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Collective excitations of a bound-in-the-
continuum condensate

Anna Grudinina 1, Maria Efthymiou-Tsironi 2,3, Vincenzo Ardizzone2,3,
Fabrizio Riminucci 4, Milena De Giorgi 3, Dimitris Trypogeorgos 3,
Kirk Baldwin5, Loren Pfeiffer5, Dario Ballarini 3, Daniele Sanvitto 3 &
Nina Voronova 1

Spectra of low-lying elementary excitations are critical to characterize prop-
erties of bosonic quantum fluids. Usually these spectra are difficult to observe,
due to low occupation of non-condensate states compared to the ground
state. Recently, low-threshold Bose-Einstein condensation was realised in a
symmetry-protectedbound state in the continuum, at a saddlepoint, thanks to
coupling of this electromagnetic resonance to semiconductor excitons. While
it has opened the door to long-living polariton condensates, their intrinsic
collective properties are still unexplored. Here we unveil the peculiar features
of the Bogoliubov spectrum of excitations in this system. Thanks to the dark
nature of the bound-in-the-continuum state, collective excitations lying
directly above the condensate become observable in enhanced detail. We
reveal interesting aspects, such as energy-flat parts of the dispersion char-
acterized by two parallel stripes in photoluminescence pattern, pronounced
linearization at non-zero momenta in one of the directions, and a strongly
anisotropic velocity of sound.

Bound states in the continuum (BICs) have been originally proposed as
a mathematical feature of the Schrödinger equation in presence of
specially prepared potentials1–3. Similar states have been later found in
a wide range of systems like graphene, topological insulators, atomic
superlattices, dielectric photonic crystals,metasurfaces and patterned
optical waveguides4. In the latter cases, coupling in both the real and
the imaginary parts of the two counter-propagating electromagnetic
modes leads to the opening of an energy gap, with one of the new
eigenmodes being bright and the other exhibiting vanishing radiative
losses despite the non-Hermiticity of the underlying Hamiltonian5,6.
Symmetry-protected optical BICs occuring from two interfering reso-
nances enable light confinement and are routinely used in grating
surface-emitting and distributed feedback lasers7–9, where emission
from the BIC mode manifests itself in a specific two-lobe far field

pattern. Interestingly, these quasi-infinite-lifetime photonic states can
couple to matter excitations, such as surface plasmons6 or excitons in
monolayer transition-metal dichalcogenides10,11 and quantum wells12

and form polaritons with interesting features, such as greatly
enhanced tunable lifetimes and strong nonlinearities.

Polaritons are hybrid half-light half-matter quasi-particles in
semiconductor heterostructures, typically embedded in a Fabry-Pérot
microcavity to enhance the coupling of electronic excitations (e.g.
excitons) with photons and to reduce the losses13. Such low-
dimensional bosonic systems have been shown to provide condi-
tions for observation of collective behaviors like Bose-Einstein
condensation14–16 and superfluidity17–19, at the same time allowing for
a directmeasurement of theirmomentum and spatial distributions via
the emitted light. The onset of Bose-Einstein condensation is
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accompanied with a narrowed enhanced emission from the ground
state at k =0 of the polariton energy dispersion, which consequently
blueshifts due to particle-particle interactions. At the same time, the
momentum-energy dispersion on top of the condensate becomes
linearized in accordance with the textbook Bogoliubov prediction20,
therefore giving origin to superfluidity as follows from the Landau
criterion. Multiple experiments with cavity exciton-polaritons have
provided evidence of such linearization21–25 despite the driven-
dissipative nature of the system suggesting the diffusive character of
the Bogoliubov dispersion26,27 with a zero real part in the region of
small momenta. Precise observation of the shape of the excitations
spectrum due to the thermal and quantum depletion of the macro-
scopically occupied ground state is also possible, but requires sub-
stantial momentum-space filtering covering a much brighter signal
from the condensate28,29 or using refined interferometric techniques25.

In this work, we study the elementary excitation spectrum of a
polariton Bose condensate arising from a BIC state in a planar nanos-
tructured waveguide. It has been recently reported12 that due to the
band folding effect and the consequent coupling with the quantum
well exciton mode, the condensate which is formed on the lowest
polariton branch appears, counter-intuitively, at a saddle point of the
dispersion rather than in a global energyminimum. Since the particles
accumulate in the quasi-BIC state with a very long lifetime, much
longer than the carriers relaxation time, the polariton condensate in
such a state appears to be a paradigmatic system for studying the
excitation spectrum of a condensate in thermal equilibrium30. In such
state the condensate cannot directly radiate and, as we demonstrate in
the following, measurements of the shape of the spectrum of ele-
mentary excitations are possible in great detail and even without any
momentum filtering. We derive theoretically the finite-temperature
Bogoliubov dispersion for polaritons accumulating in the BIC and
show that a local energy minimum starts to appear around the saddle

point k =0 in the spectrumof excitationswhich, possibly, couldhelp in
the formation of a long-living Bose-Einstein condensate, with the real
part of the spectrum being non-zero despite the negative effective
mass in one of the directions and losses present in the system. We
experimentally observe various and very distinct characteristics of
collective excitations dispersion strongly dependent on the direction
in k-space. The detailed knowledge of the Bogoliubov spectrum allows
to investigate the angular profile of the sound velocity in such highly
anisotropic system. We believe that this study could open a way of
controlling the condensate properties by engineering its excitation
spectrum.

