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Identification of BRCA1/2 mutation female
carriers using circulating microRNA profiles

Kevin Elias1,11, Urszula Smyczynska 2,11, Konrad Stawiski2, Zuzanna Nowicka 2,
James Webber1, Jakub Kaplan3, Charles Landen4, Jan Lubinski5,
Asima Mukhopadhyay6, Dona Chakraborty6, Denise C. Connolly7,
Heather Symecko8, Susan M. Domchek 8, Judy E. Garber9,10,
Panagiotis Konstantinopoulos 9,10, Wojciech Fendler 2,3 &
Dipanjan Chowdhury 3,9,10

Identifying germlineBRCA1/2mutation carriers is vital for reducing their risk of
breast and ovarian cancer. To derive a serummiRNA-based diagnostic test we
used samples from 653 healthy women from six international cohorts,
including 350 (53.6%) with BRCA1/2 mutations and 303 (46.4%) BRCA1/2 wild-
type. All individuals were cancer-free before and at least 12 months after
sampling. RNA-sequencing followed by differential expression analysis iden-
tified 19 miRNAs significantly associated with BRCA mutations, 10 of which
were ultimately used for classification: hsa-miR-20b-5p, hsa-miR-19b-3p, hsa-
let-7b-5p, hsa-miR-320b, hsa-miR-139-3p, hsa-miR-30d-5p, hsa-miR-17-5p, hsa-
miR-182-5p, hsa-miR-421, hsa-miR-375-3p. The final logistic regression model
achieved area under the receiver operating characteristic curve 0.89 (95% CI:
0.87–0.93), 93.88% sensitivity and 80.72% specificity in an independent vali-
dation cohort. Mutated gene, menopausal status or having preemptive
oophorectomy did not affect classification performance. Circulating micro-
RNAs may be used to identify BRCA1/2 mutations in patients of high risk of
cancer, offering an opportunity to reduce screening costs.

Hereditary breast and ovarian cancer (HBOC) is the most common
hereditary cancer syndrome, and the two most commonly mutated
genes in HBOC, BRCA1 and BRCA2, both play critical roles inmediating
DNA repair through homologous recombination (HR)1. Germline
mutations in BRCA1/2 account for 10–15% of ovarian cancers, 5–10% of
breast cancers, and 3–5% of pancreatic and prostate cancers2–7. Loss of
HR, known as HR deficiency (HRD), impairs the ability of cells to repair
double-strand DNA breaks, leaving cells vulnerable to mutagenesis

from ionizing radiation and oxidative stress8. Identification of BRCA1/2
mutation carriers is an essential component of cancer risk-reduction
strategies and presents opportunities for cascade testing of other
family members9. Mutation carriers have several opportunities for
cancer prevention or interception, including risk-reducing salpingo-
oophorectomy or mastectomy, hormonal chemoprevention, and
enhanced surveillance protocols, such as MRI-based breast cancer
screening10–16.
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Prevention or early detection of BRCA1/2-related cancers is pre-
dicated on the identification of BRCA1/2mutation carriers. At present,
genetic testing forBRCA1/2 is only recommended for individuals with a
known personal or familial history of breast, ovarian, tubal, or primary
peritoneal cancer or for persons descending from populations with
high mutational prevalence (e.g., Ashkenazi Jewish)17. However, more
than half of all carriers with BRCA1/2mutations have no family history
of cancer, which would prompt a referral for genetic testing18. Among
the estimated 1 million BRCA1/2mutation carriers in the United States,
only 10% are aware of their carrier status19.

While universal genetic testing might not be feasible or desirable,
a functional screen for “BRCAness” could improve the efficiency of
cancer early detection and prevention efforts. Such a test could focus
genetic counseling and testing among those individuals with the
highest pretest probability of having a pathogenic mutation, regard-
less of personal or family history. We suggest microRNAs (miRNAs)
might play a role in developing such a tool. Our teams and others have
shown that miRNAs are directly linked to BRCA-mediated DNA
repair20–24. HBOC-related tumors are characterized by distinct miRNA
profiles from sporadic disease25–29. Furthermore, miRNAs circulate in
blood, and circulatingmiRNAs are characterized by surprising stability
and reproducibility, making them attractive circulating biomakers30,31.
Previously, using sera from subjects with unknown BRCA status, we
reported and validated a test based on circulating miRNA that pro-
duced both high positive and negative predictive values for dis-
criminating ovarian cancers frombenignpelvicmasses32. Other groups
subsequently reported similar findings33,34. We undertook the present
study to investigate whether circulating miRNAsmight vary by BRCA1/
2mutational status. We hypothesized that circulating miRNAs profiles
could be used to identify germline BRCA1/2 mutations among other-
wise healthy individuals without cancer.

