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Super-resolved trajectory-derived
nanoclustering analysis using
spatiotemporal indexing

Tristan P. Wallis 1 , Anmin Jiang1, Kyle Young2, Huiyi Hou1, Kye Kudo 1,
Alex J. McCann1, Nela Durisic3, Merja Joensuu 1,5, Dietmar Oelz 2,
Hien Nguyen2, Rachel S. Gormal 1 & Frédéric A. Meunier 1,4

Single-molecule localization microscopy techniques are emerging as vital
tools to unravel the nanoscale world of living cells by understanding the
spatiotemporal organization of protein clusters at the nanometer scale.
Current analyses define spatial nanoclusters based on detections but neglect
important temporal information such as cluster lifetime and recurrence in
“hotspots” on the plasma membrane. Spatial indexing is widely used in video
games to detect interactions betweenmoving geometric objects. Here, we use
theR-tree spatial indexing algorithm todetermine the overlap of the bounding
boxes of individual molecular trajectories to establish membership in
nanoclusters. Extending the spatial indexing into the time dimension allows
the resolution of spatial nanoclusters into multiple spatiotemporal clusters.
Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1
molecules transiently cluster in hotspots, offering insights into the dynamics
of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC)
has been implemented as a free and open-source Python graphic user
interface.

In recent years, great advances have been made in our understanding
of cellular molecular dynamics through the emergence of super-
resolution microscopy, and in particular, a suite of technologies col-
lectively referred to as single-molecule localization microscopy
(SMLM)1. When applied in live cells, this approach allows the detection
and tracking of individual molecules at the nanometer scale, far below
thediffraction limit of light, therebyopening theway to understanding
the nanoscale world of living cells2. Single-molecule tracking of pro-
teins at the plasmamembrane has revealed thatmembrane-associated
proteins can congregate into functional assemblies called nanoclus-
ters. SMLM has allowed the characterization of molecular nanoclus-
tering of synaptic receptors and their functions3,4. The formation of

thesenanoclusters canbe studied to allowdynamic characterizationof
single receptors and their effectors confined into these discrete areas
of the plasmamembrane5–13. These studies seek to definemetrics such
as mobility, nanocluster size, lifetime, molecular membership and
density and establish how they correlate with changing experimental
conditions. The key to such investigations is a robust analytical pipe-
line for determining which of the hundreds/thousands of molecular
detections (Fig. 1a) acquired in a typical single-particle tracking
experiment are confined into nanoclusters. To date, algorithms for
nanocluster determination have largely relied on one of two funda-
mental principles: (1) density/proximity algorithms such as DBSCAN
(density-based spatial clustering of applications with noise)14 which
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Fig. 1 | Schematic representation of clustering algorithms as applied to mole-
cular trajectories. a Molecular trajectory data, with each trajectory’s spatial cen-
troid indicatedwith adot.bDBSCAN.Multiplemolecular centroids presentwithina
defined radius (red circles) are considered clustered. The most effective radius (ε)
and the minimum number of centroids within it (MinPts) are determined empiri-
cally. c Voronoï tessellation. Tiles are drawn around each centroid such that the
distance from any point within the tile is closer to its centroid than to any other
centroid. Molecular centroids with tile areas less than an empirically determined
threshold (red) are considered clustered. d Spatial indexing. Clustered molecules
are determined by overlapping 2D bounding regions (red), defining the spatial
extent of each molecular trajectory. e Spatiotemporal indexing. This panel repre-
sents the data in panel (d) rotated 90° around its y-axis to highlight the temporal
component of each centroid. Each trajectory bounding region is assigned a user-
defined “thickness” in the time dimension. Overlapping 3D bounding regions
represent spatiotemporally clustered molecules. f Molecular trajectory composed
of individual detections. g Spatiotemporal centroid representing the trajectory’s
average position in space and time. h Convex hull (blue) defining the spatial extent
of the trajectory. i Simplified 2D spatial bounding box (blue square) based on the
approximate radius (r) of the convexhull (red circle). j 3D spatiotemporal bounding
box of user-defined “thickness” in the time dimension. k R-tree spatiotemporal

index of all trajectory bounding boxes. Discrete clusters of overlapping bounding
boxes are indicated in color, and unclustered boxes are in gray. l 3D clusters of
trajectories associated with overlapping bounding boxes. m 2D representation of
clustered trajectories. Colored polygons represent the spatial convex hull of all
detections comprising each of the clustered trajectories. Clusters are colored
according to the averaged detection time of their component trajectories, allowing
the assignmentof overlapping clusters (green andblue) occupying the same spatial
extent at different times.nNanoscale spatiotemporal indexing clustering (NASTIC)
of simulated trajectory data described in “Optimum parameters for spatiotemporal
clustering” using r = 1.2, t = 20 s. Cluster boundaries represent the extent of the
detections associated with clustered trajectories and are colored according to the
average detection time. The inset displays a zoomed view of a single cluster against
a background of unclustered trajectories, with trajectory centroids indicatedwith a
dot.oHeatmapof averagedmetrics (cluster number, cluster radius, trajectories per
cluster and the number of clustered trajectories, see Supplementary Fig. 3). Each
pixel represents the average log2 ratio of the experimental observed (EXP) value for
a given r/t pair to the ground truth (GT). Pale regions indicate r/t pairs which return
cluster metrics close to the ground truth. The approximate inflection point where
the pale line transitions to horizontal is indicatedwith a dotted box. Sourcedata are
provided as a Source Data file.
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determines clustering based on whether the number of molecular
detections within a determined radius exceeds a user-defined thresh-
old (Fig. 1b), and (2) segmentation-based algorithms such as Voronoï
tessellation15,16, which define minimum area tiles around each mole-
cular detection and assign clustered detections based on a user-
defined tile area threshold (Fig. 1c).More recently, computer vision has
also been used to determine clustering based on algorithmic identifi-
cation of features in SMLM data17. However, these techniques have
been mostly developed for fixed cell data, and they are therefore
lacking the temporal aspect, which is criticalwhen considering live-cell
single-particle tracking datasets. More recent approaches using Baye-
sian cluster analysis of live-cell data have been described18, which
provides cluster information over time on a population level but not at
the individual cluster level.

In this study, we propose an alternative approach to examining
molecular clustering in live-cell SMLM data, which is based upon two
primary assertions: (1) in live-cell data, the molecular trajectory is the
indivisible unit for each trackedmolecule, not the individualmolecular
detections comprising the trajectory, and (2) trajectories which spa-
tially and temporally overlap with other trajectories are more likely to
represent molecules that are confined into functional nanoclusters.
We consider that the ability to simultaneously derive information
about the spatial and temporal interactions of molecular trajectories
can provide valuable insights into functional dynamic protein inter-
actions on the cell membrane.

