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Dynamic pathogen detection and social
feedback shape collective hygiene in ants

Barbara Casillas-Pérez1,3, Katarína Boďová2,3, Anna V. Grasse1,
Gašper Tkačik 1 & Sylvia Cremer 1

Cooperative disease defense emerges as group-level collective behavior, yet
how group members make the underlying individual decisions is poorly
understood. Using garden ants and fungal pathogens as an experimental
model, we derive the rules governing individual ant grooming choices and
show how they produce colony-level hygiene. Time-resolved behavioral ana-
lysis, pathogen quantification, and probabilistic modeling reveal that ants
increase grooming and preferentially target highly-infectious individuals when
perceivinghighpathogen load, but transiently suppress grooming after having
been groomed by nestmates. Ants thus react to both, the infectivity of others
and the social feedback they receive on their own contagiousness. While
inferred solely from momentary ant decisions, these behavioral rules quanti-
tatively predict hour-long experimental dynamics, and synergistically combine
into efficient colony-wide pathogen removal. Our analyses show that noisy
individual decisions based on only local, incomplete, yet dynamically-updated
information on pathogen threat and social feedback can lead to potent col-
lective disease defense.

Collective action is often more successful than solitary action. This is
because simple individual decisions based on local, noisy, or incom-
plete information can interact through feedback to generate complex
and efficient collective behavior, be it in systems of interacting genes1,
neurons2,3, cells in a tissue4, among single-celled organisms5, or in
animal collectives6–11. Social insects like the social bees and wasps, the
ants and termites –where selection acts on performance at the colony
level– are a paradigmatic example for the emergenceof self-organized
collective behavior12. Their colonies master collective transport, food
collection, as well as nest choice and architecture13–19. Moreover, social
insects perform cooperative disease defense that gives rise to colony-
level protection, or social immunity20. Not only do social insects
decrease disease transmission by modulating their social interaction
networks21,22, they also reduce overall disease risk by active sanitary
care behaviors like grooming-off infectious particles from exposed
colonymembers23–26.While the hygienic repertoireof social insects has
been described previously20,27–31, the quantitative decision rules

underlying these behaviors and how they combine into colony-wide
disease protection remain largely unexplored.

To understand the individual decision-making process that forms
the basis of emergent collective hygiene, we here put ants into an
experimental situation where they could choose how to distribute
their sanitary care between two group members carrying different
loads of an infectious fungal pathogen. Observation of all individual
and mutual grooming events in a time-resolved manner and quantifi-
cation of the spore load of each ant after the end of the experiment
allowed us to infer – for every time window during the experiment –
the spore loadof both treated ants. Basedon this informationwecould
determine, for each grooming event performed, whether the groomed
ant was the one with the higher or lower current spore load, which
revealed that ants over-proportionally groom the individual with the
higher current – yet not necessarily higher initial – spore load. We
complemented our experimental work by probabilistic modeling32 to
infer universal decision rules and factors in the ant’s recent experience
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that determine their individual grooming decisions. This joint
approach shows that an ant’s grooming activity depends on the per-
ceived pathogen threat emerging from its colony members, but also
on the ant’s sensitivity to social cues provided by the colony members
about its own infectivity. In particular, an individual ant grooms other
ants more, the more spores it perceived on others in the recent past,
yet it engages less in grooming after being groomed itself. As the
frequency of being groomed is driven by an ant’s own spore load, this
suppressive effect is hence strongest in individuals that carry highest
spore load, so that social feedback effectively prevents the most
infectious colony members from caregiving. Modeling further
revealed that the observed grooming decisions of individual ants can
be best explained by a spore-load dependent, yet probabilistic, rule of
whom to groom during sequential encounters with its colony mem-
bers. Such a simple local rule does not require global knowledge about
the spore load of all colony members, thus likely allowing efficient
pathogen removal also in large colonies. We further give experimental
evidence that preventing the ants from making free grooming deci-
sions leads to reduced group-level pathogen removal efficiency,
revealing the importance of informed individual choices for colony-
level hygiene. Together, this shows that simple individual rules inte-
grating both threat level and social feedback assure that the most

infectious colony members receive most but engage least in caregiv-
ing, leading to highly efficient social immunity20 and reduced risk of
disease spread33 at the colony level.

Results
Exposing ants to a choice situation for sanitary care
To derive individual decision rules for sanitary care in ants, we set up
different experimental combinations of individual- and group-level
pathogen loads, comprehensively observed thebehaviorsof individual
group members at 1/15 sec-temporal resolution, and quantified
pathogen removal and transmission.We restricted our study toworker
ants as queens do not engage in social immunity measures34,35. Since
collective phenomena in ants emerge already in small group sizes of
six individuals36, we formed groups (n = 99) of six workers of the ant
Lasius neglectus, to observe all individual and pairwise sanitary actions.
We treated two of the workers with either a high (F) or a low (f) dose of
the fungal pathogen Metarhizium robertsii, or a non-pathogenic con-
trol (C), and combined them to create groups differing both in overall
pathogen load and the load differences between the two treated
individuals. The untreated four nestmates therefore either faced a
clear (FC, fC), less distinct (Ff) or no (FF, ff, CC) initial spore load
differencebetween the two treated individuals (Fig. 1a; Supplementary
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Fig. 1 | Individual and collective hygiene are triggered by pathogen exposure.
a Experimental setup of six treatment groups, each consisting of four untreated
ants (nestmates) and two ants treated with varying pathogen load (red F, high;
yellow f, low; gray C, control). Group spore load based on the exposure loads
applied to F- and f-treated ants (as determined directly after exposure for n = 30
individuals each) and initial spore load difference between the two treated ants are
shown per treatment group (medians depicted, see “Methods” section for inter-
quartile ranges). Treatment-induced behavioral changes, reported as difference

from the pre-treatment period (zero line) in fraction of effective time spent in
b selfgrooming their body (resp. head, Supplementary Table 2), c performed and
d received allogrooming, for treated ants and their untreated nestmates (blue N).
Mean ± sem depicted in opaque colors, shades show 95% CI, n = 594 ants, 99
replicates, Supplementary Table 1). Two-sided p-values adjusted for multiple test-
ing of pairedWilcoxon tests post- vs pre-treatment depicted by ***p ≤0.001 (details
given inSupplementaryTable 2), *p =0.023, n.s.p =0.105. Sourcedata are provided
as a Source Data file.
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Table 1; n = 16-17 replicates per group treatment). Individual ants could
be distinguished by a unique color-code applied on their body (yet
with color not revealing ant treatment to the observer), and the spores
of pathogen-treated ants by distinct genetically-encoded labels
(fluorescent GFP vs. RFP; Supplementary Fig. 1). We continually
quantified the sanitary behaviors of each ant for 30min before and
90min after treatment, in particular, self-hygiene (selfgrooming) and
grooming others (allogrooming). Grooming is a common sanitary
behavior in social insects, combining the removal of infectious parti-
cles from the body surface by the insects’ mouth parts, subsequent
compacting and disinfection in specific infrabuccal pockets in the
head, and later expulsion of inactivated pathogen as pellets23,24,37. After
the end of the experiment, we sampled each ant and determined the
number andoriginof spores separately for its headandbody, aswell as
for the pellets produced per group, using sensitive quantitative PCR
(droplet-digital PCR targeting the gene sequence of the labels; n = 594
ants and 77 pellet pools). This allowed us to discriminate between
successful pathogen removal (spores collected into the ants’ infra-
buccal pockets or expulsed as pellets), unremoved infectious spores
(remaining on the body of the spore-treated individuals), and trans-
mitted spores indicative of cross-contamination (found on the other
ants’ bodies; Supplementary Fig. 1) that had taken place over the
course of the 90min after treatment.

