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Data-driven design of new chiral carboxylic
acid for construction of indoles with
C-central and C–N axial chirality via
cobalt catalysis

Zi-Jing Zhang1,6, Shu-Wen Li2,6, João C. A. Oliveira 1, Yanjun Li1, Xinran Chen1,2,
Shuo-Qing Zhang 2, Li-Cheng Xu2, Torben Rogge 1, Xin Hong 2,3,4 &
Lutz Ackermann 1,5

Challenging enantio- and diastereoselective cobalt-catalyzed C–H alkylation
has been realized by an innovative data-driven knowledge transfer strategy.
Harnessing the statistics of a related transformation as the knowledge source,
the designed machine learning (ML) model took advantage of delta learning
and enabled accurate and extrapolative enantioselectivity predictions. Pow-
ered by the knowledge transfer model, the virtual screening of a broad scope
of 360 chiral carboxylic acids led to thediscovery of a newcatalyst featuring an
intriguing furyl moiety. Further experiments verified that the predicted chiral
carboxylic acid can achieve excellent stereochemical control for the target
C–H alkylation, which supported the expedient synthesis for a large library of
substituted indoles with C-central and C–N axial chirality. The reported
machine learning approach provides a powerful data engine to accelerate the
discovery of molecular catalysis by harnessing the hidden value of the avail-
able structure-performance statistics.

The design of efficient and selective catalysts is a formidable challenge
in chemical science. Because of the magnificent molecular universe
and the transformation-dependent catalysis property, the complexity
of the structure-performance relationship (SPR) in molecular catalysis
is beyond imagination. As a revolutionary change to the classic
experience-driven strategy of catalyst development, machine learning
(ML) has recently emerged as a powerful approach for exploring the
high-dimensional SPR1,2. A series of breakthroughs have realized the
accurate and efficient ML predictions of new catalysts and
transformations3–7, Fig. 1a highlights the general workflow of the cur-
rent data-driven exploration of chemical space. Relying on the

statistics of the target catalysis, ML is able to create an SPR model,
which drives the subsequent data acquisition. This data acquisition is
essentially an optimization problem, and greedy search8 (Top-k
method) or Bayesian optimization9 are the representative engines for
providing the candidate reaction designs. Experimental evaluations of
these ML designs offer new data sources to improve the ML model,
which completes a feedback loop until the target synthetic perfor-
mance is achieved. This process, in principle, does not involve human
intervention and canbe accelerated by automatic synthesis. Landmark
studies by Cronin8, Cooper10, Doyle9, Jensen11, Denmark3 and others12,13

have highlighted that this data-driven workflow can discover powerful
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catalysis conditions starting from zero knowledge of the target
transformation.

Despite the remarkable success of ML-assisted reaction optimi-
zations, it should be noted that this logic of optimization starting from
zero knowledge or data is fundamentally different as compared to the
way that human chemists are typically practicing. It is extremely rare to
design a catalyst that has absolutely no related knowledge available. In
the typical scenario, the chemist’s catalyst design is based on the
careful evaluation of related SPR data and the judicious chemical

innovation of a given compound14–16. This is essentially a knowledge
transfer process where the explored chemical space facilitated the
rational expansion of the known SPR to new catalyst. In recent years,
the concept of knowledge transfer has also been applied to the data-
driven modeling in synthetic chemistry, which has shown great
potential in addressing the problem of limited sample size. By lever-
aging innovative modeling strategies, knowledge transfer modeling
can connect chemically related data and reduce the data demand for
target domain. For example, through the unsupervised ML that
increases the model’s differentiation ability of phosphine ligands,
Schoenebeck and co-workers17 were able to achieve the successful
prediction of dinuclear palladium catalyst with only five labeled data.
We recently developed a hierarchical learning approach which can
select appropriate datasets for layered modeling based on the proxi-
mity in chemical space, thereby improving the predictive performance
of the ML model18,19. These knowledge transfer models not only
improve the efficiency of catalyst design but also help expand the
known chemical space in a data-driven fashion. Therefore, the inte-
gration of knowledge transfer modeling into data-driven synthetic
discovery isof great significance for advancing thefieldof catalysis and
beyond.

