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Regioselective stilbene O-methylations in
Saccharinae grasses

Andy C. W. Lui 1,9,10, Kah Chee Pow 2,10, Nan Lin1,10, Lydia Pui Ying Lam 3,
Guoquan Liu 4, Ian D. Godwin 4, Zhuming Fan2, Chen Jing Khoo2,
Yuki Tobimatsu 5, Lanxiang Wang 6, Quan Hao 2,7,8 & Clive Lo 1

O-Methylated stilbenes are prominent nutraceuticals but rarely produced by
crops. Here, the inherent ability of two Saccharinae grasses to produce
regioselectively O-methylated stilbenes is reported. A stilbene O-methyl-
transferase, SbSOMT, is first shown to be indispensable for pathogen-
inducible pterostilbene (3,5-bis-O-methylated) biosynthesis in sorghum (Sor-
ghum bicolor). Phylogenetic analysis indicates the recruitment of genus-
specific SOMTs from canonical caffeic acid O-methyltransferases (COMTs)
after the divergence of Sorghum spp. from Saccharum spp. In recombinant
enzyme assays, SbSOMT and COMTs regioselectively catalyze O-methylation
of stilbene A-ring and B-ring respectively. Subsequently, SOMT-stilbene crystal
structures are presented.Whilst SbSOMT shows global structural resemblance
to SbCOMT, molecular characterizations illustrate two hydrophobic residues
(Ile144/Phe337) crucial for substrate binding orientation leading to 3,5-bis-O-
methylations in the A-ring. In contrast, the equivalent residues (Asn128/
Asn323) in SbCOMT facilitate an opposite orientation that favors 3ʹ-O-methy-
lation in the B-ring. Consistently, a highly-conservedCOMT is likely involved in
isorhapontigenin (3ʹ-O-methylated) formation in wounded wild sugarcane
(Saccharum spontaneum). Altogether, our work reveals the potential of Sac-
charinae grasses as a source of O-methylated stilbenes, and rationalize the
regioselectivity of SOMT activities for bioengineering of O-methylated
stilbenes.

Stilbenes are specialized metabolites sporadically distributed in the
plant kingdom. Grape (Vitis vinifera, dicot), peanut (Arachis hypogaea,
dicot), Scots pine (Pinus sylvestris, gymnosperm), sorghum (Sorghum
bicolor, monocot) and sugarcane (Saccharum spp., monocot) are

iconic species producing various stilbene compounds upon (a)biotic
challenges1–5. They serve to maintain reactive oxygen species
homeostasis and/or protect against microbial attacks3,6–8. Recently,
stilbenes have emerged as prominent candidates for nutritional and
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pharmaceutical studies due to their anti-aging, anti-neurodegenera-
tion, anti-diabetes and chemo-prevention properties9–11. Over 200
stilbene-related clinical trials (http://clinicaltrials.gov/) have been
launched and stilbenes like resveratrol and pterostilbene are com-
mercialized as dietary supplements. Despite the heightened interest in
this minor, yet unique, class of phenylpropanoids as pharmaceuticals
and nutraceuticals, in planta stilbene biosynthesis remains under-
studied, especially the downstream derivatization steps such as O-
methylations and prenylations. Elucidation of the underlying enzy-
mology would expedite bioengineering attempts to fortify crops with
more or novel stilbenes.

O-Methyltransferases (OMTs) are indispensable in a diversity of
metabolic pathways and hence biophysiological processes. For
instance, sorghum SbOMT3 catalyzes the biosynthesis of sorgoleones
which are allelochemicals exuded by root hairs to suppress competing
weeds12. Two maize OMTs regioselectively methylate flavonoid phy-
toalexins which inhibit Fusarium spp. infection13. The degree of
O-methylations of anthocyanidin pigments affects floral and fruit col-
ors in flowering plants14,15. In Arabidopsis (Arabidopsis thaliana), dis-
ruption of a tapetum-specific OMT (AtTSM1) which methylates
polyamine conjugates adversely affects silique development and seed
setting16. Additionally, the degree of phenylpropanoid O-methylation
determines lignin composition in tracheophytes17. For example, dis-
ruption of caffeic acid O-methyltransferase (COMT) and/or caffeoyl-
CoA O-methyltransferase (CCoAOMT) substantially alters lignin con-
tent and composition, potentially affecting plant growth and
development18–20. Biochemical and structural characterization of these
phenylpropanoid OMTs have provided insights into their substrate-
enzyme interactions and catalytic mechanisms21–24, hence facilitating
genetic manipulations of lignin composition in biomass crops25,26.

Phylogenetically-unrelated plant species have independently
recruited specific OMTs for stilbene O-methylation. In response to
environmental stresses, grapevine resveratrol OMT (VvROMT)
methylates resveratrol to pterostilbene whereas Scots pine pinosylvin
OMT (PsPMT2) methylates pinosylvin to pinosylvin monomethyl
ether27,28. In addition, a root hair-specific sorgoleone O-methyl-
transferase from sorghum, SbOMT3, methylates resveratrol to pter-
ostilbene in vitro or in transgenic models, albeit at poor efficiency12,29.
Synthetic biology approaches have been initiated to generate O-
methylated stilbenes of pharmaceutical significance such as pter-
ostilbene and 3ʹ-hydroxypterostilbene30,31, which are critically
acclaimed for their potent cancer-chemopreventive32 and neuropro-
tective properties33. In fact, their pharmacological properties are
superior to the non-O-methylated analogs34,35. However, the lack of
stilbene O-methyltransferase (SOMT) structural data greatly limits our
understanding of their distinctive substrate specificities, regioselec-
tivities and catalytic efficiencies, impeding bioengineering efforts in
the production of high-value and/or novel O-methylated stilbenes.

Within the family Poaceae, the Sorghum and Saccharum genera
evolved from a common ancestral grass and belong to the tribe
Andropogonae, subtribe Saccharinae. Species from both genera
accumulate hydroxylated stilbenes (e.g. resveratrol, piceatannol) and
their O-glycosides5,7,36, but O-methylated stilbenes have not been
reported in these species so far. Here, we report the identification of
O-methylated stilbenes, pinostilbene (3-O-methylated) and pter-
ostilbene (3,5-bis-O-methylated) in sorghum, and isorhapontigenin (3ʹ-
O-methylated) in wild sugarcane (S. spontaneum). A stilbene OMT
(SbSOMT) catalyzes sequential 3,5-bis-O-methylation of resveratrol to
pterostilbene whereas a canonical COMT (SsCOMT) likely catalyzes 3ʹ-
O-methylation of piceatannol into isorhapontigenin in wild sugarcane.
We generated sorghum SbSOMT CRISPR/Cas9 mutants which were
deficient in pinostilbene and pterostilbene, hence establishing the
indispensable role of SbSOMT in resveratrol 3,5-bis-O-methylation. As
indicated by phylogenetic analysis, divergence of Sorghum genus from
other genera in the Saccharinae subtribe likely predated the

recruitment of SbSOMT from a canonical COMT. By solving the high-
resolution crystal structures of SbSOMT complexed with stilbenes,
molecular features that differentiate the substrate binding mode and
catalytic regioselectivity between SbSOMT and canonical COMTswere
unveiled.