Pathogen exposure triggers individual and collective hygiene
Ants treated with the pathogen intensified selfgrooming activity24,33

(Fig. 1b, Supplementary Table 2), and the oral uptake of self-produced
formic acid, their antimicrobial poison (Supplementary Fig. 2, Supple-
mentary Table 2), which aids spore disinfection in the infrabuccal
pockets37. Any type of treatment (F, f, C) –not only pathogen application
– reduced the propensity of an individual to groom others, suggesting
that treatment per se was experienced by the ants as a disturbance
(Fig. 1c, Supplementary Table 2). Therefore, treated ants engaged in
selfgrooming in relation to the spore load they received, but equally
refrained from grooming others as a result of the general disturbance
they experienced by being treated. The nestmates, on the other hand,
provided high levels of sanitary caregiving, which they directed mostly
towards pathogen-treated individuals, and less frequently also towards
control-treated individuals. This is consistent with the observation that
sanitary care in ants and other social insects like termites is triggered by
chemical pathogen cues detected on the exposed individuals, such as
the fungal membrane compound ergosterol38,39.

Theuntreatednestmates also increased selfgrooming as a response
to pathogen exposure of the group (Fig. 1b, Supplementary Table 2). In
particular, they spentmore time grooming themselves after grooming a
spore-loaded (F,f) individual than after grooming another untreated
nestmate (N), whereas grooming a control-treated ant elicited a context-
dependent response (Supplementary Fig. 3a). Notably, nestmate self-
groomingwas triggeredonlybyperforminggrooming towards–but not
by receiving grooming from (Supplementary Fig. 3b) – infectious ants,
andwas therefore not a simple reaction to contact. In contrast to treated
individuals who showed an increase in the use of their sanitizing poison,
thenestmatesdecreased theutilizationof their poison,which is costly to
produce40 (Supplementary Fig. 2, Supplementary Table 2). It is still
unclear whether nestmates refrain fromusing own poisonwhen sensing
the increased application of the volatile formic-acid-rich disinfectant by
the treated individuals, or whether they can assess their low risk of
getting cross-contaminatedwith high, disease-causingpathogen levels41.
Independently of the underlying mechanism, such increased self-
hygiene by nestmates of infectious individuals is predicted by epide-
miologicalmodeling to evolve, as it reduces disease risk for the colony33.

Informed grooming choices based on spore load dynamics
Together, individual and collective sanitary behaviors led to a >80%
spore reduction on the exposed individuals from the initially-applied

spore load. 85% of nestmates were spore-contaminated at the end
of the experiment, albeit at very low pathogen levels (Fig. 2a, see
Methods) that rarely cause disease but can trigger protective
immunization41. The number and type of spores retrieved from each
ant’s infrabuccal pocket at the end of the experiment (as quantified by
fluorescence-specific ddPCR) correlated well with the ant’s grooming
activity in the last sixty minutes of the experiment (min 30–90 after
exposure). Earlier grooming events (min 1–30), however,were lesswell
reflected in the stored spores, likely because the ants had already
expelled these spores as a pellet in the meantime (Fig. 2a, Supple-
mentary Fig. 4). Experimental groups that initially received an overall
higher spore load produced higher numbers of pellets, yet the number
of spores packed into each pellet was independent of treatment
(Supplementary Fig. 5a). This suggests that the ants groom until their
infrabuccal pockets have reached a particular filling state, which then
triggers pellet expulsion. Importantly, the effective grooming time
needed until pellet expulsion increased over the course of the
experiment, implying a reduced efficiency of spore removal as the
spore load in the group decreased (Supplementary Fig. 5b). This
observation was quantitatively captured by a Type II functional
response model42 for grooming efficiency (mathematically equivalent
to a Michaelis-Menten reaction kinetics; Supplementary Table 3,
Methods), in which the spore removal rate during grooming is at
saturation when the pathogen load on the infectious ant is high, but
decreases at lower pathogen loads. Fitting thismodel to our sporedata
allowed us to infer the current load of each spore-treated ant at any
time during the experiment, by back-computation from its remaining
spore load and the grooming it had received (Fig. 2b).

For every decision in which a nestmate chose to groom either of
the two spore-treated individuals (n = 5001 decisions of 196N in 49 FF,
Ff, ff treatment groups),we used this time-resolved inferred spore load
information to determine if the nestmate targeted the individual with
the currently higher load (hereafter higher-load individual) or not.
Remarkably, we found that L. neglectus ants appear capable of making
informed grooming choices, by estimating the instantaneous spore
load on other ants and biasing their grooming towards the higher-load
individual, where grooming is most effective. In detail, the ants tar-
geted the higher-load individuals more frequently (Fig. 2c, see also
Supplementary Fig. 6), while notmodifying the duration per grooming
event (Fig. 2d). Notably, this grooming bias towards higher-load indi-
viduals relied on the ants’ current, but not their initially-applied, spore
loads, as individuals with higher initial spore load were only pre-
ferentially targeted early in the experiment (Supplementary Fig. 7),
when the initial load still approximates the current load (Fig. 2b). The
ants are thus reacting to constantly-updated pathogen load informa-
tion when making their grooming choices.

Probabilistic modeling identifies individual decision rules
We next sought to turn these statistical observations into a consistent
and sufficient set of behavioral rules capable of mathematically pre-
dicting moment-by-moment individual ant decisions and the emer-
gent colony-level dynamics. We developed a class ofmodels32 in which
individual ants stochastically switchbetweendiscrete behavioral states
of selfgrooming, allogrooming, or not performing any sanitary action
(Supplementary Note 1, Fig. 3a). Cross-validated model selection
identified the factors that ants integrate to choose whether to groom
in the next time instant or not (Supplementary Note 1). Our model
recovered the observed grooming activity best when predicting it
based on the combined information about the spore load that the ant
had encountered on others within the past ~minute (L), and the
grooming it had received by others within the past ~10 seconds (R,
Fig. 3b). While the combined model using R and L factors improved
global prediction error shown in Fig. 3b by a small amount compared
to the L-only model, it generated a significantly larger improvement in
moment-to-moment predictability in the choice of next ant behavior
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(Supplementary Note 1). To replicate the observed ant behavior, our
model had to further include an individual disturbance factor (ρ,
Fig. 3c) describing the change in ant behavior upon receiving any kind
of treatment per se (independent of its infectiousness level).