Over the last years, cobalt-catalyzed asymmetric C–H functiona-
lization has garnered significant attention20,21. The groups of
Yoshikai22–24, Dong25, Lautens26, Yang27,Wencel-Delord28, andShi29 have
successively combined low-valent cobalt catalysts with chiral ligands
to achieve stereoselective C–H functionalization, while Cramer and co-
workers developed chiral CpxCo(III) complexes for this purpose30–32. In
addition, achiral Cp*Co(III)/chiral carboxylic acid (CCA) systems33–41

have also beenwidely deployed to catalyze asymmetric C–H alkylation
of indoles39–41 (Fig. 1b). However, the use of synthetically demanding
chiral acids requires laborious multi-step synthesis, limiting the
potential of these transformations33–40. In 2018, Ackermann and cow-
orkers achieved the enantioselective cobalt-catalyzed C–H alkylation
by a designed C2-symmetric CCA that can be easily synthesized41. This
CCA-based chiral catalysis serves as a powerful platform41,42, and the
engineering of the CCA structure is of great potential for the enrich-
ment of asymmetric derivatization of indoles.

Axial chirality is of major importance for modern pharmaceutical
industry43,44, and synthetically challenging C–N axially chiral indoles
are privileged motifs in drug design, crop protection, and material
science45,46. Thus, the efficient synthesis of these compounds has
becomea rapidly expandingfield47,48. However previous studiesmainly
relied on the use of noble 4d and 5d transition metal catalysts49–52,
while sustainable 3d-metal-catalyzed transformation53,54 remains
underdeveloped. Therefore, the development of an efficient CCA co-
catalyst for cobalt-catalyzed C–H activation to enable the assembly of
atropisomeric compounds bearing C–N axial chirality, and simulta-
neously construct C-centered chirality with high stereoselectivity is a
tremendously important and unrealized challenge.

In light of the critical knowledge transfer for catalyst develop-
ment, we envisioned that the digitalization of the knowledge transfer
process can serve as an innovative data-driven strategy for catalyst
design. This requires the ML model to capture the key differences
between the given transformation and the target reaction, so that the
available statistics of the given transformation can serve as a knowl-
edge source and guide the design of the target reaction.

Herein we report the development of a data-driven transfer
learning workflow to achieve the ML prediction of catalytic perfor-
mance using related synthetic data (Fig. 1c). Demonstrated in the dis-
covery of new CCA catalyst, our ML model provided a powerful CCA
prediction that realized the challenging enantio- and diaster-
eoselective C–H alkylation of indoles utilizing earth-abundant cobalt
catalyst. The ML-predicted CCA catalyst enabled the target transfor-
mation that can simultaneously control both the C-centered and the
C–N axial chirality, providing the atropisomeric indoles with excellent
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Fig. 1 | Data-driven discovery of molecular catalysis. a General workflow of
current machine learning-assisted reaction optimization. b Cp*Co(III)/CCA-cata-
lyzed asymmetric C−H functionalization of indoles. cDesigned knowledge transfer
model for predicting new CCAs of asymmetric C−H functionalization of indoles.
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diastereo- and enantioselectivities (Fig. 1c). This work offered a
paradigm-shifting tool for the discovery ofmolecular catalyst, which is
expected to serve as a powerful data engine to support the innovation
of catalysis science.

Results and discussions
Design of knowledge transfer model
To achieve the desired knowledge transfer, the first step is to create a
reliable SPR model using the available statistics of the optimized
transformation (Fig. 2). The already optimized Cp*Co(III)/CCA-cata-
lyzed asymmetric C−Halkylation of indoles (rxn1) does not involve the
control of the axial chirality, which was previously discovered by
the Ackermann group; 59 SPR data of rxn1 were accumulated during
the catalysis screening, involving the variations of 11 indoles, 14 alkenes
and 25 CCAs41 (Fig. 2a). The detailed data distribution is provided in
the Supplementary Information (Supplementary Fig. 2). Inspired by
recent data-driven selectivity prediction studies using physical organic
descriptors55,56, we applied a series of steric (i.e. Sterimol parameters)
and electronic (i.e. charge) features to describe the influence of the N-
substituent of CCA; the entire catalysis encoding is a 108-dimensional
physical organic space containing 35 descriptors for indoles, 6

