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Insights into substitution strategy towards
thermodynamic and property regulation of
chemically recyclable polymers

Yi-Min Tu1, Fu-Long Gong1, Yan-Chen Wu1, Zhongzheng Cai 1 &
Jian-Bo Zhu 1

The development of chemically recyclable polymers serves as an attractive
approach to address the global plastic pollution crisis. Monomer design
principle is the key to achieving chemical recycling to monomer. Herein, we
provide a systematic investigation to evaluate a range of substitution effects
and structure−property relationships in the ɛ-caprolactone (CL) system.
Thermodynamic and recyclability studies reveal that the substituent size and
position could regulate their ceiling temperatures (Tc). Impressively, M4
equipped with a tert-butyl group displays a Tc of 241 °C. A series of spirocyclic
acetal-functionalized CLs prepared by a facile two-step reaction undergo
efficient ring-opening polymerization and subsequent depolymerization. The
resulting polymers demonstrate various thermal properties and a transfor-
mation of the mechanical performance from brittleness to ductility. Notably,
the toughness and ductility of P(M13) is comparable to the commodity plastic
isotactic polypropylene. This comprehensive study is aimed to provide a
guideline to the future monomer design towards chemically recyclable
polymers.

Progressive accumulation of polymer waste has caused serious envir-
onmental issues1–6. To address plastic pollution, chemical recycling to
monomers (CRM) is believed to be a desired approach that allows
polymers to be depolymerized into pristine monomers and repoly-
merized without a loss of material performance7–23. The thermo-
dynamic manipulation of polymerization and depolymerization is a
prerequisite to develop a chemically recyclable polymer system. The
thermodynamic parameters of the enthalpy (ΔHp

o) and entropy (ΔSp
o)

reflect the capability for modulating the thermodynamics of the
polymerization anddepolymerization process7,22,24–28. According to the
Gibbs free energy equation (ΔGp

o =ΔHp
o –TΔSp

o), the polymerization
temperature is a straightforward factor for controlling the equilibrium
direction. Generally, for a polymer system with ΔHp

o < 0 and entropy
ΔSp

o < 0, a ceiling temperature (Tc) at standard state could be calcu-
lated at ΔGp

o = 0, where the polymerization process is favorable at
temperatures below Tc while depolymerization is favored above Tc.

This Tc value represents the thermodynamic recyclability of the
system18. Therefore, designing a monomer with a mild Tc value for
polymerization would provide a foundation for chemical recycling to
monomers at practically operable conditions. The discovery that γ-
butyrolactone (GBL) was capable of polymerization and subsequent
depolymerization has motivated the development of new chemically
recyclable polymer materials29. However, the synthesis of PGBL
requires an undesirable low temperature (–40 °C), and PGBL exhibits
limited thermostability because of its low Tc feature (Tc = –136 °C at
1M). Continuing monomer design based on GBL led to a paradigm
shift in modulating polymerizability and tuning the polymer proper-
ties for this lowTc system (Fig. 1)28,30–34. The introduction of trans-fused
rings to GBL endowed the resulting systems with enhanced poly-
merizability (Tc = 4 °C for 4,5-T6GBL and0 °C for 3,4-T6GBL at 1M) and
superior thermostability while maintaining complete
recyclability31,33,35. The bridged-ring strategy (BiL, Tc = 106 °C at 1M)
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enabled the compromise of the conflicting polymerizability, recycl-
ability, andmaterial properties. Furthermore, this strategy was proved
to achieve the polymerization and orthogonal depolymerization of
both the GBL with Tc = 118 °C at 1M and cyclohexene with Tc = 66 °C at
1M for BiL=30,32.

In contrast to the PGBL system with low Tc values, a commercia-
lized plastic poly(ɛ-caprolactone) (PCL) produced by ring-opening
polymerization (ROP) of ɛ-caprolactone (CL) was reported to have a
Tc > 2000 °C for 1M26,36,37. Thermal degradation of PCL above 300 °C
has been reported to yield themonomeric CL and its oligomers driven
by the removal of CL in the system38–44. However, the ring-closing
depolymerization of PCL to CL generally required rigid reaction con-
ditions such as high temperature, high vacuo, or high catalyst
loadings45. To achieve practically chemical recycling to CL, it’s neces-
sary to lower theTc values viamonomermodification. In fact,manyCL-
based monomers have been reported for ROP toward functionalized
polyesters46–74. These precedents revealed that ring size and degree of
substitution of monomers could affect their polymerization thermo-
dynamic equilibrium behavior. However, the relationship between Tc
and chemical recyclabilitywasnot specifically studied. The renaissance

of this fundamental study would provide monomer design principle
for the development of chemically recyclable polymers.