Finally, our analysis revealed that a preference of an ant to groom
the higher-load individual (Fig. 2c) is most parsimoniously explained by
what we call a sequential-choice rule: an ant probes one groupmember
after the other, and commits to groom the currently probed ant with a
probability that increases with the probed ant’s current spore load
(Fig. 3d; Supplementary Note 1). Notably, this choice rule does not
require an ant to compare (and remember) the spore load on multiple
other ants. While the empirically identified rule may not be optimal in
terms of the total spore removal efficiency as a consequence of its local
and sequential nature, it nevertheless leads to a systematic bias towards
preferentially choosing higher-load individuals; similar collective choi-
ces that do not require individual comparisons (and thus global
knowledge) have been reported in other contexts, like nest choice in
ants14,18,43. Simulations using the sequential-choice rule matched data
better than various alternatives (Fig. 3d). The most naïve alternative we

explored was one in which ants choose their grooming targets uni-
formly at random; this alternative, however, provided the worst match
to data. Next, we explored two less trivial alternatives in which ants
choose their grooming targets based on information that was not
dynamically updated. In the first no-updating alternative, ants did per-
form sequential choice, but using initial spore loads only; removing
dynamic load-updating thus substantially worsened fit to data. In the
second no-updating alternative, ants used fixed (but non-uniform)
probabilities to choose amongst their F, f, C, N targets. Evenwhen these
probabilities themselves were fitted to maximize agreement with data,
this alternative still underperformed sequential choice. The last alter-
native we considered allowed for dynamic updating and assumed that
ants could acquire complete information about all current loads, to
deterministically pick the ant with highest current load to groom
(maximumrule).While suchahypothetical rulewould result in themost
rapid removal of spores from the colony, it was also not supported
by data.

Predictive performance of various rules for grooming choice
(Fig. 3d) clearly identified the importance of continuous information
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Fig. 2 | Sanitary care behavior depends on pathogen load. a Ff-treatment group
example ofmeasured final spore loads remaining on each ant’s bodyor acquired by
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head or as disposed pellets. Red indicates spores originally applied to the F-indi-
vidual, yellow to the f-individual. b Inferred spore load dynamics for the two
pathogen-treatedants inpanela. Horizontal lines showback-computed initial loads
of the F- and f-individual; arrow depicts exemplified current spore load difference.
cDistributionof the proportion of the spore loadon the groomed individual (out of
total spores on both spore-treated ants), assembled across all nestmate

allogrooming events (gray bars), when compared to chance (black line) reveals the
ants’ preference to groom higher-load ants (bootstrapped Kolmogorov-Smirnov
test, D =0.053, two-sided p = 1.632e−6 (shown by *** as ≤0.001), green line depicts
smoothed observed to expected-by-chance difference; see also Supplementary
Fig. 6). dDuration of individual allogrooming events (grooming events of duration
<2min [90% of events] depicted) does not systematically depend of the current
load proportion (42/45 pairwise Kruskal–Wallis tests two-sided adjusted for mul-
tiple testing p >0.05); c, d based on n = 196N from the 49 FF, Ff, ff replicates.
Source data are provided as a Source Data file.
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updating and suggested sequential choice as a biologically-plausible
procedure by which such information could be utilized by individual
ants. Sequential choice predicts a clear experimental signature: the
existence of multiple transient ant-ant interactions that precede, but
do not immediately lead to, allogrooming. We therefore analyzed in
detail the ants’ behavior in two of our experimental replicates (Sup-
plementary Fig. 8) to see if the ants may sequentially probe their tar-
gets before committing to groom, preferentially, the higher-load ant.
Indeed, we found bouts of antennation – a common recognition and
discrimination behavior in ants44 – preceding most allogrooming
events, whereby an ant would make several transient contacts with
different target individuals before finally choosing an ant to groom;
typically, the chosen ant was also antennated immediately prior to
grooming. While our experiments do not permit us to unambiguously
and causally identify antennation as the probing mechanism under-
pinning the sequential choice, they provide a possible mechanistic
basis and correlational evidence in support of this idea.

Taken together (Fig. 3e), an ant is more likely to become an allo-
groomer when (i) it recently perceived pathogen load on others –

indicating an ongoing colony-level infection; (ii) it was recently not a
recipient of grooming by others – indicating that it is likely not highly
contagious itself; (iii) it did not experience any kind of disturbance
(e.g., treatment) during the experiment. Furthermore, when an ant

becomes an allogroomer, (iv) it preferentially targets higher-load ants.
We identified how ants combine information (i-iv) by maximum-
likelihood inference of model parameters (Supplementary Note 1),
using data on ant moment-by-moment decisions. The resulting model
simulations accurately captured the sanitary behavior and spore
removal across all treatments and replicates, both at the group and
individual level, across the entire hour-long experiment (Fig. 4; Sup-
plementary Note 2). Correct prediction of long-term dynamics from
momentary individual decisions constitutes a non-trivial test of the
model45 and parallels the analysis of collective dynamics on long time-
scales in statistical physics of active matter46.

Individual decisions allow efficient whole-colony spore removal
The inferred rules that best capture ant behavior are only based on local
information that the ants can acquire from their close contacts. Theo-
retically, the colony could remove even more spores if the ants always
groomed the individual with the currently highest load (maximum rule,
Fig. 3d; Supplementary Note 1). This consideration, however, ignores
biological constraints faced by individual ants in large collectives that
they form in their natural colony conditions47. It would require each ant
to assemble global information by assessing and remembering the
maximum pathogen load of its group members, to subsequently cog-
nitively identify and physically locate the most infectious individual to
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sition to allogrooming is additionally suppressed (ρ) in all treated ants.
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groom.We explored the efficiency of different choice rules in a separate
set of stochastic simulations where individual ants committed their time
toeitherfirstprobingother ants togather informationon theirpathogen
load state or to directly allogroom encountered others, thereby redu-
cing their pathogen load. As soon as probing other ants incurs any time
cost, our simulations (Supplementary Note 2), show that the
experimentally-motivated sequential-choice rule (basedoncheappartial
information) will outperform the hypothetical maximum rule (based on
costly complete information) as colony size increases (Fig. 5), in a classic
manifestation of the exploration-exploitation tradeoff48,49. Here,
exploration refers to the effort by nestmates to locate the ant with
highest spore load, where grooming (exploitation) would be most effi-
cient. This is in analogy to the application of the same tradeoff to the
problem faced by foraging animals that need to balance the time spent

on searching for new and possibly rich foraging grounds, with the time
spent exploiting known, but perhaps more meagre, grounds. We point
out that the decisions faced by the nestmates could also be understood
in terms of the speed-accuracy trade-off50–52. Here, nestmates need to
invest more time (i.e., to probe colony members) to make a more
accurate choice (i.e., to locate the highest-load individual and deliver
most efficient care). While the exact dependence of grooming prob-
ability on the observed load in the sequential-choice rule that leads to
most efficient spore removal depends on various factors, all efficient
rules share a very small probability of targeting a non-infectious ant for
grooming (SupplementaryNote 1, SupplementaryNote2), asweobserve
in the data. We note that even in small groups as used for our experi-
ment, where ants could conceivably gather global information and use
theoptimalmaximumrulewithoutmuchefficiency cost (Fig. 5), ourdata
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preferentially support the sequential-choice rule. This suggests that the
ants’ decision about whom to groom reflects a hard-wired optimal
strategy that evolved under the selection pressures in natural col-
ony sizes.

