Indeed, in our
simulation resultsweobserve thatwhen the protein is less ordered and
more unfolded the binding affinity for the chaperones increases
(Supplementary Fig. 3).

Our kinetic analysis indicates that many of the soluble misfolded
states take days or longer to fold. An interesting implication of this is
that many proteins will have subpopulations that can be kinetically
trapped in solublemetastable states throughout their entire life in a cell
as well as overmultiple doubling times in E. coli. Themedian half-life of
a protein in exponentially growing E. coli is 241 minutes40. Eighteen out
of twenty in vitro refolded proteins reported here have a slow folding
phase time constant longer than this time. This opens up the possibility
of an epigenetic mechanism, where the ‘memory’ of the initial condi-
tions under which a protein folded could be encoded in its structural
ensemble and affect cellular properties in subsequent generations.

We ruled out the alternative hypothesis that ATP depletion leads
to inactive GroEL resulting in soluble, non-folded proteins in the
experiments. Our kinetic model (Supplementary Fig. 12 and Eq. 7)
indicates that in each experiment in which GroEL/GroES was present,

Table 3 | Structural characteristics of unfolded, folded, and
near-native misfolded states

Client protein Conformational
State

Fraction of
native con-
tacts, Q

Hydrophobic
solvent acces-
sible surface
area, Å2

Isochorismate synthase Unfolded 0.50 87.4

Misfolded 0.85 25.7

Folded 0.92 20.2

Enolase Unfolded 0.51 81.1

Misfolded 0.93 20.9

Folded 0.94 16.8

Galactitol −1-phosphate
dehydrogenase

Unfolded 0.51 77.5

Misfolded 0.86 24.8

Folded 0.94 20.1

Transcription factor 1 Unfolded 0.19 98.1

Misfolded 0.85 29.4

Folded 0.93 25.3

S-Adenosylmethionine
synthetase

Unfolded 0.44 69.3

Misfolded 0.84 30.5

Folded 0.94 27.9

Purine nucleoside
phosphorylase

Unfolded 0.38 90.4

Misfolded 0.88 30.3

Folded 0.93 26.6
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theATPconcentration remains high throughout the experimental time
course. Another hypothesis that can be ruled out is that insoluble
protein aggregate formation occurs continuously, preventing attain-
ment of 100% of native state activity. If such protein aggregation
occurred during the time course of the experiment more-and-more
protein would shift to the non-functional aggregated form leading to a
downward slope in the percent refolded versus time (Fig. 1a). Instead, a
plateau is observed in the data in all cases, indicating continuous
aggregate formation is not occurring.

Our identification of near-native self-entanglements as a
mechanism explaining howproteins can remain soluble andmisfolded
is not mutually exclusive with other misfolding and misfunctioning
mechanisms that can occur in vivo. These other mechanisms can
include non-native dimer swapped structures41,42, aberrant protein
isoforms frommRNA splicing43, post-translationalmodifications44, and
chemical processes that age proteins such as oxidation45. Indeed, in
ourmeta-analysis data set, no single study simultaneously ruled out all
these possibilities. Most ruled out some, but not all of these con-
founding factors. Future experiments that seek to detect these non-
native changes of entanglement should use a large battery of controls
to simultaneously rule out these alternative explanations.

Lasso-like entanglements are common in the native fold of pro-
teins andentanglementsmoregenerallyhavebeena subjectof interest

to the polymer community for 60 years46–50. In the 1960’s, scientists
noticed entanglements in synthetic polymers51, and found polymer
composition, polarity, and tacticity can lead to alteration in the fre-
quency and strength of entanglements. And entanglements due to
loop threading in proteins have been found to bemore common in the
case of larger proteins with more than 200 residues46.

Another important aspect of our study is that the simulations
utilized six proteins that havebeenpreviously found27 in simulations to
populate long-lived misfolded states, and compared their chaperone
binding affinity to that of the unfolded and folded states. The fact that
these are long-lived misfolded states is biologically relevant for two
reasons. First, if the misfolded states rapidly folded they would not
need chaperones to acquire their function. Second, it is these kineti-
cally trapped misfolded states that can have long-term impacts on
subcellular processes and phenotype through their loss-of-function.
Through these comparisons wewere able to demonstrate – using both
coarse-grained and all-atomproteinmodels – that thesemisfolded and
native states have similar affinities for chaperones, indicating that
chaperones do not treat these particular long-lived misfolded states
much differently than they do the native state. The structural and
energetic origin of this lack of differentiation comes from the high
structural and surface similarity of themisfolded andnative states. The
misfolded states persist for two reasons. They form a non-covalent

a b

c d

crossing

crossing

Fig. 6 | Illustration of Enolase’s near-native, misfolded entangled state and
native state. a Ribbon representation of the long-lived near-native entangled state
of Enolase observed in our coarse-grain simulations. The closed loop and threading
segments that form the entanglement are colored red and blue, respectively. The
pair of residues that form the native contact that closes the loop are shown as
orange spheres at the location of their Cα atoms. b Flattened secondary structure
representation of the misfolded state shown in panel (a). In this flattened diagram
‘A’ indicates the location of helices and ‘S’ indicates β-strands. The yellow spheres
represent the pair of residues that forms the native contact (yellow dashed lines)