Accordingly, we investigated the use of bounding regions
encompassing the extent of eachmolecular trajectory over the lifetime
of its observation. Overlapping bounding regions represent an
increased likelihood that their underlying molecular trajectories con-
stitute members of a nanomolecular spatial cluster (Fig. 1d). Deter-
mining whether complex geometric shapes overlap is computationally
intensive, particularly if there are large numbers of these shapes. This
can be overcome using spatial indexing, which allows rapid querying of
a database of the shapes’ rectangular bounding boxes. Over the last few
decades, a number of approaches to spatial indexing, such as Quad-
tree19 and R-tree20, have been implemented, variations of which have
found wide use in mapping and database management, as well as in
video games, where they allow highly optimized and accurate spatio-
temporal detection of interactions between objects such as bullets and
combatants21. Considering that spatiotemporal interaction is highly
relevant in defining the nanoclustering ofmolecules, we used the R-tree
spatial indexing algorithm to determine the overlap of the bounding
regions of hundreds/thousands of trajectories. R-tree databases can
have an arbitrary number of dimensions, so in addition to the x/y spatial
extent, we included an additional time extent (trajectory detection
time±user-defined time window). This approach allowed the determi-
nation of single-molecule trajectory overlap in both space and time
(Fig. 1e), and introduced a temporal component into the clustering
metrics, allowing us to determine apparent cluster lifetime, rate of
cluster formation and “hotspots” - discrete areas of the plasma mem-
brane with recurrent molecular clustering. Using both synthetic and
experimentally derived SMLM data, we compared nanoscale spatio-
temporal indexing clustering, hereafter referred to as NASTIC, with
DBSCAN and Voronoï tessellation clustering and demonstrated effec-
tive and efficient spatiotemporal resolution ofmolecular clusters across
a wide range of detection densities. We mathematically validated our
approach using vector autoregression analysis to confirm that clustered
trajectories identified by NASTIC were indeed spatially confined. The
nanoscale spatiotemporal metrics returned by NASTIC enable insights
into the dynamics of proteins on the plasma membrane.

Results
NASTIC workflow
We used a Python implementation of the R-tree spatial index (https://
pypi.org/project/Rtree/) incorporated into a framework utilizing the

common Python modules SciPy, SciKit Learn, Numpy, Seaborn and
Matplotlib. Spatial indexing requires the use of rectangular bounding
boxes rather than irregular bounding regions (convex hull—the
boundary enclosing a series of points such that there are no con-
cavities) encompassing a typical trajectory (Supplementary Fig. 1). The
closer the convex hull is to circularity, the closer the idealized
bounding box area will be to the area of the bounding box which
encompasses the entire extent of the trajectory. Conversely, the
bounding box encompassing a more elliptical convex hull may lead to
a significant overestimation of the area occupied by the trajectory
(Supplementary Fig. 1). For the purposes of spatiotemporal indexing,
we therefore used an idealized square bounding box based on the
approximate radius of the convex hull (Fig. 1f–i). The square bounding
boxwas extended into the timedimension by allocating a user-defined
time “thickness” that encompassed the duration of the tracked mole-
cule (Fig. 1j). The resulting 3D (x, y, t) bounding box was indexed into a
3-dimensional R-tree database (Fig. 1k). Bounding boxes in the R-tree
database were sequentially queried to determine whether they over-
lapped with any other bounding boxes (Fig. 1k, colored boxes). The
trajectories associated with these clusters of overlapping bounding
boxes were then determined (Fig. 1l). A convex hull of the spatial
extent of all detections associated with the clustered trajectories was
used to define each cluster area and colored according to the average
acquisition time of the component trajectories (Fig. 1m). An important
feature of NASTIC is that identification of temporally distinct clusters
occupying the same spatial extent is an intrinsic feature of the analysis
and does not require post hoc processing. Querying the R-tree and
defining spatiotemporal clusters is rapid, taking <1 s for ~5000 trajec-
tories on a standard i7 laptop.

Optimum parameters for spatiotemporal clustering
All clustering algorithms require user-defined parameters to account
for the density and distribution of SMLM data. Low-density data
decrease the likelihood of adjacent detections, which can be con-
sidered clustered, while high-density data, conversely, increase the
likelihood of spurious clustering. Similarly, data in which detections
are concentrated into multiple discrete areas within an acquisition
window (e.g., axonal or dendritic neuronal projections in highly
polarized neuronal cells) pose analytical challenges compared to data
acquired from the plasma membrane of a single larger and flatter cell
(e.g., a neurosecretory pheochromocytoma PC12 cell). Currently
adopted spatial clustering algorithms require optimized user-defined
parameters to best represent themolecular clustering dynamics of the
data. As an example, consider an SMLM dataset for which individual
trajectory centroids have been established. For DBSCAN, the radius (ε)
around each molecular centroid in which to scan for neighboring
centroids (Fig. 1b) and the minimum number of centroids within this
radius (MinPts) to be considered a cluster must be determined
empirically. For Voronoï tessellation (Fig. 1c), the threshold tile size
below which a centroid is considered clustered must also be estab-
lished against the average tile size or by using randomly distributed
coordinates of equivalent density15,16. In all cases, the need to empiri-
cally determine optimized parameters for clustering exposes the
potential for operator bias. In theory, NASTIC should assign trajec-
tories into clusters based purely upon overlapping spatiotemporal
boundaries without the need for user input. In practice, two para-
meters are required:
1. A bounding box radius factor (r). The nature of R-tree indexing

requires a rectangular bounding box (also known as a minimum
bounding region) for each trajectory. This simplified square
bounding box (Fig. 1i) only encompasses the full extent of the
trajectory if its original convex hull (Fig. 1h) is perfectly circular
(Supplementary Fig. 1). Applying a radius factor r > 1 is necessary
to create a bounding boxmore representative of the full extent of
the trajectory.
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2. A time window (t), in seconds. This defines the temporal “thick-
ness” of the bounding box (Fig. 1j). For example, for t = 20, each
trajectory is queried for other spatially overlapping bounding
boxes 10 s prior and 10 s after its temporal centroid (Supple-
mentary Fig. 1g–i). Greater values of t increase the likelihood that
spatially overlapping bounding boxes will also overlap in time to
generate a discrete temporal cluster. A value of t equal to twice
the total acquisition time will, in effect, return purely spatial
clustering, given that no trajectory can be considered temporally
distinct from any other within this large time window.

We simulated trajectory data with controlled density and spatio-
temporal distribution for preliminary evaluation of each clustering
algorithm’s ability to designate clusters matching the ground truth
inherent in the input data. We first generated a small dataset approx-
imating the scale and density of a typical super-resolution acquisition
at 50Hz over 320 s. These data consisted of 50 randomly distributed
trajectories within 4μm2 and 0–320 s, interspersed with 20 discrete
clusters, where each cluster contained 20 trajectories within a 0.1 μm
radius and a 10 s timewindow. Each trajectorywas a randomwalkwith
8–30 segments of length <0.1μm with 20ms between segments. A
dataset was chosen that exhibited clusters of various types: (1) clusters
discrete in space and time; (2) clusters that overlapped in space and
time; (3) clusters that partially overlapped in space and time; and (4)
clusters which overlapped in space but not in time. From the point of
view of functional nanoclustering, the latter class of clusters is parti-
cularly important as they model functional hotspots on the plasma
membrane, which can repeatedly recruit molecules to a site of biolo-
gical activity, such as the synaptic active zone22–24.

Initially, NASTIC was performed using a limited range of r and t
values, representative results of which are shown in Supplementary
Fig. 2. We found that r = 1.2 and t = 20 s returned spatial clusters most
representative of the distribution of synthetic random walk trajectory
data. Lower values of r and/or t returnedmultiple small spatiotemporal
clusters for each of the discrete input clusters. Conversely, higher
values returned fewer and larger clusters.