Despite the recent advance inmonomerdesign toward chemically
recyclable polymers8,24,27,29–34,75–87, a systematic investigation to evalu-
ate a range of substitution effects and structure−property relation-
ships are remained to explore. Consequently, this current work is
aimed to provide a more detailed understanding of the factors that
affect thermodynamics andmaterial properties. Herein, we designed a
series of monomers with a variety of substituent sizes and positions
based on the structure of CL (Fig. 1). Notably, this series of CL-based
monomers with increasing substituted size significantly reduced their
Tc values from 2060 to 241 °C and achieved complete recyclability. A
facile spirocyclic acetalization approach allowed the designed mono-
mers to polymerize under mild conditions and yield high-molecular-
weight polymers (Mn up to 494 kg/mol). These resulting PCL-based
polymers demonstrated distinct chemical and physical properties,
manifesting the potential of substituent regulation for property
improvements. This detailed investigation of their structure–de/poly-
merizability and structure–property relationships could inspire future
monomer design toward intrinsically chemically recyclable polymers.

Results
Substitution effect on polymerization thermodynamics
To elucidate the substitution effect on the thermodynamics of ROP of
seven-membered lactones, a single-step Baeyer-Villiger oxidation of
cyclic ketones was exploited to construct a library of substituted
caprolactones (M1−M7) on large scales (>10 g) with high yields
(69−96%).M8 bearing a fused benzene ring was prepared by oxidative
cyclization of 2,2’-(1,2-phenylene) diethanol in 82% yield on 8-gram
scale. The polymerizability of M1−M8 was next investigated using a
1−2mol% zinc catalyst [(BDI)ZnN(SiMe3)2] (Zn-1)88 in toluene-d8 at an
initial monomer concentration of 0.1−0.5M (Fig. 2). Their thermo-
dynamic data was acquired by monitoring the polymerization equili-
brium changes over a temperature range of 40 to 70 °C by variable-
temperature 1H NMR spectroscopy (Supplementary Figs. 108−115).
Consequently, the standard-state thermodynamic parameters of ΔHp°
and ΔSp° for ROP of M1−M8 were summarized in Table 1 and their Tc
values at 1M were also calculated. Monosubstituted M1−M4 with the
increase of steric hindrance from a methyl group to tert-butyl group
displayed theΔHp° valuesof−16.2 ± 1.16, −14.0 ±0.50,−14.8 ± 0.67, and
−12.7 ± 0.75 kJmol−1, respectively (Table 1, entries 2−5). Contrastingly,
their ΔSp° values showed an increasing tendency from −14.9 ± 3.58 to
−24.7 ± 2.00 Jmol−1 K−1. As a result, a significant decrease in the calcu-
lated Tc values for M1−M4 at 1M from 814 to 241 °C was observed in
comparison with the previously reported Tc value of 2060 °C for CL36.
These data revealed that the alkyl substituent size has a powerful
impact on polymerization thermodynamics. Beyond the substituent
size, the substituent location appeared to have an important influence
on polymerization thermodynamics aswell. ComparedwithM5 having
geminal dimethyl groups,M6 showed a clear increase in ΔSp° value to
−34.4 ± 4.57 Jmol−1 K−1, which became a dominant factor to further
reduce its Tc value to 308 °C (Table 1, entries 6 vs. 7). Surprisingly,M7

n M 

n M Mn
∆GP >> 0

n M 

P

n M 

P

Mn

High Tc 

Low Tc 

∆GP << 0

Fused/Bridged-ring
                              strategy

Tc 

Substitution strategyCL

M1 M2

M4 M5 M6 M7

GBL

Increasing 

Tc Decreasing 

M8

3,4-T6GBL4,5-T6GBL

BiL BiL=

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Tc = –136 °C  

Tc = 4 °C  Tc = 0 °C  

Tc = 106 °C  Tc = 118 °C  

Tc = 2060 °C  

Tc = 814 °C  Tc = 727 °C  Tc = 422 °C  

Tc = 241 °C  Tc = 423 °C  Tc = 308 °C  Tc = 481 °C  

M3

Fig. 1 | Polymerization-depolymerization thermodynamic modification
towards chemically recyclable polymers. Fused/bridged-ring strategy has been
applied to increase the ceiling temperature (Tc) for the PGBL system (relatively low
Tc). In a PCL system with relatively high Tc, substitution strategy was investigated.