that closes the loop. The threading segment is shown in blue and the closed loop is
shown in red. cRibbon representation of the native state of Enolase, which contains
no entanglements but for the sake of comparison we color the segments that form
the entanglement state the same as in (a). d Flattened schematic representation of
the native state of Enolase with no entanglements. The atomistic structures shown
in (a) and (c) were back-mapped to an all-atom representation from coarse-grain
structures for visualization purposes. The structure of Enolase shown in (a) is the
same misfolded as the structure shown in Fig. 3, panel b but rotated and colored
differently.
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lasso entanglement –meaning part of their protein backbone created
what can be geometrically defined as a closed loop, and the N- or
C-terminal segment threads through this loop – but also they contain
significant native structure. This combination means that to disen-
tangle and reach the native state large portions of the misfolded pro-
tein must unfolded (also known as backtracking52–55), which can be a
very slow process56. Indeed, applying a standard backtracking analysis
method54, we observe that misfolding protein trajectories must par-
tially unfold (Supplementary Fig. 13a) to reach the native state,
whereas fast-folding trajectories exhibit no such behavior (Supple-
mentary Fig. 13b). Hence, the large amount of native structure around
an entanglement leads to long-lived states. By choosing to study mis-
folded states that were kinetically long-lived we concomitantly selec-
ted formisfolded states thatwerenative like. Indeed,wherepossible to
compare to experiment, the misfolded structures and LiP-MS data are
found to be in excellent agreement.

Backtracking is not unique to coarse-grained structure-based
models. It occurs in proteins52,57,58, nucleic acids59, in models using
transferable all-atom force fields60 and there is experimental evidence
for backtracking in a number of proteins57,58. Further, the misfolded
entangled states we see in the structural model are also observed in
transferable physics-based forcefields. Thus, suchbacktrackingoccurs
in nature and is observed independent of model resolution and for-
cefield. 33% of globular domains contain native non-covalent lasso
entanglements35. In our simulations, we observe these non-covalent
lasso entanglements can occur inmisfolded states. Often in nature, if a
tertiary structural element can occur in a native state, it has the
potential to occur in the misfolded state. Thus, the various compo-
nents that make up our key conclusions have been seen in various
forms in different studies and fields61.

Interestingly, two simulation studies27,34 predicted that many
soluble misfolded states could take anywhere from days to years to
fold. Our analysis of the published experimental data indicates these
misfolded states take a minimum of days to fold. Thus, the previous
simulation predictions are qualitatively consistent with the current
results.

It was recently shown that proteins that contain non-covalent
lasso entanglements in their native state are more likely to get
degraded as newly synthesized proteins, probably because they tend
to be slow-folding proteins62. This suggests the realistic possibility
that when non-covalent lasso entanglements form as off-pathway
intermediates, they might have differential rates of degradation as
opposed to proteins that do not. Further, because some knotted
proteins (another class of entanglement) have been shown to be
more resistant to degradation63 so too it might be the case that
already formed non-covalent lasso entanglements could be more
resistant to degradation.

A critique of our meta-analysis is that we only analyzed in vitro
data, and the lack of an in vivo environment, which includes vectorial
synthesis by the ribosome and the presence of more types of cha-
perones, artificially increased the subpopulations of solublemisfolded
protein. While it is possible that the fraction of soluble, misfolded
protein may decrease in the cellular context they are not entirely
eliminated. It has been observed, for example, that when a protein is
synthesized by the ribosome it still populates states that remain
soluble in non-functional form – thus, vectorial synthesis does not
eliminate these subpopulations64. Additionally, synonymous muta-
tions that alter the speed of translation but not the encoded protein
sequence can impact a host of cellular processes1,65–68, including a
protein’s structure and function in vivo. These observations suggest
the molecular explanation from this study is likely to remain relevant
in vivo, even if population levels of soluble misfolded states are dif-
ferent compared to in vitro.

Apromising connectionwill be to examine if the type of long-lived
misfolded states we observe are relevant to organismal aging. In the

case of enolase, there is evidence that it undergoes a thermo-
dynamically reversible conformational change into a kinetically trap-
ped state depending on the age of the organism in which it is
expressed38,39. Age-related functional changes in aminoacyl-tRNA syn-
thetases have also been suggested to arise from conformational
changes in some organisms69. A challenge in such studies will be to
control for side reactions, such as increased oxidative damage that can
occur to non-native conformations compared to their native
counterpart70–73. Thus, the phenomena we have identified may be of
relevance to some of the molecular origins of aging.

These and other recent findings74 are providing a new perspective
on protein structure and function in vivo suggesting proteins com-
monly exhibit subpopulations of structural ensembles that are soluble,
misfolded, less functional, not rapidly degraded, not quick to aggre-
gate, nor acted upon excessively by chaperones. The population of
molecules with these characteristics can be influenced by both
translation-elongation kinetics, as suggested by synonymousmutation
studies, or throughdenaturation and renaturation, as seen inourmeta-
analysis. It is natural to hypothesize other perturbations could influ-
ence their populations as well, such as changes in temperature75.
Experimental efforts to structurally characterize these self-entangled
states are likely to be a fruitful area of future research, as the impli-
cations of these states for protein structure, function, andhomeostasis
are broad and fundamental.