In this work, we show that a panel of miRNAs can be used to
identify BRCA1/2 mutation carriers among healthy women with high
genetic risk of ovarian or breast cancer. The serum miRNA-based test
may provide a cheap first-line screening, guiding further efforts for
genetic counseling and improving cancer prevention and early
detection.

Results
Characteristics of the study population
The study population characteristics are summarized in Table 1. In
total, samples were collected from 653 study subjects from six sepa-
rate cohorts (Fig. 1). Among the study population, 350 (53.6%) subjects
had BRCA1 or BRCA2 mutations (BRCA-mt), and 303 (46.4%) were
BRCA1/2—wild-type (BRCA-wt). Summary clinical characteristics of
eachgroup are presented in Supplementary Table 1. A small number of
participants (75/653; 11.5%) had undergone risk-reducing salpingo-

oophorectomy prior to blood collection because of BRCA-associated
cancer risk, which was accounted for in the differential expression
analysis.

Identification of miRNAs associated with germline BRCA
mutations
Unsupervised, linear and non-linear dimensionality reduction with
PCA and UMAP were used to examine the effects of BRCA1/2 deficient
status and that of the batch (Fig. 2a, b and Supplementary Fig. 1). The
batch effect clearly separated the groups. However, within both
observed batches, the BRCA status strongly affected expression pro-
files (Fig. 2a). We aimed to identify differentially expressed (DE) miR-
NAs according to germline BRCA1/2 mutations by superimposing the
results after two strategies of data preprocessing—on raw data (Fig. 2c
and Supplementary Data 1) and after batch adjustment (Fig. 2d and
Supplementary Data 2). Nineteen miRNAs were convergent (P < 0.01
with |log2(FC) | > 0.5 in the same direction in both variants, ratio of FCs
from two analysis variants between 0.8 and 1.25) regardless of the data
preprocessing strategy (purple markings in Fig. 2c, d). Unsupervised
hierarchical clustering of all subject samples from the 5 groups used
formiRNA selection andmodel development showed that the samples
clustered based on the BRCA1/2 mutations (Fig. 2e) with no evident
preference towards BRCA1 or BRCA2 mutations. Notably, in the vali-
dation group composed of UPenn samples, the 19 miRNAs also clearly
separatedBRCA-mtandBRCA-wt samples confirming the robustnessof
their selection (Supplementary Fig. 2).

Using miRNAs to predict BRCA mutation status
Having preselected 19miRNAs with consistent capability of separating
BRCA-mt from BRCA-wt samples, we used OmicSelector-based devel-
opment of models to differentiate between BRCA-mt and wild-type
samples based on batch-adjusted log2 (TPM) expression values. Fea-
ture sets derived from the training set (Supplementary Data 3) were
used formodelingusing four different approaches. The bestpredictive
performance was achieved by a logistic regression model with para-
meters shown in SupplementaryTable 2 basedon 10miRNAs: hsa-miR-
20b-5p, hsa-miR-19b-3p, hsa-let-7b-5p, hsa-miR-320b, hsa-miR-139-3p,
hsa-miR-30d-5p, hsa-miR-17-5p, hsa-miR-182-5p, hsa-miR-421, and hsa-
miR-375-3p (Supplementary Data 4). This set of miRNAs was selected
using feature ranking based on ROC AUC and a minimal description
length (MDL) discretization algorithm on the training set balanced
with the Synthetic Minority Oversampling Technique (SMOTE)35.