Grooming decisions reflect load differences and social feedback
Next, we explored the biological implications of our model insights.
We found that the groomingbiasof nestmates towards the higher-load
individual is more pronounced when the two treated individuals
clearly differ in load, but is already expressed when the difference

between the two individuals is small (Fig. 6a; n = 8129 grooming deci-
sions by 328N in the 82 replicates with at least one spore-treated
individual). This allows nestmates to preferentially groom the higher-
load individual, even if the two individuals initially received equal
spore loads, which subsequently diverged due to differential self- and
allogrooming history (Supplementary Fig. 9). Such a behavior will
inevitably emerge when ants use information on spore loads they
perceived in the very recent past (Supplementary Note 1), rather than
keeping long-term memory of the initially-applied load (Supplemen-
tary Fig. 7). Such constant updating of pathogen load information
appears key for the ants to react dynamically to changes in disease risk.

Our model also uncovered that ants respond to social feedback
when making their sanitary care decisions (Fig. 3b). Social encounters
have been known to affect various behaviors, e.g. foraging53,54 and nest
evacuation55 decisions. Here, we found that an ant suppresses own
performance of allogrooming after being groomed by others. This
suppressive effect is strongest in the first minute after received
grooming; its time-course follows an exponential decay with a ~half-
minute timescale. Since an ant preferentially receives grooming when
its pathogen load is higher, higher-load individuals will be inhibited
more strongly by this social feedback. Grooming suppression is a
general response to received grooming – it occurs in all ants even in
the absence of a pathogenic threat (i.e. in the pre-treatment period).
The suppressive effect increased ~2-fold compared to the pathogen-
free pre-treatment situation for the treated ants, while it was reduced
~2-fold for the untreated nestmates (Fig. 6b). Untreated nestmates
were thus less reactive to the suppressive effect of being groomed
after pathogen exposure of their group members. For all treated ants,
the strength of the suppression was equally high after any treatment,
be it high or low pathogen exposure or control treatment (Supple-
mentary Fig. 10). Thus, any formof disturbance that an ant experiences
makes it more reluctant per se to groom others (ρ), as well as more
responsive to the social feedback it receives from others (R).

The social feedback that we identified in the regulation of col-
lective sanitary care likely allows the ants to continuously evaluate
their own pathogen load and hence the infectious risk they pose to the
colony. A necessary condition for this mechanism to function is the
ability of ants to preferentially groom higher-load individuals: without
this ability (e.g., using a uniform random choice rule; Fig. 3d) such a
social signal would carry zero useful information and would have no
clear adaptive value. Preferential grooming of highly-infectious indi-
viduals and social feedback thus provide a compelling example of two
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behaviors that combine synergistically. An appealing hypothesis is that
social feedback, especially when reinforced by continued grooming or
by multiple ants grooming the same individual simultaneously, could
be more accurate than any direct self-assessment of the individual’s
own pathogen load. This could constitute a reliablemechanism for the
ants to adjust their sanitary caregiving to own infectiousness, thereby
reducing the epidemiological risk of spreading the pathogen33.

Informed grooming increases group spore removal efficiency
We quantified how grooming decisions affected a group’s spore
removal efficiency, that is, the proportion of spores that the ants
removed in the 90min after exposure from the treated ants by col-
lecting them into the nestmates’ infrabuccal pockets and inactivating
them as pellets. We found that groups which had more frequently
successfully targeted the higher-load individual (better choosers)
removed more spores than groups which less frequently picked the
higher-load ant (worse choosers; Fig. 7a, Supplementary Fig. 11). We
next evaluated how a complete prevention of choice would affect
spore removal efficiency, by performing a separate functional knock-
out experiment. We compared spore removal in groups that had free
choice (groups of 4 nestmates with two treated individuals, as in the
initial setup) with spore removal in other groups that did not have free
choice (initial groups split up into two halves, eachwith twonestmates
and one treated individual only; n = 98 groups of total 462 ants, 14
replicates each of 4 choice and 3 no-choice situations, see Methods).
We found that the total spore removal in the no-choice scenario, i.e.,
spore removal summed over the two split half-groups, never reached
the spore removal levels of the corresponding unsplit freely-choosing
group, independently of the initial spore load difference between the
two treated ants (Fig. 7b).

Taken together, the observed higher spore removal of better
choosers (Fig. 7a), as well as the observed higher spore removal of
groups with choice (Fig. 7b), indicate thatmany small grooming biases
in individual ant decisions accumulate to a functional benefit at the
collective level. The ability of individual ants to preferentially target
higher-load individuals (rather than choosing uniformly at random;
Fig. 3d, Supplementary Note 1), combined with the higher grooming

efficiency at higher spore loads (Type II functional responsemodel, see
above), builds up to highly efficient pathogen removal at the group
level. This effect is already detectable for our experimental groups of
only six ants, in line with previous reports that collective benefits can
emerge already at these very small group sizes36.

Discussion
In this study, we extracted individual decision-making rules underlying
collective hygiene in ants. These rules are cognitively simple, scalable,
and plausible, since they only require short-term memory, contact-
based social feedback, and locally-accessible pathogen threat infor-
mation. Despite these limitations that exert their effect at the level of
individual ants, the identified rules interact synergistically and amplify
into efficient pathogen removal with expected epidemiological bene-
fits at the colony level. Below we rationalize how this synergy
comes about.

