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Data-driven direct diagnosis of Li-ion
batteries connected to photovoltaics

Matthieu Dubarry 1 , Nahuel Costa 2 & Dax Matthews1

Photovoltaics supply a growing share of power to the electric grid worldwide.
To mitigate resource intermittency issues, these systems are increasingly
beingpairedwith electrochemical energy storagedevices, e.g., Li-ionbatteries,
for which ensuring long and safe operation is critical. However, in this
operation framework, secondary Li-ion batteries undergo sporadic usage,
which prevents the application of standard diagnostic methods. Here, we
propose a diagnostic methodology that uses machine learning algorithms
trained directly on data obtained from photovoltaic charging of Li-ion bat-
teries. The training is carried out on synthetic voltage data at various degra-
dation conditions calculated from clear sky model irradiance data. The
method is validatedusing synthetic voltage responses calculated fromplaneof
array irradiance observations for a photovoltaic system located in Maui, HI,
USA.We report an average root mean square error of 2.75% obtained formore
than 10,000 different degradation paths with 25% or less degradation on the
Li-ion cells.

In recent years solar photovoltaic (PV) technologies provided themost
additional generating capacity to the United States grid1. In 2021, a
record 23.6 GW of solar capacity was installed, and over the next 10
years, it is predicted that 324GWof new solar capacity will be added to
the electric grid, quadrupling current levels1. Solar energy harvesting
systems are increasingly being paired with secondary electrochemical
energy storage systems, like Li-ion batteries (LiBs), at multiple grid
levels. While some of the storage will be performed by grid-scale bat-
teries, the percentage of residential storage installations has also been
steadily increasing, reaching 8.1% in 20202. It is estimated that by 2025,
one in three residential solar systems will be paired with small-scale
energy storage1, most likely powered by LiBs3.

To ensure long, safe, and continuous operation, LiBs must be
maintained and controlled properly, which includes the regular esti-
mation of their state of health (SOH). Current state-of-the-art SOH
estimation methods can be found in recent reviews4,5, but their appli-
cation could be problematic for LiBs paired with PV because of the
sporadic usage in both charge and discharge. As a result of this
unpredictability, the diagnosis might only be performable under
lengthy maintenance cycles. An alternative to avoid downtime could
be to identify and take advantage of auspicious conditions to perform

state estimation. With LiBs supposed to last a decade or more, there
are opportunities for different approaches, such as using batteries
response under clear sky conditions underwhichPVpowerproduction
is predictable for up to 12 h6.

Even if the PV power output offered by clear sky conditions is
predictable, state estimation will still be complex and require robust
methodologies for LiB diagnosis. Because the batteries paired with PV
will not be operated under constant current (CC), the standard
features7 to estimate SOH might be difficult to interpret. This favors
data-driven methods, and in particular, machine learning (ML)
methods8. However, to be applicable, ML algorithms need to be
trained on a wide variety of data covering the sporadicity of the
application. Unfortunately, while PV-connected lead acid batteries
data are reported in the literature8, and some market data are already
accessible9,10, no data for LiBs are yet available. Few studies are avail-
able on LiBs testing associated with PV duty cycles11,12, withmost of the
studies being modeling-centered and using CC testing13–19. Looking at
CC data, the lack-of-data problem was recently solved with the intro-
duction of synthetic datasets that enabled the emulation of every
possible battery degradation20–23. While the duty cycle for clear sky
irradiance will be more complex, recent work suggests that the
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methodology used to generate the synthetic data could be applied
outside of CC24 and thus be applicable to irradiance.

In this work, we propose a method for diagnosing PV-connected
batteries using synthetic datasets that would allow for SOH estimation
during normal operations. The method uses periods of clear sky con-
ditions, where charging from PV generation is relatively stable and
predictable, for diagnosis. We also report a framework for (1) gen-
erating synthetic datasets of the voltage response of Li-ion cells
charged byPV systems, (2) synthetic dataset training of state-of-the-art
ML algorithms, and (3) algorithm validation using synthesized data.
The framework, which consists of a branch for training and a branch
for validation, is summarized in Fig. 1.

The training branch uses irradiance data from a clear sky model
(CSM), PV system information (longitude, tilt, orientation), and LiB
information (chemistry and power) to generate synthetic cycles con-
sisting of the voltage response of the cells for specific duty cycles
under tens of thousands of different degradations. This dataset is then
used to train, test, and compare selected ML algorithms for diagnosis.
The selection includes a Random Forest regressor (RF)25, an extreme
gradient boosting regressor (XGB)26, a feed-forward neural network
(FNN)27, a 1-dimensional convolutional neural network (1D-Conv)20,
and a dynamic time warping 2-D convolutional neural network
(DTW)-CNN28.

While the validation would ideally be performed on data from
deployed LiBs, no deployed PV-linked LiBs dataset is publicly available
to the best of our knowledge. Even if data were available, the actual
degradation of each individual system would not likely be, making
validation implausible. In anticipation of data becoming available, we
examined the applicability of our approach to real systems by repla-
cing the deployed data with synthetic datasets generated for various

sky-clearness levels, Fig. 1. These syntheticdatasets areused to validate
the applicability of the clear sky irradiance trained ML algorithms for
diagnosis under cloudy conditions. To further emulate realistic con-
ditions, each dataset was calculated on a Li-ion cell with slightly dif-
ferent parameters to account for cell-to-cell variations and
inhomogeneities29. A selection of the data generated from this work is
available in data repositories30,31.

