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Mechanism for fluctuating pair density wave

Chandan Setty 1,2 , Laura Fanfarillo 1,3 & P. J. Hirschfeld1

In weakly coupled BCS superconductors, only electrons within a tiny energy
window around the Fermi energy, EF, form Cooper pairs. This may not be the
case in strong coupling superconductors such as cuprates, FeSe, SrTiO3 or
cold atom condensates where the pairing scale, EB, becomes comparable or
even larger than EF. In cuprates, for example, a plausible candidate for the
pseudogap state at low doping is a fluctuating pair density wave, but no
microscopic model has yet been found which supports such a state. In this
work, we write an analytically solvable model to examine pairing phases in the
strongly coupled regime and in the presence of anisotropic interactions.
Already for moderate coupling we find an unusual finite temperature phase,
below an instability temperature Ti, where local pair correlations have non-
zero center-of-mass momentum but lack long-range order. At low tempera-
ture, this fluctuating pair density wave can condense either to a uniform d-
wave superconductor or the widely postulated pair-density wave phase
depending on the interaction strength. Our minimal model offers a unified
framework to understand the emergence of both fluctuating and long range
pair density waves in realistic systems.

Spatially uniform superconducting (SC) order formed from Cooper
pairs with zero center-of-massmomentum is the energetically favored
ground state in the conventional theory of Bardeen, Cooper and
Schrieffer (BCS)1. Equivalently, the SC instability is signaled by a
divergence in the static pair-fluctuation propagator, L(q,Ω =0), at
q = 0 once the pair instability temperature, Ti, is achieved2. On the
other hand, a non-uniform order with non-zero center-of-mass
momentum Cooper pair can occur when the divergence of the pair-
fluctuation propagator is shifted to non-zero q. First proposed by
Fulde and Farrell (FF)3 and independently by Larkin and Ovchinnikov
(LO)4, these solutions are stabilized in the presence of explicit time-
reversal symmetry breaking from an external magnetic field. A
modulated order parameter can also be realized in the presence of
time-reversal symmetry where the spatial average of the gap vanishes.
Termed pair-density waves (PDWs), these states are posited to exist in
a variety of systems, including high-temperature cuprate super-
conductors (for a review, see ref. 5 and references therein).

While PDWs have been subject to much theoretical6–19 and
numerical20–26 interest, a clear-cut analytically solvable model
describing their origin from microscopic ingredients is lacking. From

the experimental point of view, the interest for modulated pairing
phases has been triggered by increasing experimental evidence for
short-ranged PDW order in the underdoped region of the phase dia-
gram of cuprates26–38. In particular,32 reported the first clear observa-
tion via scanning tunneling spectroscopy of a vortex-induced PDW in
Bi2Sr2CaCu2O8 at low temperature. More recent STM experiments
provide further evidence in favor of a short-range PDWcoexistingwith
the d-wave superconductivity in the SC phase and evolving into a PDW
state in the pseudogap region26,38. This phase is characterized by a gap
at finite temperatures but lacks long-range order, and can be char-
acterized as a “fluctuating pair density wave”, locally pinned by dis-
order. Such a state also provides an explanation for many other
experimental signatures of the cuprates, including the existence of
vestigial charge density wave order arising from partial melting of a
PDW5,15,39. However, there is currently no microscopic model sup-
porting this picture. Hence it is urgent to seek a unified framework that
subsumes both fluctuating and long-range ordered PDWphases under
a single paradigm by providing a concrete description of their origin.

In this work, we show that a Fermi liquid subjected to a finite
anisotropic interaction is unstable toward amodulated SCphase in the
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strong coupling limit.Whether this phase is a ‘fluctuating’PDW(FPDW)
or long-range order PDW is determined by temperature as well as the
coupling strength defined by the ratio α = EB/EF, with EF the Fermi
energy and EB the bound state energy for pair formation.