Results
Accumulation of O-methylated stilbenes in pathogen-infected
sorghum
The metabolite profiles of wild-type sorghum upon infection of Col-
letotrichum sublineola (Fig. 1a) were first examined. Two sorghum
genotypes, BTx623 and SC748-5, susceptible and resistant to C. sub-
lineola infection respectively37,38, were analyzed. Accordingly, four
stilbenes including resveratrol, piceid (resveratrol 3-O-glucoside), and
resveratrol derivatives O-methylated at their A-ring: pinostilbene (3-O-
methylated resveratrol), and pterostilbene (3,5-bis-O-methylated
resveratrol) were identified in the infected sorghum mesocotyls
(Fig. 1b–f). In addition, flavones (apigenin, luteolin, chrysoeriol, tricin;
Supplementary Table 1) and 3-deoxyanthocyanidins (orange-red pig-
ments; apigeninidin, luteolinidin, diosmetinidin; Supplementary
Table 2), which are known sorghum phytoalexins, were detected37,38.
Notably, the resistant genotype SC748-5 accumulated approximately
9-fold more pterostilbene than the susceptible genotype
BTx623 starting from 48 h post infection (Fig. 1b & Supplementary
Table 3). Taken together, stilbene accumulation in SC748-5 was more
rapid, and at larger quantities than BTx623 during C. sublineola
infection.

Sorghum pathogen-inducible SbSOMT catalyzes pterostilbene
biosynthesis
To identify potential OMTs involved in pterostilbene biosynthesis in
sorghum, an in silico expression dataset for Bipolaris sorghicola-
infected sorghum leaves (http://matsui-lab.riken.jp/morokoshi/)39,40

and our in-house transcriptome dataset for C. sublineola-infected
sorghum mesocotyls41 were analyzed. Transcripts of SbOMT1 and
SbOMT3, which were reported to methylate resveratrol in vitro and in
transgenic plants, were not detected in either dataset (Supplementary
Fig. 1a). Meanwhile, SbCOMT, which encodes a bona fide canonical
COMT18,21,22, is constitutively expressed in sorghum (Supplemen-
tary Fig. 1a).

Furthermore, two putative OMT genes, SbSOMT (Sb07g004710)
and SbOMT4 (Sb07g004690), showed pathogen-inducible expression
patterns similar to that of SbSTS1 (Sb07g004700) (Supplementary
Fig. 1a) encoding stilbene synthase (STS) which generates resveratrol
from p-coumaroyl-CoA and malonyl-CoAs (Fig. 1a)5. Gene expression
analyses confirmed their transcriptional upregulation in both sorghum
genotypes shortly after infection (Supplementary Fig. 1b–d). In parti-
cular, the resistant genotype SC748-5 showed stronger expression for
these genes than the susceptible genotype BTx623, consistent with its
higher levels of pathogen-induced stilbene accumulation.

Subsequently, recombinant proteins expressed in E. coli were
purified for in vitro enzyme assays. Both SbSOMT and SbCOMT gen-
erated pinostilbene and/or pterostilbene when incubated with
resveratrol albeit at significantly different levels. Notably, SbSOMT
converted about 60% of resveratrol into pterostilbene whereas
SbCOMT displayed poor resveratrol 3,5-bis-O-methylation activities
(Fig. 2a). Meanwhile, SbOMT4 showed minimal SOMT activities (Sup-
plementary Fig. 2a–c) and is thus unlikely to contribute to pter-
ostilbene production in sorghum. The catalytic activities of SbSOMT
and SbCOMT towards hydroxycinnamic acids were also compared.
Intriguingly, SbSOMT failed to methylate caffeic acid and
5-hydroxyferulic acid, whereas SbCOMT efficiently converted them to
ferulic acid and sinapic acid, respectively (Fig. 2b–c).

Kinetic parameters of SbSOMT and SbCOMT were then deter-
mined using pinostilbene as a substrate since SbSOMT rapidly

Article https://doi.org/10.1038/s41467-023-38908-5

Nature Communications |         (2023) 14:3462 2

http://clinicaltrials.gov/
http://matsui-lab.riken.jp/morokoshi/


converts resveratrol into pterostilbene, thus preventing accurate
quantification of pinostilbene produced. Results revealed the superior
catalytic performance (kcat/Km and specific activity) of SbSOMT over
SbCOMT and SbOMT4 towards pinostilbene, although SbSOMT
showed a higher Km value (Table 1). These data suggested that
SbSOMT, but not SbCOMT, is highly likely the primary SOMT for
pterostilbene biosynthesis in sorghum.

The biochemical function of SbSOMT was then examined via
transient co-overexpression in Nicotiana benthamiana (Supplemen-
tary Fig. 3a–d). Overexpression of both SbSTS1 and SbSOMT produced
pterostilbene as the only stilbene product in agro-infiltrated leaves. By
contrast, overexpression of SbSTS1 alone generated resveratrol and a
small amount of pinostilbene, presumably due to endogenous pro-
miscuous activities of tobacco OMT(s). These data are supportive for
the role of SbSOMT in 3,5-bis-O-methylation of resveratrol to pter-
ostilbene in planta.

Sorghum SbSOMT mutants are depleted in pathogen-inducible
pinostilbene and pterostilbene
Sorghum sbsomt mutants were generated via CRISPR/Cas9-mediated
genome editing. Three homozygous sbsomt mutant lines (sbsomt-a,
sbsomt-b1, sbsomt-b2; T1 generation) harboring different mutation
pattern were isolated for metabolite analysis (Fig. 3a & Supplementary
Fig. 4a–c). In all mutant lines, the indels on exon 1 alone were sufficient
to induce frameshift mutations and premature translation termina-
tion, resulting in knockout mutations (Supplementary Fig. 5).

Metabolite profiles of sbsomt mutants were analyzed upon C.
sublineola infection. (Fig. 3b–e & Supplementary Table 4). Consistent
with the results above (Fig. 1c–f), wild-type Tx430 mesocotyls accu-
mulated resveratrol, piceid, pinostilbene and pterostilbene 72 h after
infection. By contrast, the sbsomt-a/b1/b2 mutant mesocotyls accu-
mulated resveratrol and piceid but not pinostilbene or pterostilbene
even at 96 h after infection. These results firmly established the
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files of Colletotrichum sublineola-infected sorghum mesocotyls. a Stilbene and
flavonoid biosynthetic pathways in sorghum. Newly formed methoxy groups are
colored and enlarged. STS stilbene synthase, SOMT stilbene O-methyltransferase,
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means ± SD (n = 3). c–f HPLC-QTOF-HRMS detection of resveratrol (c), piceid (d),
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indispensable role of SbSOMT in 3,5-bis-O-methylation of resveratrol
to form pinostilbene and pterostilbene successively in sorghum.

Sorghum convergently recruited SbSOMT via neofunctionali-
zation of COMT
Previous studies have implicated that SOMTs in grapevine (VvROMT)
and Scots pine (PsPMT2) evolved convergently from non-COMT
ancestors27,28. Multiple sequence alignment showed that SbSOMT
shares only 31.9% and 29.9% sequence identity with VvROMT and
PsPMT2, respectively (Supplementary Fig. 6). Instead, SbSOMT is
phylogenetically related to canonical COMTs in Poaceae (Fig. 2d). In
addition, an SbSOMT ortholog (ShSOMT) is found in Johnsongrass
(Sorghum halapense; Fig. 2d). Meanwhile, no potential SbSOMT
orthologs could be retrieved from wild sugarcane (Saccharum spon-
taneum) proteome (https://plants.ensembl.org/; all homologous pro-
teins with <50% identity; Supplementary Fig. 7) although Sorghum spp.

and Saccharum spp. share a recent common ancestor (both belonging
to the same subtribe). Furthermore, ShOMT1, ShSOMT, SbOMT1,
SbOMT4, SbSOMT form a Sorghum-specific clade sister to Poaceae
naringenin 7-O-methyltransferases (NOMTs) (Fig. 2d). Hence, these
OMTs were most likely recruited via duplication and neofunctionali-
zation of an ancestral grass COMT. Overall, SbSOMT represents an
independent and genus-specific acquisition of SOMT activities distinct
from those in grapevine and Scots pine.