Methods
Extrapolation of refolding timescales
Raw data were extracted from the published experimental papers lis-
ted in Table 1 using PlotDigitizer (http://plotdigitizer.sourceforge.net/
). These raw values, which represent the percent refolded as a function
of time, were then converted to the percent non-native as a functionof
time by taking %non-native= 100�%refolded. The resulting %non-
native versus time data series were then divided by 100%, giving the
time-dependent probability of the protein being non-native, PNN tð Þ,
and then fit with the equation

PNN tð Þ=a0 exp �k1t
� �

+a1 exp �k2t
� � ð1Þ

In Eq. 1, t is time, and k1 and k2 are refolding rate constants. t=0
corresponds to the time at which folding conditions were established.
A similar procedure was previously used to extract characteristic slow-
folding timescales for protein folding via an obligate misfolded/inter-
mediate state27. This kinetic scheme76 (Supplementary Note 1) repre-
sents processes in which A ! N and B ! N are parallel pathways with
no interconversion between ensembles A and B. A and B represent the
fast- and slow-folding (i.e., misfolded) populations, respectively, andN
represents the natively folded protein. The rate constants k1 and k2

thus correspond to the rates of folding for the fast- and slow-folding
populations, respectively. The valuesa0 anda1 represent, respectively,
the initial probability of being in state A and B, with a0 +a1 � 1. Sup-
plementary Fig. 1 displays the experimental data, PNN tð Þ values, and fit
results, while Supplementary Table 1 summarizes all fit parameters.
Non-random residuals using a single exponential fit (Supplementary
Fig. 14) demonstrate that the double exponential fit (Eq. 1) better
describes the data (Supplementary Fig. 15).

k2 rates reported in Supplementary Table 1 below 10−3 min−1 suffer
from large and growing errors the smaller k2 becomes, and therefore
should only be interpreted to indicate that folding is taking a day or
longer. To illustrate why this is consider that the longest experimental
time course reported is 300minutes. As k2 gets smaller the argument
�k2t in Eq. 1 tends towards zero. Therefore, we can approximate Eq. 1
using a Taylor expansion to the 1st order on the second term, resulting
in PNN tð Þ≈a0 exp �k1t

� �
+a1 � a1k2t. That is, the decay of the non-

native state is a convolution of an exponential decay, a linear decrease
whose slope is a1k2, and a constant a1. To be able to accurately
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determine k2 it is required we be able to observe in the experimental
time course a linear regimewhose slope can bemeasured. As a general
rule of thumb, observing a one-tenth change in slope during the
experiment should yield reasonable estimates of k2. Thismeans that k2

rates that are 10 times longer than the experimental timecourse canbe
measured. Thus, since most of the reported experiments are on the
order of 100minutes, characteristic decay times of 1000minutes can
be measured, and taking the inverse means rates on the order of
10−3min−1 can be estimate. Beyond this, k2t becomes so small that
PNN tð Þ is better modelled using a zeroth order Taylor expansion,
yielding PNN tð Þ≈a0 exp �k1t

� �
+a1.

Selection of chaperones and client proteins
Monomers composing the molecular chaperone GroEL consist of the
apical, equatorial, and interconnecting domains. Client proteins bind
to a specific region within the apical domain. All structures of GroEL
used in this study are based on PDB structure 1KP8, which has been
used widely in GroEL simulation studies77,78. We model client proteins
interacting with one GroEL heptameric ring. We modeled the interac-
tions of six client proteins with GroEL: (1) Transcription factor 1 (PDB
ID: 1K7J), (2) purine nucleoside phosphorylase (PDB ID: 1A69), (3)
S-adenosylmethionine synthetase (PDB ID: 1P7L), (4) enolase (PDB ID:
2FYM), (5) isochorismate synthase (PDB ID: 3HWO), and (6) galactitol-
1-phosphate dehydrogenase (PDB ID: 4A2C). We selected these
proteins because they are confirmed GroEL clients79–81 and each was
previously observed to populate long-livedmisfolded states in coarse-
grained simulations of protein synthesis, ejection, and post-
translational dynamics27.

For each of these proteins, we selected structures representing
long-lived misfolded conformations from synthesis trajectories based
on comparison of their Qmode to the average Qmode values computed
from simulations initiated from the native state coordinates (Fig. 3).
The fraction of native contacts,Q, was first calculated for each domain
and interface of each protein during nascent protein synthesis, ejec-
tion, and post-translational dynamics. Only contacts between pairs of
amino acids that are both within the set of secondary structural ele-
ments identified by STRIDE82 in the native-state reference structure are
considered. Qmode was then computed as the mode of these Q values
within a 15-ns sliding window and compared to reference values
computed as the average Qmode over all windows of ten independent
simulations started from the native state, denoted hQNS

modei. Trajec-
tories are considered to populate long-lived misfolded states if they
never reach hQNS

modei during the simulation. Trajectories representing
long-lived misfolded states for each of the six GroEL client proteins
listed abovewere identified in thisway and their final coordinates after
post-translational dynamics used as the initial coordinates for the
chaperone binding simulations. Structural properties of each of the
starting protein conformational states used in these simulations are
reported in Table 3. The contact maps of the folded and misfolded
conformations of each client protein are shown in Supplemen-
tary Fig. 16.