Results
Saddle-point polariton condensate
The sample studied here, sketched in Fig. 1a, is a GaAs/AlGaAs
waveguide hosting 12 20-nm-thick GaAs quantum wells embedded
in a Al0.4Ga0.6As core. A set of linear diffraction gratings is etched
on the surface of the waveguide to allow for the observation,
within the lightcone, of the propagating guided modes. By
changing the grating period a and the filling factor it is possible
to tune the energy of the BIC (i.e. its excitonic fraction) and the
width of the energy gap separating the lower-polariton BIC, with
ultra-long lifetimes, and the leaky polaritonic modes. The cou-
pling of the counter-propagating TE-modes of electromagnetic
waves to the exciton results in the four branches of polariton
dispersion, the analytical derivation of which are provided in the
Supplementary Information (SI). Of interest, in this work, are the
two anisotropic lowest branches which are shown in Fig. 1b. It is
clearly seen that the shape of the upper of the two lower-
polariton modes (ULP) resembles the regular lower cavity exci-
ton-polariton, albeit with differing effective masses along and
perpendicular to the grating, whereas the lower (LLP) mode is

Fig. 1 | Polariton dispersions around the BIC state. a Sketch of the etched
waveguide structure. The waveguide is made of 12 GaAs/Al0.4Ga0.6As (20-nm-thick
each) layer pairs on a substrate, with the top 90nm textured with a periodic 1D
grating with a period a = 243 nm. The grating sizes are 50 μm along y and 300μm
along x-direction. b Three-dimensional dispersions of the two lower exciton-
polaritonmodes (see SI), with the energy reference taken at the saddle point of the
lowest mode, calculated for Δ0 = −0.6 meV, ℏΩR = 15 meV, U = − 1.3 meV, ℏγ =0.51
meV, ng = 4.3,mX = 0.22m0. c, dCross-cuts of the energy-momentum experimental

dispersion along ky =0 (c) and kx =0.025 μm−1 (d) showing twoordersofmagnitude
difference in the lower polariton effective mass along x and y directions, 1=mxðyÞ

LP

(see text). The yellow dashed lines show theoretical fits of the two lower polariton
branches with the parameters as in b. e, f Comparison of experimental far field
emission below (on the left-hand side) and above condensation threshold (on the
right-hand side) showing energy versus kx and ky respectively; panel f is a cut along
kx =0.02μm−1, as for panel d. The colorscales for intensity are linear, given in arb.
units and normalized separately for panels c, d and e, f.
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distinct from the standard dispersion showing different behaviors
along kx– and ky–directions. In particular, we note the appearance
of a negative effective mass in the x–direction, with an absolute
value much lower than the positive mass in the y–direction. It is
also important to note that, when expanded at k → 0 in Taylor
series up to the second order, the LLP dispersion appears to have
an imaginary contribution in the x–direction (for more details,
see the SI). This imaginary term provides the kx–dependent loss
rate of polaritons on the lowest branch, with the zero radiative
loss at k = 0, as was experimentally verified in ref. 12.

The polariton dispersions along kx and ky can be directly
measured by energy and momentum resolved photo-
luminescence (PL). Figure 1c and d show two different cuts (along
kx and ky respectively) of the PL of the single-particle lower
polariton dispersions. While along kx (Fig. 1c) the ULP and LLP
have the masses of opposite sign, this is not the case along ky
where the mass is positive for both (Fig. 1d). The dispersion in
Fig. 1d has been taken at a slightly finite wavevector in the
x–direction (kx ~ 0.02 μm−1) to avoid the completely dark stripe of
the BIC state at kx = 0. These experimental dispersions are in very
good agreement with the analytical model which is shown by the
overlaid yellow dashed lines in both panels. We note that the
range of horizontal axis along ky is four times larger than that of
kx and that the effective masses along the two directions differ by
about two orders of magnitude, being in quantitative agreement
with the theory developed in the SI. Both images in Fig. 1c and d
show the PL emission below threshold, when the upper of the two
lower-polariton branches is emitting more light than the lowest
one, as it is much more lossy around k = 0 (see SI), while their
populations are comparable. When increasing the excitation
power, polaritons condense into the BIC at the saddle point of the
LLP branch12. Figure 1e (right-hand side) shows the cross-cut of
the dispersion along kx with the time-integrated PL measured
slightly above the condensation threshold. We only show one of
the two bright spots forming to either side of the saddle-point
condensate, blueshifted compared to the below-threshold image
shown on the left-hand side of the panel. Figure 1f (right-hand
side) shows the corresponding dispersion along ky for
kx ~ 0.02 μm−1, i.e. close to the inner edge of the bright spot of
Fig. 1e above threshold. The latter has an interesting form, with an
energy-flattened emission roughly extending from −0.5 μm−1 (not
visible) to +0.5 μm−1 continuing into linear tails going up in
energy. It is important to note that, as we will show in the fol-
lowing, the flat region in this case is not related to the diffusive
character of the condensate. On the contrary, it is a consequence
of both the very long polariton lifetime and the saddle shape of
the dispersion.