Substrate binding affinity and regioselectivity of SbSOMT and
SbCOMT
So far, our results revealed that SbSOMT catalyzes the 3,5-bis-O-
methylation of resveratrol upon fungal infection.Meanwhile, SbCOMT
efficiently methylates hydroxycinnamic acids but demonstrates mini-
mal SOMT activities towards resveratrol and pinostilbene whichmight
be attributed to poor substrate binding. However, isothermal titration
calorimetry (ITC) study did not corroborate this possibility (Table 2 &
Supplementary Fig. 8). In fact, SbCOMT exhibited strong, micromolar
binding affinities (Kd) towards resveratrol (1.55μM), pinostilbene
(1.79μM), and pterostilbene (3.99μM), comparable to those towards
hydroxycinnamic acids21. Meanwhile, SbSOMT also showed strong
binding affinities towards resveratrol and pinostilbene (4.69μM and
2.86μM respectively) but a higher Kd to pterostilbene (11.20μM),
demonstrating SbSOMT favors its substrates over product for binding.
The SAM binding affinity of SbSOMT was unexpectedly weak
(Kd = 90.00μM), whereas SbCOMT showed a Kd of 13.00μM which is
consistent with a previous study21. Collectively, SbSOMT and SbCOMT

Table 1 | Kinetic parameters of SbSOMT and SbCOMT with
pinostilbene as a substrate

SbCOMT SbSOMT

Km (μM) 3.14 ± 1.40 4.62 ± 0.46

kcat (min-1) 0.14 ± 0.01 10.30 ±0.20

kcat/Km (min-1 μM-1) 0.045 2.229

Specific activity (nmol min-1 mg-1) 3.46 ±0.27 290.04 ± 5.64

Values refer to means ± SD (n = 3).
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Fig. 2 | Catalytic activities and phylogeny of SbSOMT andSbCOMT. a Formation
of pinostilbene and pterostilbene from resveratrol by SbSOMT and SbCOMT after
two-hour incubation with 100 µM resveratrol. Values refer to means ± SD (n = 3).
n.d. not detected. Dots represent individual data points.b Formation of ferulic acid
from caffeic acid by SbSOMT and SbCOMT after two-hour incubation with 100 µM
phenylpropanoid substrates. Values refer to means ± SD (n = 3). n.d. not detected.
Dots represent individual data points. c Formation of sinapic acid from

5-hydroxyferulic acid by SbSOMT and SbCOMT after two-hour incubation. Values
refer to means ± SD (n = 3). n.d. not detected. d Phylogenetic analysis of SbSOMT
and SbCOMT. The unrooted phylogenetic tree was constructed by maximum
likelihood using MEGA X90. Bootstrapping with 1000 replications was carried out.
Bona fide stilbene O-methyltransferases from gymnosperm27, dicot28 and monocot
(this study) are highlighted. Sorghum OMTs are bolded. Scale bar denotes 0.2
amino acid substitution per site.
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showed comparable stilbene-binding affinities, which would not
account for their different catalytic activities towards resveratrol and
pinostilbene.

Canonical COMTs including SbCOMT utilize the para-hydroxyl
group of phenylpropanoids for proper substrate orientation21,22

which concurs with our results of SbCOMT-catalyzedO-methylation
of caffeic acid and 5-hydroxyferulic acid (Fig. 2b). On the other hand,
SbSOMT-catalyzedO-methylation of resveratrol occurs in the A-ring
which is not para-hydroxylated. Piceatannol (3ʹ-hydroxylated
resveratrol) was then used as an enzyme substrate since its stilbene
B-ring is structurally identical to the phenolic ring in caffeic acid
while its A-ring is identical to that in resveratrol (Fig. 4a). Both
enzymes catalyzed in vitro O-methylation of piceatannol, but
occurring in a regioselective manner (Fig. 4b–c). SbSOMT methy-
lated the 3- and 5-hydroxyl groups on the piceatannol A-ring to
produce 3ʹ-hydroxypinostilbene and 3ʹ-hydroxypterostilbene

successively. By contrast, SbCOMT converted a substantial amount
of piceatannol (ca. 60%) into isorhapontigenin by 3ʹ-O-methylation
in the B-ring with a conversion rate similar to those of SbCOMT-
caffeic acid and SbSOMT-resveratrol reactions (Fig. 2a–b). A small
amount of isorhapontigenin was further methylated at its A-ring to
3ʹ-methoxypinostilbene by SbCOMT (Fig. 4b–c) and the conversion
rate was similar to that of SbCOMT-resveratrol reaction (Fig. 2a).
Furthermore, ITC experiments showed that SbCOMT displayed
significantly stronger binding affinity towards piceatannol when
compared to SbSOMT (Table 2; Kd = 1.26 μM and 37.50 μM, respec-
tively). Overall, these experiments strongly demonstrated the dif-
ferent regioselective O-methylation properties of SbSOMT and
SbCOMT.

Global structure of SbSOMT resembles that of SbCOMT
To rationalize their different catalytic regioselectivities, structural
analyses involving X-ray crystallography and computational methods
were conducted. We solved the crystal structure of an SbSOMT-
resveratrol-nicotinamide adenine dinucleotide (β-NAD) ternary com-
plex (diffracted to 1.72 Å resolution, Fig. 4d; β-NAD was utilized as an
additive to improve crystallization42), an SbSOMT-resveratrol binary
complex, and two ternary complexes reproduced with pinostilbene or
pterostilbene (diffracted at 2.10 and 2.56 Å, respectively; Supplemen-
tary Fig. 9a). All complexes were in high structural resemblance and
depicted as a homodimer with an open conformation. Super-
imposition of SbSOMT and SbCOMT (PDB: 4PGH21) revealed their high
structural similarity (RMSD= 2.322 Å), except that SbSOMT harbors an
extended loop (Val103-Cys114) that forms a threonine-rich dimeriza-
tion interface (Fig. 4d).
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Table 2 | Dissociation constants of SbSOMT, SbCOMT with
stilbenes

Kd (μM)

SbCOMT SbSOMT

Resveratrol 1.55 ± 0.13 4.69±0.54

Pinostilbene 1.79 ± 0.09 2.86±0.33

Pterostilbene 3.99±0.24 11.20± 2.23

Piceatannol 1.26 ± 0.06 37.50± 4.33

SAM 13.00±0.83 90.00± 9.59

Results are expressed as means of Kd ± standard error derived from curve fitting.
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Structural analyses and in silico docking support different stil-
bene orientations within the substrate binding pockets of
SbSOMT and SbCOMT
Close examination of the SbSOMT substrate binding pocket within the
SbSOMT-resveratrol-β-NAD complex provided further insights into
the interactions between SbSOMT and its stilbene substrates. The
pocket mainly comprised hydrophobic residues, and the stilbene
backbone was secured by hydrophobic interactions with Met143,
Ile144, Met175, Phe189, Met193, Trp279, Tyr311, Leu329, Met333,
Thr336, in addition to Leu28 of the adjacent protomer (Fig. 5a). The
apparent binding cavity was confined to fit the stilbene backbone in a
planar configuration with minimal rotational flexibility. Of the three
hydroxyl groups on resveratrol capable of forming hydrogen bonds,
only the methyl-accepting 3-OH group (A-ring) formed direct hydro-
gen bonds to SbSOMT residues (Fig. 5b), including the catalytic resi-
dues His282 (2.80Å) and Asp283 (3.26 Å). Other hydroxyl groups were
shielded by water molecules and did not directly interact with
SbSOMT. The same binding mode was adopted for pinostilbene or
pterostilbene in the corresponding SbSOMT co-crystals (Fig. 5c–d &
Supplementary Fig. 9b). Overall, these structures depicted a produc-
tive substrate orientation within the substrate binding pocket which
greatly favors A-ring O-methylation. Following 3-O-methylation of
resveratrol, the pinostilbene intermediate will need to be dissociated
and re-inserted inorder to re-position theA-ring for 5-O-methylation to
produce pterostilbene. Similarly, in silico docking of piceatannol with
SbSOMT (Fig. 5e; in pink) conformed to such substrate orientation,
with the A-ring positioned in proximity to the catalytic residues of

SbSOMT, hence favoring the 3,5-bis-O-methylation to produce 3´-
hydroxypinostilbene and 3´-hydroxypterostilbene (Fig. 4b–c).