Results
Irradiance data selection
The output of a PV system is dependent on irradiance, which is the
power of the solar radiation striking the panels. Irradiance variability is
driven by extraterrestrial and atmospheric effects and is also depen-
dent on panel orientation32,33. The latter has become more varied in
recent years3, but panels are nominally oriented toward the equator at
a tilt angle near the latitude of the installation in order to maximize
solar energy yield34.

Clear sky irradiance occurs during clear sky conditions, defined as
an absence of visible clouds across the entire sky dome6. Clear sky
irradiance is estimated using a CSM, which calculates solar geometry
and accounts for variations in airmass and variations inoptical depth35.
In this work, we used the CSM proposed by Ineichen and Perez35 for a
horizontal surface extended to estimate clear sky irradiance on a tilted
surface in the plane of array (POA) of a PV panel. The extended CSM
recomputes the solar angle of incidence, accounts for the reduction of
diffuse irradiance received36, and adds a new ground-reflected irra-
diance source37. The accuracy of the CSM is primarily dependent on
the accuracy of the broadband turbidity factor (TL) model input38. In
this study, TL data was sourced from monthly mean climatological
values extracted from the Solar Radiation Data Service39. Over the
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Fig. 1 | Schematic representation of the proposed approach. a Example of
measured irradiancedata from the test site inMaui,HI, USA.bClear sky simulations
at equinoxes and solstices (spring equinox in green, summer solstice in red, fall
equinox in orange, and winter solstice in blue). c Digital twin calibration (positive
electrode in red, negative electrode in black, full cell in blue, and experimental data

in blue circles).d Li-ion cell simulation using the digital twin for clear skies. eMapof
the tested degradation modes combinations. f Clear sky percentage assessment
with real irradiances in black and detected clear sky conditions in blue. g Li-ion cell
simulation using the digital twin for cloudy skies. hMap of the tested degradation
modes combinations.

Article https://doi.org/10.1038/s41467-023-38895-7

Nature Communications |         (2023) 14:3138 2



2-year dataset used in this work, the CSM reproduced observed irra-
diance values with a relative rootmean square error (RMSE) under 4%,
with an R2 value above 0.99.

Figure 2a presents diurnal and seasonal variations in horizontal
(top) andPOA (bottom) clear sky irradianceestimatedby theCSMover
a 2-year period for a PV test site located at the Maui Economic Devel-
opment Board (MEDB) office on the southwestern coast of the island
ofMaui, Hawaiʻi, USA, with PV panels oriented at a 20° tilt with a 197° N
azimuth. Due to Hawaiʻi’s proximity to the Northern Tropic, clear sky
irradiance levels incident on a horizontal surface remained high
(>900W/m2) fromApril to September, with a small drop during winter
(by 250W/m2). Seasonal variations of clear sky irradiance incident on
the POA of PV panels located at the site are reduced by half, with peak
levels above 1000W/m2 found in the spring and summermonths. POA
irradiance also peaks later in the day (by around 1 h) relative to hor-
izontal values due to the panels facing slightlywestward insteadof due
south. To further illustrate seasonal fluctuations, data at solstice and
equinoxes are presented in Fig. 2b, c for horizontal and POA irra-
diances, respectively.

The CSM does not account for several factors driving real irra-
diance variability. While the most obvious is cloud cover, fluctua-
tions in atmospheric turbidity, shading, soiling, and reflection losses
also affect the amount of irradiance available for a PV system40. In
this work, clear sky conditions were identified using an algorithm
that applies a series of threshold criteria tests to compare the
smoothness, shape, and magnitude of observed values within a
moving window to corresponding clear sky values from the CSM41,42.
The algorithm assigns a daily clearness value, determined using the
number of observations identified as the clear sky over the total
number of observations during daytime conditions. This value could
be seen as an inverse noise indicator, 100% being no noise and 0%
only noise, as cloud coverage will disrupt the theoretical output of
the PV system with up and down irradiance spikes. The distribution
of daily clearness for the Maui location, Fig. 3a, and per season for
the whole dataset is shown in Fig. 3b. For almost half of the 2-year
dataset, clear sky conditions were found in less than 20% of the daily
observations, however, in nearly one in 5 days, more than 50% of
observations were identified as clear sky. Moreover, the distribution

of daily clearness values indicates only slight seasonal variations at
the test site.

To assess how the accuracy of the diagnosis was affected by
irradiance variability, 18 days from the 2-year dataset were selected to
encompass a range of irradiance conditions, Fig. 3c. The conditions
range from a minimum clearness of 4% to a maximum of 84%, with
cloud cover occurring at contrasting times. Cloud effects range from
small perturbations, likely due to high cirrus clouds, to significant
attenuation and cloud enhancement, due tomore opaque cloud cover.
Shading effects caused by the construction of a nearby building can
also be seen in the afternoon hours of the two days in October 2017.