We expanded the exploration of the parameter space using a
larger synthetic dataset consisting of 100 spatially distinct cluster
regions randomly distributed on a simulated 100μm2 membrane area.
Thesedatawere selected tomimic routinely acquired biological single-
particle tracking Photoactivated Localization Microscopy (sptPALM)
data. Twenty percent of the regions constituted hotspots where 2–4
clusters occupied roughly the same spatial extent but occurred at
different time points over the simulated 320 s acquisition. The final
dataset consisted of 1095 trajectories in 140 spatiotemporally unique
clusters with 7.82 ± 0.16 trajectories per cluster, with cluster radii of
74.86 ± 5.29 nm. The synthetic data also contained a background of
1000 randomly spatiotemporally distributed unclustered trajectories
(Fig. 1n). NASTIC analyseswere performed using amatrix of r (0.2–4.0)
and t (1–640 s) values, and for each r/t pair the following metrics were
evaluated: (1) number of trajectories in clusters; (2) the total number of
spatiotemporally discrete clusters; (3) the number of trajectories
associated with each cluster; and (4) the cluster radius. These metrics
were compared against the ground truth values for the dataset and
plotted as heatmaps of log2[observed:ground truth] for each r/t pair
(Supplementary Fig. 3a). These plotted data reveal a complex rela-
tionship between r, t and each cluster metric. Blue and red pixels
represent r/t pairs whose output was lower or higher than the ground
truth, respectively. We selected lines of adjacent pale pixels high-
lighting the r/t pairs returning metrics more closely matching
the ground truth. We specifically looked for the inflection point where
these lines transitioned from vertical to horizontal to minimize since
these represent the region of parameter space that is least subject to
deviations from the ground truth in response to changes to either
parameters. When the pixels were averaged across the four metrics,

the resulting plot (Fig. 1o) demonstrated an inflection point around
r = 1.2–1.4 and t = 15–20 s. This inflection point was also in accordance
with other measures such as the Adjusted Rand Index (ARI) and
Intersection over Union (IoU)25 (Supplementary Fig. 3b). We further
investigated the applicability of these parameter values across a range
of synthetic data encompassing various trajectory densities, length,
and acquisition frame rates (Supplementary Fig. 4). In all subsequent
NASTIC analyses, r = 1.2 and t = 20 s were used as the default
parameters.

Comparison of clustering algorithms using simulated trajec-
tory data
Having established that NASTIC could resolve clusters in simulated
data, we sought to compare spatiotemporal indexing with density-
based and segmentation-based clustering on the same data. Using the
smaller synthetic dataset described above, we performed a qualitative
comparison of NASTIC using optimized parameters (r = 1.2, t = 20 s)
against two widely used spatial clustering algorithms, DBSCAN and
Voronoï tessellation. For fair comparison purposes, the clustering
comparisonwas achieved via similar Python frameworks differing only
by the commonly used Python modules implemented for clustering:
SciKit Learn DBSCAN and SciPy.Spatial Voronoi. For DBSCAN, the
centroids of all trajectories were analyzed using ε = 0.055μm and
MinPts = 3, which were chosen to return spatially distinct clusters of
similar dimensions to the input data (radius ~0.1μm). For Voronoï
tessellation, all trajectory centroids were thresholded such that tiles
with an area <0.004μm2 were considered clustered. This value was
empirically determined to best yield clusters reflective of the input
data. Clustered tiles were grouped into discrete clusters if they shared
oneormoreedgeswithother clustered tiles. In all three cases (NASTIC,
DBSCAN andVoronoï), a cluster wasdefined as three ormoreproximal
centroids. The spatial extent of each cluster was determined by a
convex hull of all the trajectory detections associated with the cluster
and the trajectories, centroids and clusters visualized by Python Mat-
plotlib (Fig. 2a–c).

NASTIC was able to resolve the 20 clusters’ input data into 18
distinct clusters of approximately equal size consistentwith the 0.1μm
random distribution radius used to generate each cluster (Fig. 2a).
Observed clusters represented: (Fig. 2ai) distinct clusters resolved in
space and time; (Fig. 2aii) spatially overlapping clusters resolved in
time; and (Fig. 2aiii) clusters with a degree of spatial and temporal
overlap. A single larger cluster (Fig. 2aiv) was also observed, which was
consistent with two clusters overlapping in both time and space,
accounting for the remaining two clusters in the input data. 3D (x, y, t)
projections of the data demonstrated that spatiotemporal indexing
resolved the clusters that were distinct in both space and time. Tra-
jectories that occupied the same spatial extent (Fig. 2aii) could be
resolved into discrete spatiotemporal clusters, as could trajectories
with some degree of spatiotemporal overlap (Fig. 2aiii). Importantly,
DBSCAN and Voronoï tessellation, neither of which can natively
resolve in the temporal dimension, failed to separate these over-
lapping clusters, reporting overlapping and proximal (touching) spa-
tiotemporal clusters as single spatial clusters. Further, in some cases,
DBSCAN resolved areas of higher density within a spatial cluster into
smaller clusters (Fig. 2bv). DBSCAN also reported areas of background
“noise” as clusters (Fig. 2bvi). When compared to both NASTIC and
DBSCAN, Voronoï tessellation returned slightly smaller clusters as the
centroids on the edge of a cluster had Voronoï tiles larger than the
0.004μm2 threshold (Fig. 2cvii).

We expanded the comparison by creating 10 randomized syn-
thetic datasets based upon the same seed conditions as described
above for our exploration of r/t values on clustering metrics. These
datasets consisted of 100 spatially distinct cluster regions randomly
distributed on a simulated 100μm2membrane area. Twenty percent of
the regions constituted hotspots where 2–4 clusters occupied roughly
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the same spatial extent but occurred at different time points over the
simulated 320 s acquisition. Each dataset thus consisted of approxi-
mately 140 spatiotemporally unique clusters of 6–10 trajectories per
cluster, with cluster radii of approximately 82 nm. Clusters constituted
approximately 1100 trajectories against a background of 1000 ran-
domly spatiotemporally distributed unclustered trajectories. The 10
datasets were analyzed using NASTIC (r = 1.2, t = 20 s), DBSCAN

(ε =0.05μm, MinPts = 3) and Voronoï tessellation (tile threshold
0.01μm2). For all algorithms, the parameters were determined
empirically to optimize returnedmetrics corresponding to the ground
truth of the input synthetic data.

As shown in Fig. 2d–g, NASTIC consistently returnedmetricsmost
closely matching the ground truth of the simulated data. Although
DBSCAN and NASTIC both reported similar numbers of trajectories
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within clusters, DBSCAN was unable to resolve the clusters in the
hotspots and therefore reported cluster numbers closelymatching the
100 input cluster regions. This also resulted in DBSCAN reporting
higher average numbers of trajectories in a cluster due to spatially
overlapping but temporally distinct clusters being treated as single
larger spatial clusters. Voronoï tessellation consistently reported fewer
clustered trajectories, and fewer and smaller clusters, with slightly
more trajectories within each cluster. In our hands, both NASTIC and
DBSCAN can be considered to return data reflecting the spatial clus-
tering of the trajectories, with NASTIC natively returning more accu-
rate data reflecting the unique spatiotemporal clustering of the
trajectories. We further explored the ability of these algorithms to
tolerate the increasing density of unclustered trajectories in the syn-
thetic dataset. Depending on the metric evaluated, all algorithms
deviated from the ground truth as the density increased. In order to
increase robustness in high-density data, we introduced filtering based
on mean square displacement (MSD) such that trajectories with MSDs
larger than the mean value of the MSD for all trajectories were not
indexed into the R-tree. NASTIC with MSD filtering was highly robust
and returned metrics approximating the ground truth even at a very
high density of unclustered trajectories (Fig. 2h–l). Our trajectory-
based approach allows easy implementation of MSD filtering, which
increases the robustness of NASTIC across a range of data densities.
However, caution should still be applied to high particle density data
from biological samples as they carry substantial risks of mistracking
and ideally should be avoided at the time of acquisition. The results
obtained by Voronoï tessellation clustering may reflect issues of the
algorithm to accurately segment lower-density trajectory centroid
information, as opposed to higher-density detection information. In
any case, Voronoï tessellationcould not distinguish temporally distinct
clusters andwould be expected, at best, tomatch themetrics returned
by DBSCAN.