Hartree–Fock–Bogoliubov theory for elementary excitations
To explain these features observed in Fig. 1e, f, we derive the Bogo-
liubov spectrumof excitations on top of the condensate forming in the
BIC state, i.e. in the vicinity of the k =0 saddle point of the LLP branch
for low finite temperatures in the presence of the (dark) exciton
reservoir30. The Hamiltonian of lower polaritons is expressed in the
second quantization as

Ĥ =
Z

drP̂
y
�ðrÞ½ε�ðp̂Þ � μ��P̂�ðrÞ

+
Z

drP̂
y
+ ðrÞ½ε+ ðp̂Þ � μ+ �P̂ + ðrÞ

+
1
2

Z
drdr0Q̂

yðrÞQ̂yðr0ÞUðr� r0ÞQ̂ðr0ÞQ̂ðrÞ

+
Z

drdr0 ~̂Q
y
ðrÞQ̂yðr0ÞUðr� r0ÞQ̂ðr0Þ ~̂QðrÞ,

ð1Þ

where P̂ ± ðrÞ are the ULP and LLP field operators, respectively, p̂= �
i_∇,ε± ðpÞ= ELP

± ðpÞ � ReELP
� ð0Þ are the corresponding bare particle

dispersions (the shape of ELP
± ðpÞ is given in the SI) counted from the

saddle point of the LLP branch, μ± is the chemical potential,
Q̂ðrÞ= R

dr0½X ðr0 � rÞP̂�ðr0Þ+Cðr0 � rÞP̂ + ðr0Þ� is the exciton field opera-
tor, and ~̂QðrÞ describes the field of background excitons that do not
directly convert into polaritons (e.g. dark excitons). In the above,
X ðr0 � rÞ= ð1=SÞPpXp expfip � ðr0 � rÞ=_g,Cðr0 � rÞ= ð1=SÞPpCp expfip�
ðr0 � rÞ=_g,Xp and Cp are the exciton and photon Hopfield coefficients,
S is the quantization area. For simplicity, the exciton-exciton pair
interaction potential is assumed to be contact: U(r) = gδ(r). The
Hamiltonian (1) allows to write the Heisenberg equations for the
evolution of both lower polariton fields P̂ ± ðr,tÞ.

To obtain the excitation spectrum on top of the Bose condensate
of BIC polaritons, we will assume that above threshold the LLP is
macroscopically populated, which is supported by the experimental
observation (see Fig. 1e). Since the polaritons occupying the ULP
branch do not convert into LLP polaritons because of the different
symmetry of the underlying photon and exciton modes, we exclude
the ULP operators from consideration when describing the macro-
scopically occupied saddle point. In this case, one can separate the
condensate in the regular Bogoliubov fashion and, by averaging the
Heisenberg equation for P̂� in the Hartree-Fock mean-field approx-
imation (see “Methods” section), obtain the expression for the che-
mical potential of the LLP polaritons:

μ� = g∣X0∣
2 n0∣X0∣

2 + 2n0
Q + ~n

� �
, ð2Þ

where n0 is the condensate density, n0
Q � hQ̂0yðrÞQ̂0ðrÞi is the non-

condensate exciton density due to finite temperature, and ~n �
h ~̂Q

y
ðrÞ ~̂QðrÞi is the background reservoir density. We note that μ−

contains the thermal contribution n0
Q and the dark reservoir contribu-

tion ~n compared to the regularly used expression for the lower-
polariton chemical potential μLP = gn0∣X0∣4. Importantly, Eq. (2)
corresponds to the experimentally-observed condensate blueshift,
which will be used together with the excitation spectrum below to
define n0 and ~n at a given pump power (note that at low temperatures
considered here,n0

Q ≪n0). Diagonalizing theHamiltonian (1) within the
Hartree-Fock-Bogoliubov framework, one obtains the excitation
spectrum:

Ep =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE + 2gn0∣X0∣

2∣Xp∣
2Þ

q
with E = ε�ðpÞ+ gð∣Xp∣

2 � ∣X0∣
2Þðn0∣X0∣

2 + 2n0
Q + ~nÞ:

ð3Þ

It needs to be underlined that while Eq. (3) has the form looking similar
to the textbook Bogoliubov prediction, it is, in fact, substantially dif-
ferent. Besides noticing that E contains the reservoir contributions
n0
Q,~n and the renormalization due to the dependence of the Hopfield

coefficient Xp onmomentum, the bare polariton dispersion ε−(p) itself
is very unusual: in the kx–direction it features, at the same time, the
negative effectivemass andmomentum-dependent photon losses (see
Supplementary Fig. 1 and Eq. (8) in the SI). Due to the latter, despite the
negatively-defined ReE2

p in the vicinity of kx =0, the real part of Eq. (3)
is nowhere zero except the special points of the dispersionwhere ImE2

p
changes sign. The excitation spectrum does not acquire a diffusive
character predicted for systems with dissipation26,27. In fact, here the
non-zero imaginary part of ε−(p) ensures the existence of low-lying
states just above the condensate with ReEp>0. The analysis of the
imaginary part of the spectrum is given below.

Figure 2a shows the real part of the Bogoliubov dispersion of
excitations (Eq. 3) on top of the condensate formed in the saddle point
of the LLP branch. The linearization at small momenta in the
y–direction is clearly seen. Figure 2b, c show the cuts of ReEp in Fig. 2a
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along different near-zero kx (b) and ky =0 (c), displaying the flattening
of the dispersion in the ky–direction. As can be anticipated from (3),
the extent of the energy-flat part along ky depends on the chosen near-
zero kx, while the slope of the linear tails of the excitation spectrum at
larger ky (for each kx) is unambiguously defined by the polariton
condensate density n0. Moreover, the zoom-in on the small momenta
region displays a local minimum in the kx–direction (see the inset of
Fig. 2c). At the values of kx outside this local minimum, the Bogoliubov
spectrum recovers the negative slopes characteristic to the single-
particle LLP dispersion.

Excitations luminescence dynamics in the pulsed regime
The experimental PL images of collective excitations obtained in the
regime of pulsed excitation are shown in Fig. 2d–f. While the features
very close to kx ~ 0 are below the experimental resolution and corre-
spond to the dark region due to the long BIC lifetime, the dispersion
along ky shows a striking correspondence to the theory derived above.
To perform a better comparison, we have measured the temporal
dynamics of the dispersion of excitations in PL along ky. This allows us
to rule out any temporal smearing of the dispersion and, at the same
time, track the change of the dispersion for different condensate and
reservoir densities. Figure 2d-e display two different snapshots of the
emission along ky for kx ~ 0.02μm−1. These snapshots corresponding to
different times clearly exhibit an energy-flat region with less-
pronounced linear tails at higher values of ky. Thanks to the intrinsic
dark nature of the condensate froma BIC state, it is possible to directly
measure these features without any filtering in the momentum space.
The red solid lines in Fig. 2d, e show the analytical cross-cuts of the
dispersion (Eq. 3) along kx ~ 0.02μm−1, for two values of densities cal-
culated from the fitting of the measured linear tails together with the
blueshift (as compared to the single-particle dispersion shown by the
light-blue dashed lines). Full temporal dynamics of the PL vs. ky is
provided in the Supplementary Movie 1, while additional snapshots
corresponding to different densities are shown in the SI.

Experimentally following this dynamics allows to observe in time the
delayed formation of the dark condensate after the pulse arrival,
accompanied by the theoretically predicted energy-flat parts of the
excitation spectrum, its shifting downwith time due to the decreasing
blueshift and, finally, disappearance of the flat parts and recovering of
the single-particle near-parabolic LLP dispersion as the system goes
below threshold. Finally, Fig. 2f shows the energy-resolved PL image
along the kx–direction above threshold. While the BIC polariton con-
densate in the local minimum of the modified dispersion stays dark,
the excitations on top of the condensate occupying the very narrow
region around kx = 0 are emitting light. Here, since under pulsed non-
resonant excitation the blueshift is strongly time dependent, the
resulting time-integrated measurement in Fig. 2f looks apparently
broadened in energy (see the corresponding enlarged curves for dif-
ferent densities in the inset of Fig. 2c, getting smeared over time)
which appears as a two-lobe image.

Dispersion of collective excitations at different kx under
continuous-wave excitation
In order to see amore pronounced linearisation of the dispersion tails,
we turn to continuous-wave (c.w.) excitation that allows to reach a
density state while avoiding the energy blur induced by the dynamical
change of energy of the condensate under time-integrated measure-
ments. Forfixed excitation conditions,we compare the PL fromenergy
dispersion versus ky resolved at different values of kx as shown in Fig. 3:
one cut closer to kx =0 (a), another directly within the bright spot with
maximal emission that is seen above threshold in Fig. 2f (b), and a final
one when kx is further away from the center (c). As one can observe,
while the PL from the non-condensate (out-of-the-BIC) lower polar-
itons in panels (a) and (c) is weak enough to allow registering the
emission from the upper branch, in panel (b) the PL from the flat part
of the dispersion is very bright, making the ULP invisible on the same
(normalized) scale. Matching the observed PL with the theoretical
expressions for the dispersion of excitations Eq. (3) and blueshift