Cell emulation and duty cycle emulation
As presented in Fig. 1, a digital twin was used to generate the LiB data
needed to assess the impact of the different duty cycles on battery
performance. The LiB model included in the twin was based on the
‘alawamechanistic model43,44. To parameterize themodel and emulate
the electrochemical response of the selected commercial LiB, the data
for both the positive and negative electrodes (PE andNE, respectively),
obtained from testing cells equipped with Li metal counter electrode,
were imported into the ‘alawa toolbox. The Limetal cell data wasfitted
to the Li-ion cell by scanning different values for the loading ratio (LR),
offset (OFS), resistance (R), and rate degradation factor (RDF) for the
PE and the NE. Because the duty cycles simulated in this workwere not
CC, the ‘alawamodel needed to correctly simulate current rates within
the range used by the duty cycles of LiBs paired with PV. This cali-
bration required emulations at different current rates and verification
of continuity between the rate-dependent emulation parameters to
enable interpolation and extrapolation to other rates. Figure 4a–c
presents the results of the full-cell emulation of theC/15, C/8.5, andC/4
cycles, respectively, based on the Li metal cell data gathered from the
harvested electrodes (aC/1 rate corresponds to a full charge in 1 h). The
best fit hadanLRof 1.2with a 4%offset and a −0.1 resistance correction
for the current rate-independent parameters. Looking at the rate-
dependent parameters, the RDFs for both electrodes were found to
decrease from0.6 to0.2 for the PE and from0.8 to0.6 for theNE as the
simulated rate increased. An additional resistance correction was
needed to compensate for peak movements for the RDFPE (RDFcorrPE).

Fig. 2 | Clear sky irradiance Simulations. a Diurnal and seasonal variations in clear sky irradiance from a CSM for the test site in Maui, HI, USA. b Horizontal and c POA
irradiances at equinoxes and solstices (spring equinox in green, summer solstice in red, fall equinox in orange, and winter solstice in blue).
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This correction ensured that the electrochemical response at different
current rates overlapped correctly when kinetics was adjusted, which
cannot currently be done automatically by themodel. The equation for
this additional resistance correction is provided in Supplementary
Fig. 1 with an explanatory schematic. No correction was needed for the
RDFNE. The evolution of the three varying rate-dependent parameters

could be fitted with power laws with R2 ≥0.997 vs. R2 ~ 0.97 for linear
regressions, Fig. 4d.

Using the best-fit parameters and equations, the synthetic Li-ion
cell voltage response under the different duty cycles was generated
by applying the method proposed in reference24 using solar panel
power output as a duty cycle instead of CC. An example of clear sky

C/15
LR = 1.2
OFS = 4
R = -0.1
RDFPE = 0.6
RDFNE = 0.8
RDFcorrPE = 9
RDFcorrNE = 1

C/8.5
LR = 1.2
OFS = 4
R = -0.1
RDFPE = 0.4
RDFNE = 0.7
RDFcorrPE = 7.5
RDFcorrNE = 1

C/4
LR = 1.2
OFS = 4
R = -0.1
RDFPE = 0.2
RDFNE = 0.6
RDFcorrPE = 6
RDFcorrNE = 1

RDFcorrPE = 3.916.rate-0.306, R2 = 0.999  

RDFPE = 0.064.rate-0.836, R2 = 0.997

RDFNE = 0.443.rate-0.217, R2 = 0.999

a b

c d

Fig. 4 | Graphite | |lithium nickelmanganese cobalt Li-ion cell emulation from lab-scale Limetal cells. Li-ion cell emulation for different current rates with associated
parameters: a C/15, b C/8.5, c C/4. d Variations of RDFPE (blue), RDFNE (red), and RDFcorrPE (black) with the current rate.

Fig. 3 | Irradiancemeasurements summary. aMaui topographicmapwith system location. b Seasonal distribution of clear sky distributions (spring in green, summer in
red, fall in orange, and winter in blue). c Selected cloudy days irradiances (black) with associated clear sky periods (blue).
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solar panel power output is presented in Fig. 5a. The power is 0 at
sunrise, ramps up to its maximum around solar noon, then ramps
down to 0 at sunset. As proposed in ref. 24, and in order to simulate
this duty cycle, a set of 100 voltage responses were simulated
between the lowest current rate (minimum power at maximum
voltage) and the highest current rate (maximum power at minimum
voltage), Fig. 5b. The correct [voltage, current rate] couple to match
the required power was calculated for each 0.1% state of charge until
full charge. Overall, the maximum rate was chosen to be C/6 so that
around 95% of the cell capacity is used through an average day
(spring equinox, March 21st). C/6 is below the highest rate for which
the emulation parameters were deciphered (C/4). This will allow
high confidence in the simulation of high loss of active material
(LAM) because, with at most 50% degradation, the local rate would,
at worst double from C/6 to C/324,43, which is still close to the range
of experimentally tested rates.

Thermodynamic LiB degradation can be grouped into three
degradation modes, the loss of lithium inventory (LLI) and LAM on
both the PE and theNE24,43, because independent ofwhatmechanism is
inducing degradation, what will change is howmuch of each electrode
is available to host lithium and how many lithium ions are able to go
back and forth. Each combination of LLI, LAMPE, and LAMNE corre-
sponds to a unique degradation and has a unique voltage signature.
Diagnosis of a Li-ion battery then corresponds to the quantification of
the three degradation modes. As proposed in the literature21–23, the
different degradations were simulated by scanning the entire range of
possible combinations for LLI and LAMs. Once generated, the data
were used to train and validate ML algorithms. More details on the
synthetic data generation and the training are provided in the method
section.