Clustering analysis of syntaxin1a-mEos2 super-resolution ima-
ging data
While simulated data offer the ability to precisely model trajectory
density and clustering, themolecular environmentwithin a living cell is
far more varied and dynamic and represents a greater analytical
challenge. We therefore next applied NASTIC, DBSCAN and Voronoï
tessellation clustering to sptPALM1,26–28 data obtained from syntaxin1a
(Sx1a) tagged with the fluorescent protein mEos2 in live neurosecre-
tory PC12 cells (Supplementary Fig. 5). Sx1a is a member of the SNARE
protein family that is located on the plasmamembrane of neurons and
neurosecretory cells and is involved in mediating synaptic and neu-
rosecretory vesicle fusion6,11,29–31. As anticipated, all three techniques
were able to detect spatial clustering of Sx1a-mEos2, with NASTIC also
able to natively assign temporal information to the clusters.

The 100 μm2 region of interest analyzed (Fig. 3a) encompassed
1687 trajectories with a minimum of eight steps, of which 798 were
assigned based on spatiotemporal indexing to 105 clusters (Fig. 3b).
The average number of trajectories associated with each cluster was
7.6 ± 0.563, and the average radius of each cluster was

88.396 ± 3.541 nm.On average, a cluster displayed an apparent lifetime
of 16.317 ± 1.467 s. In addition to discrete spatiotemporal clusters, we
identified a total of eight hotspots comprising 18 clusters (con-
servatively defined as those clusters whose centroids are separated by
less than 0.5 of the average cluster radius) where Sx1a-mEos2 mole-
cules appeared to be repeatedly recruited to the same region of the
plasma membrane6,12,32–35 (Fig. 3c, f). Clusters were associated with
regions of higher molecular detection density (Fig. 3d) and with
regions of lowermolecular instantaneous diffusion coefficient (Fig. 3e,
g). As evidenced by mean square displacement (MSD) curves for
unclustered and clustered trajectories (Fig. 3h), these clusters likely
represent nanomolecular assemblies where Sx1a-mEos2 was con-
strained into lower mobility states. If these clusters were merely arti-
facts of randomly overlapping trajectories, the mobility of clustered
and unclustered trajectories would be expected to be similar.

Identification of loosely interacting Sx1a-mEos2 trajectories by
iterative clustering
The 105 “primary” time-resolved Sx1a-mEos2 clusters identified by
NASTIC above represented those whose individual trajectories over-
lapped within a 20 s time window. We next sought to identify and
characterize any remaining “secondary” clusters representing trajec-
tories that overlapped at any timewithin the 320 s acquisitionwindow.
The 889 unclustered trajectories from the primary analysis described
above were therefore reanalyzed using r = 1.2 and t = 640 s (Supple-
mentary Fig. 6a, b). A further 337 trajectories were assigned to 53
individual secondary clusters. Rather than discrete circular nanomo-
lecular structures, these secondary clusters tended to represent
unconfined trajectories whose larger bounding boxes increased the
likelihood of overlap during the acquisition. This is evidenced by the
MSD curve for these secondary clusters (Supplementary Fig. 6c, d),
which shows less mobility difference between unclustered and sec-
ondary clustered trajectories. The generally diffuse nature of the sec-
ondary clustered trajectories strongly contrasts with the dense,
compact circular nature of the time-resolved primary clusters (Sup-
plementary Fig. 6b) and lends further support to the ability of time-
resolved spatiotemporal indexing to identify true nanomolecular
clustering against a significant background of higher mobility unclus-
tered trajectories.

Confirmation of molecular clustering using orthogonal mathe-
matical evaluation of trajectory confinement
As shown in Fig. 3, NASTIC was clearly able to identify clusters of Sx1a-
mEos2 molecules based on the spatiotemporal overlap of molecular
trajectory bounding boxes. The considerably lower MSD of clustered
trajectories, as determined byNASTIC (Fig. 3h), was indicative of lower
mobility of clustered molecules. This apparent immobilization could
stem from a combination of increased interaction with other Sx1a
molecules and/or interactors and reduced local plasma membrane
fluidity reflecting localized changes to phospholipid, phospholipid
metabolite and other lipid composition36,37. While diffusion metrics
suchasMSDare a useful indicator of overallmolecularmobility, vector

Fig. 2 | Comparison of clustering algorithms. a–c Resolution of spatiotemporal
clusters in simulated data as described in “Comparison of clustering algorithms
using simulated trajectory data”. a Clustering using NASTIC using r = 1.2, t = 20 s.
Insets highlight different classes of clustering: (i) distinct clusters resolved in space
and time; (ii) spatially overlapping clusters resolved in time; (iii) clusters with a
degree of spatial and temporal overlap; (iv) clusters which overlap in space and
time. 3D (x, y, t) projections of highlighted clusters (i–iii) and the associated
detection times (lower panels) demonstrate distinct temporal clustering.
b DBSCAN spatial clustering using ε =0.055 μm and MinPts = 3. c Voronoï tessel-
lation spatial clustering. Trajectories with an associated Voronoï tile area
<0.004μm2 were considered clustered. In all analyses, a cluster is defined as three
or more proximal centroids. d–g Comparison of cluster metrics returned by

NASTIC, DBSCAN and Voronoï tessellation from synthetic data simulating 10
acquisitions as described in “Comparison of clustering algorithms using simulated
trajectory data”. d Total trajectories in clusters, e Total unique clusters, f Average
cluster radius (nm) and g Average trajectories in a cluster. Black bars represent the
ground truth (GT) in the simulated data, colored bars represent the metrics
returned by DBSCAN (ε =0.05μm, MinPts = 3, orange), Voronoï tessellation (tile
threshold 0.01μm2, green) and NASTIC (r = 1.2, t = 20 s, blue). Error bars show the
standard error of the mean (SEM) across 10 datasets. The dotted black line shows
the average value in the input synthetic data. h–l Comparison of the ability of
different algorithms to return metrics matching the ground truth as the density of
unclustered background detection increases in a synthetic dataset. Source data are
provided as a Source Data file.
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autoregression (VAR)38 applied to trajectories can provide useful
additionalmetrics related to themolecule’s spatial confinement based
on the iterative change in position. Therefore, for each trajectory, we
derived (1) the alpha coefficient of the MSD (i.e., the degree to which
themolecule’s motion is confined, directed or freely diffusing), (2) the
spatial area encompassed by the trajectory, (3) the norm of the VAR
coefficient matrix and (4) the norm of the VAR covariance matrix,

where 3 and 4 collectively specify the degree to which the position of
each point in the trajectory is dependent on the preceding point and
the contribution of randomness. K-means clustering of this
4-dimensional data was used to assign trajectories into two groups,
one of which exhibited the mathematical hallmarks of confinement
versus the less confined trajectories in the other group. These group-
ings were used to conditionally color the trajectories in the NASTIC
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cluster output, which showed that clustered trajectories almost
entirely comprised those belonging to the VAR “confined” group
(Fig. 3i). Across the 17,598 trajectories analyzed, 6947 were assigned
into clusters using NASTIC. Of these, 6846 (98.5%) represented VAR
confined. Conversely, of the 10,651 trajectories deemedunclusteredby
NASTIC, 6435 (60.4%) were VAR unconfined. A further 4216 VAR
confined trajectories were not clustered by NASTIC, as they did not
spatiotemporally overlap with other trajectories (Fig. 3j). Only a small
number (101) of trajectories that were clustered by NASTIC were
considered as unconfined by VAR. Taken together, these data suggest
that the spatiotemporal bounding box overlap approach used by
NASTIC identifies molecules whose movement is more confined as a
result of being constrained within clusters.