Intriguingly, docking stilbenes with SbCOMT (PDB: 4PGH21)
revealed a contrasting substrate orientation to that of SbSOMT, sug-
gesting that SbCOMT preferentially positions stilbenes with the B-ring
close to the catalytic residues and the A-ring reaching inwardly into the
pocket. SbCOMT-piceatannol docking showed a single favorable
orientation of piceatannol among five hits whichwere docked at a sub-
optimal position (Fig. 5e; in blue). In the top hit, the B-ring 3ʹ- and 4ʹ-
hydroxyl groups were stabilized by hydrogen bonds with Asn323
while the A-ring 5-hydroxyl group interacted with Asn128 (Fig. 5e; in
blue). Consistent with our enzyme assay results (Fig. 2a), the 3ʹ-
hydroxyl group on the B-ring was orientated close to the catalytic
residues and would thus predominantly favors the methylation of 3ʹ-
hydroxyl group (B-ring) over 3-/5-hydroxyl groups (A-ring) (Fig. 5e; in
blue). Additionally, docking resveratrol with SbCOMT revealed two
opposite orientations with similar free energies of binding (Fig. 5f),
representing two competing binding modes which hampered its cat-
alytic performance (Fig. 2a). In fact, the non-productive orientation
with the B-ring closer to the catalytic residues was more energetically
favorable (−7.3 kcal/mol, in blue), while the productive orientation
with A-ring closer to the catalytic residues was slightly less stable
(−7.1 kcal/mol, in grey). Collectively, these analyses fully corroborated
with results of our biochemical assays and stilbene profiles of sor-
ghum, and provided a mechanistic rationale for the apparent
differences in catalytic activity between SbCOMT and SbSOMT. Addi-
tionally, as the methyl-accepting -OH groups in piceatannol and
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d Global structure of dimeric SbSOMT-resveratrol-β-NAD ternary complex solved
at 1.72 Å resolution. The global structure highlights the position of resveratrol
(substrate, black) and β-NAD (additive, black), and the secondary structure of
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hydroxycinnamic acids are both adjacent to a para-OH group (i.e., 4ʹ-
OH in piceatannol and 4-OH in hydroxycinnamic acids), this may be a
prerequisite for efficient O-methylation by COMTs as suggested
previously21,22.

SbSOMT and SbCOMT employ the same catalytic residues but
different substrate binding orientations
The catalytic residues of SbSOMT are highly conserved with all
reported COMTs, including His282 as the key nucleophile, whereas
Asp283, Glu310, and Glu342 collectively charge the basicity or confine
His282 in its reactive conformation (Fig. 5b)21,22,43,44. Accordingly, the
surrounding electrostatic force allowsNεof His282 to deprotonate the
methyl-accepting -OH group, followed by a SN2 nucleophilic attack of
themethyl-donor groupon SAMby theoxyanion (-O−) (Supplementary
Fig. 10)21,22,43,44. The roles of His282 and Asp283 have been validated by
mutagenesis, but not for those of Glu310 and Glu342 (PDB: 4PGG21,
5ICG45, 1KYZ44, and 6I5Z46). Here, H282A, D283A, E310A, and E342A
mutant proteins of SbSOMT were generated for catalytic and binding
assays with resveratrol. H282A mutant protein was catalytically
defective (Fig. 6a–b) and unstable for ITC study. To further elucidate
the role of His282 in resveratrol binding (Fig. 5b), a stable SbSOMT
H282N/D283A doublemutant protein was generated.While the D283A
protein showed a slightly stronger affinity towards resveratrol
(Kd = 1.31μM), the H282N/D283A mutant protein showed a sig-
nificantly weaker affinity (Kd = 32.90μM) (Supplementary Table 5),
implying that His282 plays a moonlighting role in substrate binding in
SbSOMT in addition to catalysis. Meanwhile, D283A and E342A muta-
tions resulted in significant reduction in pinostilbene yield by 94.7%
and 91.9%, respectively (Fig. 6a). In addition, both of them failed to

generate pterostilbene when incubated with resveratrol (Fig. 6b)
despite that they showed considerably stronger affinities to resveratrol
(Supplementary Table 5). Unexpectedly, E310A mutation only caused
reduction of pterostilbene yield (by 70.1%; Fig. 6b), accompanyingwith
reshuffled stilbene binding affinities (Supplementary Table 5). We
reasoned that the E310A mutation decreased the rigidity and basicity
of His282, thus weakening SbSOMT selectivity towards the reactive
hydroxyl group against the inactive methoxy group, which is a vital
feature allowing the subsequent O-methylation of the same stilbene
substrate (Fig. 5b–d).

In SbCOMT, two key amino acid residues, Asn128 and Asn323,
cooperatively mediate the productive orientation for catalysis21.
Docking piceatannol with SbCOMT revealed that Asn323 forms a
hydrogen bond with the para-OH group on the stilbene B-ring whose
meta-OH group is positioned optimally for methylation, while Asn128
likely serves to stabilize their interaction via another hydrogen bond
with 5-OH on the non-para-hydroxylated stilbene A-ring (Fig. 5e; in
blue). In striking contrast, the equivalent positions in SbSOMT are
occupied by two highly hydrophobic residues, Ile144 and Phe337,
which are unfavorable for interactions with the para-OH group of an
aromatic ring as predicted by in silico docking (Fig. 5e; in pink). On the
other hand, these residues may contribute to accommodate the stil-
bene A-ring, which is not para-hydroxylated, for methylation of its
meta-hydroxyl groups. We then generated I144N, F337N and I144N/
F337N SbSOMT mutant proteins for catalytic and binding assays. All
three SbSOMT mutant proteins showed significantly weakened bind-
ing for resveratrol, with F337N and I144N/F337N mutant proteins dis-
playing undetectable binding affinities (Supplementary Table 5).
Correspondingly, both I144N and F337N produced substantially less
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pterostilbene (24.8% and 97.7% respectively), and accumulated slightly
more pinostilbene when compared to the WT protein (28.4% and
50.8% respectively; Fig. 6c–d). Meanwhile, the I144N/F337N mutant
protein showed complete abolishment of SOMT activities (Fig. 6c–d).
As pterostilbene represents the major product generated by SbSOMT-
resveratrol reactions (Fig. 2a), these results conclusively established
the essential role of Ile144 and Phe337 in the resveratrol binding
mechanism adopted by SbSOMT.

A canonical COMT likely catalyzes isorhapontigenin biosynth-
esis in wild sugarcane
Previously, Saccharum spp. were reported to accumulate resveratrol
and piceatannol (3ʹ-hydroxylated resveratrol) upon mechanical
wounding or fungal infection2,36 (Fig. 7a). As Saccharum spp. are Sac-
charinae grasses like Sorghum spp., we investigated whether O-
methylatedderivatives could also bedetected inwild sugarcanewhose
genome is available47. The slender stalks offloweringwild sugarcane (S.
spontaneum) were sawn into 2-cm segments (excluding nodes) for
metabolite profiling. No stilbenes were detected in freshly-cut seg-
ments whereas resveratrol, piceatannol, and isorhapontigenin (3ʹ-O-
methylated piceatannol) started to accumulate 72 h after wounding
(Fig. 7b, Supplementary Fig. 11a–c, and Supplementary Table 6). A
miniscule amount of a hexoside of piceatannol was also tentatively
identified (Supplementary Fig. 12a–b). Overall, mechanically-wounded
wild sugarcane produced piceatannol and its B-ring O-methylated
derivative isorhapontigenin which constituted a small portion of the
stilbene profile (Fig. 7b), while no A-ring O-methylated stilbenes could
be detected.