Fig. 2 | Accessing chemically recyclable PCL-based polymers through ring-opening polymerization of substituted caprolactones. Ring-opening polymerization of
M1−M8 and depolymerization of P(M1)−P(M8).
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with geminal dimethyl substitutions onbothβ andδpositions disabled
its polymerizability under the above condition. Attaching a non-
adjacent aromatic ring to CL affordedM8with ΔHp° of −17.5 ± 0.42 kJ/
mol K−1, ΔSp° of −23.2 ± 1.33 J/mol K−1, and Tc of 481 °C at 1M (Table 1,
entry 8). Gratifyingly, M8 performed improved air stability while
maintaining a reasonable Tc value in comparison to our previously
reported nonadjacent aromatic monomer BDPO containing an extra
heteroatom75. In comparison to substituent size, substituent numbers
and positions that could contribute to more conformation and
repulsion strain appeared to have amore pronounced influenceon the
monomeric ring strain and facilitate a large increase in the value of
ΔHp. Substitution of CL could lead to a decrease in the flexibility of
polymer chains, devoting significant loss in the conformational
degrees of freedom for the resulting polymers. Consequently, the
addition of substituents to CL was able to drive the thermodynamic
equilibrium toward the depolymerization process and decrease the Tc
values of the resulting monomer systems. In the low-Tc GBL system
where both values of ΔHp° and ΔSp° were increasing, the change of
ΔHp° contributed to the final Tc increase of the resulting polymer
system. In contrast, the change in ΔSp° appeared to be a predominant
parameter in modulating the thermodynamics of polymerization and
depolymerization for this high-Tc CL system.

Ring-opening polymerization studies
To execute the ring-opening polymerization, substituted capro-
lactones (M1−M8) were subjected to the catalyst Zn-1 and an initiator
p-tolylmethanol at the [monomer]:[catalyst]:[initiator] ([M]:[Zn-1]:[I])
ratio of 1000/1/1 in THF (Table 2). ROP of these monomers reached
>70% conversions within 30min except for M7 (Table 2, entries 2–9).
In comparison to the non-substituted CL (Table 2, entry 1), increasing
the steric bulk of the substitution on the monomers diminished their
polymerization activity. Beyond the substituent size, the substituent
location appeared to have a negligible impact on polymerization
activity. Compared withM5 having geminal dimethyl groups,M6with
two separated methyl groups on β and δ positions, exhibited a similar
polymerization reactivity. Particularly, M7 equipped with geminal
dimethyl substitutions on both β and δ positions was unable to pro-
ceed with polymerization under a similar condition (Table 2, entry 8).
The resulting polyesters P(M)s displayed the number-average mole-
cular weights (Mn,SEC) values of 83.0−208 kgmol−1 with narrow dis-
persity by size exclusion chromatography (SEC) analysis. TheseMn,SEC

values of P(M)s were inconsistent with their corresponding theoretical
values calculated from [M]0/[I]0 ratios and conversions (Mn,Calcd),
demonstrating a not well-controlled polymerization system, since the
high reactivity of these monomers led to undesired initiation events
and inevitable chain transfer.