Statistical analysis of Sx1a-mEos2 spatiotemporal
inhomogeneity
Acquisition density is a critical consideration for SMLM, particularly for
live-cell imaging, where algorithms for assigning consecutive mole-
cular detections into trajectories depend on sparse labeling to avoid
mistracking. However, with lower-density data, the inherently sto-
chastic nature of the SMLM process requires that care must be taken
when interpreting any observed non-uniformity of spatiotemporal
distribution,whichmight simply represent random “close encounters”.
In this case, across a large enough dataset, spatial and temporal dis-
tribution of trajectories should trend toward uniformity. To test this
hypothesis independently of NASTIC, we computed the kernel density
estimator (KDE) for the spatial coordinates of all 17,598 trajectories in
the Sx1a-mEos2 dataset. This was used to generate a contour plot
indicating the presence of local maxima of high molecular density
(Fig. 4a). A rectangular subregion (Fig. 4a, red box) containing 11,909
trajectories was selected to test for temporal distribution uniformity.
For these trajectories, we conducted Kolmogorov–Smirnov (KS) tests
for uniformity with respect to both the x-axis and y-axis projection of
the spatiotemporal centroids of the trajectories and generated a
p-value for each. Both the x-axis and y-axis KS tests yieldedp-values that
were lower than machine precision (<2.2E-16), demonstrating the
overall non-uniformity of the temporal distribution of the trajectories.

Having earlier established that NASTIC clusters likely represent
non-random confined Sx1a molecules, we sought to determine whe-
ther the observed hotspots of recurring Sx1a spatial clustering repre-
sented an underlying (potentially switchable) membrane mechanism
acting to periodically spatially trap the molecules. This process would
be expected to lead to strong temporal non-uniformity of molecules
within hotspots. To test this hypothesis, we selected trajectorieswithin
0.2 µm of the local maxima in the KDE contour plot of all Sx1a data,
in effect deriving 409 potential hotspots, each containing at least
seven trajectories. These can be represented as temporal vertical col-
umns (Fig. 4c). KS tests for uniformity with respect to the distribution
of the temporal centroids of the trajectories in each temporal column
were conducted, controlling for a family-wise error rate (FWER) of 1%
according to Bonferroni’s inequality39 such that 108 columns were

identified with a p-value >0.01/409, indicating a highly significant
degree of temporal non-uniformity. A subset of these is visualized in
(Fig. 4d). These represent 108 hotspots with recurrent non-uniform
detection of Sx1a within clusters.

Characterization of spatiotemporal hotspots
Havingmathematically determined that the temporal clustering of Sx1-
mEos2 into hotspots empirically appeared to represent non-random
events at the plasma membrane, we sought to derive metrics to char-
acterize the recurrent formation and dissociation of these hotspots
over the acquisition period. These metrics were obtained using
DBSCAN on the spatial centroids of the 105 clusters identified by
NASTIC, in essence treating hotspots as clusters of clusters. DBSCAN
was performed using MinPts = 2 and ε values in the range 0 → average
cluster radius.Overlapprobability (Fig. 4e)measures the likelihoodof a
cluster centroid having another cluster centroid within a given dis-
tance. This is computed as 1 (unclustered centroids/total centroids). At
very small values of ε, the chance of any cluster having a proximal
cluster is low, as these clustersmust occupy essentially the same spatial
extent. Conversely, at a distance corresponding to the average cluster
radius, the likelihood of a proximal cluster increases, as these clusters
essentially need only to overlap slightly. To determine the degree to
which cluster overlap was driven by biological distribution rather than
chance, we performed a Monte Carlo simulation (N = 50) using 105
clusters randomly distributed over the same 100μm2 analysis area
(Fig. 4e, red plot). The result of this analysis demonstrates that random
cluster overlap contributed little to the observed overlap. Hotspot
membership (Fig. 4f) defines the average number of clusters detected
in each hotspot. Intercluster time (Fig. 4g) measures the average time
between clusters in each hotspot. Together these analyses show that
there was an approximately 17% chance of any given Sx1A-mEos2
cluster forming a hotspot with another cluster within 41.5 nm (half the
average cluster radius). The average hotspot contained ~2–3 clusters
and the average time between each cluster in a hotspot was 45 s.
Cluster number (Fig. 4h), measured as the number of discrete spatio-
temporal clusters per μm2, varied over the duration of the acquisition
but did not dramatically trend up or down. This is indicative of a
potential “steady-state” of clustered Sx1a-mEos2 on the plasma mem-
brane. As shown in Supplementary Fig. 7e–h, NASTIC was clearly able
to identify regions of the plasmamembrane (highlighted boxes) where
molecules were recruited into clusters by lateral trapping over many
tens of seconds. Via a user-defined time window (t), NASTIC could
assign thesemultiple trajectories intodiscrete temporal clusters, which
then allowed the additional hotspotting metrics described above. The
functional significance of these hotspots is currently unknown but
could represent docking/priming sites at the plasma membrane40.

Using spatiotemporal indexing to define activity-dependent
changes in nanoclustering dynamics
A growing body of literature has demonstrated that the spatial and
temporal nanoscale organization of key proteins in the

Fig. 3 | Resolutionof spatiotemporal clustering in live-cellmolecular trajectory
data. Sx1a-mEos2 sptPALM data acquired at 50Hz over 320 s. Clustering using
NASTIC using r = 1.2, t = 20 s. a Raw acquisition data showing all molecular detec-
tions, with the region of interest (ROI) highlighted in yellow. b Spatiotemporal
clustering of the selected trajectories within the ROI of (a), with a region high-
lightedwith adottedwhite box for enlargement in (c). c Enlargement of highlighted
area in (b) showing individual trajectories and their centroids, with clusters high-
lighted and color-coded according to their time in the acquisition. The dotted box
highlights a hotspot of repeated clustering. d 2D Kernel density estimation of the
detections associated with the selected trajectories, with brighter blobs corre-
sponding to higher density. e Instantaneous diffusion coefficient, with each tra-
jectory colored according to the gradient of the first four time points in its mean
square displacement (MSD). f 3D plot of the selected trajectories, rotated to show