Unfolded conformations for binding simulations were selected
for each client protein as the first structure after ejection from the
ribosome was complete (75 ps after ejection) in the same trajectories
identified to be in long-lived misfolded states. Finally, representative
native conformations were chosen for each protein as the final struc-
ture from a simulation initiated from the native state coordinates and
run for 30 CPU days.

In addition to simulations with GroEL, we also examined the
interactions of chaperones DnaK and HtpG with client-protein purine
nucleoside phosphorylase (PNP)83. Full-length coarse-grained models
of DnaK and HtpG were constructed from PDB IDs 5NRO and 2IOQ,
respectively. 2IOQ was used in several earlier HtpG simulation
studies84–86 while the DnaK structure 5NROwas selected because it has
been used in earlier studies87,88. Simulations of DnaK and HtpG were

otherwise conducted in the same fashion as those described for GroEL
and its client proteins.

Construction of coarse-grained protein representations
Weuse a Cα coarse-grained representation for GroEL, DnaK, HtpG, and
their client proteins28,89. The potential energy E of a conformation is
calculated according to the expression
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In Eq. 2 the summations represent, from left to right, contribu-
tions from virtual Cα −Cα bonds, torsion angles, bond angles, elec-
trostatic interactions, Lennard-Jones-like native interactions, and
repulsive non-native interactions to the total potential energy (E) of a
given coarse-grainmodel configuration. The bond, dihedral, and angle
terms have been reported elsewhere90,91. Electrostatic interactions are
described using Debye−Hückel theory with a Debye length, lD, of 10 Å
and a dielectric constant of 78.5. Interaction sites representing the
positively charged amino acids lysine and arginine are assigned q= + e,
sites representing glutamic acid and aspartic acid are assigned q= � e,
and all other interaction sites are taken to have a charge of zero91.
We compute the contribution from native contacts to E using the
12 − 10 − 6 interaction potential of Karanicolas and Brooks91.
The value of ϵNCij , the depth of the energy minimum for any particular
native contact, is calculated as ϵNCij =nijϵHB +ηϵij . ϵHB represents the
energy contribution from hydrogen bonds, while ϵij represents the
energy contribution from the vanderWaals contacts between a pair of
residues i and j found to be in contact within the protein all-atom
reference structure. nij indicates the number of hydrogen bonds
formed between a pair of residues i and j. The value of ϵij is initially set
using the Betancourt−Thirumalai pairwise potential92 and multiplied
by a constant η to construct a reasonably stable coarse-grain model as
described below. The collision diameters, σij , between all the Cα

interactions sites involved in native contacts are set equal to the dis-
tance between the Cα atoms of the corresponding amino acid residues
in the crystal structure divided by 21/6. van der Waals interaction
energies between pairs of residues that do not share a native contact
are instead computed in the final summation. For all the non-native
interactions, ϵNNij is set to be 0.000132 kcal/mol and σij is computed as
reported previously91. The average energy value for the native inter-
action, ϵNCij , is 0.6675 kcal/mol.

Selection of η for chaperone and client protein coarse-grain
models
Toobtain realistic biomolecular stabilitieswe scale the ϵij terms inEq. 2
by a multiplicative factor η. Values of η for all client proteins were
taken from a previous study28, with different values used for each
domain and interface; we reproduce these values for the client pro-
teins studied here in Supplementary Table 14. These η values them-
selves are based on a previous training set of globular proteins93. The
selection procedure for these η values is described in detail in Ref. 28.
Briefly, sets of ten 1-µs Langevin dynamics simulations were run in
CHARMM94 version c35b5 at 310 K with a friction coefficient of
0.050 ps−1, a 15-fs integration time step, and the SHAKE95 algorithm
used to constrain all bond lengths. A particular η value was considered
suitable if the coarse-grain model had a fraction of native contacts, Q,
greater than 0.69 for ≥98% of simulation time during each of the ten
1-µs simulations with a particular set of η values.
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We applied this same procedure to select suitable η values for the
intra- and inter-domain contacts within the chaperone proteins GroEL,
HtpG, and DnaK. We chose to use single values for all native contacts
for these proteins, rather than domain- and interface-specific values;
the results, ranging from 1.400 to 1.800, are listed in Supplementary
Table 15.

The values of η for chaperone-client protein interactions were
selected as the value for each client protein that resulted in the
unfolded state binding to the chaperone in 40–60% of simulation
frames during the binding simulations described in the next Methods
section. Initial simulations were run with the unfolded state using
η = {0.100, 0.110, 0.120, 0.140, 0.145, 0.150, 0.153, 0.155, 0.160, 0.200}
for client-chaperone interactions; the selected values are recorded in
Supplementary Table 16. These simulations were run in OpenMM96

v7.4.1 asdescribedbelowusing equivalent parameters to theCHARMM
simulations described above. Note that attractions between client
proteins and chaperones are non-specific, with each client protein
interaction site experiencing the same attractive force to each cha-
perone interaction site.