Our strategy is to solve the self-consistent gap equation for the
homogeneous d-wave superconductor and analyze the momentum
dependence of the SC fluctuations. The expansion of the static pair
propagator Lq in powers of momentum transfer q, can reveal, in fact,
critical fluctuations of Cooper pairs with finite center-of-mass
momentum, that makes the homogeneous solution unstable toward
amodulated SC phase. Since we study the action only to second order
in the pair field we cannot distinguish between an instability to a FF or
LO state.Weobserve the emergence of amodulated SC state already at
intermediate coupling α ~ 0.7. The appearance of such a state is linked
to the existenceoffluctuating terms that lower themomentum rigidity
of the Cooper pairs. These termsdirectly follow from the anisotropy of
the pairing interaction that affects the momentum dependence of the
pairing susceptibility already in the normal phase.

Our results are summarized in the phase diagram, Fig. 1. Ti is the
instability temperature of the homogeneous d-wave state obtained
within the mean- field approximation. The analysis of fluctuations
allows us to define two different regimes. At weak coupling, α≪ 1, the
uniform d-wave paired state is the ground state; at larger α (strong
coupling), SC fluctuations at finite momentum lead to twomodulated
pairing phases— the T = 0 PDW ground state and a higher temperature
FPDW phase that condenses into a PDW ordered phase below a
coherence temperature (Tc). The strong andweak coupling regions are
separated by the line T = T*. This is the temperature at which the finite
momentum fluctuations around the homogeneous solution become
critical. As expected in the BCS limit, the instability temperature Ti and
the coherence temperature Tc coincide at weak coupling. In the strong
coupling regime, we anticipate that Ti and Tc decouple since Cooper
pairs are formed but with no long range coherence. In thiswork, we do
not perform here any calculation of the coherence temperature Tc
inside themodulated phase. However, in analogywith results obtained
for homogeneous s-wave superconductors in the strong coupling
limit40, we expect that Tc < Ti for α > 1 as well. The FPDW is found for
temperature Tc < T < Ti and it is characterized by pairs with finite

momentumwith no coherence. AtT =0, the ground state can be either
the uniform d-wave solution or the long-range PDW depending on the
value of α. Hence our model captures two key experimentally postu-
lated modulated Cooper phases —a FPDW and a long-range PDW—in a
single unified scheme.

The mechanism we present in this paper predicts spatially
modulated pairing phases for α = EB/EF > 1, i.e., in strongly coupled
electronic systems, with anisotropic interactions. Examples of low-
density electronicmaterials include the Fe-based superconductor FeSe
where quantum oscillations41 as well as transport and scanning tun-
neling spectroscopy42 show that both the electron and hole pockets
are tiny with Fermi energies comparable or even smaller than the SC
gap and for which we find several proposals of BCS-BEC cross-over
physics in the literature43–45. Other “mixed-band” superconductors
such as O vacancy- or Nb-doped SrTiO3 have one partially filled band
with a large Fermi surface while the Fermi level intersects the other at
or close to the band bottom46. Even if these materials typically have
more than one band close to or crossing the Fermi level, the results
from our minimal model may eventually provide a suitable starting-
point for the analysis of possible instabilities toward modulated pair-
ing states in dilute multiorbital superconductors. Our results may also
be relevant to the recent observation of superconductivity in twisted-
bilayer graphene47 where interactions can be large compared to the
bandwidth leading to large inter-particle distances48 and hence possi-
ble strongly-coupled Cooper pairing.

Themodulated phases we propose in this work, that include both
the long-range ordered PDWaswell as the FPDWat finite temperature,
are distinct from earlier proposals in literature. Loder et al.10, con-
sidered similar models characterized by nearest neighbor attractive
interaction with d-wave symmetry and found Cooper pairing with
finite center-of-mass momentum above a critical interaction strength.
In refs. 18, 19, a modulated superconducting state is found in models
which have correlated pair-hopping interactions. Other models that
admit modulated SC ground states were proposed in the context of
cold atoms9 where local interactions were considered in systems with
multiple bands. Those references focused on the analysis of the long-
range ordered state (mainly at zero temperature) without exploring
the FPDW phase. The key contribution of our work is it provides an
analytically tractable model where both fluctuating and long-range
ordered PDWs can be explained under a single unified framework.