All the selected ML algorithms used in this work were developed
to use features from a derivative of the voltage response, such as
incremental capacity (IC, dQ/dV = f(V)), under CC as input. IC curves
analysis is well known to facilitate the analysis of the changes in the
voltage response of LiBs45 and thus diagnosis. In order to determine if
these algorithms could be applied to irradiance duty cycles, it was
necessary to verify that the associated derivative voltage response still
showcased the expected features. Figure 6a–c presents simulations of
the voltage response of a Li-ion cell, plotted as IC, for individual
degradationmodes as calculated using the ‘alawamodel from the clear
sky irradiance on the spring equinox. This degradation map is useful
for assessing the impact of degradation on the voltage response. The
voltage evolutions in Fig. 6a–c closely resemble the one observed for a
conventional graphite | |lithium nickel manganese cobalt oxides cell
tested under CC21,44. This provides confidence that the diagnosis

algorithms developed under CC can be used on the data generated
from PV irradiance.

Since the simulations were not performed under CC, the voltage
response versus time is different than the voltage response versus
capacity. This is because capacity corresponds to time multiplied by
current; capacity and time are thus only directly correlated if the
current is constant. The time vs. voltage data offers a different dataset
that could be available for training and validation if features are
identifiable. Figure 6d–f presents the t-based equivalent to the IC
degradationmaps (IT, dt/dV = f(V)). Despite some deformations, the t-
based curves showcase significant similarities to their capacity coun-
terparts and are, therefore, also well suited for degradation mode
quantification using the selected algorithms. In this work, both the
capacity (Q) and time (t) based datasets were generated and analyzed
to determine if a t-based method could be as accurate as a Q-
based one.

Diagnosability
Three sets of experiments were performed in this researchwork. More
details can be found in the method section. Training for the first two
sets of experiments was performed on synthetic data generated from
clear sky irradiance for the spring equinox. The spring equinox was
selected because its POA clear sky irradiance is close to the yearly
average. For the initial set of experiments representing an ideal case,
validation was performed using the same data as the training. For the
second set of experiments aimed at quantifying the impact of seasonal
variability on diagnosis accuracy, validation was performed using
synthetic data generated from clear sky irradiance for the first day of
eachmonth. Finally, for the third set of experiments, to test the impact
of cloud cover, training was performed on synthetic data generated
from clear sky irradiance for the 18 cloudy days detailed in the “Irra-
diance data selection” section with validation using synthetic data
generated from observed irradiance for the same days.

To assess if theML algorithms trained on clear sky irradiancewere
able to diagnose different battery degradations, they were first vali-
dated using the sameclear sky irradiance. The only difference between
the training and validation datasets was the cell parameters that were
slightly varied to take cell-to-cell variations into consideration (cells 1
and 2 in Supplementary Table 1, see methods for more details). The
first 4 rows of Table 1 present the average RMSE between the real and
predicted values formore than 100,000 different combinations of the
three degradation modes. The algorithms were all able to quantify
each degradation mode properly with RMSEs of 2.1% at worst. Since
smaller RMSEs were observed for lower degradations, Supplementary
Fig. 2a–e, Table 1 presents the averageRMSEs for theQ- and t-diagnosis
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Fig. 5 | Photovoltaic Duty Cycle Emulation. a Example of an ideal clear sky PV power generation. b Associated voltage and rate variations versus SOC for graphite | |
lithium nickel manganese cobalt Li-ion cell to match the power input (in blue) from a fully discharged state.
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for degradations with at most 25% and 50% of each degradationmode.
Statistics for the full dataset with additional metrics such as the mean
absolute error (MAE) and Pearson’s correlation coefficient (ρ) are
provided in Supplementary Table 2. Overall, RMSEs below 0.85% for
25% or less degradation and 1.66% for 50% or less degradation were
observed. Looking at the Q-diagnosis (top two rows), all algorithms
performed nearly identically with average RMSEs around 0.70% for
25% or less degradation and 1.5% for 50% or less degradation. The
average RMSEs of t-based data (rows 3 and 4) were similar, but the
individual algorithm performance varied. XGB, FNN, and 1DConv
showed similar RMSEs, 1DConv showed a lower average RMSE at
0.37%, and DTW-CNN RMSE nearly doubled compared to its Q-based
counterpart. From the complete statistics in Supplementary Table 2,
LLI seems the easiest to diagnose before LAMPE forQ-based diagnosis,

while the opposite holds true for t-based ones. In both cases, LAMNE

was the hardest to decipher. In general, all the calculated RMSEs were
small, below or near 2.1% at worst, for more than 100,000 tested
degradations up to 50% degradation, demonstrating that data from
irradiance duty cycles can be successfully diagnosed for the ideal case
of a single day with no cloud coverage at all.