The final model achieved 82.35% accuracy, 84.51% sensitivity, and
79.39% specificity on the original training set. The training AUC ROC
(Fig. 3a) was 0.89 (95% CI: 0.87–0.93). This model achieved 84.62%
accuracy, 95.33% sensitivity, and 83.64% specificity on the testing set
and 85.61% accuracy, 93.88% sensitivity, and 80.72% specificity in the
external validation set comprised of the UPenn group. Confusion
matrices for the separate sets are available in Supplementary Table 3.
Predicted probabilities of BRCA-mt in the context of true BRCA status
arepresented in Fig. 3b.Menopausal status (Fig. 3c andSupplementary
Table 4) or having preemptive oophorectomy before blood sample
draw (Fig. 3d) did not affect classification performance. Case-wise
prediction for all available samples with clinical data and miRNA
expression for all 19 miRNAs are presented in Supplementary Data 5.
The presented diagnostic performance was calculated for the cutoff
established on the basis of optimal accuracy. However, to better
evaluate the utility of the proposed test we present the estimated
positive and negative predictive values of different thresholds (based
on the results from the whole patient cohort) for populations of
varying prevalence of mutations in genes associated with homologous
recombination pathway of DNA repair (Supplementary Fig. 3).
Although data on accurate age at testing was provided for 52% of
subjects, with a predominance of controls, we did not observe any

Table 1 | Clinical characteristics of the studied group

Variable Subjects (N = 653)

Menopausal status Post-menopausal 154 (23.6%)

Pre-menopausal 187 (28.6%)

No data 312 (47.8%)

Age, median (IQR), years 49 (39.2–60)

Unknown
313 (47.6%)

CA-125, median (IQR), IU 15 (10.3–31.2)

Unknown
552 (84.5%)

Having ovaries at testing Yes 578 (88.5%)

No 75 (11.5%)

IQR interquartile range.
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correlation between themodel’s predicted probabilities in both BRCA-
mt (r = 0.14; P =0.33) and BRCA-wt (r =0.01; P = 0.88) individuals
(Supplementary Fig. 4). The model’s performance remained constant
throughout the whole range of age categories (Supplementary
Table 5).

Discussion
In this study, we analyzed serum profiles of miRNA expression of a
large (N = 653) group of healthy participants from six international
cohorts to obtain a signature associated with BRCA1/2mutations. This
is a clinically relevantfindingbecause these individuals are at increased
lifetime risk of developing BRCA-deficiency-related cancers. We used
RNA sequencing for unbiased miRNA quantification and developed
classificationmodels to discriminate samples from subjects with BRCA
mutations (N = 350) from those who are BRCAwild-type (N = 303). This
work is distinct from previous studies which have either evaluated
biomarker performance of circulating miRNAs directed at cancer
diagnosis33, focused on differences in miRNA-based BRCA1/2mutation
signatures in the context of hereditary breast and ovarian cancers, or
limited analyses to expression measured in formalin-fixed paraffin-
embedded (FFPE) tumor tissues29,36. The present study is therefore a
large-scale, comprehensive analysis of circulating miRNAs in healthy
patients to identify those likely at high risk of hereditary cancers.

The presented test may serve as a balance to the United States
Preventative Service Task Force recommendation against risk assess-
ment, genetic counseling, or genetic testing for women “whose family
history is not associated with an increased risk for harmful mutations
in the BRCA1/2 genes17.” The argument to restrict testing derives from
estimates that pathogenic mutations in BRCA1/2 only occur in
0.2–0.3% of women in the general population37 and a negative test
result offers no gain in life expectancy nor eliminates the need for
regular mammograms38. Despite falling costs for genetic testing, a
cost-effectiveness investigation found that universal testing for the
general population remains cost-prohibitive at about $1 million USD
per quality-adjusted life year gained38. On the other hand, among
patients referred for genetic testingbasedon family or personal cancer
history, BRCA1/2 mutations are identified in up to 25%39. The applica-
tion of the miRNA-based test to identify patients at the highest risk
offers an opportunity to reduce the costs of screening, which is par-
ticularly important in resource-limited settings.