Results
Model
Let’s consider a single band SC system. The kinetic part of the Hamil-
tonian reads H0 =∑kσξkckσckσ, where ξk = ϵk − μ, μ is the chemical
potential, ϵk =k2/2m the parabolic dispersion and we further assume
2m = 1. The pairing interaction is given by

HI = � g
X

q

θyqθq, ð1Þ

g is the constant SC coupling and θq is defined as

θq =
X

k

f k,q c�k+ q
2,#ck+ q

2,": ð2Þ

where fk,q = (hk−q/2 + hk+q/2)/2 is a form factor. In this work hk can be
any anisotropic form factor; we consider, e.g., hk = ðk2

x � k2
yÞ=Λ with d-

wave form. The pairing energy scale isΛ i.e., the high energy cut-off set
by the inverse lattice spacing and much larger than EF. Our results do
not dependqualitatively on the exact formof the anisotropy, provided
it is strong enough, but they are distinct from the conventional s-wave
case fk,q= 1. Note that the interaction Hamiltonian we choose above
already assumes an attractive pairing interaction and does not begin
fromany repulsiveHubbard-typemodel. Nevertheless, themechanism

Fig. 1 | Phase diagram forα = EB/EF vsT.The instability temperature for the d-wave
superconductor, Ti, defines the transition from a Fermi liquid (light blue) to the SC
state. At weak coupling the pairing state is a homogeneous d-wave superconductor
(gold). Increasing α the system develops critical fluctuations at finite momentum
and the d-wave SC state becomes unstable toward a non-homogeneous SC state
(pink and purple regions). T* is the temperature at which the momentum rigidity
parameter c2 vanishes. The fluctuating PDW (pink) condenses below a coherence
temperatureTc into a long-rangeordered state that canbe anhomogeneousd-wave
SC state (gold) or a PDW (purple) depending on the coupling strength, schemati-
cally represented by a solid line. Tc coincides with Ti at weak coupling while at
strong coupling it is expected that Tc < Ti40. Note that the actual instability tem-
perature of the FPDW, �Ti, is somewhat higher than Ti (see Supplementary Note 4).
Temperatures are renormalized by the energy range of the pairing, Λ that is the
largest energy scale of our model.
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we present is ‘microscopic’ in the sense that the order parameter can
be evaluatedover the entirephasediagram in termsof themicroscopic
parameters such as Cooper binding energy and Fermi energy. Such a
treatment is distinct fromGinzburg-Landau theory and consistentwith
terminology used in previous literature49,50.

We use the standard Hubbard-Stratonovich transformation to
decouple the interaction term, Eq. (1) and to derive the effective action
in term of the bosonic pairing field Δ (for a detailed derivation see
Supplementary Note 1).

Pair susceptibility
In standard BCS superconductors, the mean-field value of the pairing
field is defined by minimizing the action with respect to the homo-
geneous q =0 value of Δ and then solving this equation together with
the one for the chemical potential. To study fluctuations of the pairing
field around the mean-field value, we analyze the gaussian action
obtained by retaining up to the second order in the fluctuating field
with arbitrary momentum q given by

SG½Δq�=
X

q

L�1
q ∣Δ∣2q: ð3Þ

where L�1
q is the static pairing susceptibility. As discussed in51 and in the

SupplementaryNotes 1–3of thiswork,we need to consider in principle
both the real and imaginary part of the fluctuating field. However,
here we are interested in the analysis of the static limit of the fluc-
tuation, for which real and imaginary part are decoupled. Hereafter we
will analyze the gaussian fluctuation of the amplitude mode only to
investigate the possible emergence of a spatially modulated pairing
fluctuationout of a homogeneousd-wave SC state. The explicit formof
the static pairing susceptibility for the amplitude mode is
L�1
q = g�1 +Πq, where the particle-particle propagator reads

Πq =
T
V

X

kn

ðiωn + ξk+qÞðiωn � ξkÞ � f k,0f k+q,0Δ
2

ðω2
n + E

2
kÞðω2

n + E
2
k+qÞ

f 2k,q: ð4Þ

with E2
k = ξ

2
k + f

2
k,0Δ

2. Here T is the temperature and V the volume. Note
that since 2m = 1, energies have dimensions of 2-D V−1, and L�1

q is
therefore dimensionless.