Fig. 2 | Dispersion of elementary excitations of the saddle-point polariton
condensate. a The Bogoliubov dispersion of elementary excitations (real part of
(3)) with added blueshift of the saddle point. b Cross-cut of a at different kx from
0.005 to 0.045μm−1 with the step 0.01μm−1, showing the flattening of the disper-
sion along the ky–direction close to the BIC state at kx =0, calculated for con-
densate density n0 = 4 × 1010 cm−2, reservoir density ~n= 3 × 1010 cm−2. The gray
dashed lines show the bare single-particle dispersions ε±(kx =0, ky). c Cross-cut of
a at ky =0, showing the real part of the Bogoliubov excitations spectrum Epgivenby
(3). The gray dashed lines show the bare single-particle dispersions ε±(kx, ky =0).
Inset shows a close-up of the local minimum of the excitations spectrum, for

varying n0 from 1 to 6 × 1010 cm−2. Parameters as on Fig. 1, g = 2.5μeVμm2,T = 10K.
d, e Experimental time-resolved photoluminescence images above threshold dis-
playing the energy-momentum dispersion of excitations vs. ky; the excitation
spectrum is evident in both the flat part and the linearized tails. f Experimental PL
image of the dispersion of excitations vs. kx. In d–f the red lines show theoretical
fitting of the Bogoliubov dispersion according to the real part of (3), with
n0 = 4 × 1010 cm�2,~n= 3× 1010 cm−2 (d) and n0 = 5 × 1010 cm�2,~n=4× 1010 cm−2 (e, f).
The light-blue dashed lines show the single-particle LLPdispersion. The gray dotted
lines in d, emark the blueshift at different powers. The colorscales are in arb. units
and normalized separately for d, e and f.
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Eq. (2) for all three cases and using the condensate and reservoir
densities as fitting parameters allows us to define exactly the values of
kx at which those cuts were measured.

The first straightforward outcome of this study is the clearly
increased slope of the linear part of the Bogoliubov dispersion for the
states lying above the flat stripe, as shown in Fig. 3a, b. While the
difference in energy at which the energy-flat part is seen in (a) and (b)
lies within the linewidth (see the red arrows in Fig. 3d or the inset of
Fig. 2c), the length of the stripe is changing with kx and is different for
(a) and (b), in agreement with the theoretical Fig. 2b. The tails of
the dispersion outside the flat part in both (a) and (b) are clearlymore
visible than in the case of pulsed excitation studied above, and are
linearized in accordance with Eq. (3). The shifted LLP dispersion is
plotted in panel (b) together with the Bogoliubov spectrum. When
moving away from the condensate, the dispersion of excitations
recovers the shape of the lower polariton branch, while still staying
blueshifted, as shown in Fig. 3c. For comparison, in the right-hand
sides of panels Fig. 3a–c we plot the theoretically calculated PL
emission, using the excitation spectrum derived above (note that
since we neglected the upper polaritons in the theory, we do not
reproduce the ULP luminescence). In this calculation, we assume that
at finite temperature the normal branch of the Bogoliubov spectrum
is predominantly populated (due to thermal depletion of the
condensate).

As amore subtle andmoremeaningful insight from fine resolving
the PL in kx close to the BIC, we reveal that the maximal emission
(panel b), i.e. theflat line in the Energy vs.kydispersion, corresponds to
the point in kx where the real part of the excitation spectrum E
(counted from the blueshifted saddle point) goes to zero. This analysis
is presented in Fig. 3d, wherewe indicate by arrows the two values of kx
at which panels (a) and (b) were measured (kx corresponding to panel
(c) lies out of the range of values plotted in (d) and is not marked). As
discussed above, the only values of kx where ReEp =0 correspond to
the points in which the imaginary part of E2

p changes sign, i.e. the
points that lie at the same energy as the dark condensate in the BIC,
thus making the scattering from the condensate towards these states
energetically effortless. Looking at the imaginary part of the disper-
sion, plotted as well in Fig. 3d, allows us to conclude that since ImEp is
negative for all kx > 0, the condensate with ImEp =0 stays nevertheless

stable and there is no macroscopic gain in the states indicated by the
arrow ‘b’. However, since they correspond to the largest ∣ImEp∣, these
states correspond to the maximum PL intensity observed in the
experiments. We conclude that the particles residing in the dark con-
densate at kx = 0 at any scattering event may jump to the states ‘b’
where they leak out of the system due to maximal loss. For com-
pleteness of the analysis, we plot ImEp vs. ky in Fig. 3e. One can see that
the large imaginary part and hence short lifetimes are characteristic
only for the states along the energy-flat part of the dispersion Ep(ky),
whereas the linear tails, corresponding to low-lying excitations above
the saddle-point condensate, feature narrow linewidth and can be
described adequately within the equilibrium theory.