The first essential ingredient is the dynamic and continuous re-
assessment of current pathogen loads. Even if constrained by limited
individual cognitive abilities, this dynamic updating is key for the ants
to react quickly and appropriately: the pathogen load and hence
transmission risk are not fixed, but change continuously as a con-
sequence of the ants’ sanitary actions themselves, requiring continual
informationupdating. Second, the fact that ants target individualswith
higher current pathogen load for grooming with higher probability,
coupled with the mechanistic aspects of grooming that permit higher
spore removal rates at high pathogen loads, combine into a very effi-
cient pathogen removal for the entire colony. Third, whilst pathogen
load perceived on others is an excitatory factor promoting grooming,
own pathogen load inhibits grooming performance, thereby limiting
the spread of infection33. Own pathogen load seems to be assessed by
the ants indirectly, requiring social feedback by others in the form of
received grooming – which must be targeted preferentially towards
the infectious ants for this mechanism to work. Finally, we found that
the ants become more reactive to socially-acquired information when
they also individually acquire information on their own disturbance,
reiterating the relevance of combined internal and external informa-
tion integration in social insects55,56.
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Taken together, efficient collective hygiene in the colony emerges
from mechanistic amplification of behavioral choices, interplay of
excitatory and inhibitory factors through feedback, as well as indivi-
dual and social information processing. The identified rules contribute
to preferential grooming of the most-infectious colony members by
the individuals with the lowest own infectiousness, identified by epi-
demiological modeling as important to reduce disease risk for the
colony33. Such immediate functional benefits – and thus evolutionary
relevance – of emergent behaviors can rarely be pinpointed57, despite
recent technical advances that spurred a multitude of studies on col-
lective actions across the social, physical, and life sciences58,59. Our
results showcase the importance of collective behaviors for the evo-
lution of social insects, whose fitness – similar to other cooperative
entities like cells in a body – inherently depends on group-level
performance60–62.

Methods
Ant host and fungal pathogen
As host species, we studied the invasive garden ant, Lasius neglectus.
We collected several hundred workers, multiple queens and brood of
this species from its introduced supercolonial population in the
Botanical Garden in Jena, Germany (N 50° 55.910 E 11°35.140)63 in June
2015 and September 2022 and reared them in the laboratory with
sugar water and minced cockroaches. Experiments were performed
with workers sampled from worker chambers inside the nest, to avoid
both old foragers and freshly emerged callows, in a humidity- and
temperature-controlled room at 65% RH and 23 °C. Collection of this
unprotected species and all experimentalwork followed European and
Austrian law and institutional ethical guidelines.

As pathogen, we used the obligate-killing entomopathogenic
fungus Metarhizium, a common natural pathogen of ants64 including
Lasius65, in particular the infectious conidiospores (here also abbre-
viated as spores) of theMetarhizium robertsii strain ARSEF 257566, with
either an integrated green (eGFP) or red (mRFP1) fluorescent label
(obtained from M. Bidochka, Brock University; labels abbreviated as
GFP and RFP). GFP- and RFP-labeled spores did not differ in their
virulence to the ants.

Sanitary care experiment design and setup
We observed all ant behavior and quantified pathogen removal and
transfer in 99 experimental groups, each consisting of six individually
color-coded workers (with an Edding 780 dot applied to each worker
18–24 h before experimental start) in plastered petri-dishes (Ø 35mm,
SPL Life Sciences) with glass covers (Ø 51.5mm, Edmund Optics). Four
workers remained untreated, and are referred to as nestmates (N). The
other two were chosen randomly after an initial 30-minute filming
period (pre-treatment period) to be treated with one of three treat-
ments: an F-treatment of a high dose of the fungal pathogen, an
f-treatment of a low, i.e. half of the high, fungal dose, or a C-treatment
consisting of a pathogen-free control treatment. The all-pairwise
combinations of these three individual ant treatments resulted in six
different group treatments (FF, Ff, ff, FC, fC, CC; Fig. 1a). To allow for
distinction of the spore origin in groups with two pathogen-exposed
ants (FF, Ff, ff), one worker received the GFP-labeled spores, the other
the RFP-labeled ones, in a randomized manner (Supplementary
Table 1). Treated ants were put back into their group immediately after
treatment and the behavior of all ants was filmed for another
90minutes (post-treatment period), resulting in a total of two hours of
filming. Filming was performed in a four-camera parallel setup, where
the treatment group of the four replicates filmed at a time was ran-
domly assigned, resulting in a balanced design with treatment groups
distributed over the course of the day, over a total of six recording
days (rolling-shutter cameras from IDS UI-1640LE USB 2.0 CMOS, 15
fps, 1024 × 1024, 1.3MPixel, 1.3” Aptina Sensor, Rolling-shutter; fixed
focal length lens 6MM 1/1.8” f 1.4-f/16 C-mount, Edmund Optics;

Streampix 5 digital video recording software [NorPix, Inc.] for acqui-
sition). After filming, all ants and the spore pellets they had disgorged,
were frozen at −80 °C for later pathogen load quantification. From the
original 108 replicates (18 per treatment group), 9 had to be excluded
for technical errors occurring during experimental performance, so
that we obtained 16 to 17 replicates for each of the six treatment
groups (n = 99 replicate groupsof six ants, total 594 ants, ofwhich 66F,
65f, 67C, and 396N; Supplementary Table 1).

Pathogen exposure
The infectious conidiospores of M. robertsii were harvested in sterile
Triton X-100 (Sigma; 0.05%, diluted in milliQ water) from 6.5%
sabouraud dextrose agar plates freshly before the experiment and
their germination was confirmed to be >95%. Pathogen-treated work-
ers were individually exposed to a 0.3μl droplet of the fungal spore
suspension at a concentration of 1 × 109 spores per mL for the
F-workers and half of this concentration, 5 × 108 spores per mL, for the
f-workers. C-workers received a control treatment of the same volume
of sterile Triton X-100 only. To this end, each ant was held in forceps
and its abdomen was gently drawn through the droplet of the
respective treatment suspension, placed on a clean glass slide, until
the droplet was completely taken up. Spore quantification (as detailed
below) directly after exposure revealed that this treatment led to an
effective application of 2.00 × 105 spores (median; interquartile range
IR 1.36−2.55 × 105; n = 30) for the F-workers and of 1.04 × 105 spores (IR
0.88−1.31 × 105; n = 30) for the f-workers.

Behavioral quantification
We analyzed the individual and social behavior of each of the 594 ants
for the total 2-hour duration of the experiment using a behavioral-
logging software (Solomon Coder v. 17.067), which allows scoring with
a frame-based resolution of the start and end frame of each event. As
ant treatment had been applied to two individuals that were randomly
chosen independent of their color, no association could be made by
the observer between ant color and treatment, neither within nor
across replicates and treatment groups. Ant color-to-treatment
assignment was also not revealed in the videos, ensuring bias-free
behavioral scoring. We determined event number and duration of (i)
selfgroomingbehavior of the ant’s ownheador body, (ii) allogrooming
performed towards group members, (iii) allogrooming received by
group members, (iv) poison-uptake behavior from the acidopore into
the ant’smouth, used for antimicrobial treatment by the ants37, and (v)
pellet disgorgement of spore pellets. These contain the spores col-
lected in the infrabuccal pocket during grooming, compacted and
expelled as pellet. We also scored other behaviors, which we did not
include in the analysis due to their short duration (1 frame, equivalent
to 1/15 s for antennal strokes) or their rare occurrence (food exchange
behavior, trophallaxis). We did not observe the ants performing any
aggressive behaviors. We further observed the first 30min after
treatment of two ant groups (one Ff and one FC example) in detail for
their antennation behaviors (recorded as events due to their short
duration), to set these non-grooming encounters into context with the
grooming encounters.