descriptors for alkenes, 66 descriptors for CCAs and 1 descriptor for
temperature (Fig. 2b). Based on the regression performances in the 10-
fold cross-validation, linear support vector regression57 emerged as the
most suitable algorithm with a Pearson R of 0.859 and MAE of
0.179 kcal/mol; the detailed regression results are shown in Fig. 2c, in
which a nice correlation between the ML-predicted and the experi-
mental enantioselectivities was identified. The detailed results of all
tested ML models are provided in the Supplementary Information
(Supplementary Table 4).

With the ML model of rxn1 in hand, we tested its direct applica-
tion in the target C−H alkylation with axial chirality (rxn2). Among the
tested CCAs for rxn1, ten representative ones were experimentally
evaluated for rxn2 with the axial chirality challenge (Fig. 3a). The
selection of representative CCAs were based on the diversity of their
chemical structures and enantioselectivities. Due to the introduction
of isoquinolinemoiety in the indole substrate, the two transformations
do not follow the exact same SPR. Figure 3b showed two highlighted
examples: the optimized CCA-1 for rxn1' achieved a 92% e.e. for this
transformation, while its application in the atroposelective rxn2
delivered a 87% e.e., which was one of the major motivations for the
data-driven design of new CCAs; in addition, the naphthyl CCA-2 only
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achieved a 16% e.e. in rxn1', but the corresponding rxn2 has the
enantioselectivity of 68% e.e. This non-intuitive perturbation of SPR
widely exists in molecular catalysis, which results in the unsatisfying
prediction performance of the trained ML model in rxn2; the Pearson
R is only 0.451, which is in sharp contrast to its performance in rxn1
(Fig. 3c vs. Fig. 2d).

We next trained a delta ML model to capture the SPR perturba-
tion, in order to correct the enantioselectivity predictions of the rxn1
model. For the ten evaluated CCAs in rxn2, each CCA has the experi-
mentallymeasured enantioselectivity (ΔΔGexp) aswell as the predicted
value (ΔΔGpred) from the rxn1model (Fig. 4). The differences between
the two values (D =ΔΔGpred −ΔΔGexp) provided a limited but valuable
data source for the delta learning. Using the same physical organic
encodings, the leave-one-out (LOO) training provided the delta
learning model, which significantly improved the predictions of the
rxn1 model (Fig. 4); the MAE decreases from 0.210 kcal/mol to
0.095 kcal/mol, and the outliner predictions (highlighted in red) were
all eliminated. Therefore, the final prediction of rxn2 is the sum of the
rxn1 model’s prediction and the delta model’s prediction. This ML
approach represents the digitalized knowledge transfer. The training
of rxn1 model harnessed the SPR from the available data of related
catalysis screening, and subsequent delta learning corrected the
understanding of rxn1 using the limited data from the experimental
reoptimization of rxn2, which mimics the logic of a human chemist.

Using the established knowledge transfer model, we performed
the virtual screening of CCAs to identify the highly selective catalyst
for the atroposelective rxn2. Considering the synthetic access of the
derivatized CCAs, 4 representative aryl substituents with different