Simulation of GroEL, DnaK, and HtpG interactions with client
proteins
Simulations were initialized with the center-of-mass of the GroEL
coarse-grain model at the origin of the coordinate system. The client
protein of interest was then placed in a random orientation such that
the distance between its center-of-mass and the center of the top of
GroEL ring was 70Å, with no van der Waals contacts between them.
Spherical harmonic restraints, with a force constant 0.1 kcal/(mol × Å2),
were placed on all GroEL interaction sites to maintain its conformation
andposition at the origin throughout the simulation. RootMean Square
Deviation (RMSD) restraintswith a force constant of 0.1 kcal/ (mol × Å2)
were used to maintain the client proteins in their initial conformations.
This system was then placed in a flat-bottom spherical restraining
potential of radius 160Å. The sphere center was placed such that the
client proteins can interact with the surface, cavity, and sides of the
GroEL heptamer but cannot access the back side of theGroEL heptamer
that would typically be hidden by the other heptameric ring (GroEL is a
double ring system). A 160Å radius was found to easily accommodate
each of the client proteins unfolded states. For each unfolded, folded,
and near-native misfolded client protein conformation we ran simula-
tions with ten different initial client protein orientations generated by
randomly rotating the starting client protein conformation. Each initial
conformation was then simulated for 2.4 µs in the presence of GroEL.
Simulations of DnaK or HtpG and their client protein purine nucleoside
phosphorylase were carried out in an analogous fashion. For DnaK and
HtpG, the chaperonewasplaced at theorigin, and a 200Å radius sphere
also centered on the origin was used with the client protein initially
placed in a random orientation 50Å away. All restraints, force con-
stants, and other simulation parameters were otherwise the same as for
the GroEL-client protein simulations. All simulations were performed
using OpenMM96 with a Langevin thermostat at 310K, a friction coef-
ficient of 0.050ps−1, a 15-fs integration time step, and all bonds
constrained.

Calculation of KD

To calculate the binding dissociation constant, KD between the client
protein and chaperone we used the formula

KD =
Pchaperone:Pclient protein

Pchaperone�client protein
� 1
V
� 1

ð6:022× 1023Þ× 10�27 ð3Þ

where Pchaperone�client protein is the probability that the chaperone and
client protein are bound in the simulations, and Pchaperone and
Pclient protein are the probabilities, respectively, of unbound chaperone
and unbound client protein configurations. V is the simulation volume.

We converted this KD to units of molarity, mol/L, by using the relevant
conversion factor shown in Eq. 3. These probabilities were computed
as the number of simulation frames the systemwas in a particular state
divided by the total number of frames in the simulations. To assign
frames to either bound or unbound states we used the following
procedure: for each system, we plotted the time series of the total
number of van der Waals contacts formed between the client protein
and the chaperone. In most cases two-state behavior was observed,
with a low number of inter-molecular contacts and then jumps to
higher values, followed by a fall back to low numbers (Supplementary
Fig. 17). We cross-referenced these events with a visualization of the
simulation trajectory and found jumps to higher values corresponding
to the client protein binding the apical domain of GroEL and inserting
into the GroEL cavity. While the low values were transient interactions
with the outside of GroEL. We then chose a threshold (Supplementary
Table 9) separating these bound and unbound events and tested
whether it was accurate by spot-checkingwhether other trajectories of
the same systemproperly classified them as bound or unbound states.
Thresholds for each system are shown as black horizontal lines in
Supplementary Fig. 17.

GroEL binding affinities for a spectrumof conformational states
of a client protein
We generated different conformational states of client protein iso-
chorismate synthase by performing high temperature (800K) simu-
lations followedbyquenching to 310 K.Wecarriedout 20 independent
quenching simulations and then selected 20 different structures with
distinct Q and Rg values across these different trajectories and then
performedGroELbinding simulationswith these 20 conformations (10
trajectories each) and calculated their KD values. Each trajectory was
simulated for 2.4 µs in the presence of GroEL and isochorismate
synthase.

All-atom simulations of GroEL and client proteins
We randomly chose one of the client proteins, isochorismate syn-
thase, used in our coarse-grained simulations and simulated its
interactions with GroEL at all-atom resolution. We chose ten repre-
sentative structures from the coarse-grained ensembles of unfolded,
folded, and near-native misfolded isochorismate synthase/GroEL
systems and back-mapped these 30 coarse-grained structures to all-
atom resolution using a previously reported procedure28. Next, each
of these all-atom composite structures of the GroEL heptamer and
client protein was solvated in a box of SPC/E water97 with dimensions
16 × 16 × 16 nm3 and then neutralized by the addition of 128 sodium
ions. This neutralized system was then energy minimized with the
steepest descent algorithm. Spherical harmonic restraints with a
force constant 1000 kJ/(mol x nm2) were applied to the GroEL hep-
tamer heavy atoms. All-atom simulations were carried out with
GROMACS 202098 using the AMBER03 force field99. Long-range
electrostatic interactions were calculated with the Particle Mesh
Ewald method100. Lennard-Jones interactions were calculated with a
distance cut-off of 1.2 nm, and the temperature and pressure were
maintained throughout the simulations at 310K and 1 atm with a
Nose-Hoover thermostat101,102 and Parrinello-Rahman barostat103,
respectively. All bondswere constrainedusing the LINCS algorithm104

and an integration time step of 5 fs was used. We performed 1 ns of
equilibration followed by a 1-ns production simulation with each of
the 30 all-atom conformations before calculating the intermolecular
interaction energies.