Driven by our thermodynamic and kinetic findings that pro-
spective seven-membered lactones with the geminal
disubstituent75,80,89 could decreased Tc values for ROP without sacrifi-
cing their polymerization reactivity, we expanded our geminal

disubstituted monomer library via spirocyclic substitution. A series of
spirocyclic acetal-functionalized monomers M9 −M17 with various
spirocyclic sizes and diverse functionalities was successfully prepared
via acetalization of one ketone group in 1,4-cyclohexane dione with a
variety of diols prior to oxidation (Fig. 3). The ROP of M9−M12 at
[M]:[Zn-1]:[I] ratio of 1000/1/1 approached 88−95% conversions within
40min (Table 2, entries 10–13), producing polyesters P(M9)−P(M12)
withMn values of 107−129 kgmol−1. Their polymerization performance
was comparable to that ofM5. Due to its poor solubility,M13 attached
with an additional spiro-ring on the spirocyclic framework, exhibited
slightly lower conversions in comparison with M10 and M11 (Table 2,
entry 14). 73% monomer conversion in 35min was observed for M14,
which was modified by installing a phenyl moiety to M10. The intro-
duction of an (S,S)-trans-cyclohexane fusion to M15 led to a drastic
change in the solubility of the resulting polymer P(M15), which pre-
cipitated out from the reaction solution during polymerization
(Table 2, entry 16). In contrast,M16 bearing a cis-fused ring possessed
good solubility in THF and retained a similar polymerization reactivity
toM12 (Table 2, entry 17). It should be noted that the ROP ofM17 was
conducted at 60 °C in a diluted solution (0.5M) because of its poor
solubility in THF, which approached 76% conversion in 25min (Table 2,
entry 18).

Since the yttrium alkyl complex Y-1was reported to catalyze ROP
with high efficiency90, we also examined the Y-1-mediated ROP of
M9−M17 (Fig. 2 and Supplementary Table 1). Impressively, the ROP of
these monomers with only 0.01mol% Y-1 loading resulted in >75%

Table 2 | Ring-opening polymerization results of PCL-based
monomers with Zn-1a

Run M Time
(min)

Conv.b

(%)
Mn,Calcd

c

(kDa)
Mn,SEC

d

(kDa)
Đd

(Mw/Mn)
Tde

(°C)

1 CL 20 94 107 121 1.35 -

2 M1 30 72 92.3 93.7 1.18 366

3 M2 25 90 115 137 1.43 338

4 M3 35 87 136 103 1.19 337

5 M4 40 78 133 107 1.18 352

6 M5 20 70 100 110 1.11 355

7 M6 30 89 124 208 1.05 352

8f M7 24h 0 - - - -

9 M8 30 93 151 103 1.34 331

10 M9 30 92 159 107 1.13 328

11 M10 30 93 173 116 1.49 280

12 M11 40 95 204 129 1.22 299

13 M12 30 88 176 123 1.23 258

14g M13 35 63 160 116 1.15 305

15g M14 35 73 191 153 1.85 305

16h M15 40 40 102 n.d.j n.d.j 249

17 M16 35 86 219 68.3 1.22 271

18i M17 25 76 189 n.d.j n.d.j 281
aCondition: Catalyst =Zn-1, M = 100mg, Concentration = 1M, initiator (I) =p-tolylmethanol,
[M]:[Zn-1]:[I] = 1000:1:1, solvent = THF, RT.
bMonomer conversion measured by 1H NMR of the quenched solution.
cCalculated based on: ([M]0/[I]0) × Conv.% ×MWM (molecular weight of monomer) +MWI

(molecular weight of initiator).
dNumber-average molecular weight (Mn) and dispersity index (Đ =Mw/Mn), determined by size
exclusion chromatography (SEC) at 40 °C in THF.
eDetermined by TGA analysis.
fConcentration = 2M.
gMonomer didn’t completely dissolve prior polymerization; ForM14, solvent = DCM.
hThe resulting polymer precipitated from the reaction solution.
iReaction was conducted at 60 °C in 0.5M and the resulting polymer precipitated from the
reaction solution.
jThe resulting polymer is insoluble in common solvents, and its Mn and Đ cannot be measured
by SEC.

Table 1 | Polymerization thermodynamic data for M1 −M8

Entry M ΔHp° (kJmol−1) ΔSp° (Jmol−1 K−1) Tc at 1M (°C)

1a CL −14.0 −6.0 2060

2 M1 −16.2 ± 1.16 −14.9 ± 3.58 814

3 M2 −14.0± 0.50 −14.0 ± 1.50 727

4 M3 −14.8± 0.67 −21.3 ± 2.00 422

5 M4 −12.7 ± 0.75 −24.7 ± 2.00 241

6 M5 −15.6 ± 0.42 −22.4 ± 1.16 423

7 M6 −20.0± 1.50 −34.4 ± 4.57 308

8 M8 −17.5 ± 0.42 −23.2 ± 1.33 481
aThermodynamic data were reported in ref. 36.
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conversions in 10min (Supplementary Table 1, entries 13−15).
Increasing the [M]:[Y-1]:[I] ratio to 20000:1:1 afforded P(M11) with an
Mn,SEC up to 494 kDa (Supplementary Table 1, entry 18). Consequently,
high-molecular-weight P(M)s were readily synthesized on gram scales
using Y-1 for further chemical and physical property characterization.