steric hindrance and electronic effects were evaluated for the CCA
backbone, and a selection of 90 variations was explored for the N-
substitution (including aromatic and heteroaromatic rings with dif-
ferent electronic effects and sterically hindered substituents, as well as
alkyl substituents), which allowed the thorough evaluation of the CCA
candidates (Fig. 5a). A few highlighted examples of the 90 substituents
are provided in Fig. 5. The combination of considered substitutions
together created 360 candidate C2-symmetric CCAs including the 10
CCAs that have been used in the knowledge transfer modeling, and
their predicted enantioselectivities for rxn2 are summarized in Fig. 5b.
13 out of the 360 have a predicted selectivity below 40%; 280 were
predicted to have an enantioselectivity between 40 and 80%; 67 have
the predicted enantioselectivity >80%. Figure 5c shows the chemical
structures of the predicted Top-3 CCAs. It is interesting that the furan
moiety was identified as a privileged choice of theN-substitution. Both
the 2-furyl and the 3-furyl substituted CCA-3 and CCA-4 were pre-
dicted to have an 89% enantioselectivity, which ranked thefirst and the
second of the 360 predictions. The third CCA has the para-OMe-phe-
nyl substituent, whosepredicted enantioselectivitywas88%. It is worth
noticing that these three substitutions are all electron-rich aryl moi-
eties with limited steric repulsions, which indicated that the chirality
control may involve non-covalent interactions with the N-substitution.
Subsequently, the predicted Top-3 CCAs were synthesized and eval-
uated for rxn2. Excellent enantioselectivities were found for all three
cases, with the 3-furyl substituted CCA-4 as the optimal catalyst. This
CCA achieved a 94% enantioselectivity for rxn2, which highlighted the
predictive power of the data-driven knowledge transfer approach. We
want to emphasize that the naïve training with all the enantioselective
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Fig. 3 | Enantioselectivity prediction of the Cp*Co(III)/CCA-catalyzed C–H
alkylation of indoles with central and axial chirality using machine learning
modelling without knowledge transfer. a Overview of the target C–H alkylation
of indoles with central and axial chirality. b Enantioselectivity change of the

Cp*Co(III)/CCA-catalyzed C–H alkylation when varying the indole substrates.
c Enantioselectivity predictions of the target C–H alkylation of indoles with central
and axial chirality using the machine learning model trained by the statistics of the
C–Halkylationwithout axial chirality. Source data are presented in the Source_Data.
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C–H alkylation data (59 data of rxn1 and 10 data of rxn2) without the
usageofdelta learning led to a significantly reparametrizedmodel. The
virtual screening using this reparametrized naïve model provided a
reshuffled ranking, and the 3-furyl substituted CCA-4was predicted to
have an 81% enantioselectivity with a ranking of 98, which is in sharp
contrast to the outcome of the knowledge transfer model.

In order to further validate the accuracy of themodel’s prediction
for the entire value range and its discriminative ability for CCA’s cat-
alytic performance, we selected a series of CCAs with medium to low
predicted performances and conducted experimental synthesis and
verification. Figure 5d shows the prediction and experimental results
of the four tested CCAs (CCA-6 to CCA-9), with a maximum error of
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only 14% e.e. These results further demonstrated the predictive
ability of the developed knowledge transfer model, indicating that it
can effectively discriminate the enantioselectivities of the candidate
CCAs and uncover the useful catalysts with superior performance.
To ensure the reliability of the training and prediction of the knowl-
edge transfer model, we also evaluated the model predictions with
five additional delta data. Using a total of 15 delta data to retrain the
knowledge transfer model, we compared the prediction results of
the seven experimentally verified CCAs (CCA-3 to CCA-9) with
those obtained by training with the 10 delta data. The two sets of

prediction values were highly correlated (Pearson R =0.961, Supple-
mentary Fig. 8), which indicated that the additional five data had a
relatively small impact on the modeling. To confirm that the success
of knowledge transfer model is not accidental in substrate 1a, we also
performed the same knowledge transfer learning process on substrate
1k; the delta learning achieved similarly effectiveness in correcting
the base model’s predictions (Supplementary Fig. 10). These compar-
isons further validated the knowledge transfer approach, highlighting
the effectiveness of the hierarchical usage of synthetic data based
on chemical heuristics.
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Substrate scope for cobalt-catalyzed asymmetric C–Halkylation
After locating the optimal CCA by the data-driven knowledge transfer,
the substrate scope was explored under the optimized reaction con-
ditions to delineate the potential of this transformation (Fig. 6). A
variety of indole substrates were investigated (Fig. 6a). Both electron-
withdrawing and electron-donating groups at the 4-, 5- or 6-position
of the indole ring were tolerated to afford the desired products 3a–3j
in good yields with excellent diastereo- and enantioselectivities
(94:6– > 95:5 d.r., 92–95% e.e.). The atropostability of the products is
conserved even for the less hindered methyl-substituted product 3k,
although with a slight decrease in stereoselectivity. A broad
range of alkenes bearing different substituents on para-, meta- or
ortho-position of the arene were well tolerated and gave the desired
products 3l–3t in high yields and high levels of stereocontrol (all >95:5
d.r., 87–93% e.e.) (Fig. 6b). Additionally, 2-allylnaphthalene,
1-allylnaphthalene and allylpentafluorobenzene efficiently underwent
the cobalt-catalysis providing the target products 3u–3w with good
stereoselectivities (all >95:5 d.r., up to 91% e.e.). The absolute config-
uration of the alkylation products was unambiguously confirmed by
single-crystal X-ray diffraction analysis of 3c and 3w.