Next, we attempted to understand isorhapontigenin biosynthesis
in wild sugarcane. Substantial upregulation of SsSTS gene expression
(Sspon.06G0010290-2P) 72 h after wounding was detected (Supple-
mentary Fig. 13a, 13c & 14). Under in vitro condition, recombinant
SsSTS generatedpiceatannol with caffeoyl-CoA as the starter substrate
but failed to generate isorhapontigenin when feruloyl-CoA was used
(Supplementary Fig. 15a–e). Hence, SsSTS is a functional STS but an
OMT is most likely required for 3ʹ-O-methylation of piceatannol
to produce isorhapontigenin. Meanwhile, a canonical SsCOMT
(Sspon.06g0010980-3C) highly conserved with SbCOMT (>94.0%
protein sequence identity) was identified in wild sugarcane (Supple-
mentary Fig. 7 & 16). It also harbors the key Asn residues corre-
sponding toAsn128 andAsn323 inSbCOMT(Supplementary Fig. 16). In

fact, recombinant enzyme assays demonstrated that SsCOMT and
SbCOMT showed the same catalytic regioselectivity. Accordingly,
isorhapontigenin, ferulic acid, and sinapic acid were generated
when SsCOMT was incubated with piceatannol, caffeic acid, and
5-hydroxyferulic acid respectively (Fig. 7c & Supplementary Fig. 17a–f).
However, only small amounts of pterostilbene were generated when
resveratrol was used as substrate (Supplementary Fig. 17g–i). In addi-
tion, SsCOMT shares similar substrate-binding properties with
SbCOMT (Supplementary Table 7). Gene expression analysis further
revealed that SsCOMT is constitutively expressed in wild sugarcane
segments despite its downregulation after wounding (Supplementary
Fig. 13b & 13d). Taken together, SsCOMT is a potential candidate for
isorhapontigenin production through 3ʹ-O-methylation of piceatannol
in the B-ring.

Discussion
O-Methylated stilbenes are well-acclaimed for their health-promoting
benefits and exceptional bioavailability35,48. Sorghum is a major staple
crop and wild sugarcane is a genetic resource for sugarcane breeding.
In this study, the potential of these Sacharinae grasses as biofactories
for O-methylated stilbenes as well as the OMTs for regioselective stil-
beneO-methylations were revealed. Our findings also provide insights
into bioengineering of specific O-methylated stilbenes via molecular
breeding and transgenic approaches, representing a unique opportu-
nity to improve dietary intake of these nutraceuticals which are scar-
cely present in natural food sources.

Recent breakthroughs in sorghum biotechnology, including
stable transformation and CRISPR/Cas9-mediated genome editing as
well as its metabolic versatility, have warranted sorghum as an emer-
ging model for investigation and manipulation of specialized
metabolism49–51. Here, complete depletionofO-methylated stilbenes in
infected sorghum SbSOMT CRISPR/Cas9 mutants (Fig. 3a–e) firmly
established SbSOMT as the primary SOMT for pathogen-inducible
pterostilbene biosynthesis. Concomitantly, molecular, biochemical,
and structural characterizations were integrated to elucidate the
mechanistic details of SbSOMT-stilbene reactions. We report the first
crystal structure of a bona fide stilbeneO-methyltransferase, SbSOMT.
The enzyme utilizes the His282-Asp283-Glu310-Glu342 catalytic resi-
dues to generate 3,5-bis-O-methylated stilbenes (Figs. 2a, 4b-c, 5b–f, &
Supplementary Fig. 9a–c). The same catalytic residues are found in
canonical COMTs, indicating the highly conserved O-methylation
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Fig. 7 | Biosynthesis of stilbenes in wild sugarcane, stilbene profiles of
mechanically-woundedwild sugarcane stalks, and in vitro enzyme activities of
SsCOMT. a Proposed stilbene pathways in wild sugarcane. Newly formedmethoxy
groups are colored and bolded. STS stilbene synthase, COMT caffeic acid O-
methyltransferase, Ss Saccharum spontaneum. b Distribution of stilbene aglycones
in mechanically-wounded wild sugarcane stalks 120 h after treatment. Values refer

to means ± SD (n = 3). c Formation of ferulic acid, sinapic acid, isorhapontigenin,
pinostilbene, and pterostilbene from caffeic acid, 5-hydroxyferulic acid, picea-
tannol, and resveratrol respectively, by SsCOMT, after two-hour incubation with
the indicated substrates (100 µM). Tricin was used as an internal standard for
quantitation. Values refer to means ± SD (n = 3).
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catalysis irrespective of phenolic substrates involved13,21,22,52,53. We fur-
ther demonstrated thatGlu310 likely positions the 5-OHgroup, instead
of the more hydrophobic 3-OCH3 group, in close proximity to His282
for the second O-methylation (Fig. 5c–d & Supplementary Fig. 9b). As
Glu310 is highly conserved in most OMTs (with some harboring
an Asp), this feature may represent a common mechanism for med-
iating successive O-methylations of structurally different phenolic
substrates.

Meanwhile, our combinatorial analyses rationalized the regios-
electivities of SbSOMT and canonical COMTs (e.g., SbCOMT and
SsCOMT) underlain by specific substrate binding modes instead of
alterations in catalysis or substrate affinity (Fig. 2a, 4b–c, 5b–f, 6a–d,
7a–c, Table 1–2, Supplementary Fig. 10, & Supplementary Table 5). The
hydrophilic Asn128/Asn323 residues in SbCOMT, which are highly
conserved in COMTs from diverse plant lineages, orchestrate pro-
ductive coordinationwith their native substrates, i.e. hydroxycinnamic
acids and their analogs, via hydrogen bonding21,22. The same binding
mechanism is apparently crucial for attaining productive and energe-
tically favorable orientation of piceatannol inside the binding pocket
of Saccharinae COMTs including SbCOMTAsn128/Asn323 and SsCOMTAsn130/

Asn323 for B-ring O-methylation (Fig. 5e & Supplementary Fig. 17a–b). In
marked comparison, the recruitment ofmore hydrophobic residues in
SbSOMT like Ile144 and Phe337 during its emergence in the Sorghum
genus would considerably favor hydrophobic interactions with C3´
and C4 of the stilbene backbone, respectively (Fig. 5e; in pink), hence
favoring A-ring O-methylation (Fig. 4b–c, & 6c–d).

Thorough mining of the Protein Data Bank (PDB) retrieved a
diverse panel of 24 OMT-ligand complexes (from 13 OMTs with ≥30%
protein identity to SbCOMT/SbSOMT), supporting a general occur-
rence of compatible polarity pairing between the amino acid residue
equivalent to SbCOMTAsn323/SbSOMTPhe337 in OMTs and their sub-
strates (Supplementary Table 8). We reasoned that upon conforma-
tional transitions, this residue and the catalytic residues are brought
into close proximity, leading to compatible polarity pairing between
12 (out of 13) OMTs and their respective substrate (Supplementary
Fig. 18, 19). For example, six OMTs harboring an Asn residue at this
position is paired to a polar-OH or -OCH3 moiety of the ligand
(Supplementary Table 8 & Supplementary Fig. 19)43,44,46,54–57. For the
others, the equivalent residue is a more hydrophobic residue (Thr,
Val or Phe) which is paired to a non-polar group such as a methyl
group or an aromatic ring of the ligand (Supplementary Table 8 &
Supplementary Fig. 19). Consistently, two previously characterized
SOMTs, VvROMTPhe318 and SbOMT3Ile336, harbor a hydrophobic
residue at this equivalent position28,29. Meanwhile, naringenin
OMTs, which harbor a hydrophobic Leu residue (OsNOMT;Leu335