Chemical recycling to monomers
To evaluate the chemical recycling performance of the produced P(M)
s, the solution depolymerization experiments were tested by mixing
thepolymer solution ([P(M)] = 20mM in toluene basedon themoles of
repeat units in polymers) with 2mol% Zn-1 catalyst at 140 °C for 1 h. 1H
NMR analysis of the resulting solution revealed that P(M1)−P(M4) were
depolymerized back to M1−M4 with conversions of 69 − 99% (Sup-
plementary Table 15, entries 1 − 4, Supplementary Figs. 125, 128−130).
In line with our thermodynamic study, increasing the substituent size
of M1−M4 facilitated the depolymerization process. Additionally, M5
and M6 were able to be recovered in 94 and 96% conversions,
respectively (Supplementary Table 15, entries 5−6, Supplementary
Figs. 131, 132). For the nonadjacent aromatic lactone M8, it showed a
great monomer recovery yield of 91% compared with the other semi-
aromatic monomers (Supplementary Table 15, entry 7, Supplementary
Fig. 133)75,76,91. These results confirmed the strong correlation between
depolymerizabililty and Tc. Among M1−M8, M4 has the lowest Tc of
241 °C and achieved nearly complete recycling (>99%), whereas M1
with the highest Tc of 814 °C, displayed only 69% recovery conversion.

The depolymerization of spirocyclic acetal-functionalized poly-
mers P(M9)−P(M12) afforded their corresponding monomers
M9−M12 in increasing conversions from 88% to >99% (Supplementary
Table 15, entries 8−11, Supplementary Figs. 134−137). Particularly,
P(M12) containing a seven-membered spiro cycle demonstrated per-
fect chemical recyclability. These findings also provided supporting
evidence that increasing the substituent size of monomers benefited
the depolymerization pathway. The thermodynamic study revealed
that P(M9)−P(M12) exhibited a decreasing Tc tendency from 503 to
197 °C, suggesting an improvement of depolymerizability, which was
consistent with our chemical recycling results. Additionally,M13,M14,
and M16 could be recovered from P(M13), P(M14), and P(M16)
through solution depolymerization with 96, 96, and 94% conversions,
respectively (Supplementary Table 15, entries 12−14 and Supplemen-
tary Figs.138−140).

Based on our thermodynamic study, we believe these substituted
CL derivatives could achieve thermal bulk depolymerization at a mild
temperature. Bulk P(M11) (producedby [M11]:[Zn-1]:[I] ratio of 500/1/1,
Mn = 86.3 kgmol−1, Đ = 1.28) with 2mol% La[(N(SiMe3)2)3] at 160 °C
produced monomeric M11 in 98% yield with >99% purity (Supple-
mentary Table 17, entry 1). More importantly, the recovered M11 was
able to carry out repolymerization at [M11]:[Zn-1] ratio of 500/1

without an obvious decrease in polymerization activity, yielding the
recycled P(M11) with anMn of 136 kgmol−1 (Fig. 4). The improvement in
Mn of the resynthesized P(M11) was attributed to the loss of a trace
amount of initiators in the system during depolymerization. Gratify-
ingly, P(M15) and P(M17) with poor solubility in common organic sol-
vents were able to undergo thermal depolymerization under the above
conditions and gave 95 and 92% recovery yields of their corresponding
monomersM15 andM17, respectively (Supplementary Table 17, entries
2 and 3). Consequently, this systematic exploration of the chemical
recycling study of P(M)s suggested that substitution size and position
were key factors for the direction of reversible polymerization and
depolymerization.