Anisotropy in the momentum space
To study the anisotropic dispersion of excitations discussed above,
wemeasure the photoluminescence emission under pulsed excitation
in the plane (kx, ky) which is shown in Fig. 4 for different energies close
to the BIC state. For a clearer visualization, we suggest to watch the
SupplementaryMovie 2 showing the experimental cross-cut of the PL
emission in the far field at different energies. The exotic shape with
two parallel stripes in the middle at a given energy can be directly
related to the populated states of the excitation spectrum where
ReEp =0 and the absolute value of the negative ImEp is large, as dis-
cussed above and confirmed by the calculated ImEp dependence on
kx and ky in Fig. 3d, e. It is important to note that the distribution of the
PL in two parallel stripes appears only above threshold: without the
macroscopic population of the saddle-point, there are no states lying
at the same energy with the condensate and hence no population of
the energy-flat states along ky that exhibit strong emission. For
comparison, we provide in the SI and the Supplementary Movie 3 the
corresponding data taken below threshold, where the energy corre-
sponding to the saddle point stays fully dark. In the above-threshold
case of Fig. 4, due to time averaging in the pulsed excitation setting,
the two-stripe pattern which lies at the energy of the condensate is
visible in more than one panel, as the condensate shifts down over
time (due to decreasingblueshift).Wenote that the observedpeculiar
far field PL distribution in this case is very different from the two-lobe
pattern of grating-based lasers8,9, where, despite the similar dark line
along kx = 0, the lasing happens exclusively at the photonic BIC

Fig. 3 | Continuous-wave excitation study. a–c Experimentally measured (left-
hand sides) and theoretically calculated (right-hand sides) photoluminescence
from the system vs. ky at three different values of kx above threshold:
a kx =0.019μm−1, b kx =0.0228μm−1, c kx =0.16μm−1. The overlaid red dotted lines
represent the real part of the excitation spectrumReEpðkyÞ at corresponding values
of kx, white dotted lines in a, c show the ULP and LLP single-particle dispersions. In
b, the blueshifted lower polariton dispersion is shown for comparison. Intensity

colorscales are in arb. units and normalized for each panel separately. d Real part
(dashed line), counted from the blueshifted saddle point of the dispersion, and
imaginarypart (solid line) of Ep vs. kx in the vicinity of kx ~ 0. The red arrows indicate
the values of kx at which the panels a and b are measured. e Imaginary part of the
spectrum vs. ky corresponding to panels a (yellow), b (blue), and c (green). For all
panels, calculation parameters are the same as in Fig. 2 and densities estimated
from fitting are n0 = 5 × 1010 cm�2,~n= 11 × 1010 cm−2.
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energy and the intensity distribution along ky is a Gaussian centered at
ky = 0. In our case, the PL emission along bothdirections and in energy
follows the calculateddispersion Eq. (3),with the length of the parallel
lines shorter when the condensate density is lower, and the curved
tails at nonzero momenta appearing outside the two-stripe region
(whose emission is weaker since ∣ImEp∣ is much smaller). In all panels
of Fig. 4, the theoretically calculated cross-cuts of the real part of Ep at
the corresponding energies above the BIC state are overlayed as
dashed lines on top of the experimental images. Themaximum of the
experimental emission appears at those states where the real part of
the dispersion Ep crosses the given energy (the brighter spots move
away from the center in the panels (c) and (d) that correspond to
higher energies).

From the point of view of the anisotropy of collective excitations
which is illustrated by the above study of the spectrum, it is also
interesting to address the limit of very smallmomenta. Experimentally,
since the region of kx corresponding to the positive slope of ReEp is
very small, the shift in energy which is acquired within this narrow Δkx
lies within the linewidth. At the same time, it is not possible to follow
the change in energy with ky along the positive slope of the saddle
(from Fig. 2a one sees that at kx→0 the energy-flat part along ky dis-
appears and the dispersion is linear) due to the darkness of the states
corresponding to kx =0 (at any ky). Theoretically, however, taking the
limit p→0 in Eq. (3) allows to obtain the sound velocity which appears
to be strongly dependent on direction (on the angle φ in the polar

coordinate system):

csðφÞ=Re
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wheremxðyÞ
LP are the effectivemasses of LLP in the x(y)–direction, and sx

is themass-like parameter defined by the radiative losses rate γ and the
radiative coupling of the modes U (for more details, see the SI). In a
standard case of real positive masses in both directions, for
experimentally-relevant parameters (resulting in 1=∣mx

LP∣≫1=my
LP) the

velocity given by Eq. (4) would significantly increase when approach-
ing the x–axis (the direction corresponding to φ=πm,m 2 Z).
However, here the expression for the sound velocity is modified by
the negative mx