Calculation of odds ratios of binding probabilities with and
without attractive interactions between client proteins and
chaperones
Odds ratios of the binding probabilities between chaperones and
unfolded (U) or folded (F) conformations of client proteins with
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attractive van der Waals interactions on or off were calculated as

Odds ratio =

PU,on
PU,off

� �
PF,on
PF,off

� � ð4Þ

In Eq. 4, the terms PU,on and PU,off are the probabilities of protein/
chaperone binding with the attractive interactions turned on or off,
respectively, for unfolded client protein conformations. The terms
PF,on and PF,off are the analogous values computed from simulations
initialized with the client protein in the folded state. Odds ratios for
interactions between misfolded or folded client protein conforma-
tions with chaperone interactions turned either on or off were com-
puted using the equation

Odds ratio =

PM,on
PM,off

� �
PF,on
PF,off

� � ð5Þ

In Eq. 5, PM,on and PM,off are the binding probabilities of a mis-
folded client protein to chaperone with attractive van der Waal inter-
actions turned on or off, respectively.

Identification of entangled protein conformations
The six proteins whose interactions with GroEL/HtpG/DnaK we model
herewere previously identified to populate entangled conformations27

when they misfold. These entanglements are local non-covalent lasso
entanglements that are not present in the native state that are asso-
ciated with long-livedmisfolded states within the E. coli proteome. We
calculated the entanglement (G) of the native and near-native like
misfolded states (Supplementary Table 17) based on a previously
described method27,34. The code used to compute G is available on
GitHub at https://github.com/obrien-lab/topology_analysis. The value
of G is computed as

G=
1
N

X
i,jð Þ

Θ i,jð Þ 2 nc \ g i,jð Þ≠gnative i,jð Þ� �
ð6Þ

where ði,jÞ is one of the native contacts in the native crystal structure;
nc is the set of native contacts formed in the current structure; g i,jð Þ
and gnative i,jð Þ are, respectively, the total linking number of the native
contact ði,jÞ in the current and native structures; N is the total number
of native contacts within the native structure; and the selection func-
tion Θ equals 1 when the condition is true and 0 when it is false. The
larger G is the larger the number of residues that have changed their
entanglement status relative to the native state. That is, G reports on
the presence of non-native entanglements in structures.

Estimation of ATP consumption and state partitioning via a
kinetic model
GroEL functions in a multi-step ATP-dependent cycle25. ATP first binds
to GroEL before capturing an unfolded protein105. The GroES co-
chaperone can then bind serving as a “lid.” Inside this GroES-enclosed
GroEL cage, ATP hydrolysis and protein folding occur. The protein is
released from the GroEL cage along with ADP and GroES. To simplify
the GroEL-catalyzed protein refolding reaction we consider a single-
ring reaction scheme shown in Supplementary Fig. 12. The folding of
functionally active substrates by a single ring of GroEL/ES is
possible106,107. In this reaction scheme, theGroEL heptamer binds 7 ATP
molecules first, then binds to the unfolded protein, followed by GroES
binding and ATP hydrolysis. After the 7 ATPmolecules are hydrolyzed
the protein is released in either the folded, misfolded, or still unfolded
states, as are the GroES and ADP. Then free GroEL binds 7 ATP mole-
cules again to start the next catalytic cycle. We assume that (1) the 7
ATP molecules bind simultaneously and can be treated as a single

molecule and (2) only the unfolded protein can bind GroEL. The dif-
ferential equations that describe this reaction scheme are the follow-
ing:

d½G�
dt = � k1 � ½G� � ½7ATP�+ k5 � ½G∣7ADP∣U∣ES�+ k8 � ½G∣7ADP�
d½G∣7ATP�

dt = k1 � ½G� � ½7ATP� � k2 � ½G∣7ATP� � ½U� � k7 � ½G∣7ATP�
d½G∣7ATP∣U�

dt = k2 � ½G∣7ATP� � ½U� � k3 � ½G∣7ATP∣U� � ½ES�
d½G∣7ATP∣U∣ES�

dt = k3 � ½G∣7ATP∣U� � ½ES� � k4 � ½G∣7ATP∣U∣ES�
d½G∣7ADP∣U∣ES�

dt = k4 � ½G∣7ATP∣U∣ES� � k5 � ½G∣7ADP∣U∣ES�
d½ES�
dt = � k3 � ½G∣7ATP∣U� � ½ES�+ k5 � ½G∣7ADP∣U∣ES�

d½7ATP�
dt = � k1 � ½G� � ½7ATP�

d½F�
dt =φGroEL

F k5 � ½G∣7ADP∣U∣ES�+φBulk
F k6 � ½U�

d½M�
dt =φGroEL

M k5 � ½G∣7ADP∣U∣ES�+φBulk
M k6 � ½U�

d½U�
dt = � k2 � ½G∣7ATP� � ½U� + ð1� φF � φM Þk5 � ½G∣7ADP∣U∣ES� � k6 � ½U�
d½G∣7ADP�

dt = k7 � ½G� � ½7ATP� � k8 � ½G� � ½7ADP�

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

where [G] is the concentration of single-ring GroEL; [G | 7ATP] is the
concentration of the GroEL-ATP complex; [G | 7ADP] is the concentra-
tion of the GroEL-ADP complex; [G | 7ATP | U] is the concentration of
the GroEL-ATP-unfolded protein complex; [G | 7ATP | U | ES] is the
concentration of the GroEL-ATP-unfolded protein-GroES complex;
[G | 7ADP | U | ES] is the concentration of the GroEL-ADP-unfolded
protein-GroES complex; [ES] is the concentration of GroES; [7ATP] is
the concentration of seven ATP molecules; [F] is the concentration of
folded protein; [M] is the concentration ofmisfolded protein and [U] is
the concentration of unfoldedprotein. Thepartition coefficients of the
folded, misfolded and unfolded protein are φF , φM and 1� φF � φM