SbNOMT;Leu324 ZmNOMTLeu325) paired to the aromatic carbon (C6),
catalyze 7-O-methylation (A-ring) of naringenin to generate sakur-
anetin, but do not utilize hydroxycinnamic acid substrates58. Col-
lectively, the polarity of the amino acid residue inOMTs equivalent to
SbCOMTAsn323/SbSOMTPhe337 may govern substrate selectivity through
a compatible polarity pairing with the functional group vicinal to the
methyl-accepting -OH group in a substrate (Supplementary Fig. 18,
19). Consequently, replacement of Asn323 by a hydrophobic residue
likely represents a key molecular event towards the functional
divergence of regioselectiveOMTactivities fromcanonical COMTs in
plants. On the other hand, polarity pairing between ligand and
SbCOMTAsn128 is only observed in someOMT-ligand complexes, as the
equivalent residues in OMTs are diversified (Supplementary Table 8).
Overall, our findings underpin subsequent bio-engineering of OMTs,
either by directed evolution or targeted site-directed mutagenesis,
for production of regioselective O-methylated phenolic nutraceu-
ticals/pharmaceuticals in vitro or in planta.

Sorghum and wild sugarcane are closely-related species but
resveratrol is their only common stilbene detected by our experi-
mental conditions. In addition to resveratrol, sorghum produces

pinostilbene and pterostilbene upon fungal infection (Fig. 1) whilewild
sugarcane accumulates resveratrol, piceatannol, and isorhapontigenin
following mechanical wounding (Fig. 7). The lack of B-ring O-methy-
lated stilbenes (pinostilbene and pterostilbene) in wounded wild
sugarcane likely stems primarily from the absence of SbSOMT ortho-
logs which are unique to Sorghum spp. On the other hand, the pre-
sence of isorhapontigenin (B-ring O-methylated) is likely resulting
from canonical activities of SsCOMT considering its constitutive
expression inwoundedwild sugarcane stalk (Supplementary Fig. 13b&
13d) and apparent catalytic regioselectivity towards stilbene B-ring
(Fig. 7c), although genetic evidence is required for confirmation.
Meanwhile, the underlying causes for the exclusivity of piceatannol (3ʹ-
hydroxylated) and related stilbenes in Saccharum spp. within the
Saccharinae subtribe remain elusive. Elucidation of the piceatannol
biosynthetic pathway, in combination with the aforementioned bio-
engineering of OMTs for targeted stilbene O-methylation, would fur-
ther unleash the potential of these Saccharinae crops for stilbene
biofortification.

Apparently, Sorghum-specific SOMTs was originated from the
canonical and ubiquitous COMTs in Poaceae (Fig. 2d). The COMT-to-
SOMT evolution fits well into the generally-accepted Yčas-Jensen
model which suggests that a promiscuous enzyme with poor activities
towards specific substrates often serves as the basic scaffold under-
going sequence divergence (e.g. the aforementioned replacement of
SbCOMTAsn323 by SbSOMTPhe337) to optimize catalytic efficiency59,60.
Further nonsynonymous mutations within an ancestral sorghum
COMT allowed neofunctionalization with acquisition of efficient
resveratrol 3,5-bis-O-methylation activities in SbSOMT (Fig. 2a). Such
molecular evolutionmight havebeendrivenby the superior potency of
pterostilbene over resveratrol and pinostilbene as a broad-spectrum
phytoalexin (Supplementary Fig. 20a–m)6,61. Interestingly, both
SbSOMT (Fig. 2b) and OsNOMT58 have lost the ability to O-methylate
hydroxycinnamic acids, which are key in planta substrates of
COMTs21,22. Further investigations will shed new light on whether
compromised substrate recognition pattern is necessary, and to what
extent, to achieve thehighly efficient SOMTactivities in SbSOMT. Since
both SbSOMT and SbCOMT utilize the same catalytic residues and
mechanism forO-methylation, evolution of pterostilbene biosynthesis
primarily hinged on optimizing the stilbene binding mode with pro-
ductive orientations. Furthermore, the recruitment of SbSTS1 from a
chalcone synthase scaffold for resveratrol biosynthesis would logically
predate that of SbSOMT from SbCOMT5. An increasing number of
specialized metabolic pathways are considered to have evolved in
such order as gene clusters62–64. Correspondingly, physically-linked
SbSTS1 (Sb07g004700), SbOMT4 (Sb07g004690), and SbSOMT
(Sb07g004710) (Supplementary Fig. 21) were identified as constituents
of a gene cluster for specialized metabolism (Cluster 408) in the sor-
ghum genome63,65. Future elucidation of the regulatory mechanisms
and evolution of this gene cluster may unveil the biological and eco-
logical significances underlying the convergent evolution of pter-
ostilbene biosynthesis exclusive to Sorghum spp. among grasses.

Methods
Plant materials and fungal treatment conditions
Two sorghum (Sorghumbicolor) genotypes, BTx623 and SC748-5, were
analyzed in this study. Sorghum seeds were germinated in aerated
double-deionized water at 30 °C for 24 h. Wild sugarcane (Saccharum
spontaneum) setts were obtained from Taiwan66, and planted in soil
until flowering. C. sublineola isolate TX430BB was propagated on 5%
(w/v) oatmeal agar for 14 days prior to fungal infection experiments.
Etiolated sorghum seedlings were prepared as described previously67.
Briefly, sorghum seeds were germinated in rolls of wet paper towels in
dark for 7 days, and were either sprayed with a 0.2% (w/v) bovine
gelatin solution (control) or a conidial suspension (1.0 × 106 spores
ml−1) of C. sublineola isolate TX430BB in the same gelatin solution
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(treatment). Both control and treatment groups were incubated under
constant light at room temperature and 100% humidity.

Plant metabolite extraction
One hundredmilligrams of sorghummesocotyls from fungal infection
experiments or mechanically wounded wild sugarcane stalks were
harvested for metabolite analysis. All plant tissues were frozen by
liquid nitrogen and ground into fine powder using TissueLyser II
(QIAGEN, Germany). Two hundred microliters of 80% (v/v) methanol
(with 10μM Apigenin-d5 as internal standard) were added to the
samples. Metabolites were extracted by ultra-sonicating the samples
on an ice-water bath for 30min. Samples were passed through a
0.22μm PTFE membrane filter (Phenomenex, USA) prior to HPLC-
QTOF-HRMS analysis described below.

HPLC-QTOF-HRMS and HPLC-MRM analyses
To screen for OMT activities, purified stilbene products of enzyme
assays were separated by a Synergi C18 column (Synergi 4μ Fusion
RP 80 Å, 50 × 2mm, Phenomenex, USA) under a flow rate of
0.5mlmin−1 over a 6min linear gradient of 10%–90% B (described
below). Product detection was achieved with a quadruple-time-of-
flight-high resolution mass spectrometer (QTOF-HRMS) X500R
system (AB Sciex, China) operating under the information-
dependent acquisition (IDA) mode. Meanwhile, purified phenyl-
propanoid products of enzyme assays were separated on the same
column connected to a HP1100 series HPLC system (Agilent Tech-
nologies, USA) linked to an AP3200-QTRAP mass spectrometer (AB
Sciex, China) operating under the multiple-reaction-monitoring
(MRM) mode. To quantify enzyme assay products, purified reaction
products were separated on a Kinetex C18 column (Kinetex 2.6 μm
C18 100 Å, 100 × 2.1 mm, Phenomenex, USA) connected to the same
HPLC-AP3200-QTRAP-MS/MS system operating under MRM mode.
A linear gradient of 10%–90% B under a flow rate of 0.5mlmin−1 over
5min was used for stilbene analysis; a linear gradient of 2%–75% B
under a flow rate of 0.5mlmin−1 over 3min was used for ferulic acid
analysis; a linear gradient of 1%–80% B under a flow rate of
0.3mlmin−1 over 3min was used for sinapic acid analysis. Total
metabolites from all plant tissues were separated by the same
Kinetex C18 column connected to the X500RQTOF-HRMS system. A
linear gradient under a flow rate of 0.2mlmin−1 over a 20min linear
gradient of 10%–90% B was used for separating sorghum and wild
sugarcane metabolites, while a 10-min linear gradient of 10%–90% B
under a flow rate of 0.3mlmin−1 was used for separating tobacco
metabolites.