In conclusion, we have designed a data-driven workflow to
achieve the digitalized knowledge transfer between the synthetically
relevant transformations, whichwasdemonstrated in the prediction of
chiral carboxylic acid co-catalyst for the asymmetric C–H alkylation of
indoles with atropselectivity challenge utilizing non-precious cobalt
catalyst. Using the available catalysis screening data of a related
asymmetric cobalt-catalyzed C–H alkylation, the physical organic
descriptors and linear support vector regression algorithm provided a
predictive machine learning model. This model serves as the knowl-
edge base, whose predictions were further corrected using the delta
learningmethod. The delta learningmethod only requires a handful of
selectivity data of the target atroposelective transformation, which
captures the perturbation of the structure-performance relationship
between the two synthetically relevant transformations and enabled
the desired data-driven knowledge transfer.

The designed data-driven knowledge transfer model enabled a
powerful virtual screening of 360 candidate chiral carboxylic acids for
the target atroposelective C–H alkylation of indoles. The top-3 pre-
dicted acidswere synthesized and experimentally evaluated. The three
predicted chiral carboxylic acids featured good to excellent experi-
mental enantioselectivities, with the 3-furyl substituted onepresenting
the highest selectivity. These successful predictions and the identifi-
cation of the suitable N-substituent provided strong support for the
effectiveness of the designed knowledge transfer approach. The
robustness of the enantio- and diastereoselective cobalt-catalyzed
C–H alkylation promoted by the predicted chiral carboxylic acid was
further explored, leading to the assembly of a large family of sub-
stituted indoles in good yields and with excellent stereoselectivities.
This work provides a new data-driven strategy for knowledge transfer
of synthetic chemistry. The established machine learning model was
able to capture the non-intuitive perturbation of structure-
performance relationship and make useful predictions in the few-
shot learning scenario of synthetic optimization, which provides a
powerful smart engine to accelerate the discovery of molecular
catalysis.

Methods
General procedure for cobalt-catalyzed asymmetric C–H
alkylation
To a flame-dried and N2-purged Schlenk tube were added indole sub-
strate 1 (0.1mmol), Cp*Co(CO)I2 (0.01mmol, 10mol%, 4.8mg),
AgSbF6 (0.02mmol, 20mol%, 6.9mg), and chiral carboxylic acid CCA-
4 (0.02mmol, 20mol%, 9.1mg). The vial was then sealed, purged and
backfilled with N2 three times before adding alkene substrate 2
(0.3mmol) and 1,2-dichloroethane (0.5mL) at room temperature. The

resulting solution was then stirred at 25 °C for 72 h. The resulting
solution was dilutedwith dichloromethane (2.0mL), filtered through a
pad of Celite (eluted with dichloromethane), then the solvent was
removed in vacuo. The diastereomeric ratio was determined by 1H
NMR analysis of the crude reaction mixture. The residue was purified
by column chromatography on silica gel (n-hexane: ethyl acetate =
15:1) to afford the desired product 3.

Data availability
The data that support the findings of this study are available within the
main text, the Supplementary Information and https://github.com/
Shuwen-Li/FindBestChiralAcid58. Source data are presented in the
Source_Data. Details about materials and methods, experimental pro-
cedures, characterization data, NMR and HPLC spectra are available in
the Supplementary Information, and all other data are available from
the corresponding author upon request. Crystallographic data are
available free of chargeunderCambridgeCrystallographicDataCentre
(CCDC) reference numbers 2176897 (3c), 2176898 (3w) [www.ccdc.
cam.ac.uk/data_request/cif]. Source data are provided with this paper.

Code availability
All codes needed to run thismodel are available at https://github.com/
Shuwen-Li/FindBestChiralAcid58.
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