(see Supplementary Fig. 12).φGroEL
F is thepartition coefficient forGroEL

assisted folding of the folded protein and φBulk
F is the partition

coefficient for spontaneous folding in case of folded protein. φGroEL
M is

the partition coefficient for GroEL assisted folding for misfolded
protein andφBulk

F is the partition coefficient for spontaneous folding in
case ofmisfolded protein. The rate constants k1 to k8 are, respectively,
the ATP binding rate, protein binding rate, GroES binding rate, ATP
hydrolysis rate, protein release rate, spontaneous folding rate, basal
hydrolysis rate and ADP release rate. These rate constants were taken
from the literature105,108–112 and from Supplementary Data 1. For each
experimental data set, we assign φF from 0.001 to 1.001 with an
interval of 0.001. And calculate φM =Peq

NN= 1� Peq
NN

� � � φF , where Peq
NN is

the equilibrated probability of the non-native proteins obtained from
the experimental data (the probability at the final time point). Note
that we require φF +φM ≤ 1. Any φF values that results in φF +φM>1 is
not used. We numerically solve the differential equations (Eq. 7) using
the initial concentrations of GroEL, GroES, client protein and ATP
reported in the original experiments (depicted in Supplementary
Data 1). Then Psim

NN was calculated at the experimental time points as
Psim
NN = 1� F½ �= U½ �0, where U½ �0 is the initial concentration of the client

protein. The φF and φM values that maximize the Pearson correlation
coefficient andminimize the absolute errors between Psim

NN and Pexp
NN are

considered the best fit. The time course of [ATP] is then computed
using these values.

Generation of metastable structural states
We k-means clustered the last 100 ns of coarse-grained post-transla-
tional simulations resulting from 50 independent synthesis
simulations27,28 along two order parameters that capture the native-
ness of the structures (fraction of native contacts, Q) and the changes
in self-entanglement of the protein (fraction of native contacts with a
change in self-entanglement, G). These microstates are then coarse-
grained into metastable states based on the PCCA + + algorithm113 . A
set of representative structures for eachmetastable state were chosen
by selecting at random from the five most probable microstates in
each metastable state.
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Clustering of degenerate changes in self-entanglement
For each of these representative structures, we determine what native
contacts have changes in their self-entanglement (relative to the native
state) by examining changes in their partial linking number with the N
or C terminus27,28. Furthermore, we determine the terminal tail resi-
dues located at the crossing of the loop plane formed by the native
contacts (i.e. the residues that actually pierce the lasso loop) using
Topoly114. If a loss of self-entanglement was observed (i.e. the loop is
threaded in the native state but not in the misfolded state) we use the
native state structure to find the crossing residues, else if it was a gain
of self-entanglement we use the representative structure. We can then
describe each individual change in self-entanglement in a structure by
a discrete vector of 6 clustering parameters: (1) Number of crossings in
the N-terminal change in entanglement; (2) Number of crossings in the
C-terminal change in entanglement; (3) Rounded partial linking num-
ber for the N-terminal change in entanglement; (4) Rounded partial
linking number for the C-terminal change in entanglement; (5) Change
type for the N-terminal change in entanglement; (6) Change type for
theC-terminal change in entanglement. The change typeof a change in
self-entanglement are described in detail in our previous work27. To
ensure we are not clustering we also ensure that any entanglements
clustered together by the above 6 parameters also have crossing
residues within ±5 residues of each other. After clustering across
all the changes in self-entanglement observed across all the repre-
sentative metastable conformations, we then generate a list of repre-
sentative changes in self-entanglement by choosing the entanglement
with the minimal loop from each cluster (Supplementary Tables 12
and 13). We can then assign the representative changes in self-
entanglement present in a given conformation tofind the set of unique
entangled states of the protein.

Determining the statistical significance of the consistency
between simulation data and experimental LiP-MS data
To answer the following questions: (1) how consistent are the changes
in self-entanglement we observe with the experimentally observed
changes in PK cut-site peptide abundance? (2) is this consistencymore
extreme than what you would expect with a random set of cut sites?
We first quantify the consistency between our model and the experi-
mental evidence by examining the existence of primary sequence
overlap of the entangled residues with the PK cut-site residues and the
consistency in the direction of change in solvent exposure of the PK
cut-sites in the back-mapped representative MSM structures and LiP-
MS data. We, therefore, define two test statistics for each time point t
as the average of two Boolean matrices for the overlap of the sig-
nificant PK cut sites with changes in self entanglement Oh it and
directional consistency in solvent exposure changes upon refolding of
significant PK cut sites Sh it . These matrices are of dimensions NexNl ,
where Ne is the number of unique representative entanglements in an
entangled state and Nl is the number of significant unique LiP-MS
peptides across all time points.