Thermal and mechanical properties
To further understand the substitution effect on the polymer prop-
erties, thermal gravimetric analysis (TGA) and differential scanning
calorimetry (DSC) were employed to examine the thermal properties
of the obtained P(M)s. The PCL derivatives P(M1)−P(M8) exhibited
remarkable thermal stability with Td (onset decomposition tempera-
ture,measured by the temperature of 5%weight loss) ranging from331
to 366 °C (Supplementary Figs. 65−71). A range of Td values from 249
to 328 °C (Fig. 5a and Supplementary Figs. 72−80) was observed for
P(M9)−P(M17) containing spirocyclic acetal moieties. We hypothe-
sized that the spirocyclic structures with high ring strain led to the
decreased stability of P(M9)−P(M17).

Impressively, varying the substituents on PCL offered intriguing
opportunities for tailoring the thermal properties of these PCL deri-
vatives. P(M1)−P(M8) displayed a wide range of glass transition tem-
perature (Tg) values from −67 to 18 °C (Fig. 5b) via simplemodification
of the rigidity of the substituents. The introduction of spirocyclic
acetal functionalities rendered the resulting P(M)s with various Tg
values (−14 to 70 °C) and allowed the transformation of P(M)s from
amorphousness to semi-crystallinity (Fig. 5c). Particularly, attaching
spirocyclic structures to P(M5) could improve the Tg values of the
resulting polymers P(M9)−P(M12). It was consistent with the findings
that the addition of phenyl groups or extra trans-fused rings to P(M12)
led to an improvement of Tg from 20 to 70 and 61 °C, respectively.

O

O

M10

O

O

O
O

O

O

O
O

O

O

O
O

M9 M11

O

O

O
O

M12

O

O

O
O

O

O

O
O

O

O

O
O

O

O

O
O

O

O

O
O

M13 M14 M17

Fig. 3 | Expanded spiro-substitutedmonomers. Chemical structures ofM9−M17.

Started M11

Recycled M11 
from thermal depolymerization

P(M11)

P(M11) 
from repolymerization 

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
δ (ppm)

O

O

O
O

O

O

O
O

O

O
nO O

O

O
nO O

Fig. 4 | Chemical recycling to monomer study ofM11. 1H NMR (CDCl3, 25 °C)
spectra of thermal depolymerization and repolymerization for M11.

Article https://doi.org/10.1038/s41467-023-38916-5

Nature Communications |         (2023) 14:3198 4



More impressively, P(M15) containing trans-fused rings displayed a
glass transition with Tg of 61 °C, a crystallization transition at 122 °C,
and a melting transition with Tm of 164 °C. P(M17) exhibited a Tg of
70 °C and a Tm of 179 °C. Collectively, a detailed analysis of
structure–property relationship was delineated, highlighting the sig-
nificance of the substitution effect. More importantly, a remarkable
range of Tg values, from –67 to 70 °C, provides the opportunity to
understand the tunability of mechanical properties of the PCL-based
recyclable polymers.

Tensile testing of these PCL derivatives was next investigated to
gain further insight into the substitution effect on the mechanical
properties of P(M)s. The P(M) specimens were prepared by melt
pressing at 90−120 °C. Unfortunately, attempts to prepare P(M15) and
P(M17) films failed due to their brittleness. SEC analysis of the
resting P(M) films revealed that no obvious degradationwas observed,
indicative of their excellent thermal stability (SupplementaryTable 19).
These P(M) specimens were subjected to uniaxial extension experi-
ments and exhibited distinct mechanical performance. Particularly,
P(M8), P(M10), and P(M12) with Tg values close to room
temperature displayed thermoplastic elastomer behavior with ulti-
mate elongation at break (ɛB) ranging from 585 to 1250% and tensile
strength (σB) < 5MPa (Fig. 5d). The elastic performance of P(M10)
(Mn = 189 kgmol−1, Đ = 1.61) was further assessed by 10 cyclical tensile
tests where the sample was stretched to 100% strain and relaxed at a
rate of 100mmmin−1. As expected, the P(M10) sample sustained
excellent elastic recovery (>90%) after ten cycles (Fig. 5f). Stress-strain
curves of the P(M) films with relatively high Tg values (above room
temperature) were shown in Fig. 5e. P(M14) (Mn = 241 kgmol−1,
Đ = 1.32) containing rigid phenyl groups showed a remarkable tensile
strength (σB = 49.8 ± 5MPa) with a limited strain (ɛB = 4.1 ± 0.3%) and
Young’s modulus (E = 1.89 ± 0.20GPa), representing a hard and brittle
material. P(M13) (Mn = 281 kgmol−1, Đ = 1.67) produced a yielding
strength (σY) of 34.7 ± 3.6MPa and a breaking strength (σB) of
18.5 ± 1.2MPa with elongation at break of 141 ± 23% and Young’s
modulus of 1.16 ± 0.10GPa. This impressive toughness and ductility of
P(M13) was comparable to the commodity plastic isotactic
polypropylene8,92. The ductility was further improved for P(M11)