In the baseline case presented above, training and validation were
performed on the same clear sky data. The second set of experiments
was used to decipher the impact of training on one day and validate it
on another one. The impact of seasonal fluctuations in clear sky irra-
diance was examined by validating the spring equinox-trained algo-
rithms on 43,000 degradation paths generated from clear sky
irradiance on the first day of each month for a year, Fig. 2a. This was
done twice with two distinct sets of cell parameters (details are in
Supplementary Table 1, cells 5–28) to investigate the impact of cell-to-
cell variations at the same time. This impact will be assessed by com-
paring the diagnosis statistics for the two different batches of cells
comprising each 12 × 43,000 data points. The impact of irradiance
variations was significant as the average RMSE increased by 1.6% forQ-
diagnosis and by more than 2% for the t-diagnosis compared to the
ideal scenario, Table 1 bottom 4 rows. The three NNmethods were the
best performing for Q-diagnosis, with RMSE below 1% for 25% or less
degradation and below 2% for 50% or less degradation. For the t-
diagnosis, all the algorithms but DTW-CNN performed similarly, with
RMSE slightly over 3% for 25% or less degradation (around 5% for 50%
or less degradation). LAMNE diagnosis still had the highest RMSE, with
LLI and LAMPE RMSEs being close. LAMPE RMSEs were lower for Q-
diagnosis and the LLI ones for t-diagnosis. Cell-to-cell variations were
negligible, with, on average, 0.4% MAE with a 0.7% standard deviation
between the two sets, Supplementary Fig. 2f.

The third set of experiments examined the impact of different
cloud coverages. This corresponds to the validation using observations.

d ,desab ta ,desab Q

e ,desab tb ,desab Q

f ,desab tc ,desab Q
Assuming 10% plating reversibility Assuming 10% plating reversibility

Fig. 6 | Graphite | |lithium nickel manganese cobalt degradationmodes impact
on the Li-ion cell voltage response. IC and IT degradation maps for the synthetic
duty cycles generated from the perfect horizontal irradiance data at the MEDB site
on the spring equinox for up to 50% degradation (pristine Li-ion cell: thick line,

aged Li-ion cell: thin line, dotted lines: 10% increments in degradation).
a Q-based LLI. b Q-based LAMPE. c Q-based LAMNE. d t-based LLI. e t-based LAMPE.
f t-based LAMNE.

Table 1 | RMSE summary statistics for diagnosis from perfect
irradiance data for the spring equinox (top four rows, sample
size = 100,000) and for every 1st day of the month (bottom
four rows, sample size = 43,000)

RF XGB FNN 1DConv DTW-CNN

Q-based, same day, <25% deg. 1.09 0.70 0.62 0.50 0.49

Q-based, same day, <50% deg. 2.08 1.88 1.15 1.15 1.10

t-based, same day, <25% deg. 1.27 0.81 0.64 0.45 1.00

t-based, same day, <50% deg. 2.11 1.96 1.64 1.08 1.51

Q-based, different day, <25% deg. 1.53 1.24 0.84 0.66 0.79

Q-based, different day, <50% deg. 2.80 3.15 1.71 1.73 1.53

t-based, different day, <25% deg. 3.30 3.24 3.56 3.25 5.75

t-based, different day, <50% deg. 4.43 4.42 5.43 4.45 7.62

Associated full statistics are available in Supplementary Table 2.
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To remove the effects of a time difference between training and vali-
dation data, training and validationdata corresponded in time. For each
of the 18 cloudy days detailed in the “Irradiance data selection” section,
validation of algorithms trained on clear sky irradiance was performed
using irradianceobservations for that day,which included cloudeffects.
Table 2 presents the average statistics for all 18 days, for days with at
least 50% clear skies (10 out of 18 days), and for days with at least 75%
clear skies (3 out of 18 days). Complete statistics with MAE and ρ are
available in Supplementary Tables 3 and 4. Overall, for degradation
paths with less than 25% of each degradation mode, the RMSEs were in
the 1.75–3.6% range for all algorithms for Q-diagnosis and in the
4.4–5.2% range for t-diagnosis. Focusing on clearer days reduced the
RMSE significantly to below 1% (FNN, 1DConv, DTW-CNN) for Q-diag-
nosis and 2.5% (XGB, RF, 1DConv) for t-diagnosis. This highlights the
validity of diagnosis under real irradiance conditions with cloud effects.

Discussion
This study provides the application of synthetic datasets for non-CC
simulations. Because the current was not constant, capacity and time
were uncorrelated, which offered an opportunity to study two differ-
ent datasets, V vs. Q and V vs. t. While using voltage versus capacity is
standard, it might not be the best solution for deployed systems
because the V vs. t dataset should be less error-prone than the V vs. Q
one, as capacity is not directly measurable but derived from time and
current46. The V vs. Q dataset is, however, expected to be easier to
diagnose because the area under a dQ/dV peak corresponds to capa-
city, and, at low rates, it is independent of the applied current because
it has a finite value. Therefore, current variations should have a limited
impact on the overall peak shape and intensity. This is why the voltage
responses showcased in Fig. 6a–c are really similar to the signature
under CC21 despite the current varying. This is not the case for dt/dV
peaks because, while capacity stays the samewith varying currents, the
time taken to complete the peak will be different. Therefore dt/dV
peaks aremuchmore sensitive to changes in current than dQ/dV ones.
This sensibility explains the differences observed between Fig. 6d–f
and Fig. 6a–c and why the t-diagnoses average errors were, on average
more thandouble theQ-basedones. The increased errorwasespecially
visiblewhen the validation was done on a duty cycle different from the
one used for training. Figure 7a plots the RMSE variations as a function
of the month of the year for algorithms trained on one day only (sec-
ond set of experiments). The Q-based RMSE showcased little to no
effect of the month of the year, whereas the t-based ones varied

significantly with a minimum close to the training day (March and
April) and in fall (September and October) when irradiances are the
most similar to the one used for training (spring equinox), Fig. 2b. The
difference was also muchmore pronounced for cloudy days and aged
cells. Therefore,while t-diagnosis ismore interestingonpaper, itmight
not be the best solutionwhere clear sky did not significantly dominate,
at least for the tested algorithms.