The static susceptibility can be expanded in the hydrodynamic
limit as

L�1
q = c0 + c2q

2: ð5Þ

The instability temperature is defined as the highest temperature
at which the susceptibility diverges, i.e., c0 = g

�1 +Π0∣T =Ti
=0, as we

assume that the minimum of the action, Eq. (3), is associated with the
homogeneous order parameter. The coefficient c2 = ð∂2L�1

q =∂q2∣q=0Þ=2
provides instead information about the momentum rigidity of the
fluctuating Cooper pairs i.e., the energy needed tomove the center-of-
mass momentum of the Cooper pairs from zero to a finite value. A
negative momentum rigidity, c2 < 0, implies that finite momentum
fluctuations can lower the energy of the system making the homo-
geneous SC solution unstable. This means that the highest tempera-
ture at which the pairing susceptibility, Eq. (5), diverges is actually
associated to a critical mode with finite momentum.

In what follows we analyze the momentum-dependence of the
static susceptibility, Eq. (5), looking for a sign change of the momen-
tum rigidity parameter c2 and using it as a proxy to identify possible
spatially modulated SC regions in the phase diagram. It is worth noti-
cing that c2 is directly affected by the momentum properties of the
pairing susceptibility i.e., the pairing symmetry. From Eq. (4), it is easy
to verify that the anisotropy of the interactions affects themomentum
dependence of the propagator not only in the SC phase via the sym-
metry of the SC order parameter, but also above the instability

temperature Ti where Δ = 0 due to the overall form factor f 2k,q at the
numerator. This reflects in a strong momentum dependence of the
contributions to the rigidity parameter depending on the symmetry of
the pairing interaction. We discuss below how this affects the devel-
opment of critical finite-momentum fluctuations.

The mean-field analysis for the homogeneous d-wave super-
conductor is shown in Fig. 2. In panels (a)–(b) we report the self-
consistent numerical mean-field solutions for the pairing function Δ
and the chemical potential μ as a function of temperature T for three
representative cases of the pairing strength α = EB/EF =0.5, 1.0, 2.0,
where for simplicity the weak-coupling expression EB =Λe−2/g is used at
allα. In panels (c)–(d) we show the samemean-field results atT = Ti and
T = 0 as a function of α. The change of sign of the chemical potential
with increasing coupling strength is well-known from the BCS-BEC
crossover problem52–56. In the weak-coupling regime, the pairs are
loosely bound and we recover the BCS expression μ ~ EF. As the inter-
action increases, all fermions strongly bind in pairs and μ becomes
negative and proportional to − EB. In both the weak and strong cou-
pling limits, the curves are similar to those derived for s-wave super-
conductors in56, showing that the d-wave symmetry of the pairing
interaction does not affect the mean-field results qualitatively.

We first study the SC fluctuations above the instability tempera-
ture by analyze the static pairing susceptibility in the hydrodynamic
limit, Eq. (5). The mass term c0 is positive and vanishes as the tem-
perature approaches the instability temperature as expected from a
Ginzburg-Landau description of the transition.

The analysis of the momentum rigidity of the fluctuating pairs
above Ti is shown in Fig. 3. The weak coupling region is characterized
by a standard regime of fluctuations with c2 > 0. Here Cooper pairs
with zero center-of-mass momentum are stable. Increasing α, the
momentum rigidity for the d-wave pairing interaction (continuous
line) monotonically decreases and becomes negative at intermediate
coupling, α >0.7, as shown in Fig. 3(a). This means that finite
momentum critical fluctuations grow, increasing the coupling
strength up to a critical value of the interaction for which the homo-
geneous SC solution can become unstable toward a modulated phase.
Notice that c2 becomes very small and eventually changes sign in the
crossover between weak and strong coupling where also the chemical
potential changes sign frompositive tonegative, see inset Fig. 3(a). The
result changes qualitatively for the isotropic s-wave interaction
(dashed line) where the rigidity parameter decreases but remains
positive even at strong coupling for the set of model parameter of our
study (This result differs from the analysis of55, in which a sign change
of the rigidity parameter is found for a SC system with s-wave pairing
symmetry at strong coupling. In this case, however, the authors first
perform a strong coupling expansion of the pairing susceptibility and
only subsequently expand the approximated result in powers of q.).