To screen for SsSTS activities, purified products of enzyme assays
were separated by the same Synergi C18 column from above, under a
flow rate of 0.5mlmin−1 over a 5min linear gradient of 10%–90% B.
Product detection was achieved with the same QTOF-HRMS X500R
system (AB Sciex, China) operating under the information-dependent
acquisition (IDA) mode using positive ionization mode.

In all HPLC-MS analyses, the mobile phase consisted of 0.5% (v/
v) formic acid/water (A) and 0.5% (v/v) formic acid/methanol (B).
Stilbenes were detected using the positive ionization mode while
phenolic acids were detected with the negative ionization mode.
Compounds were quantified by integration of peak area using the
quantification mode of SCIEX OS (for X500R) or Analyst software
version 1.5.2 (for AP3200-QTRAP). Identification of compounds and
optimization of MRM parameters were achieved by comparing both
retention time and MS/MS spectra (Supplementary Fig. 22) with
authentic standards (which were included with each independent
LC-MS analysis). LC traces, MS/MS spectra and corresponding MS
acquisition parameters were reported in the Source Data file.
Extraction blank samples were included in between different sample
groups. Two-sided Student’s t-test or Welch t-test (under unequal
standard deviations) was used for calculation of statistical

significance, with the exact p-values and t-test used shown in the
Source Data file.

Gene expression analyses
Total RNA was extracted from sorghum mesocotyls collected at a
24-hour interval for up to 96 h post fungal-treatment and wounded
wild sugarcane stalks collected at different time points using the TRI-
zol method (Invitrogen, USA). Reverse transcription and qRT-PCR
were performed using PrimeScript RT reagent kit with gDNA eraser
(TaKaRa, Japan) and TB Green premix Ex Taq II kit (TaKaRa, Japan),
respectively. Semi qRT-PCR was performed with GoTaq DNA poly-
merase (Promega, USA). Gene-specific primers used for qRT-PCR
experiments were listed in Supplementary Table 9. The housekeeping
gene Sorghum bicolor Eukaryotic Initiation Factor 4A-1 (SbEIF4α;68

XM_002451491) and Saccharum spontaneum Glyceraldehyde
3-Phosphate Dehydrogenase (SsGADPH; Sspon.08G0001560-1A)69 were
used as internal controls for sorghumandwild sugarcane, respectively.

Cloning of SbSTS1, SbOMT4, SbSOMT, SbCOMT, SsSTS, and
SsCOMT
The coding sequences (CDS) of SbSTS1, SbOMT4, SbSOMT and SbCOMT
were amplified from cDNA prepared from fungal-infected mesocotyls
of sorghum genotype BTx623 using gene-specific primers (Supple-
mentary Table 9). The CDS of SsSTS and SsCOMT were cloned from
cDNA prepared from wounded wild sugarcane stalk using gene-
specific primers (Supplementary Table 9). To generate recombinant
proteins, the CDS of SsSTS (full length), SsCOMT (full length), SbCOMT
(encoding residues 2–362), and SbSOMT (encoding residues 2–377)
were cloned into pET-N-His-TEV (Beyotime) via HiFi DNA Assembly
(New England BioLabs, USA) or Gibson Assembly (New England Bio-
Labs, USA). Full length CDS of SbOMT4 was inserted between BamHI
and HindIII restriction sites of pET23a(+) vector (Novagen, Germany).
The full length CDSs of SbSTS1 and SbSOMT were individually sub-
cloned into the binary vector pEAQ-HT by the Gibson Assembly
method (New England BioLabs, USA) using gene-specific primers
(Supplementary Table 9).

Recombinant protein production and site-directedmutagenesis
Desiredmutations of SbSOMTwere introduced into its construct using
specific primers (Supplementary Table 9). Expression constructs were
transformed into Rosetta™ (DE3) competent Escherichia coli cells
(Novagen, Germany). Protein expression was induced with 0.1mM
Isopropyl-β-thiogalactopyranoside (IPTG) overnight at 16 °C. E. coli
cellswere harvested, resuspended in lysis buffer (20mMTris buffer pH
7.9, 300mM NaCl, 2.5mM β-mercaptoethanol), and lysed by sonica-
tion. Crude proteins were loaded onto a HisTrap HP column (Cytiva,
USA) connected to a ÄKTA pure chromatography system (Cytiva,
USA). Columnwas washed with 15 column volumes of lysis buffer with
50mM imidazole. Proteins were eluted over a gradient of 50–500mM
imidazole. Eluate fractions with the target OMTwere pooled, digested
with TEV protease, and simultaneously dialyzed against a low salt
buffer (20mM Tris pH 7.9, 50mM NaCl, 2.5mM β-mercaptoethanol)
overnight at 4 °C. The dialyzed samplewasfiltered and flowed through
HisTrap to removeHis-tagged components. The flowthroughwas then
loaded to HiTrap Q FF columns (Cytiva, USA) and eluted over a gra-
dient of 50–1000mM NaCl. Polishing was achieved via size-exclusion
chromatography using the storage buffer (100mM HEPES pH 7.9,
100mM NaCl) as mobile phase. SsSTS was purified under the same
conditions except that the pH was adjusted to 7.0 for all buffers.
Proteins were concentrated by ultrafiltration and flash frozen for sto-
rage at −80 °C.

Enzyme assays and enzyme kinetics
For initial screening of OMT activities, purified OMT enzymes
(10μg) were incubated in 100mM HEPES buffer (pH 7.9), 200 μM
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S-adenosyl-L-methionine (SAM) and 100μM of phenylpropanoid or
stilbene substrates (final volume 200μl) at 30 °C for 2 h. Enzyme
kinetics were determined by incubating 1μg protein with 100mM
HEPES buffer (pH 7.9), 300μM SAM, and stilbene concentrations
ranging from 5 to 200μM at 30 °C for 5min. Similar conditions were
used to determine enzyme kinetics of SbSOMT towards SAM, except
that SAM concentrations ranging from 5 to 500μM (while stilbene
substrates were kept at 1mM) were included to accommodate its
unexpectedly high Kd and Km values. For the SsSTS enzyme assays,
10μg of purified SsSTS enzymes were incubated in 100mM HEPES
buffer (pH 7.0), 100μM of caffeoyl-CoA or feruloyl-CoA, and 300 μM
of malonyl-CoA at 30 °C for 1 h. All enzyme assay reactions were
quenched by snap-freezing the reaction tubes in liquid nitrogen.
Reactionproductswere extracted twicewith ethyl acetate. Theorganic
layers were then pooled, vacuum-dried, and resuspended in 50μl
80% (v/v) methanol with 10μM tricin as internal standard for HPLC-
MRM quantification. All reactions were done in triplicates. Enzyme
kinetics were calculated using the non-linear regression fitting by
GraphPad Prism 6 software (GraphPad, USA).