Supplementary Figure 2, as well as Tables 1 and 2, showed the
performance degradation with increasing degradation percentage.
This decline in performance can be explained by multiple factors.
Although data imbalance during training could be a possible factor, as
2/3rds of the training data has a degradation below 25%, the main
factor seems to come from the fact that small variations in one of the
three degradationmodes are hard to quantify when at least one of the
other two modes has large variations. This is exemplified in Fig. 7b, c,
where a distribution of the estimated vs. true values for LLI and the
DTW-CNN algorithms are plotted for 50% or less and 25% or less
degradation. For the 50% or less degradation, there is a haze around
the 1:1 line below 20% LLI that disappears when the maximum degra-
dation is set at 25%. This indicates that the error mostly comes from
degradation paths with low LLI but at least one LAM above 25%.

Looking at the detailed statistics, it can be seen from Table 2 as
well as Supplementary Tables 3 and 4 that although the algorithms’
performance was close, some differences were noticeable. Overall, the
DTW-CNN algorithm offers the best performance for Q-diagnosis,
while 1DConv is better for t-diagnosis for degradations below 25%.
Moreover, the algorithms are not all affected the same by the change
of duty cycles. This is especially visible in Fig. 7a, where the perfor-
mance of the t-diagnosis wasmuchmore affected for winter days than
for summer days for RF, while the opposite is true for DTW-CNN; the
other three algorithms were impacted the same. Looking in more
detail, it appears that the largest errors were always observed for
LAMNE estimation (Supplementary Tables 2–4). This could be
explained by the fact that LAMNE cannot be directly inferred from any
feature of interest of the IC or IT curves. For the other two degradation
modes, and as showcased in previous work21, the intensity of high
voltage shoulder is in most cases directly proportional to LAMPE and
the intensity of the main peak to LLI. This is specific to the nickel
manganese cobalt oxide positive electrode, and different results are
expected for non-layered oxides such as LiBs with LiFePO4-based
positive electrodes where LAMPE should be much harder to quantify
than the other two. A possible solution to improve the accuracy of
LAMNE estimation for the current algorithms could be to train the
algorithms on dV/dQ vs. Q curves on top of the IC curves, as LAMNE is,
in most cases, directly decipherable from these.

Figure 8 presents the RMSE variation for all the cloudy days tested
in this work sorted by their clear sky percentage with the associated
actual irradiance vs. timecurve as inset. Overall, clear sky percentage is
a useful indicator of diagnosability, although other parameters also
come into play. In general, the RMSE increases as the clear sky per-
centage decreases. However, therewere someduty cycles that showed
abnormal high (e.g., 34% clearness and 59% clearness) or low (e.g., 27%
clearness) RMSE, indicating that the intensity and time of the cloud
coverage could also play a key role in diagnosability. Together with
cloud coverage, the type of diagnosis, Q-based or t-based also has a
role. For example, for a daywith a 59% clear sky,Q-diagnosiswas better
than normal and the t-based one far worse, while for a day with a 34%
clear sky, the opposite was true. Finding the right set of parameters to
identify which days are more auspicious for the diagnosis will require
more work, but from these results, it is clear that the use of synthetic
data will be instrumental in evaluating the impact of different classi-
fication schemes.

In summary, we propose a data-driven approach for the diag-
nosis of LiBs paired with PV using synthetic data. This approach
allows the degradation of PV-connected LiBs to be diagnosed

Table 2 | RMSE summary statistics for diagnosis on 11,000
voltage vs. capacity curves generated for degradation below
25% for all days, days with 50% of more clear sky, and days
with 75% or more clear sky