To characterize themodulated SC state and check its stability, we
expand the static susceptibility to higher order in momentum

L�1
q =

X

n

cnq
n, with cn =

1
n

∂nL�1
q

∂qn ∣
q=0

ð6Þ

We report the coefficients of the momentum expansion at Ti in
Fig. 3(b).Results are shownas a functionofα for the coupling regime in
which c2≲0. We need to expand the susceptibility up n = 6 to find
c6 > 0, since for our set of model parameters c4 < 0 as in the conven-
tional BCS case.

We analyze the momentum dependence of the static suscept-
ibility at Ti in Fig. 4, where we show the expansion of Eq. (6) up to sixth
order for different values of α. At the instability temperature, c0 = 0 by
definition and the minimum of the function is determined by the
higher order coefficients. At weak coupling, where c2 is large and
positive, the minimum of L�1

q is located at zero momentum. As the
pairing interaction increases c2 becomes small and eventually changes
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sign at α ~ 0.7. Here, since c4 < 0, the minimum shifts discontinuously
to a finite momentum �Q, i.e., by increasing the interactions the
modulated phase emerges at Ti via a first order transition from the
homogeneous d-wave SC solution, in analogy with the results found at

T = 0 in10,18. The non-zero value of �Q at α ~ 0.7 signals the formation of
the FPDW state with finite momentum pairing but no long range
coherent order. Note that the finite order parameter jump �Q is a non-
universal quantity and depends on microscopic details of the chosen

Fig. 3 | Coefficients of themomentum-expansionof the static susceptibility as a
function of the coupling strength α = EB/EF at T =Ti. a The momentum rigidity
c2(α) for d-wave (solid line) and s-wave pairing interaction (dashed line). In the
anisotropic d-wave case c2 becomes negative at intermediate coupling, α ~ 0.7
indicating that the homogeneous d-wave SC is unstable. Inset: c2(μi), the sign
change of the momentum rigidity occurs around the same range in which μi turns
from positive to negative values. The momentum rigidity for the isotropic s-wave

case remains positive regardless the coupling strength. b cn(α) coefficients,
n = 2, 4, 6, for the d-wave pairing. The positive value of c6 allows to recover the
stability of the action. The computation of the higher order coefficients allows to
define the finite momentum of the critical mode and the relative instability tem-
perature. We use here the same set of parameters of Fig. 2 and plot the results in
dimensionless units i.e., cn ≡ cnΛn/2.

Fig. 2 | Mean-field results for the spatially homogeneous d-wave super-
conductor. a,b Self-consistent solutions of the pairing order parameter Δ(T) and
the chemical potential μ(T) for three representative values of α. Temperatures are
normalized to the instability temperature Ti defined as the temperature at which
the static pairing susceptibility Lq=0 diverges, while Δ and μ are scaled with Λ.

c Instability temperature Ti and chemical potential μi ≡ μ(T = Ti) as a function of α.
d T =0 solutions: Δ0 ≡Δ(T =0) and chemical potential μ0 ≡ μ(T =0) as a function of
α. For comparison we show also the results of the isotropic s-wave case in dashed
lines. Computations are performed using Λ = 11, EF = 2.2 in units of 2m = 1.
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model, as is a feature of any generic first order transition. The
momentum characterizing the modulated phase shifts toward larger
values increasing the coupling parameters. In the strong coupling
regime, α≫ 1, the minimum occurs at q=

ffiffiffiffi
Λ

p
≫ 1, (not shown), for this

range of the interaction the analysis of the momentum characterizing
the modulated phase requires the implementation of a non pertur-
bative approach.

To further prove the stability and quantitatively characterize the
modulated phases we expand the polynomial form, Eq. (6), around its
minima �Q so that we can define the susceptibility of the modulated SC
phase

L�1
q ∼ �c0 + �c2ðq� �QÞ2: ð7Þ

Here �c0 and �c2 are the mass and the momentum rigidity para-
meter associated with the modulated SC phase. In the Supplementary
Notes 2, 3, 4, we show that �c0 =aðT � �TiÞ with �Ti =Ti +
δT and , δT >0, and that �c2 > 0, thus demonstrating stability of the
modulated phases.