Isothermal titration calorimetry (ITC)
Isothermal titration calorimetry (ITC) assays were conducted with
MicroCal iTC200 (Malvern Panalytical, UK). Concentrated stocks of
resveratrol, pinostilbene, pterostilbene, and piceatannol were pre-
pared in 50% (v/v) PEG 400. Both cell sample and titrant were equili-
brated to ITCbuffer consisting of 100mMHEPESpH7.9with 2.5% (v/v)
PEG 400. For ITC assays involving pterostilbene, PEG 400 concentra-
tion was increased to 5% (v/v). Concentrations of protein (in cell) and
ligand (in syringe) used in each run are listed in Supplementary
Table 9. Each run incorporated an initial delay of 60 s prior to the first
injection (0.5μl) and spaced 180 s (150 s for SsCOMT) between the
subsequent 19 injections (2.0μl) at 25 °C. During the runs, the cell was
continuously stirred at 750 rpm by flat paddle. Results were analysed
based on the 2nd to 20th injections using the Origin (MicroCal Software,
USA) and PEAQ-ITC software (Malvern Panalytical, UK).

Agroinfiltration of N. benthamiana leaves
pEAQ constructs harboring either SbSTS1 or SbSOMT were trans-
formed into Agrobacterium tumefaciens strain GV3101. To co-express
SbSTS1 and SbSOMT in N. benthamiana leaves, two Agrobacterium
cultures, each harboring one of the overexpression plasmids (indivi-
dual OD600 at 0.8), were mixed in equal ratio and co-infiltrated to
N. benthamiana leaves. Leaves were harvested five days after infiltra-
tion and were subjected to metabolite extraction and HPLC-QTOF-
HRMS analysis as described above.

Constructs of CRISPR-SbSOMT and sorghum transformation
The CRISPR-SbSOMT construct was chemically synthesized (Gene
Universal, USA). In brief, two gRNAs, including gRNA1: GTTGAA
CACGGTGTTCCACG and gRNA2: GCACCGGACTACGCTGTGCG, were
designed using CHOPCHOP v370, individually introduced to the
downstream of SbU6 promoters, SbU62.3 and SbU63.1, respectively,
and were further cloned into the plasmid that harbors a selective
marker (NPTII) to generate CRISPR-SbSOMT construct50. The CRISPR/
Cas9 plasmid, pBUN411, was modified for sorghum particle
bombardment71. Sorghum tissue culture, transformation, and CRISPR-
Cas9-mediated genome editing were performed as described
previously49. Briefly, sorghum inbred line Tx430 were grown in a
temperature-controlled (18–28 °C) glasshouse to provide the initial
explant for transformation. Immature seeds were harvested 11–15 days
post anthesis. Immature embryos were isolated and placed on callus
induction medium for generating embryogenic calli. The CRISPR-
SbSOMT construct and pBUN411 plasmid were co-transformed into
embryogenic calli by particle bombardment72. After transformation,
potential transgenic plantlets were grown in a temperature-controlled

(18–28 °C) glasshouse. Genome-edited plants (T0 and T1) were identi-
fied by PCR and direct sequencing using primers listed in Supple-
mentary Table 9.

X-ray crystallography
SbSOMTwas prepared at 3.5mgml−1 and pre-equilibrated with 0.5mM
of stilbene ligand in afinal buffer of 20mMHEPESpH7.9, 150mMNaCl,
4.5 % dimethyl sulfoxide (DMSO) and 1mM TCEP. Co-crystallization of
SbSOMT and resveratrol were initially screened against commercial
crystallization screens (Hampton Research, USA and QIAGEN, USA)
with a sitting drop vapor diffusion approach incubated at 18 °C. Two
crystallizing conditions were further optimized. Crystals of SbSOMT-
resveratrol-β-NAD ternary complex were obtained after two days of
growing from the setupof 1μl of 5mgml−1 SbSOMT,0.15μl of 50mMβ-
NAD and 0.5μl of reservoir solution (0.1M sodium acetate pH 4.6,
0.2M sodium acetate, 0.2M NH4Cl, 2.5% (w/v) polyethylene glycol
4000). SbSOMT co-crystalized with pinostilbene, piceatannol, or
pterostilbene were obtained under the same condition. Crystal of
SbSOMT-resveratrol binary complex was initially obtained after
2–3 weeks of growing from the setup of 1μl of 5mgml−1 SbSOMT and
0.5μl of reservoir solution (0.1M MES pH 6.5, 0.2M ammonium sul-
phate, 30% (w/v) polyethylene glycol monomethyl ether 5000). Sub-
sequent crystallization was accelerated by seeding and crystals were
harvested after 1 week. Crystals collected for X-ray diffraction was
cryoprotectedby 20% (v/v) glycerol toppedonto the reservoir solution.

X-ray diffraction data were collected from BL19U1 beamline
(wavelength at 0.979Å) at the Shanghai Synchrotron Radiation Facility
and processed by either XDS or HKL3000 package73,74. Data were
analysed using pipelines provided in CCP4 suite75. Data reduction was
performed using AIMLESS76. The initial structure of SbSOMT-
resveratrol-β-NAD ternary complex was solved by molecular replace-
ment; first through PHASER using a chimeric search model generated
by MrBUMP, followed by model rebuilding from phase solution
through BUCCANEER77–80. Following structures were solved by mole-
cular replacement with PHASER using protomer of SbSOMT-
resveratrol-β-NAD ternary complex as a search model. The built
models were iteratively refined through automated REFMAC5 refine-
ment and manual refinement in COOT81,82. Validation and assessment
of structure quality were performed using MolProbity and OneDep
prior tofinalization83,84. The statistics andmetricsof reported structure
are compiled in Supplementary Table 11. Figures featuring protein
structure were prepared using UCSF Chimera85 or UCSF ChimeraX86.

Ligand docking with AutoDock Vina
Ligand docking was performed using the default setting87. The deter-
mination of grid center was guided by superimposition of SbSOMT-
resveratrol-β-NAD ternary complex, which the grid center was set in
the binding pocket where the superimposed resveratrol is observed.
For piceatannol docking in SbSOMT, the grid size was set to
18 Å × 16 Å × 12Å, covering the entity of superimposed resveratrol. For
docking in SbCOMT, a grid size of 24 Å × 24Å × 24Å was used with the
similar grid center to cover the entire binding pocket. All dockingwere
performed using global searching exhaustiveness of 8 and top 5
docked conformations were recorded for further analysis.

Phylogenetic analysis
Multiple sequence alignmentwasdone byClustalW andClustal Omega
with default configurations88,89. The unrooted phylogenetic trees were
constructed by maximum likelihood method with 1000 bootstrap
replicates using MEGA X90.

In vitro fungitoxicity assays
A conidial suspension ofCollectotrichum sublineola isolate TX430BB at
a concentration of 5 × 104 sporeml−1 was prepared in double deionized
water. Stilbenes including resveratrol, pinostilbene, and pterostilbene
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were dissolved in DMSO and supplemented to the potato dextrose
agar at concentrations ranging from 0 (mock) to 50μM. Ten micro-
liters of conidial suspensions were transferred onto the water agar
plates, and 5 biological replicates were conducted for each con-
centration of stilbenes. These plates were sealed, incubated overnight
at room temperature in darkness, followed by incubation under con-
stant light for 3 days. Spore germination was observed under a Leica
DM500 lightmicroscope (Leica,USA) after incubation in dark.Mycelial
growth, represented by the fungal colony diameter, was assessed after
the 3-day incubation period under light using the same microscope
and the ImageJ software91. Data were processed with GraphPad Prism
6 software (GraphPad, USA).

Accession numbers
Protein sequences analyzed in this study and used in phylogenetic
analysis could be found under accession numbers listed in Supple-
mentary Table 1265.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Unprocessedmetabolite data (including LC traces andMS/MS spectra)
of sorghum and wild sugarcane are provided in the Source Data file.
Raw LC-MS data are available from the corresponding author (clive-
lo@hku.hk) upon request. Atomic coordinates and structure factors
for the crystal structures reported in this work were deposited to the
Protein Data Bank under accession numbers: 7VB8, 7WAQ, 7WAR and
7WAS. Source data are provided with this paper.
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