RF XGB FNN 1DConv DTW-CNN

Q-based, all days, <25% deg. 3.55 3.25 2.30 2.33 1.76

Q-based, all days, <50% deg. 4.89 4.84 3.92 4.19 2.91

t-based, all days, <25% deg. 4.46 5.01 5.20 4.70 5.17

t-based, all days, <50% deg. 5.84 6.25 8.53 8.59 7.67

Q-based, >50% clear sky, <25% deg. 1.91 1.75 1.15 1.02 0.78

Q-based, >50% clear sky, <50% deg. 2.91 3.04 2.02 2.04 1.67

t-based, >50% clear sky, <25% deg. 3.01 3.61 4.34 3.59 4.20

t-based, >50% clear sky, <50% deg. 4.67 4.99 7.80 7.14 6.67

Q-based, >75% clear sky, <25% deg. 1.37 1.22 0.85 0.72 0.58

Q-based, >75% clear sky, <50% deg. 2.41 2.56 1.59 1.65 1.16

t-based, >75% clear sky, <25% deg. 2.45 2.23 4.15 2.45 3.06

t-based, >75% clear sky, <50% deg. 3.14 4.07 7.43 5.03 4.78

Algorithms were trained on the same day to clear sky irradiance.
Associated full statistics are available in Supplementary Tables 3 and 4.
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without the need for maintenance cycles by using state-of-art ML
algorithms. Diagnoses were obtained with an average RMSE of 2.75%
formore than 10,000 different degradation paths with 25% or less of
the three thermodynamic degradation modes. Because the diag-
nosis was made outside of CC, the capacity- and time-based infor-
mation could be decorrelated and compared. The time-based
diagnosis was shown to be less accurate than its capacity counter-
part for the tested algorithms. However, the accuracy of both types
of diagnosis is satisfactory for days when clear sky dominates. For
days with lower clear sky conditions, accuracy depends on the clear
sky percentage, but additional factors such as the time and duration
of cloud coverage also come into play.

The framework presented here proved that opportunistic diag-
nosis of LiBs connected to PV is possible from auspicious cloud cov-
erages. Based on our results and for the studied system and location,
the diagnosis couldbepossible one out of every five days independent
of the season, which is more than frequent enough for LiBs supposed
to last 3500 days or more. This number might be different in other
locations where shadowing or snow could play a significant role, but it
could be assessed using adapted synthetic datasets.

Despite promising results, there is still a significant amountofwork
to be done before this technique can be applied to deployed systems.
There is a need for trainingunder awide arrayof different conditions, as
PV systems in the field will have varying orientations, tilt, locations,
cleanliness, etc. Moreover, this work was performed on single cells and
without considering any additional usage of the cells. Real systems will
be composed of battery packs, which will have varying voltage
responses due to inhomogeneities and imbalance. Furthermore, these
batterieswill likely beused at the same time they are charged,whichwill
furthermodify the duty cycles. The validation frameworkprovidedhere
can be applied to study these case figures, and future work will address
the impact of geographic locations, module size, and additional loads
on the LiBs. The proposed framework might even apply to other types
of intermittent renewable power systems for which storage could be
considered, such as wave or tidal energy.

Methods
PV data acquisition
The PV testbed used in this work includes instrumentation for high-
frequency PV and solar resourcemonitoring, including a Kipp& Zonen
SMP21-A secondary standard pyranometer, which is installed in the
POA of the testbed PV panels. The data was collected at 1 s intervals
and averaged to 1min for 2 years.

Battery testing
The commercial cells used in this work were provided by an industrial
partner and are composed of a graphite-based NE and a nickel man-
ganese cobalt oxide positive electrode (PE) with a 1:1:1 stoichiometry.
The industrial partner also provided the full cell cycling data with C/15,
C/8.5, and C/4 cycles performed on a pristine cell. The electrode
materials for the assembly of lab-scale Li metal cells were harvested
and sampled after the disassembly of a commercial cell from the same
batch. The commercial Li-ion cell was discharged to 2.0 V at C/50
before being opened in an Argon-filled glove box [<0.1 ppm O2 and
H2O]. The double-side coated electrodes were rinsed with dimethyl
carbonate [2cl, 99% anhydrous, Sigma Aldrich], and one side was
scrubbed using N-Methylpyrrolidone [Biotech grade solvent, 99.5+%,
Sigma Aldrich] before 1.8mm diameter electrodes were cut using an
EL-CUT punching tool (EL-CELL, Hamburg, Germany). Lab-scale Li
metal cells were assembled in PAT-CELLs (EL-CELL, Hamburg, Ger-
many) using a standard polypropylene sleeve, a borosilicate glass fiber
separator [Whatman GF/A, 0.26mm thickness, 1.6 µm pores], a
metallic Li NE [99.9% trace metal basis, 0.38mm thickness, Sigma
Aldrich], as well as 300 µl of an electrolyte composed of ethylene
carbonate [≥99%, acid <10 ppm, H2O < 10 ppm, Sigma Aldrich] and
propylene carbonate [anhydrous, 99.7%, Sigma Aldrich] in a 1:1 weight
ratio with 1M Lithium hexafluorophosphate [>99.99% trace metals
basis, Sigma Aldrich] and 2% weight vinylene carbonate [99.5%, acid
<200 ppm, H2O < 100 ppm, Sigma Aldrich]. For the testing, the cell
formation consisted of 8 cycles at C/10 followed by 1 cycle at C/25
between 3.2 V and 4.3 V for the PE and 0.02 and 1.2 V for the NE. After

Fig. 7 | RMSE dependency on the day of the year and predicted vs. real LLI
estimation distribution as a function of degradation extent. a RMSE depen-
dency of the day of the year for all five algorithms trained on data from the spring
equinox (black: LLI, blue: LAMPE, red: LAMNE, full lines: Q-based diagnosis, dashed
lines: t-based diagnosis). b Predicted vs. real LLI distribution for the DTW-CNN

algorithmwhen trained and validatedon the sameday for the entiredatasetwithup
to 50% degradation for each degradationmode. c Predicted vs. real LLI distribution
for the DTW-CNN algorithm when trained and validated on the same day for the
entire dataset with up to 25% degradation for each degradation mode.
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the formation cycles, the cells were tested at C/50, C/25, C/15, C/8, C/4,
C/2, and C/1 with residual capacity measurements at C/50 for each
regime with 4-hour rests before and after47. The test was repeated
three times for reproducibility.