Mechanistically, it has been shown byus20 and other groups40 that
miRNAs regulate expression of DNA repair genes andmay impact DNA

repair capacity and sensitivity to poly (ADP-ribose) polymerase inhi-
bitors (PARPi). The well-established dysregulation of miRNA expres-
sion in cancer, together with the contribution of miRNAs to
tumorigenesis and the fact that in BRCA1/2 mutation carriers, the
genetic alterations are present in all body cells, offers a probable
explanation for a distinct circulating miRNA signature. Haploinsuffi-
ciency of BRCA1 or BRCA2 gene for the suppression of replication
stress instigated by environmental and endogenous factors was
demonstrated, despite different biological functions of their encoded
proteins41–43. This is supported by a recent observation of increased
levels of soluble EGFR and increased thymidine kinase 1 activity in the
sera of mutation carriers of either BRCA1 or BRCA244. Whether altera-
tions in the levels of these miRNAs are an adaptive response to geno-
mic instability or they function asmessengersbetween cells remains to
be established in future studies.

Homologous recombination haploinsufficiency is characterized
by increased risks of ovarian, breast, pancreatic and prostate cancer as
well as sensitivity to DNA damaging agents and PARPi. Although this
phenotype, broadly termed BRCAness, is most commonly associated
with germline mutations in BRCA1/2, evidence from basic and clinical
studies suggest that other genetic and epigenetic alterationsmay have
similar effects on cancer risk, tumor molecular features, and drug
sensitivity45. It is possible that a BRCAness assay could help identify
high-risk individuals with functional equivalency to BRCA1/2mutations
who would not be identified by routine genetic tests, such as those
with loss of BRCA1/2 function through large-scale genomic rearrange-
ments, promotermethylation, ormutations in less commonlymutated
genes also in the HR repair pathway46. The matter of deploying the
proposed test in clinical practice would also need to consider cali-
brating its cutoff to specific needs of the tested population. For the
general populationwith the prevalence of germlineBRCA1/2mutations
in the range of ~0.4%, the negative predictive value (NPV) corre-
sponding to a cutoff probability of 0.25 would be 99.6% and the
positive predictive value (PPV) would be 8.7%, In other words, in a
hypothetical population of 10,000 patients with low risk of mutations,
our test with cutoff p set at 0.25 with 94.3% sensitivity and 58.1% spe-
cificity would correctly identify 38 of 40 patients with germline BRCA1/
2 mutations, while sparing 5787 of 9960 patients without mutations
from costly genetic testing. For patients with higher risk of such var-
iants—10.7% of mutations in HR genes that is observed in populations
of patients diagnosed with breast cancer47—the same cutoff would
yield an NPV of 98.8% and PPV of 21.2%. Individual-level decisions on

Fig. 1 | miRNA expression data from healthy subjects with known germline
BRCA1/2 mutation status. a Overview of datasets. BWH Brigham and Women’s
Hospital, CCGP Center for Cancer Genetics and Prevention at DFCI, DGO Depart-
ment of Gynaecological Oncology, Tata Medical Center, Kolkata, India, IHCC

International Hereditary Cancer Center of the Pomeranian Medical University,
Poland, DFCI DFCI/BWH biobank, UPenn University of Pennsylvania. b Scheme of
statistical analysis design.
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Fig. 2 | Developmentof theBRCA-mt signature.UMAPrepresentation ofBRCA-mt
and BRCA-wt samples from all evaluated cohorts without (a) and after (b) batch
adjustment (N = 653). Volcano plots showing differentially expressed miRNAs
between BRCA-mutated and wild-type samples without (c) and after (d) batch
adjustment (N = 521); red markings represent miRNAs with P <0.01 and FC> 1.5 or
<0.66; purple markings denote ones that were significant in both comparisons.

Limma package was used for between-group miRNA expression comparison, pre-
sented unadjusted P values, and FCs were calculated by limma algorithm.
e Heatmap of 19 miRNAs with convergent BRCA-mt; BRCA-wt profiles regardless of
data preprocessing. Clustering primarily by BRCA status with no clear pattern of
BRCA1 or BRCA2 or interference by prior oophorectomy (N = 521). Euclidean dis-
tance and complete linkage were used to determine cluster structure.
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Fig. 3 | Performance and BRCA1/2 mutation probability estimated by the final
logistic regression model. a Training (sample size N = 391) ROC curve of the final
logistic regression model; the area under the curve equaled 0.89 (95% CI:
0.87–0.93); b predicted BRCA1/2 mutation probability in training, testing, and
validation sets according to reference mutational status; c predicted BRCA1/2
mutation probability in the context of menopausal status; d predicted BRCA1/2