LP and by the imaginary contribution sx, which makes
the definition of the sound velocity more complicated. In Fig. 5b we
plot the sound velocity dependence on the angle φ revealing a very
anisotropic profile. The increase of cs in the x–direction is clearly seen
from the difference of slopes in the linearized parts of the Bogoliubov
dispersion (see the zoom-in at the low-momenta region in Fig. 5a):
while the slope along ky at kx =0 corresponds to very low cys, the
shallow parts of the spectrum at finite but small kx result in the sound
velocity in the directions slightly deviating from the y–axis being very

Fig. 5 | Anisotropic Bogoliubov sound velocity. a A close-up view of the local
potential well created in the real part of the Bogoliubov spectrum of elementary
excitations around the saddle point, with essentially different slopes cxs≫cys (where
cxs = csðφ=πmÞ,cys = csðφ=π½m+ 1�=2Þ,m 2 Z). The colored dashed lines are guide to
the eye showing different directions along the anisotropic dispersion slopes line-
arized in the vicinity of k =0. b The Bogoliubov sound velocity profile according to

Eq. (4). The colored dashed linesmark different angles corresponding to the slopes
marked in a, see discussion in the text. c Close-up of the sound velocity profile at
the vicinity of π/2 (corresponding to the black rectangle in b). The condensate
densityn0 inb, c is varied from 1 to6 × 1010 cm�2,~n=4× 1010 cm−2, other parameters
as in Fig. 2.

Fig. 4 | Momentum-space scan. a–d Experimental PL maps in the (kx, ky) domain
taken at different energies just above the blueshifted BIC polariton condensate (as
denoted on the panels). The line kx =0 above threshold stays fully dark,making the
PL profile in the vicinity of the condensate look like two parallel stripes

corresponding to the flat parts of ReEpðkyÞ appearing at small non-zero kx. These
maps are time-integrated in the pulsed excitation setting. Intensity colorscale is in
arb. units and normalized the same way for all panels. Condensate and reservoir
densities n0 = 5 × 1010 cm�2,~n=4× 1010 cm−2, other parameters as in Fig. 2.
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close to zero (see Fig. 5c). Much steeper slopes along kx at ky = 0
provide maxima of cs at φ =πm, as shown in Fig. 5b for various
condensate densities. It is important to note that taking into account
the non-radiative exciton losses would additionally affect the behavior
of the excitation spectrum along kx in a very narrow vicinity of the
saddle point. A more detailed discussion of this matter is provided
in the SI.

Discussion
In this work, we studied theoretically and experimentally the spectrum
of elementary excitations of the BIC polariton condensate arising from
the coupling of excitons to the photonic modes in a patterned semi-
conductor waveguide. The studied system is exotic and very different
from the well-studied case of microcavity polaritons. We show that
despite the saddle-like shape of the single-particle dispersion of lower
polaritons, which exhibits a maximum in one of the directions in
k–space, with the accumulation of particles in the saddle point, a local
minimum is created with the positive slopes of the Bogoliubov dis-
persion, which may help in further accumulation of polaritons. At the
same time, two parallel stripes inmomentum space, which correspond
to the states at the same energy as the condensate—but being bright—
appear. It is, in fact, the interplay of the negative mass and the
mometum-dependent losses that results in the existence of such
unique, extended in momentum, states outside the condensate. This
unusual anisotropic shape of the excitation spectrum yields in the
ky–direction to two energy-flat zones (near kx =0) separated by the
dark line at kx =0. Thanks to the quasi-infinite lifetime of the BIC state,
the condensate itself does not emit light hence allowing to neatly
observe the populated states around and above the saddle point. With
both the slopes of the linear parts of the dispersion that follow the
energy-flat regions and the interaction-induced blueshift being
directly experimentally accessible, our theory allows to precisely
define the macroscopic density of the dark polariton condensate.
Thus, while the observation of the excitation spectrum in such a sys-
tem is striking on its own, it also allows to obtain the information about
the saddle-point polariton condensate which is otherwise invisible.

Remarkably, despite the negative mass in the x–direction and the
presence of losses, the real part of the spectrum is positive everywhere
at k→0, allowing to extract the velocity of sound in every direction.
The latter appears to be highly anisotropic, dropping to almost zero in
the directions next to the y-axis, i.e. slightlymisalignedwith the grating
principal axis, and growing in the direction of propagation along the
waveguide. It needs to be noted that the anisotropic sound velocity
was reported previously for atomic BECs with anisotropic dipolar
interactions31,32. In case of dipolar BECs, however, transport measure-
ments reveal the anisotropy of the critical Landau velocity rather than
the velocity of sound33, since the dispersion of excitations is affected
by direction-dependent roton softening. The situation realized in our
work can be better compared with anisotropic superfluidity reported
for excitons34 and cavity photon BEC35 in periodically modulated pla-
nar structures. At the same time, we stress that here we deal with a
more exotic case of anisotropy: even though there is a well-defined
finite sound velocity, superfluidity in the sense of Landau criterion
cannot be reached in all directions of propagation. Indeed, no matter
how small the velocity would be below cs in the x–direction, due to the
negative slopes of the dispersion, it could always elastically create an
excitation out of the condensate. However if an obstacle is propagat-
ing strictly along the y–axis, the velocity cys would be a proper Landau
sound velocity below which superfluidity can be observed. This illus-
trates the richness of saddle-point condensates and their anisotropic
behaviors.