Pathogen quantification
After the end of the experiment, i.e. 90min after treatment of the
treated individuals, we quantified the number of spores of each of the
594 ants, as well as the spores packed into the pellets produced by the
ants. The pellets produced by each group of ants were pooled for
spore quantification, resulting in n = 77 pellet pools (no pellets were
produced in any of the 17 CC replicates, in three fC replicates and one
FC replicate, and one sample was lost before quantification). More-
over, we quantified the spore number of an additional 75 ants, which
were not used in the experiment but frozen immediately after appli-
cation of the F- or f-dose (n = 30 each, of which 15 using GFP- and
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15 using RFP-labeled spores) and a control treatmentwith Triton X-100
(C; n = 15), in order to determine the initially-applied spore load of the
treated ants at the start of the experiment. GFP- and RFP-usage was
randomized across ant treatments, colors and replicates and sample
labels did not contain treatment information.

After freezing, we removed the head of each ant with a clean
scalpel and separately processed its head and body, to obtain distinct
estimates of (i) the spores collected during grooming in the infra-
buccal pocket inside each ant’s head, where they are chemically dis-
infected using poison the ants took up before being expelled as
pellets37, and (ii) the spores remaining on the ant’s body surface,
representing unremoved spores from the body of the spore-treated
ants, as well as contamination of the nestmate body by cross-
contamination (Supplementary Fig. 1; see also below). For each of
the 1415 samples (1338 ant dissection samples and 77 pellet pools) we
simultaneously obtained absolute counts of the GFP- and RFP-labeled
spores, by a multiplex droplet digital PCR (ddPCR) assay.

To this end, all samples were homogenized in a TissueLyser II
(Qiagen) using a mixture of one 2.8mm ceramic (VWR), five 1mm
zirconia (BioSpec Products) and approx. 100mg glass beads
(425–600 µm; Sigma), in two steps (2 × 2min at 30Hz), as in ref. 21.
Total DNA was extracted using Qiagen DNeasy96 Blood and Tissue Kit
according to the manufacturer’s instructions, with a final elution
volume of 50 µl Buffer AE. To perform absolute quantification of the
two labeled spore variants simultaneously, we designed a multiplex
ddPCR probe assay targeting the single copy mRFP1 (KX176868.1) and
single copy eGFP gene sequences (NC 025025.1). Primers and probes
were designedusing Primer3Plus68 andhave been shown to exclusively
amplify the respective geneof interest. ThegenomicDNAwasdigested
using EcoRI-HF and HindIII-HF enzymes (both New England Biolabs)
within the 20 µl ddPCR reaction, comprising: 10 µl of 2x ddPCR
Supermix for probes (Bio-Rad), 14 pmol of both eGFP primers (for-
ward: 5′-AAGAACGGCATCAAGGTGAA-3′, reverse: 5′-GTGCTCAGGT
AGTGGTTGTC-3′; Sigma), 18 pmol of both mRFP1 primers69 (forward:
5′-CTGTCCCCTCAGTTCCAGTA-3′, reverse: 5′-CCGTCCTCGAAGTTCA
TCAC-3′; Sigma), 5 pmol of eGFP probe (5′-[HEX]CAGCTCGCCGACC
ACTACCAGCAGAAC-3′ [BHQ1], Sigma), 5 pmol of mRFP1 probe (5′-
[6FAM]AGCACCCCGCCGACATCCCCG-3′ [BHQ1], Sigma), 10 U each of
EcoRI-HF and HindIII-HF (both New England Biolabs), 2.8 µl nuclease-
free water (Sigma) and 2 µl DNA template. Droplet generation was
done using the QX200 droplet generator (Bio-Rad) according to
manufacturer’s recommendations.

Dropletswere transferred into a96-well plate (Eppendorf) for PCR
amplification in a T100 Thermal Cycler (Bio-Rad). Cycling conditions
were as follows: enzyme activation for 10min at 95 °C, followed by 40
cycles of 30 sec at 94 °C and 1min at 56 °C, followed by enzyme
deactivation for 10min at 98 °C. For the entire protocol, the ramp rate
was set to 2 °C / sec. Following PCR amplification, the PCR plate was
put into a QX200 droplet reader (Bio-Rad) for the readout of positive
and negative droplets. Data analysis was done using the QuantaSoft™
Analysis Pro Software (Bio-Rad, version 1.0). The thresholds were set
manually to 3000 for FAM (reporter for mRFP1) and 2000 for HEX
(reporter for eGFP). Samples with a total droplet count of <10,000
were repeated. Background noise in the quantification of spores was
defined as the maximum number of copies read in the non-target
channel (i.e reads in FAM channel for eGFP exposure, and reads in HEX
channel for mRFP1 exposure). Values below background noise level (8
copies for mRFP1 and 12 for eGFP) were not considered. Results are
given as copies/20 µl well by the software, from which we then calcu-
lated the absolute number of sporesper sample (e.g. ant head, body, or
pellet).

We found that only <20% of the initially-applied spores remained
on the body of the spore-treated individuals after the 90min of the
social interaction (F: median 27497 spores, CI 24254 – 32421, n = 66; f:
median 13710 spores, CI 9141–17120, n = 65). In addition, approx. every

second spore-treated ant also contracted low spore numbers from the
other treated individual (spore numbers in case of occurred trans-
mission; F: median 84 spores, CI 47–119, n = 41; f: 71.5 spores, CI
11.5–98, n = 28), equivalent to a fraction of 0.3% (F) to 0.5% (f) of the
final load of the spores that still remained from its own exposure.
Nestmates contracted the pathogen at a higher proportion. After the
90min of interaction to the spore-treated, we detected spores on the
bodies of 84% of nestmates (275 out of 328 untreated nestmates from
the 82 groups with at least one pathogen-treated ant). Again, the
number of spores transmittedwas very low,with amedianof 96 spores
(CI 83–102,n = 275)per nestmate that hadcontracted spores. Nearly all
nestmates (311/328, 95%) had collected spores in their head, with a
median of 1453 spores (CI 942–1836), reflecting their recent grooming
activity (Supplementary Fig. 4).