(Mn = 246 kgmol−1, Đ = 1.59) with ɛB = 257 ± 19%. Overall, the physical
properties of P(M)s were shown to rely on the functionalities of the
monomers. A simple modification of the monomer substituents could
be a powerful tool to tune the chemical and physical properties of the
produced material.

Discussion
Monomerdesignwas an important strategy to tune thepolymerization
thermodynamics and achieve chemical recycling to monomer. A sys-
tematic investigation was performed for the high-Tc PCL system to
evaluate the substitution effect and structure–property relationships.
A series of substituted caprolactones were prepared to probe the
change of their thermodynamic parameters for ring-opening poly-
merization. Increasing the steric bulk of the substitution in the CL
system was proved to promote the depolymerization pathway and
reduce theTc values for the system from2060 to 241 °C.Moreover, the
substituent location was also proved to have an influence on poly-
merization thermodynamics. The detailed substitution effect of CL
derivatives (M1−M8) on polymerization thermodynamics were estab-
lished to guide the future monomer design with predicted Tc values.

Taking advantage of the geminal disubstituted effect, a spir-
ocyclic substitution strategy was applied to expand the library of
geminal disubstituted caprolactone-based monomers. Notably, this
class of monomers (M9−M17) inherited the efficient polymerizability
and excellent chemical recyclability from geminal dimethyl-
substituted monomer (M5). More impressively, the spirocyclic sub-
stitution strategy imparted the resulting polymers with tunable prop-
erties by the observation of thermal transformation from amorphous
to semicrystalline and mechanical transformation from brittleness to
ductility, which will be vital for optimizing their performance in future
applications from elastomers to plastics. This comprehensive char-
acterization of structure–property relationships could be exploited to
build a practical database for the modification and prediction of new
material properties.Overall, this systematic study provided a guideline
to the futuremonomerdesign towards chemically recyclablepolymers
and served as a toolbox for fine-tuning the material properties via
functionalization.
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Methods
All synthesis and manipulations of air- and moisture-sensitive chemi-
cals and materials were carried out in flamed Schlenk-type glassware
on a dual-manifold Schlenk line, on a high-vacuum line, or in an inert
gas (Ar)-filled glovebox. High-performance liquid chromatography
(HPLC)-grade anhydrous tetrahydrofuran (THF), toluene (TOL), and
dichloromethane (DCM) were dried via a Vigor YJC-5 solvent purifica-
tion system and stored over activated Davison 4Å molecular sieves in
the glovebox. The initiator p-tolylmethanol was purchased from Ada-
mas and purified via sublimation at 55 °C under vacuum. The other
regents from Adamas-beta, Energy Chemical, and LeYan were used as
received unless otherwise stated. All solid monomers were recrys-
tallized once fromDCMand petroleum ether (PE) to get the crystals of
monomers. The crystals were further purified by sublimation at
90–130 °C under vacuum, and the liquid monomers were further
purified via distillation at 95–130 °C/0.6–1 torr fromCaH2 under vacuo.

General Procedure for the ring-opening polymerization
Polymerization reactions were performed in 4mL glass vials inside the
glovebox for ambient temperature runs. In a typical polymerization
reaction, the solution of the catalyst in THF was added to the vigor-
ously stirred prepared monomer and initiator (p-tolylmethanol) solu-
tion (THF). After a desired period of time, the polymerization was
quenched by the addition of 1mL THF acidifiedwith benzoic acid (2%).
The quenched mixture precipitated into 50mL of cold methanol, fil-
tered, and washed with cold methanol. This procedure was repeated
twice to ensure any catalyst residue or unreacted monomer was
removed. The polymer was dried in a vacuum oven at 100 °C to a
constant weight.