mutation probability in the context of having ovaries at the time of testing.
c, d show that both menopausal status and lack of ovaries did not influence pre-
dicted BRCA1 or BRCA2 mutation probability. In boxplots median is marked as
central line, boxes indicate thefirst and thirdquartile andwhiskerspresent 1.5× IQR.
b–d present all N = 653 samples, statistics were derived using all samples in
respective subgroups.
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using the test in prioritizing patients for genetic testing, however,
could be made on the basis of the clinician’s experience, patient’s
preference, available resources and screening programs. Currently,
existing tests beyond germline mutation analysis, including ‘genomic
scar’ assays, tissue transcriptional profiles, and functional HRD assays
such as RAD51 foci quantification48, fail to consistently identify these
patient populations of interest. A test based on circulating miRNA
expression has two important advantages: it is feasible to perform in
the clinical setting without the need for tissue biopsy and it may pro-
vide a dynamic readout of the HR proficiency status49. We hope to test
this in future work.

The current study has several important strengths. First, the
miRNA test approach enriches a population at the highest risk for
ovarian and otherBRCA haploinsufficiency-related cancers. Individuals
with a positive screen would still require genetic testing to confirm
predisposition to cancer, thus reducing risks from false positive
results. Likewise, patients screening negative but with a strong family
history could still opt for genetic testing, minimizing the number of
false negative results. The availability of a confirmatory test minimizes
harm while ensuring that most at-risk patients are identified. Second,
the resulting model, a logistic regression based on the expression of
ten miRNAs, yielded 85.6% accuracy in the hold-out validation set,
whichweconsider to be acceptable performance for an assaydesigned
as a first-pass screen. However, as the data presented at this stage are
generated through high throughput sequencing which would likely
have to be downscaled to a simpler and cheapermethod, the key issue
at this stage was not to prioritize the performance of the model itself,
but rather to identify variables with the best potential for class
separation through any possible means. Additionally, the relatively
uncomplicated structure of this model facilitates its explanation,
avoiding the unexplainability problem suffered by more complex
machine learning and artificial intelligence approaches. Third, the
model was developed using data from 6 distinct groups from three
continents covering different ethnicities and mutations both in BRCA1
and BRCA2, which represents a more diverse group than our prior
study and increases the likelihood that the results are generalizable.
The wide range of study subject profiles further ensures that model
performance was not affected by menopausal status or previously
performed preventive surgery.

We also acknowledge the study’s weaknesses. First, the presented
models rely on next-generation sequencing (NGS). While the costs of
this tool are coming down, and the use of NGS has entered some
clinical applications (e.g., cell-free DNA for prenatal testing), other
platforms, such as qRT-PCR, might be more efficient. Considerable
batch effects related mainly to the application of different sequencing
platforms is an issue that cannot be ignored as a potential obstacle in
the translation of our results. Although its impactwas largelymitigated
by selection of miRNAs consistently dysregulated regardless of using
batch correction, similar problems may arise in the future with appli-
cation of other sequencing platforms and reagents. Finally, we have
not investigated these models in patients with other types of DNA
repair defects, such as Lynch Syndrome, nor conducted sensitivity
analyses across various racial and ethnic subpopulations. Indeed,
metadata (age, menopausal status) were not available for a large
number of samples. While we did not see variations in model perfor-
mance across these subgroups, we cannot completely exclude the
possibility that these factors may be confounders in a larger sample
size. These studieswill be needed to examine the generalizability of the
approach. Finally, BRCA1 and BRCA2 have distinct functions in the HR
repair pathway, yet the haploinsufficiency of either gene gives us a
common circulating miRNA signature. We speculate that hap-
loinsufficiency in HR-mediated repair and consequent genomic
instability is a potential cause of this miRNA-based signal in serum.
However, we need to validate this idea with serum miRNA analysis

from individuals with HR gene haploinsufficiency caused by genetic
factors other than mutations of BRCA1 or BRCA2.

In summary, we show that circulatingmiRNA levels can be used to
stratify individuals as likely or unlikely to harbor a BRCA1/2 mutation.
This extends our prior finding that a diagnostic circulating miRNA
model can help distinguish ovarian cancer cases from benign adnexal
masses or controls32. The approach supplements our previous effort
by providing ameans to identify individuals at elevated risk for ovarian
cancer who require carefulmonitoring andmay be advised to undergo
risk-reduction surgery. The result raises the potential for directing
identified patients to serial assessment of ovarian cancer risk designed
for high-risk populations, an approach under assessment in a nation-
wide prospective observational study known as the microRNA Detec-
tion (MiDe) Study (www.midestudy.org).