We used a conservative approach to evaluate the error that we
introduce by accounting all spores quantified by ddPCR from the head
samples of the nestmates as spores collected into the infrabuccal
pocket, while some may have been attaching externally to the head
capsule. To this end, we set up another two replicates of the treatment
group with the highest overall spore load (FF) and analyzed the spore
number detectable on the outside of the head capsule of the four
nestmates after the 90min of interaction with the two F-individuals by
fluorescent stereomicroscopy (Leica MZ16 FA with Filter Cube: ET
DsRed; Software: LeicaApplication SuiteAdvancedFluorescence2.3.0;
as in41). Contrasting to the main experiment, we here treated both
F-individuals with the RFP-labeled spores, as (i) this label clearly con-
trasts to the autofluorescence of the ant cuticle, and (ii) we were only
interested in the overall number of spores that would attach to the
head capsule of the nestmates. We carefully examined the head cap-
sule of the eight nestmates for the presence of fluorescent spores by
screening every nestmate head for 30min. Although we cannot
exclude that some spores may have been overlooked, this clearly
revealed that the contamination of the nestmate head capsule was
restricted to very few spores, e.g. found around the eyes or on the
antenna. We did not detect any spores on 3 of 8 nestmates, and those
nestmates that had spores had a median of 3 and a maximum of
4 spores. Therefore, whenever we quantified more than 4 spores in a
nestmate head sample in our experiment using the ddPCRmethod, we
can confidently assume the spores are inside the infrabuccal pocket.
Given that the nestmates across treatment groups had a median of
~1500 spores in their head sample, we consider the noise introduced
by our method as very minor.

Time-resolved current spore load calculation
For eachof the spore-treated ants (F, f) we estimated the current spore
load contamination on its body with a resolution of 30-s time windows
in the 90-min post-treatment period (180 timewindows in total) from:
(i) the sumof the GFP- and RFP spore counts that remained on its body
at the end of the experiment, (ii) the time it selfgroomed its body and
was groomed by others, and (iii) the initial distribution of spore loads
after F- and f-treatment, asquantified for the 30F- and f-workers frozen
directly after exposure. Given a mathematical model for how the
number of spores on an ant could decrease with grooming (spore
decay model), one can back-compute the spore load on each ant from
its remainingmeasured spore count (i), and the sequence of grooming
events (ii), to any time t during the experiment. If spore loads are back-
computed to the beginning of the experiment for all F- and all f-ants,
they should recover the experimentally measured distributions (iii).
The last fact allowed us to select a best spore decay model and fit its
parameters, such that spore loads could subsequently be imputed at
any time during the experiment.

To find the best model, we first considered simple models for
spore decay, where spores decrease with zeroth-order (constant
velocity) or first-order (exponential) kinetics upon grooming. These
two simple models either had problematic limiting behavior, or could
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not reproduce the measured initial spore distributions. These defi-
ciencies are naturally handled by the spore decay model inspired by
Type II FRM, also known as the h = 1 Hill function, or Michaelis-Menten
reaction kinetics. Here, the ants remove the spores (S) over time as dS/
dt = −vS/(S +K), with constants v and K to be fitted, where t is the time
while the ant is being groomed, where grooming includes both allo-
grooming (properly accounting for events where multiple ants groom
a single target ant simultaneously) as well as body selfgrooming. At
high spore loads (S >> K) on the body of the contaminated individual,
the removal by the ants by grooming occurs at a maximum rate v
(presumably given by the physical limit to how quickly an ant can
remove spores). In this regime, the spore number on contaminated
ants decreases linearly in time groomed. As spore number decreases
further (S << K), less spores can be captured per unit time, so that the
speed of spore removal becomes proportional to the (limiting) current
load S, and thus the spore number decreases exponentially in time
groomed. K, known as the dissociation constant in Michaelis-Menten
kinetics, gives the transition between the exponential and the linear
regime. We fitted the parameters v and K from our experimental data,
so that the back-computed initial distributions of spore loads pre-
dicted by the model showed the best fit to the initial spore load dis-
tributions determined from the quantification of spores of the F- and
f-ants directly after exposure (see Supplementary Table 3 for details).
The two parameters are chosen to best fit two moments (median and
SD) for eachof the twodistributions (initial loaddistribution for F and f
ants), i.e., two parameters are chosen to best satisfy four constraints.
We checked that thefitted values are uniquely constrainedby scanning
the entire 2D grid in the parameter space and observing a single clear
optimum of the fitting loss function. The robustness of v, K parameter
estimates with respect to the choice of optimization criteria (here,
matching the median and standard deviation of distributions) was
further corroborated by recovering similar values by minimizing the
earth movers’ distance between the distributions.

Experimental prevention of choice
In a follow-up experiment, we tested if preventing the ants from
choosing between treated ants would lower their spore removal effi-
ciency, as suggested by the lower spore removal in worse-choosing
groups compared to better-choosing groups of ants in the main
experiment (Fig. 7a). In this functional knock-out experiment, we
either set up ant groups as above, containing 4nestmates and2 treated
individuals (free-choice situation), or we split the setup in half to
consist of only 2 nestmates and 1 treated individual (no-choice situa-
tion). In the choice situations, one of the ants was always treated with
the high dose (F; 1 × 109 spores permL), and the second one eitherwith
(i) the control suspension C (easy choice), (ii) a lower spore dose (¼ F
or ½ F, i.e. 2.5 × 108 resp. 5 × 108 spores per mL, representing a mod-
erate choice difficulty), or (iii) with the same F dose (difficult choice).
The no-choice situations contained one ant, treated with either of the
three spore dosages (F,½F,¼F).We analyzed a total of 98 ant groups
(14 replicates each of the 7 situations, total n = 462 ants, of which
308N). 16−24 h before the experiment, the ants were color-coded as
above, yetwith all N receiving equal color. To cover the peakgrooming
activity (Fig. 4a)we froze the dishes 20min after exposure, and pooled
all nestmate heads and pellets per dish for following pathogen load
quantification to quantify all spores removed by the group. To this
end, we extracted the DNA of the 98 samples as described above,
except that annealing temperature was set to 60 °C, thresholds were
set to 2200 for FAM and 1800 for HEX and the noise level was 3 copies
for both for mRFP1 and eGFP. For the DNA extraction, we ensured
equal conditions between the choice and no-choice situations by
adding two worker heads from the stock colony to the only
two nestmate heads in the 42 no-choice groups to contain same
amount of host tissue as the four nestmate heads in the choice situa-
tions (n = 56).

Statistical data analysis
Statistical data analyses were performed in R v.3.6.3 and Matlab
v.2016b. For everymodel, we checkedmodel assumptions (i.e. residual
normality and heterogeneity, nomulti-collinearity, no overdispersion)
and influential cases. We built generalized linear mixed models using
glmmTMB70 and lme471, and DHARMa72 as a diagnostic tool. In addi-
tion, we used tidyverse73, forcats74, data.table75 and stringr76 for data
formatting, and stats77 and multcomp78 for statistical summaries and
inference. Effect sizes79 were calculated using R packages effectsize80,
rcompanion81 and rstatix82. When multiple inferences were made, all
significance values were corrected using the Benjamini–Hochberg
procedure to protect against a false discovery rate of 5%83. Adjusted
p-values are reported and are all two-sided, with the exception of the
choice-prevention experiment (Fig. 7b), which was built on an a priori
hypothesis derived from the main experiment. Exact p-values given
when larger than 1e−11. Graphs were made using the R packages
ggplot284, cowplot85, ggpubr86 and scales87, and Matlab v.2016b
(Math-Works).