the temporal separation of the clusters highlighted in (c). g 1D plot of the selected
trajectories where each vertical bar represents a single trajectory, colored
according to its cluster status (top panel) or instantaneous diffusion coefficient
(bottom panel). h MSD curves of clustered and unclustered trajectories from the
ROI displayed in (b). Each point represents the average MSD of the indicated
number of trajectories. Error bars indicate the standard error of the mean (SEM).
i, j NASTIC clusters of Sx1a-mEos2 comprise “confined” molecules. The entire
17,598 trajectories dataset, as visualized in (a), was selected for analysis. i K-means
clustering of MSD and vector autoregression metrics for each trajectory was used
to assign them into confined (orange) and unconfined (purple). j Venn diagram
showing the degree to which clustered trajectories established by NASTIC are
represented by confined trajectories established using vector autoregres-
sion (VAR). Source data are provided as a Source Data file.
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Fig. 4 | NASTIC spatiotemporal metrics. Sx1a-mEos2 sptPALMdata acquired at
50Hz over 320 s analyzed by NASTIC. a Contour plot of the kernel density esti-
mator (KDE) for the spatiotemporal centroids of all 17,598 trajectories in the Sx1a-
mEos2 dataset projected into the x–y plane. Green dots mark local maxima.
b Orthogonal projection of Sx1a-mEos2 trajectories highlighting VAR confined
trajectories (bright green) to emphasize the temporal columns of clustered tra-
jectories. c Trajectories within 0.2 µm of the local maxima, as shown in (a), are
represented as temporal vertical columns. d Column-wise 1D scatter plots of cen-
troids projected onto the temporal axis for a random selection of 40 columns with
significant non-uniform detections of Sx1a (p-value > 0.01/409 using
Kolmogorov–Smirnov test for non-uniformity). e Probability of cluster overlap
using DBSCAN of cluster centroids identified by NASTIC, ε =0.001–0.083μm
(average cluster radius) and MinPts = 2. Monte Carlo simulation (N = 50) using 172

randomly distributed cluster centroids was used to establish the degree of random
overlap of clusters of the same number and density as the experimental data. The
dotted red line indicates the average overlap probability and translucent red
indicates the standard error of the mean. The left and right dotted vertical lines
represent 0.001μm and 0.083μm, respectively. At 0.001μm, two clusters must
essentially completely overlap to be considered as a hotspot, as illustrated by the
overlapping circles. At 0.083μm, two clusters are considered members of a hot-
spot if their edges touch, as indicated pictorially by the two touching circles.
f Average number of clusters in a hotspot as a function of distance. g Average time
between clusters in a hotspot as a function of distance. h Number of unique spa-
tiotemporal clusters observed at 1 s intervals over the 320 s acquisition. Source data
are provided as a Source Data file.
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neuroexocytic pathway can change in an activity-dependent manner.
These changes may reflect the functional clustering of a range of
proteins required for the synaptic vesicle docking, priming, fusion
and recycling at the heart of neuronal synaptic communication41.
They may also reflect activity-dependent protein conformational
changes, which alter the protein’s homo- or heterodimerization42.
Analysis of molecular trajectory data obtained from SMLM experi-
ments can provide insights into aggregate changes in the mobility of
molecules, using metrics such as MSD as an indirect measure of the
degree of their potential confinement in nanomolecular clusters.
These can be further expanded using statistical techniques such as
Hidden Markov Modeling (HMM43,44) to partition a molecular popu-
lation into mobility states and transitions between them9,45,46, and
Ripley’s K functions10,17,47 to derive insights into the point dispersion
and cluster size. More directly, clustering analysis can reveal perti-
nent metrics related to the number and size of clusters, the number
ofmolecules within clusters, and their apparent lifetimes and rates of
formation. These metrics can be averaged across sufficient datasets
and compared between experimental conditions, such as non-
stimulated and stimulated cells, to assign statistical significance to
the degree of change. As demonstrated herein, NASTIC allows sig-
nificant expansion of nanocluster analysis to include metrics such as
the extent of molecular clustering hotspots, the number of tempo-
rally distinct clusters within these hotspots and the time between
these clusters. We sought to establish the degree to which NASTIC
could generate statistically significant measures of the change in
nanocluster dynamics of another key neuroexocytic priming
protein, Munc18-1 tagged with mEos2, in response to stimulated
exocytosis in PC12 cells. Accordingly, sptPALM data were acquired
from 10 cells under unstimulated conditions and following stimula-
tion with BaCl2 (2mM). NASTIC analysis was performed on individual
cells. For each cell, the metrics for each cluster were generated,
together with average metrics for all clusters in the cell. Two com-
parison analyses were then performed: (1) the metrics for the 2610
pooled clusters detected across nine unstimulated cells were com-
pared with those from 2588 pooled clusters observed across the nine
stimulated cells, and (2) the averaged metrics from nine unstimu-
lated cells were compared with those from nine stimulated cells
(Supplementary Fig. 8). These analyses suggested that secretagogue
stimulation of PC12 cells resulted in significantly smaller clusters of
Munc18-1. This is in agreement with our previously published work
using autocorrelation of fast Fourier transformed image data11

demonstrating thatMunc18-1 exits the confinement of nanocluster in
response to stimulation following opening and engagement of cog-
nate Sx1A in SNARE complex formation. The rate of detection of new
trajectories over the apparent lifetime of the cluster appeared higher
in the stimulated cells, which might reflect activity-dependent
changes to the dynamics of molecular recruitment into clusters.

NASTIC of individual trajectory segments versus entire trajec-
tory bounding boxes
Spatiotemporal indexing of trajectory bounding boxes allows the
determination of clusters of overlapping trajectories which poten-
tially interact in space and time. However, the more precise locations
within the cluster where the overlap occurs are not recovered. As
schematically represented in Fig. 5a, the boundary of a NASTIC
cluster represents the furthest extent of the individual detections of
all the overlapping trajectories in the cluster. Within this cluster,
individual segments of each trajectory (a segment is defined as the
line connecting a molecular detection with its subsequent detection)
will overlap with segments from other trajectories. These represent
regions within the cluster where there is an increased likelihood of
molecular overlap. A threshold can be determined based on the
degree of segment overlap, beyond which the segments exhibiting
overlap can be considered clustered. In scenarios of very high

trajectory density and/or very long trajectories, determining clusters
solely on overlapping trajectories (or DBSCAN/Voronoï tessellation
of trajectory centroids) may lead to large clusters of low segment
density (as demonstrated in Supplementary Fig. 5b), which do not
truly reflect potential molecular overlaps. We therefore investigated
the application of spatiotemporal indexing to the bounding boxes of
each individual trajectory segment (segNASTIC) in an effort to gain
more fine-grained clustering information in high trajectory density
data. Each trajectory segment was assigned a bounding box com-
prising its x and y extent, with a time “thickness” as described above.
Trajectory segment bounding boxes were indexed into a 3D R-tree,
which was queried to generate lists of potentially spatiotemporally
overlapping segments. From these lists, the degree of overlap of each
segment with segments from other trajectories was determined.
Across all segments in an acquisition, a histogram was generated
showing that the majority of trajectory segments had low overlap
(Supplementary Fig. 9). The inflection point of the histogram (the
average segment overlap) was chosen as the automatic threshold
beyond which a segment was considered as potentially clustered.
Clusters of thresholded overlapping segments were derived, repre-
senting more tightly defined areas of the plasma membrane where
molecules were confined. We examined the benefit of this approach
using data acquired by uPAINT (universal point accumulation for
imaging in nanoscale topography48) analysis of PC12 cells expressing
Sx1a-EGFP (C-terminal tag) tracked by Atto-647-labeled anti-GFP
nanobodies applied extracellularly11. uPAINT acquisitions generally
result in a higher density of relatively longer and more diffuse tra-
jectories when compared to sptPALM, as they use organic dyes,
which are brighter and less prone to photobleaching. As demon-
strated in Fig. 5b, spatiotemporal indexing of whole trajectory
bounding boxes successfully identified clusters of confined trajec-
tories in the uPAINT data, as well as clusters consisting of relatively
“diffuse” trajectories. The spatiotemporal indexing of trajectory
segment data was represented as a pseudo-density map of trajectory
overlap (Fig. 5c), which clearly showed regions of higher potential
molecular interaction. The convex hull of the detections in each
group of overlapping thresholded segments was used to define a
unique spatiotemporal cluster. The trajectories associated with the
clustered segments were colored, which enabled us to demonstrate
the disparity between the size of the segment clusters and the extent
of their parent trajectories (Fig. 5d). Compared with trajectory clus-
tering, segment clustering generally returned smaller more tightly
defined clusters, and far fewer clusters of trajectories with diffuse
segments.