The sign change of the momentum rigidity parameter discussed
at T = Ti can be traced down in temperature (dashed line in Fig. 1). At
T = 0 the homogeneous d-wave state becomes unstable, now toward a
PDW, for a slightly higher value of the coupling where the chemical
potential μ also changes sign (see Fig. 2d). The stability of the PDW
phase requires expanding up to the sixth-order, c4 < 0, c6 > 0 as we
show in the Supplementary Notes 2–4.

The results of our numerical study are summarized in the phase
diagram of Fig. 1. We characterized the SC region below Ti by the sign
of themomentum rigidity parameter (dashed line). The sign change of
the c2 coefficient at strong coupling signals the presence of critical SC
fluctuations at finite momentum that make the d-wave homogeneous
state unstable toward either an FPDW or PDW. The pink and purple
regions indicate the FPDW and the long-range ordered PDW state
at high and low temperatures respectively. We leave for future work
the explicit calculation of the coherence temperature below which
the FPDW condenses. The color gradient indicates approximately the
expected Tc(α) behavior based on previous analysis of the coherence
energy scale for the homogeneous s-wave SC state40.

Analytical calculations of the momentum rigidity can be easily
performedwithin a simplifiedmodel in which the chemical potential is
used as parameter. Both at Ti and T = 0, we find qualitatively the
same results discussedwithin the numerical study. In particular, within
the analytical calculations sketched in the Supplementary Note 5, the
momentum rigidity parameter follows the chemical potential

behavior, i.e., c2(μ) < 0 for μ <0. This relation is qualitatively in agree-
ment with the numerical study performed computing self-consistently
μ(α), as one can see from the inset of Fig. 3a.

The strategy implemented here to investigate how finite
momentumfluctuations become critical at strong coupling is based on
the analysis of the momentum rigidity parameter. This method pre-
sents two main advantages with respect to other theoretical approa-
ches. On the one hand, as already discussed, it allows us to explore the
finite temperature regime and analyze the FPDW state. On the other, it
provides a physical understanding of the importanceof the anisotropy
of the pairing interactions in the development of themodulatedphase.
As one can see in Eq. (4), the symmetry of the pairing interactions
dramatically affects the momentum dependence of the propagator
not only in the SC phase, but also in the normal one when Δ = 0 due to
the overall form factor f 2k,q. This is reflected in a strong momentum
dependence of the contribution to themomentum rigidity parameter.
In fact, after performing analytically the Matsubara summation, the
computation of the c2 coefficient reduces to an integral over the Bril-
louin zone c2 =

1
V

P
kI2ðkÞ. The expression for I2 is given in the Sup-

plementary Note 3, but herewe show here in Fig. 5 2Dmaps of I2(k) for
both s-wave and d-wave at T =0 and T = Ti. In the isotropic s-wave case,
the contributions to the momentum rigidity coming from different
momenta, I2(k), are positive at any (kx, ky). Whereas, in the d-wave case
the contributions to the momentum rigidity coming from the
nodal regions are negative and dominate the overall sign of the c2
coefficient.

Discussion
A consistent explanation for the occurrence of both static and fluctu-
ating Cooper pairs with finite momentum in the phase diagram of
materials such as cuprates has been a long-standing problem. This is
primarily because an identification of the microscopic ingredients
driving such exotic pairing has been elusive. The results in this paper
point toward a simple and unified framework that naturally promotes
both fluctuating and static pair-density wave (FPDW and PDW) phases
over their zero momentum counterparts. Figure 1 summarizes the
main conclusions of our work, supported not only by numerical eva-
luations but also transparent analytical estimates (see Supplementary
Note 5). The two key ingredients resulting in a high temperature FPDW
and low temperature PDWphases are (a) anisotropic (e.g.,d-wave) pair
interactions and (b) intermediate to strong coupling ratio of α = EB

EF
,

where EB is the pair binding energy for two electrons on the Fermi
surface in the presence of an attractive interaction, and EF is the Fermi
energy. For the specific set of parameters presented here, below a
critical value of α ~ 0.7, only uniformzeromomentum d-wave pairing is
favored. In the approximate range of 0.7≲ α≲ 1.5, the FPDW phase,
characterized by a negative momentum rigidity c2 and positive c6 (see
Fig. 3), is stable over a range of temperatures below the instability
temperatureTi. However, in this range of α a uniformd-wave pair is still
favored at zero temperature. For α ≳ 1.5, the PDW phase is more stable
than a uniform solution at T =0 and a finite momentum pair exists for
all temperatures belowTi. Themodulation wave vectorQ of the paired
phases is determined by the ratio α and acquires a jump with
increasing α as in a first order transition (see Fig. 4).