Oe,l =
0 J l,eð Þ=0
1 J l,eð Þ>0

�
Se,l =

0 sgn ΔSh isim
� �

≠sgn log2R=N
� �

1 sgn ΔSh isim
� �

= sgn log2R=N
� �

(
ð8Þ

Where J l,eð Þ is the Jaccard index of a set of residues within ± 5 residues
of a LiP-MS PK cut site, l, and the set of residues within 8 Å of the
representative change in self-entanglements crossings, e: If there is
overlap (Oe,l = 1) we then use the sign function to determine if the
direction of the average change in the solvent exposure of the PK cut-
site residues we observe in given entangled state in our simulations,
ΔSh isim, is the same as that of the experimentally observed peptide
abundance ratio between refolded and native ensembles in the LiP-MS
experiments for that residue.

If all the PK cut sites have overlap with representative changes in
self-entanglement in a structure and the direction of change in the

solvent exposure relative to the native state is the same that would
indicate a complete consistency and both test statistics would be at
their maximum. On the other hand, if none of the PK cut sites have
overlap with representative changes in self-entanglement in a struc-
ture that would indicate a completely non-consistent result and both
test statistics would be 0.

We employ the Permutation Test to determine the prob-
ability of observing the consistency between our model and the
experimental data by random chance. For each experimental time
point, we draw a random set of new PK cut-sites from a theore-
tical distribution of all potential half-tryptic peptides (those
peptides cut by PK on one side and trypsin on the other). This is
done in such a way that we maintain the same number of unique
PK cut sites observed across all timepoints in the original
experiment. We then calculate the new test statistics Oh it 0 and
Sh it 0 and if there are two or more time points t1 and t2 where
Oh it 0> Oh it and Sh it 0> Sh it , and one of those time points is the
longest experimental time point, we consider there to be more
consistency between our model and this random set of significant
PK cut sites than what we observed. We choose to add the addi-
tional criteria for the longest LiP-MS time point as we are inter-
ested in how consistent the long lived kinetically trapped
misfolded state are. The p-value is then estimated as the prob-
ability of a randomly permutated set of significant PK cut sites
having more consistency with the set of observed representative
changes in self-entanglement than the experimentally observed
set of significant LiP-MS peptides.

Theoretical distribution of all potential PK cut-sites for random
selection
As the LiP-MS data was analyzed across a proteome-wide analysis the
data for each individual protein may suffer from a lack of coverage
sufficient for random sampling. Therefore, we must generate a theo-
retical distribution of half-tryptic peptides. First calculating the
intrinsic probability of PK cutting at a specific site across the
proteome-wide set of data

Pintrinsic AAð Þ= Pobserved AAð Þ
Pproteom AAð Þ ð9Þ

Where Pobserved AAð Þ is the observed probability of a given AA being cut
by PK and Pproteom AAð Þ is the probability of AA across the proteome
estimated from the protein databank. We then calculate the prob-
ability of observing a half-tryptic peptide with a given length and the
number of internal trypsin cut sites across the proteome to control for
the different time scales at which PK and trypsin are allowed to digest
the protein (1min for PK, 12 hrs for Trypsin). We then prepare a list of
all possible half-tryptic peptides and randomly choose a peptide with
replacement 10,000,000 times. For each iteration we generate two
random number on the interval [0,1], one for the probability of a PK
site being cut and the other for the probability of observing a peptide
with a given length and a number of internal trypsin cut sites. If both of
these randomnumbers are less than their respective probabilities than
we accept the peptide into the theoretical set if it is not already
present.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data from mass spectrometry was previously published and
deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with data set identifier PXD030869 [http://proteomecentral.
proteomexchange.org/cgi/GetDataset?ID =PXD030869]. Summary
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data for these experiments are also provided in Supplementary
Tables 10–13 and Supplementary Fig. 11. Structures used for the simu-
lations in this study are: 1KP8 (GroEL), 1K7J (Transcription factor 1), 1A69
(purine nucleoside phosphorylase), 1P7L (S-adenosylmethionine syn-
thetase), 2FYM (enolase), 3HWO (isochorismate synthase), 4A2C
(galactitol-1-phosphate dehydrogenase), 5NRO (DnaK), 2IOQ (HtpG)
and are freely available from the PDB. The processed data generated in
this study are provided in the Source Data file and sample simulation
trajectories of the systems studied here have been shown in Supple-
mentary Movie 1. Source data are provided with this paper.

Code availability
The OpenMM input files, Python (including the SciPy and PyEmma
packages), Fortran and CHARMM scripts, and Visual Molecular
Dynamics (VMD) v1.9.1 analysis codes, sample commands, ATP con-
sumption codes, meta-analysis scripts, and molecular dynamics
simulation scripts and example outputs and all related scripts are
available in the GitHub repository under the accession code https://
github.com/obrien-lab-psu/Subpopulations-of-soluble-misfolded-
proteins-commonly-bypass-chaperones-How-it-happens-at-the-mole.
All the software used for the experimental data analysis in this study is
available in the GitHub repository under the accession code https://
github.com/FriedLabJHU/Refoldability-Tools.
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