However, this additional resolution does come at the price of the
increased computational overhead of creating and querying a spatial
index with 10–100 as many bounding boxes, resulting in an approx-
imate doubling of the total analysis time when compared to NASTIC
(Table 1). To compare the relative analysis times of NASTIC, segNAS-
TIC, DBSCAN and Voronoï tessellation, we used these pipelines to
analyze a dataset consisting of 4207 trajectories (a subset of the Sx1a-
mEos2 data presented in Fig. 3). In our hands, DBSCAN was capable of
performing the clustering of trajectory detections faster than any
other methods. However, NASTIC natively delivered additional tem-
poral clustering information that neither DBSCAN nor Voronoï tes-
sellation could provide. Interestingly, segNASTIC, which in addition to
temporal information, also provides increased spatial cluster resolu-
tion in very high-density data, has an analysis time comparable to
purely spatial clustering by Voronoï tessellation.

Having demonstrated that segNASTIC returns smaller clusters
representing the truly overlapping regions of each trajectory, we next
compared the metrics returned from analysis of the complete Sx1a-
mEos2 dataset (17,598 trajectories) by NASTIC and segNASTIC as
examined in Table 1. As shown in Table 2, while both analyses returned
similar overall clustering metrics, segNASTIC, as expected, returned
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smaller clusters. Given that different clustering algorithms use differ-
ent mathematical approaches to determine molecular crossover, how
does one truly define the spatial extent of a nanomolecular cluster?
NASTIC uses the convex hull around all of the detections of the clus-
tered trajectories, while segNASTIC uses the convex hull around the
detections associated with overlapping trajectory segments (and thus
reports smaller clusters). Beyondpractical experimental concernswith
data density, the choice of a given algorithm ultimately rests on its
ability to detect experimentally and biologically driven changes in
molecular clustering.

Two-molecule analysis using NASTIC
The spatiotemporal clustering approach employed by NASTIC should
readily lend itself to two-molecule analysis in which potentially inter-
acting molecules of interest are labeled with fluorophores with dif-
ferent excitation/emission maxima and SMLM data simultaneously
acquired at two different wavelengths49. We investigated this potential
application using simulated trajectory data representing two-color
SMLM acquisitions. Two datasets were generated, each consisting of
clustered lowmobility randomwalk trajectories against a background
of unclustered higher mobility trajectories, essentially as described in
Fig. 1. The datasets primarily differed in themobility of their simulated
trajectories, such that molecule 2 trajectories on average contained
10% longer trajectory segments. To simulate the potential interaction
of the two different molecules, each dataset was generated using a
number of shared “seed” points such that the combined datasets
contained clusters consisting of both molecule types and spatial hot-
spots of clusters of either molecule type. Two-color NASTIC (NAS-
TIC2C) was performed by combining the datasets and establishing
spatiotemporal overlap of all trajectories as described. The type
(color) information for each trajectory in the combined datasets was
retained, which allowed the calculation of the relative contribution of
each molecular type to the resulting clusters and was used to inform
the graphic output; 436 unique spatiotemporal clusters were
observed, with 52 clusters assigned to 25 hotspots. In addition
to identifying clusters of each molecular type, NASTIC2C was

b

dc

0.5 μm

0.5 μm 0.5 μm

0 320s

0 320s

a

Fig. 5 | NASTIC of trajectory segments (segNASTIC). a Schematic representation
of trajectory segment thresholding based on overlap with segments from other
trajectories. b Sx1a-EGFP imaged by uPAINT using Atto-647-labeled anti-GFP
nanobodies in PC12 cells. Spatiotemporal clusters were identified using spatio-
temporal indexing of trajectory bounding boxes using r = 1.2 and t = 20 s. Each
colored cluster boundary represents the convex hull of the detections belonging to
all trajectories in the cluster. c Pseudo-density map of trajectory segment overlap,

with each trajectory colored according to the number of overlaps with other tra-
jectory segments, as determined by spatiotemporal indexing of segment bounding
boxes. d Spatiotemporal clusters identified using thresholded segments t = 20 s.
Each colored cluster represents the convex hull of detections belonging to the
clustered segments. All trajectories containing clustered segments are shown in the
same color as the cluster. Source data are provided as a Source Data file.

Table 1 | Relative clustering analysis times

ANALYSIS TIME NASTIC segNASTIC DBSCAN VORONOÏ

Selecting detec-
tions in ROI

1.05 1.05 1.17 1.11

Trajectory
metrics (including
bounding boxes)

6.29 3.697 2.74 2.45

Clustering 0.49 13.34 0.02 12.7

Cluster metrics 1.93 1.402 1.72 1.36

TOTAL 9.76 19.489 5.65 17.62

For each of the clustering pipelines, the time (s) to complete each stage of the analysis of the
same dataset containing 4207 molecular trajectories is indicated. The analysis time does not
include the time taken to visualize and display the clustered data.
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clearly able to identify mixed clusters with varying ratios of molecule 1
and 2 (Fig. 6a–d, f) and resolve areas of spatiotemporal overlap
(Fig. 6c, d).MSD curves of unclustered and clustered trajectories
(Fig. 6e) further demonstrated the ability of NASTIC2C to resolve
clusters of lower mobility trajectories and also reflected the ground
truth mobility differences of the two synthetic datasets. To demon-
strate the applicability of NASTIC2C in an experimental context, it was
then used to highlight spatiotemporal co-clustering in live neurose-
cretory cells31,50,51. We reveal that, in discrete area of the plasma
membrane, Munc18-1-mEos2 and Syntaxin-GFP-Atto647 co-cluster in
space and time (Fig. 6g, h).

Discussion
The increasing sophistication of SMLM research has resulted in its
application to studying fundamental biological processes. However,
SMLM is a young and rapidly evolving field with multiple approaches
to data acquisition and data analysis. In the context of SMLM,
DBSCAN and Voronoï tessellation are extremely robust, widely used
and highly optimized algorithms that allow the determination of
nanomolecular clustering using fundamentally different approaches
to arrive at similar conclusions regarding the geometry of molecular
interaction. However, these algorithms have not been implemented
to utilize the temporal information inherent to single-particle
tracking SMLM. R-tree spatial indexing is a similarly robust and
optimized algorithm that we have employed here to establish
molecular overlap as a measure of potential clustering. The funda-
mental advantage of the NASTIC approach detailed in this study is
that temporal information is used to inform the algorithm such that
spatiotemporal clusters are intrinsic to the analysis rather than hav-
ing to be derived subsequent to purely spatial clustering using
approaches such as tcPALM (time-correlated photoactivated locali-
zation microscopy9,52). The NASTIC pipeline delivers a useful tem-
poral dimension to SMLM analysis across a range of data geometries
without dramatic increases in analysis time. The use of a trajectory-
based approach allows MSD and VAR to further refine the analysis,
and the ability to resolve spatiotemporal clusters opens a window
into the dynamics of molecules within defined subcellular regions.
The frameworks based on the abovementioned algorithms have their
strengths and drawbacks, and all are reliant upon user metric gui-
dance or empirical determination of optimal parameters. A major
challenge when using SMLM clustering algorithms is to determine

the parameters that will accurately capture the unknown ground
truth of SMLM datasets. As for all commonly used analysis techni-
ques, NASTIC requires optimized parameters suited to the geometry
and density of the input trajectory data. This optimization necessi-
tated the use of synthetic data generated using a wide range of
detection densities, trajectory sizes, lengths, and data acquisition
rates typical of current SMLM datasets. Due to the complex rela-
tionship between cluster metrics, we derived an optimization strat-
egy based on determining which r/t pairs most closely returned the
ground truth and further verified this strategy using additional sta-
tistical approaches, including Adjusted Rand Index (ARI) and Inter-
section over Union (IoU)25. NASTIC output robustly returned the
ground truth over the large range of synthetic datasets tested and
compared well with DBSCAN14 and Voronoï tessellation15 in our
hands. As expected, in the case of extremely low or high data density,
NASTIC, like other algorithms, progressively failed to return accurate
clustering (Fig. 2h–l and Supplementary Fig. 10). Regardless of the
clustering algorithm used, acquisition of high-quality single-mole-
cule datasets are critical.