Methods
The study was approved by the following ethical committees: Tata
Medical Center—Institutional Review Board (approval number 2018/
TMC/117/IRB6), Institutional Review Board of Dana-Farber Cancer
Institute (#13–325), Institutional Review Board of University of Penn-
sylvania (#816688), Ethics Committee of the Pomeranian Medical
University in Szczecin (BN-001/174/05).

Samples
The study group was assembled from six serum biorepositories
(Fig. 1a) based at: Brigham and Women’s Hospital (BWH; Boston, MA;
N = 87), Dana-Farber Cancer Institute (DFCI; Boston, MA; N = 200), a
separate sample set from the Center for Cancer Genetics and Preven-
tion at DFCI (CCGP; Boston, MA; N = 162), Tata Medical Center (DGO;
Kolkata, India; N = 20), Pomeranian Medical University (IHCC; Szcze-
cin, Poland; N = 52), and University of Pennsylvania (UPenn; Philadel-
phia, PA; N = 132). Samples from patients with genetically confirmed
BRCA1/2 statuswere included in the study. Patientswith ovarian cancer
history or other cancer diagnosed within 1 year from sampling were
excluded. Patients with benign adnexalmasses were included. Patients
with missing diagnoses or BRCA status were excluded. All study sam-
ples were collected under locally approved institutional review board
protocols after obtaining informed consent from study subjects.
Sample-level data are presented in Supplementary Data 6. The
sequencing methods and NGS panels used for genetic diagnostics of
BRCA mutations changed over time but the methods used were CLIA-
validated (or certified by respective national boards of laboratory
diagnostics or genetics in Poland and India) and the geneticists
responsible for determining the pathogenicity of BRCA mutations
adhered to the guidelines of the American College of Clinical Genetics
current at the time of testing50–52.

Next-generation sequencing
Total RNA was extracted, followed by size-selection, adapter ligation,
and library preparation as previously described32. All miRNA sequen-
cing data were mapped to the reference miRNA database (miRBase
version 22.1) using nf-core/smrnaseq version 1.1.0, a uniform, stan-
dardized bioinformatic pipeline developed and published as a part of
the Nextflow project53. Reads unmapped to miRbase were subse-
quently mapped to human genomeGRCh38. The sequencing protocol
was set as QIAseq, Illumina or Nextflex, as appropriate to each sample
set (QIAseq miRNA sequencing in BWH, IHCC, DFCI and UPenn; Illu-
mina miRNA sequencing in CCGP and NEXTFLEX small RNA sequen-
cing in DGO). All parameters of the pipeline were kept at the default
values recommended by the code authors to assure reproducibility.
Raw sequencing data in FASTQ files are deposited in Sequence Read
Archive under BioProject number PRJNA898621. Derived expression
data are available in Supplementary Data 7 and deposited in Gene
Expression Omnibus (GEO) under the accession number GSE226445.
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Data integration and miRNA selection
miRNAs were filtered for species detected in at least 33% of the sam-
ples in each group at a minimum detection threshold of >=10 tran-
scripts per million (TPM). After filtering, 227 of the initial 2621 miRNAs
were retained. Principal Component Analysis (PCA) was used to
visualize the presence of batch effects (Supplementary Fig. 1). After
voomnormalization andmean-variance trend removal (model formula
used for voom: ~0 + brcaStatus + havingOvaries + group, Supple-
mentaryDataset 8), ComBatwas used to combine data from all subject
groups (Supplementary Data 9, with the UPenn group serving as
reference (model formula used for ComBat: ~brcaStatus +
havingOvaries)54,55. As different technologies were used to quantify the
miRNA content in different subject groups, use of an empirical Bayes
framework (ComBat) was a necessary step to combine data from all
subject groups while accounting for technical heterogeneity55. How-
ever, to limit the potential confounding influence of ComBat on the
effect of interest, weperformed twoversions of differential expression
analysis (Fig. 1b): with and without batch adjustment and compared
the results to identify miRNAs detected in both variants. Differential
expression analysis was performed using limma56. The model formula
for limma included the following effects: BRCA1/2 mutation and the
effect of prior bilateral salpingo-oophorectomy (~0 + brcaStatus +
havingOvaries). Visualization of the samples in reduced dimensionality
space was performed using uniform manifold approximation projec-
tion (UMAP)57. The settings were as follows: number of neighbors for
representation: 10 for batch-adjusted data and 5 for unadjusted,
minimal distance: 0.2 for batch-adjusted data and 0.9 for unadjusted,
distance metric: Euclidean in both cases. Hierarchical clustering was
performed using the Ward method for linkage, Euclidean distance
metric for samples (columns) and correlation distance metric for
miRNAs (rows)58. DE was performed in R (version 3.6.3) with limma
(3.42.2), edgeR (3.28.1), sva (3.34.0) and reticulate (1.26), while results’
visualization and part of preprocessing was done in Python (version
3.8.10) with pandas (1.3.0), numpy (1.20.0), sklearn (1.0.2), statsmodels
(0.11.1), matplotlib (3.3.0), and seaborn (0.11.1).