Synthetic data generation
The synthetic data used in this work, both for training and valida-
tion, was generated by scanning the entire range of possible com-
binations for LLI and LAMs21–23. Because the duty cycles have
maximum currents below C/6, only the thermodynamic degradation
modes were considered in this work. The maximum value for the
degradationmodes was set at 50%. For themain training dataset, the
composition resolution was set at 1% (5000 [LLI, LAMPE, LAMNE]
triplet tested) with at most a simulation every 0.5% for each degra-
dation mode (>125 simulations per triplet from 0 to 50%). This
resulted in around 700,000 unique voltage responses for training.
Additional training on different duty cycles was done with a 2.5%
resolution with 1% steps to limit file sizes. This corresponds to
more than 850 different triplets and 43,000 unique voltage curves.
For the validation datasets, the resolution was decreased to 5% (225
triplets) with 1% steps (50 simulations per triplet), resulting in
around 11,000 curves per condition.

Finally, to avoid any overfitting error by training and validating on
the samedata, each simulationwill be performedon a slightly different

cell, i.e., a cell with emulation parameters (LR, OFS, R, and RDFs) ran-
domly varied by ±1% to be in the same range as observed cell-to-cell
variations in commercial cells48. The overall parameters for each
simulation with the associated duty cycles are summarized in Sup-
plementary Table 1.

Diagnosis algorithms
In this work, the leading ML algorithms for degradation modes quan-
tification were used to validate our approach. A thermodynamic
degradationmodes diagnosis corresponds to the quantification of LLI
and LAMs for the PE and NE, respectively43,49. Such quantification
provides more information than a simple capacity estimation and
enables prognosis21. The selected algorithms can be divided into two
categories, decision tree ensemble methods, and neural networks.
Decision trees are deterministic models that rely on multiple condi-
tionals, while neural networks follow a probabilistic approach in which
they seek to learn by activating artificial neurons. For this work, RF25

and XGB26 algorithms were selected for the decision trees, and FNN27,
1D-CNN (1DConv)20, and the DTW-CNN approach28 were selected as
neural networks. It is important to note that in all cases, themodels use
the raw derivative voltage curves as input except for DTW-CNN, which
uses images created from theDTWmatrix between thepristine and the
degraded derivative curves. This allows to transformation of voltage
changes into images that reflect thedegradationandenables theuseof

a
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Fig. 8 | RMSE dependency of clear sky percentage and cloud distribution.
Evolution of RMSE for the DTW-CNN algorithm as a function of the clear sky per-
centage (black: LLI, blue: LAMPE, red: LAMNE, full lines: Q-based diagnosis, dotted
lines: t-based diagnosis) for the 18 days considered in this work sorted from lowest

to highest clear sky coverage, see Fig. 3c. a Irradiances and b average RMSEs for
days with 59% or more clear sky. c Irradiances and d average RMSEs for days with
less than 59% clear sky. The irradiance data is color coded to showcase seasonality
(spring in green, summer in red, fall in orange, and winter in blue, see Fig. 3b).
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2D CNNs, which are widely known in the literature to work well with
images28.

In terms of implementation and for the decision tree ensemble
methods:
– The sklearn library50 was used to implement the Random Forrest,

specifically the ensemble module with the RandomForestRe-
gressor algorithm, the hyperparameters were max_depth, and
n_estimators.

– For the XGBoostmodel, the xgboost library51 was used, specifically
the XGBRegressor algorithm, the hyperparameters were max_-
depth and eta.

For the neural networks, all the models were implemented in
TensorFlow52. The models’ configurations were as follows:
– FFN: 3 fully connected layerswith 64neurons in thefirst layer, 32 in

the second, and 3 in the third.
– CNN-1D: 5 layers, of which 2 are CNN-1D layers with 32 neurons

each, and 3 are fully connected layers with 128, 64 and 3
neurons each.

– CNN-DTW: 4 convolution layers with 64 neurons in the first two
layers and 128 in the next two, followed by two fully connected
layers with 512 and 3 neurons each.

The hyperparameters to be set in these three cases were the batch
size and learning rate.

TheWandB framework53wasused for hyperparameter tuning, and
callbacks were used during training to relegate the training stop con-
dition to the validation error instead of the number of epochs.

In this work, validation comprised varying initial conditions for
the ML algorithms to produce model output that is compared against
some truth to generate error statistics, which are used to quantify the
experiments.

Further details regarding the experimental setup and the source
code to reproduce the experimental results are available in a public git
repository54.

Statistical testing
Formulas for statistical tests:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n
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n
:
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t ð1Þ
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With yi the prediction, �y the prediction mean, xi the true value, �x
the true mean, and n the total number of data points.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sharable data generated in this study have been deposited in a
Mendeley database30,31 that contains the photovoltaics data as well as
the synthetic cycles for perfect irradiance and cloud coverage.

Code availability
The source code to reproduce the experimental results associated
with the ML algorithms is available at https://github.com/
NahuelCostaCortez/PVDiagnosis54.
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