General procedure for the CRM of polymers in dilute solutions
A pressure tube containing the purified polymer sample (20mg) with
2mol% Zn-1 in toluene (0.02M) was sealed and heated to 140 °C (bath
temperature) for 1 h under an argon atmosphere. After cooling back to
room temperature, the reaction mixture was concentrated (evapora-
tion in the watch glass or under vacuum) to give a colorless product,
which was used for 1H NMR analysis to determine the recycled
monomer yield.

Nuclear magnetic resonance (NMR)
1H and 13C NMR spectra were recorded on an Agilent 400-MR DD2 or a
Bruker Advance 400 spectrometer (1H: 400MHz, 13C: 100MHz). Che-
mical shifts (δ) for 1H and 13C NMR spectra are given in ppm relative to
TMS. The residual solvent signals were used as references for 1H and
13C NMR spectra and the chemical shifts were converted to the TMS
scale (CDCl3: δH= 7.26 ppm, δC= 77.00 ppm). The following abbre-
viations were used to explain themultiplicities: s = singlet, d = doublet,
t = triplet, q = quartet, and m = multiplet.

Size exclusion chromatography (SEC)
Measurements of polymer number-average molecular weight (Mn)
and molecular weight distributions or polydispersity index (Đ =Mw/
Mn) were performed via size exclusion chromatography (SEC). The
SEC instrument consisted of an Agilent LC system equipped with one
guard column and two PL gel 5 µm mixed-C gel permeation columns
and coupled with an Agilent G7162A 1260 Infinity II RI detector; The
analysis was performed at 40 °C using THF as the eluent at a flow
rate of 1.0mL/min. The instrument was calibrated with nine poly-
styrene standards, and chromatograms were processed with Agilent
OpenLab CDS Acquisition 2.5 molecular weight characterization
software.

Differential scanning calorimetry (DSC)
Melting-transition temperature (Tm) and glass transition temperature
(Tg) of purified and thoroughly dried polymer samples weremeasured

by differential scanning calorimetry (DSC) on a TRIOS DSC25, TA
Instrument. All Tg values were obtained from a second scan after the
thermal history was removed from the first scan. The heating rate was
10 °C min and the cooling rate was 10 °C /min.

Thermo-gravimetric analysis (TGA)
Decomposition onset temperatures (Tonset) and maximum rate
decomposition temperatures (Tmax) of the polymers weremeasured
by thermal gravimetric analysis (TGA) on a TGA55 Analyzer, TA
Instrument. Polymer samples were heated from ambient tempera-
tures to 500 °C at a heating rate of 10 °C/min. Values of Tmax were
obtained from derivative (wt%/°C) vs. temperature (°C) plots and
defined by the peak values, while Tonset values were obtained from
wt% vs. temperature (°C) plots and defined by the temperature of 5%
weight loss.

Mechanical analysis
Tensile stress/strain testing was performed by an Instron 34SC-1 uni-
versal testing system at ambient temperature. Samples were made by
hot pressure in steel molds (50 × 4 ×0.4 or 50 × 4 ×0.8mm3) at
100−150 °C. The dog-bone-shaped test specimens (ca. 0.4−0.8 mm
(thickness) × 4mm (width) × 20mm (grip width)) were stretched at a
strain rate of 20−100mm/min until break. The measurements were
performed with five to ten replicates per material to report average
values and standard deviations for each set. Young’s modulus was
calculated using the slope of the stress-strain curve from0 to 1% strain.
All samples were tested at ambient temperature (~25 °C).

Matrix-assisted laser desorption/Ionization time-of-flight mass
spectroscopy (MALDI−TOF MS)
An AXIMA performance instrument was used in reflection mode with
Dithranol as thematrix. A thin layer of a NaI solution (1μL, 0.01mmol/
mL in THF) was first deposited on the target plate, followed by the
solutions of the matrix (2μL, 10mg/mL in CHCl3) and polymer (2μL,
5mg/mL in THF) were mixed. The mixed solution was spotted on the
MALDI sample plate and air-dried. The raw data was processed in the
Shimadzu Biotech MALDI-MS software.

Data availability
The authors declare that the data supporting the findings of this study
are provided in the main article and the Supplementary Information.
All data is available from the corresponding author upon request.
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