Model development and statistical analysis
In this step, to assure the strict external validation, the dataset was
divided into training (N = 391, 75% of cases from all groups except
UPenn, random split), testing (N = 130, 25% of cases from all groups
except UPenn, random split) and validation (N = 132, only UPenn
group) sets. Model development and validation were conducted using
in-house OmicSelector software (version 1.0; https://biostat.umed.pl/
OmicSelector59). Briefly, OmicSelector tests 94 feature selection
approaches based on 25 distinct variable selection methods.
OmicSelector-based feature selection followed initial consistency-
based preselection as described above. Feature sets withmore than 10
miRNAs were filtered out. Selected feature sets were ranked using 4
modeling techniques (logistic regression, conditional decision trees,
recursive partitioning trees, and artificial neural networks with 1 hid-
den layer) with hyperparameter optimization (2000 random hyper-
parameter sets) and hold-out validation on the testing set. The number
of modeling techniques was reduced to assure low complexity of
resulting models, and thus reduce the chance of overfitting. The best
model was chosen based on the highest validation accuracy.

To assess model performance, the training area under the ROC
was analyzed, and a cutoff value forBRCA status predictionwas chosen
based on the highest Youden index60. This cutoff was applied for
prediction on testing and validation sets. Accuracy, sensitivity, speci-
ficity, positive predictive value (PPV) and negative predictive value
(NPV)61 were calculated for all sets.Where indicated, the alpha level for
statistical significance was set at <0.05. Supplementary Code 1 con-
tains the RDS object containing Caret wrapper for final model.

All analyses were performed in R.

Statistics and reproducibility
Statistical methods applied in the study are described above. Differ-
ential expression analysis can be reproduced using code, data and
instructions available at our departmental self-hosted GitLab reposi-
tory https://git.btm.umed.pl/ZBiMT/brca-mirna and on Zenodo at
https://doi.org/10.5281/zenodo.7817763. Code and data for the classi-
fication model are available on GitHub at https://github.com/
kstawiski/brca-classifier and on Zenodo at https://doi.org/10.5281/
zenodo.7817845.

No statistical method was used to predetermine sample size.
Inclusion and exclusion criteria are specified in the Samples subsec-
tion. BRCA status and other available clinical data were known to
researchers responsible for feature selection andmodels development
with exception of BRCA1/2 status in validation set thatwas unknown to
the researcher developing models. Models were developed with the
use of results of genetic testing for BRCA status; thus, modeling out-
comeswereunknownwhen those testswereperformed. All hypothesis
tests were two-sided. Randomization was not applicable to this clinical
study as no clinical intervention was performed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data are publicly available in the Gene
Expression Omnibus under accession numbers PRJNA898621 and
GSE226445 Source data are provided with this paper.

Code availability
The code for differential expression analysis was deposited at https://
git.btm.umed.pl/ZBiMT/brca-mirna and https://doi.org/10.5281/
zenodo.7817763; code for the classification model is available at
https://github.com/kstawiski/brca-classifier and https://doi.org/10.
5281/zenodo.7817845.
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