Along with the previously proposed topological-dispersion
engineering36, we believe that this work demonstrates the high inter-
est in engineering the excitation spectrum of the condensate e.g. via
implementing different grating symmetries—as a tool to impart new

properties to the condensate itself—and underlines once again the
astonishing richness of polariton systems, as well as multiple possible
avenues for further investigations.

Methods
Theoretical methods
Starting from the Hamiltonian (1) in the neglection of the ULP fields,
one can separate the macroscopically occupied condensate state as

P̂�ðr,tÞ=
ffiffiffiffiffiffi
n0

p
+ P̂

0
�ðr,tÞ, Q̂ðr,tÞ=X0

ffiffiffiffiffiffi
n0

p
+ Q̂

0ðr,tÞ, ð5Þ

wheren0 is the condensate density, Q̂
0ðr,tÞ= R

X ðr0 � rÞP̂0
�ðr0,tÞdr0, and

the average hP̂0
�ðr,tÞi= hQ̂

0ðr,tÞi =0. The substitution Eq. (5) allows to
rewrite the triple products of the field operators in Eq. (1) in the
Hartree-Fock mean-field approximation as
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with notations n0
Q = hQ̂0yðr,tÞQ̂0ðr,tÞi,~n= h ~̂Q

y
ðr,tÞ ~̂Qðr,tÞi. Using the

Hamiltonian Eq. (1) with the substitutions Eqs. (5) and (6), (7), the
Heisenberg equation for the non-condensed part of the polariton field
P̂
0
�ðr,tÞ can be written as
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In Fourier space, (8) takes the form i_∂t P̂pðtÞ= ½ε�ðpÞ �
μ� + gð2n0∣X0∣

2 + 2n0
Q + ~nÞ�∣Xp∣
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2
0X
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p P̂

y
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perform the Bogoliubov transformation

P̂pðtÞ=upα̂pe
�iEpt=_ � v*�pα̂

y
�pe

iE*
pt=_ with ∣up∣

2 � ∣v�p∣
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where α̂p is the annihilation operator of the Bogoliubov excitationwith
momentum p. Eq. (9) yields the excitation spectrum Eq. (3). We note
that due to the underlying photon dispersion whose imaginary part is
strongly momentum-dependent, the Hopfield coefficients Xp,Cp as
well as the Bogoliubov amplitudes up, v−p are complex, and careful
treatment of complex conjugations throughout the theory is required.
Moreover, choosing the Bogoliubov transformation in the specific
shape given by Eq. (9) defines the so-called ghost branch (GB) of
excitations as EGB

p = � E*
p (this definition of the GB is consistent with

that used in ref. 27).
Theoretical calculations of the intensity of photoluminescence

from the excitations around the BIC state that are presented in Fig. 4
are performed using the standard expression37,38:

PLðkx ,ky;ωÞ / 1� ∣Xp∣
2

� �
Re

Z 1

0
dt e�itðω�i0+ Þ<Py

pðtÞPpð0Þ>: ð10Þ

Experiments
All the PLdata reported in thiswork has been acquiredusing a confocal
setup. The objective back focal plane is imaged on the entrance slit of
the spectrometer allowing to obtain the energy versus k dispersion.
Two different magnification of the objective focal plane are used in
order to properly image the dispersions along kx and ky which have
very different effective masses and hence very different extension in
the k-space. The laser used in the experiments is a fs-pulsed laser
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having a repetition rate of 80 MHz and a pulse duration of ~100 fs.
Excitation wavelength is set at 780 nm. The time resolved measure-
ments are obtained by scanning the far-field emission and acquiring
for each ky an energy versus time temporal trace with a streak camera.
The set of temporal traces is then used to reconstruct the dynamics in
the Energy vs ky space. Supplementary Movie 1 shows an example of
temporal dynamics reconstructed in this way. The emission in the
(kx, ky)–plane at a given energy like the images shown in Fig. 4 are
obtained by scanning the far-field emission and acquiring a set of
Energy vs kx dispersions, each one corresponding to a different ky. The
data are then merged and cut at a given energy in the plane kx, ky.
Supplementary Movies 2 and 3 show a sequence of such cuts for dif-
ferent energies above and below threshold, respectively.

Data availability
Relevant datasets generated and/or analyzed during the current study
are available in the Open Science Framework (OSF) repository under
the link https://osf.io/8zu5f/?view_only=5d54939f8c584c598308244c
34c34348. Data and any other information are also available upon
reasonable request.
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