For each of 594 ants in 99 replicates (Supplementary Table 1), we
tested whether its effective time of selfgrooming its body and head,
poison uptake, allogrooming, as well as received allogrooming
(Fig. 1b–d, Supplementary Fig. 2, and Supplementary Table 2), differed
between the pre- and post-treatment period by paired Wilcoxon tests
according to individual treatment, i.e. high-load (F), low-load (f),
control-treated (C) individuals, and untreated nestmates (N). For the
nestmates, we further analyzed if the time they spent selfgrooming
was dependent on the treatment of the ant they had groomed, or by
whom they had been groomed last (with a max. time window of 3min
before the selfgrooming), by use of Kruskal-Wallis tests followed by
posthoc comparisons (Supplementary Fig. 3).

For every grooming event in which an untreated nestmate chose
to groom one of the two spore-treated ants (n = 5001 individual
grooming choices performed by the 196N from the 49 replicates with
two spore-treated individuals), we computed the current spore loads
on both treated ants, using the Type II functional response model
detailed above. For each grooming choice we derived the current
spore proportion on the groomed ant as the current spore load of the
targeted ant over the total current spore load of both treated ants and
compared the observed distribution to a null expectation of uniform
random choice (Fig. 2c) by a Kolmogorov–Smirnov test. We further
tested for a possible relationship of the duration of grooming events
with the spore load proportion on the groomed individual, by binning
all grooming events into ten categories of current spore proportion on
the groomed individual and counting how many events of particular
duration fell into each category, followed by Kolmogorov–Smirnov
tests (Fig. 2d).

We tested by logistic regression whether the duration of groom-
ing performed towards the ant with the respectively labeled spores
(GFP vs. RFP) predicted the presence of these spores in the head of
nestmates from the 82 groups with at least one spore-treated indivi-
dual (FF, Ff, ff, FC, fC; n = 328N, 196 of which had contact to two spore-
treated individuals, leading to a total of n = 524 data points (Supple-
mentary Fig. 4a). We further performed Spearman-rank correlations
between the number of spores detected in the nestmates’ heads and
the time they had groomed in different intervals before the end of the
experiment (Supplementary Fig. 4b).

We tested by linear regression if the number of pellets produced
per group (including only groups containing at least one pathogen-
exposed individual FF, Ff, ff, FC, ff; n = 82 replicates, as the CC groups
did not produce pellets) was dependent on group treatment, and
whether the number of spores per pellet differed among treatment
groups, using a Kruskal–Wallis test (Supplementary Fig. 5a). For all
observed45pellet expulsionsbynestmates representing the second to
fourth expulsed pellet of the same individual, we tested if the time the
ant had spent allogrooming between observed consecutive pellet
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productions depended on the phase of the experiment, by use of
Kruskal–Wallis testing (Supplementary Fig. 5b).

For groups in which the two treated ants received different initial
spore doses (Ff, FC, fC; n = 4915 grooming events by 196N from 49
replicates), we tested if the nestmate preference to groom the higher-
load individual could be predicted by the initial spore load difference
of the two spore-treated individuals (Supplementary Fig. 7), by calcu-
lating the log odds ratio that the nestmates groom the individual with
the higher initially-applied spore dose (F in Ff, F in FC, f in fC). We
further calculated for all grooming choices by the nestmates per-
formed towards the two treated ants (total 8129 grooming decisions
by 328N, out of which 5001 grooming events towards the currently
higher-loaded individual by the 196N in the 49 replicates with two
spore-treated individuals FF,Ff, ff; and 3128 grooming events towards
the spore-loaded individual by the 132N in the 33 replicates with one
spore- and one control-treated FC,fC), the log odds ratio to groom the
individual with the current higher spore load. We calculated
Spearman-rank correlations to determine how the log odds ratio to
groom the current higher-load individual depended on the spore load
difference between the two treated individuals for all treatment
groups (Fig. 6a) and separately for groups containing only one or two
spore-treated individuals (Supplementary Fig. 9). We further deter-
mined the relationship between the grooming that an ant received by
others recently, and its own propensity to groom others next by cal-
culating its log odds ratio to perform allogrooming itself as a function
of time since the last received grooming by others (Fig. 6b and Sup-
plementary Fig. 10). The dependency of grooming preference on time
lag was assessed by Spearman-rank correlations.

We determined the relationship between nestmate grooming
preference and spore removal efficiency i.e. the sum of spores
retrieved from the nestmates’ heads (n = 328N head samples) and the
pellets produced per group (n = 77 pellet pools), in proportion of the
total spores quantified from all ants and pellets in the replicate. We
tested if spore removal correlated to the degree of grooming pre-
ference towards the currently higher-load individual in the group by
fitting a linear functional model for either all groups with at least one
spore-treated individual (Fig. 7a; n = 82 replicates), or separately for
groups with two spore-treated individuals (FF, Ff, ff; n = 49 replicates)
and for groups with one spore-treated and one sham-treated indivi-
dual (FC, fC; n = 33 replicates; Supplementary Fig. 11). As this analysis
showed that groups with higher grooming preference to the higher-
load individual (better choosers) had a higher spore removal efficiency
we tested the a priori hypothesis in our functional knock-out experi-
ment that groups with free choice would be able to remove more
spores thangroups thatwere prevented fromchoiceby calculating the
ratio of the spores removed in matched setups with and without
choice. We assessed the significance of this ratio (test statistic) by
using a bootstrap test against a null distributionwhere the test statistic
is computed by randomly shuffling the free-choice and no-choice
replicate labels.

The Supplementary Information contains a detailed description
of all statistical tests in the Supplementary Notes 3, as well as all
ordering details in Supplementary Table 4. The source data to our
analyses are provided as source data files, the code is available under
GitHub https://zenodo.org/badge/latestdoi/609868953 with the input
raw data files for the code being accessible under https://research-
explorer.ista.ac.at/record/12945.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided as Source Data files with
this paper. In addition, raw input data files for the code have been

deposited in the Research Explorer database of the Institute of Science
and Technology Austria under https://research-explorer.ista.ac.at/
record/12945. Source data are provided with this paper.

Code availability
OnGitHub, we provide a complete code for (i) the statistical analysis of
our experimental data and (ii) for the inference of the models for the
spore removal behavior in the groups of ants, studied in our work, and
for the stochastic simulation of these models. The first can be used to
generatedata tables fromoutputfiles of behavioral annotation software
and spore measurements, and to produce the statistical analyses and
generate the plots for the experimental data analysis. The latter per-
forms three tasks: (1) Reads and statistically analyzes the experimental
input files and stores the outcome of the analysis in a form of sufficient
statistics; (2) Uses the output of the statistical analysis to infer a model
of a specific type; and (3) Uses the inferred rates from the previous step
along with the initial segment of the experimental data to initialize and
run a stochastic simulation of the inferred model. The code is available
under https://zenodo.org/badge/latestdoi/609868953.
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