It is important to note thatwhile inour paper the critical value ofα
for which c2 changes sign appears to be of order unity, which is
nominally outside the range of standard BCSweak-coupling theory, we
emphasize that this value is a finite non-zero number that does not
take a universal value. Depending on parameters, we can easily pro-
duce critical values of α of order 0.3, whichmight be considered weak-
coupling (see Supplementary Fig. 2). Hence, there appears to be no
physical reason that necessarily constrains FPDW and PDW phases to
be in the strong coupling regime of α ~ 1.

Furthermore, we note the key role of the existence of a lattice
momentum cut-off. If the cut-off were taken to infinity, themodulated

Fig. 4 | Momentum dependence of the sixth order expansion of L−1 at Ti

(dimensionless units). At weak coupling, α =0.22, we find the homogeneous d-
wave SC. The momentum rigidity c2 is large and positive, and the minimum of the
inverse of the susceptibility is at q =0. At intermediate coupling, α ~ 0.7, c2 vanishes
and the minimum of L−1 appears at a finite �Q of order 1. Same set of parameters
of Fig. 2.

Article https://doi.org/10.1038/s41467-023-38956-x

Nature Communications |         (2023) 14:3181 5



solution vanishes as is outlined in the Supplementary Note 5. This is
further highlighted in the recent exact two-body and variational wave
function solution57 where it was shown that in the absence of a cut-off
in the interaction, the modulated solution on a lattice loses to the
homegeneous solution.

Recently refs. 58, 59discussed the possible existence of a diagonal
pair density wave order in the cuprates. To obtain a diagonal pair
density wave order in our analysis, the interaction must contain a
dominant B2g pair-fluctuation interaction. This would imply that the
form factor of the kind sin kx sin ky would be dominant in the fluc-
tuations instead of the cos kx � cos ky form factor in Eq. (1). With this
form factor, our result continues to hold but with the dominant
instability now occurring along the diagonals. Note, however, that our
theorydoes not justifywhich of the two (B1gorB2g) symmetry channels
are the dominant fluctuations. In either of the two cases, one can
obtain the finite momentum pairing instability without requiring a
strong coupling treatment of the theory.

The FPDW and PDW phases are stabilized by contributions to the
fluctuation free energy arising frommomenta close to thenodal regions
in the Brillouin zone. These contributions, which also should drive
strong anisotropy in the phase stiffness near Ti, are suppressed
(enhanced) atweak (strong) coupling thus leading toamodulatedphase
above a critical pairing strength. This simplified picture is confirmed
fromournumerical calculations (Fig. 5). Finally,whileourworkprimarily
focuseson the instability temperatureTi in the strong coupling limit, the
behavior of the condensation temperature Tc and the fluctuations
around the PDWground state in this setting are open problems that will
require further investigations. Our work does not consider the com-
peting effects of a nematic superconducting phase that has been

phenomenologically found to suppress the PDW at T>0 in 2D7,11. In
addition, even if allowed by our model, we have not addressed the
possible coexistence at low T of a PDW and a homogeneous d-wave
superconductor, as suggested by cuprate experiments5,26. Our results as
such set the stage for future microscopic descriptions of modulated
superconductivity in strongly coupled materials.

Note added: During reviewof themanuscript, anotherwork based
on repulsive interactions yielding PDWs became available60.

Methods
We used standard many-body field theoretic methods for all compu-
tations. Details of these methods are included in the Supplementary
Information provided.

Data availability
All data generated or analyzed during this study are included in this
published paper (and its Supplementary Information files)

Code availability
All codes used to generate or analyze the results of this study are
available from the corresponding author (C.S.) on reasonable request.
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