NASTIC has been used here to capture spatiotemporal cluster-
ing information from experimentally derived sptPALM and uPAINT
data. We investigated the spatiotemporal dynamics of the SNARE
protein syntaxin1 (Sx1a) in neurosecretory cells by sptPALM. Syn-
taxin plays a key role in mediating vesicular fusion in neurosecretory
cells and neurons. With biological functions related to priming and
fusion of secretory vesicles, which occur in the range of seconds to
milliseconds, Syntaxin spatial clustering has been an area of intense
scrutiny31,50,51. However, the temporal aspects of such clustering,
likely to define syntaxin function in exocytosis, could not be defined
in these previous studies. Using NASTIC, wewere able to corroborate
and expand upon the previously demonstrated Sx1a nanoscale
organization. We found that Sx1a can form transient nanoclusters on
discrete areas of the plasma membrane with an average lifetime of
12 s. Some of these clusters occurred multiple times in the same area
of the membrane suggesting repetitive clustering behavior (hot-
spots). This advocates for scrutiny of themolecular underpinnings of
clustering duration and hotspotting as another layer of regulation of
biological processes through the precise temporal control of protein
clustering. The regulation of Sx1a cluster formation and dissociation,
and its ability to interact with other SNARE proteins and regulators in
these discrete areas, remains enigmatic. Previous investigations into
the temporal nature of nanoclusters have shown that they are indeed
key to precisely control ligand binding and signaling duration9,53. The
ability to accurately measure temporal clustering in a facile and
unbiased way, therefore, opens up possibilities for exploring the role
and regulation of these transient and potentially iterative clusters,
along with their protein and lipid composition. Our current temporal
analyses of hotspotting rely on statistically exploring the homo-
geneity of the detection density. Future work will be needed to
extend these analyses to accurately extract additional hotspotting
metrics.

A number of recent studies have applied NASTIC to investigate
protein clustering dynamics in a range of biological systems. These
include the co-receptor nanoclustering that mediates botulinum neu-
rotoxin selective internalization into synaptic vesicles,54 the spatio-
temporal dynamics of Fyn kinase in live hippocampal neurons,55 and
identification and characterization of Synaptotagmin and SV2a co-
clustering56.

In addition to its current applications, NASTIC has a number of
potential future uses which are currently being explored. We have
demonstrated in this study that spatiotemporal indexing can be
expanded to multiple color SMLM analysis of different target pro-
teins in the same cell49, where its ability to resolve hotspotsmay offer
insights into cluster dependency, whereby onemoleculemay control
the clustering of another. Two-color SMLM is an emerging

Table 2 | Comparison of NASTIC and segNASTIC on a typical
dataset

METRIC NASTIC segNASTIC

Selection area (μm²) 1721.44 1721.44

Selected trajectories 17,598 17,598

Clustered trajectories 6651 6857

Unclustered trajectories 10,947 10,754

Total clusters 1032 908

Hotspots (overlap at 0.5
cluster radius)

69 62

Clusters in hotspots 151 131

Average clusters in hotspots 2.19 2.11

Percentage of clusters in
hotspots

14.63 14.42

Trajectories per cluster 6.44 ±0.13 7.55 ± 0.21

Apparent lifetime (s) 11.72 ± 0.36 12.97 ± 0.42

Avg. MSD (μm²) 0.0066 ± 8.43E-5 0.0068± 9.44E-5

Radius (nm) 77.51 ± 0.77 66.55 ± 0.88

For each of the clustering pipelines, themetrics returned from analysis of the same Sx1a-mEos2
dataset.
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technology with technical challenges; however, NASTIC2C is well
suited to the analysis of these datasets. Finally, a particular advantage
of the R-tree algorithm is that it is capable of functioning with
an unlimited number of data dimensions. As such, the R-tree-based
NASTIC could be leveraged to allow the analysis of 3D SMLM
data consisting of three spatial dimensions and one temporal
dimension, with fluorescence intensity as an additional dimension,
for example.

SMLM is an inherently stochastic technology that, by necessity,
only retrieves information on a small proportion of the molecular
population. Thus, post-acquisition analysis techniques can critically
only report an approximation of the dynamic molecular landscape.
Techniques that can derive additional information from these limited
SMLM datasets are therefore of great benefit. By robustly leveraging
the temporal aspect, NASTIC offers additional much-needed insights
into spatiotemporal clustering.
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Fig. 6 | Two-color NASTIC (NASTIC2C) of simulated trajectory data. a Individual
molecular “detections” colored according to molecule 1 (cyan) or molecule 2
(magenta). The dotted box represents the area expanded to show regions repre-
senting detections from both colors occupying the same spatial extent (arrows)
and expanded in (b) to show clusters. b Spatiotemporal clusters identified by
spatiotemporal indexing of combined trajectory bounding boxes using r = 1.2 and
t = 20 s. Each colored cluster boundary represents the convex hull of the detections
belonging to all trajectories in the cluster. Clusters are colored according to the
relative proportions of component molecules, with pure cyan and pure magenta
indicating clusters consisting solely of molecule 1 or molecule 2, respectively.
Dotted lines represent hotspots of repeated cluster formation. The dotted white

box represents an area of spatiotemporal overlap expanded in two and three
dimensions in (c) and (d), respectively, to show the resolution of spatiotemporally
overlapping clusters into discrete clusterswith differentmolecular compositions. e
Mean square displacement (MSD) curves of clustered and unclustered trajectories
from each simulated dataset. Each point represents the average MSD of the indi-
cated number of trajectories. Error bars indicate the standard error of the mean
(SEM). fDistribution of the relative contribution of color 2 across the 436 observed
spatiotemporal clusters. g, h Experimentally observed co-clustering of Munc18-1-
mEos2 (green) and Syntaxin-GFP-Atto647 (orange). Source data are provided as a
Source Data file.
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Methods
PC12 cell culture, transfection and plating
Pheochromocytoma (PC12) cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM, containing sodium pyruvate)
(Thermo-Fisher Scientific), fetal bovine serum (7.5%, Gibco) and horse
serum (7.5%, Gibco), and 0.5% GlutaMax (Thermo-Fisher Scientific) at
37 oC and 5% CO2. Cells were transfected by Lipofectamine®LTX with
Plus Reagent (Thermo-Fisher Scientific) as per the manufacturers’
instructions with 2 µg of DNA or 1 µg of each plasmid when co-
transfected. Cells were replated onto 0.1mg/ml Poly-D-lysine (Sigma)
on 29 mm No. 1.5 glass-bottomed petri dishes (Cellvis) 24 h post-
transfection and imaged 48 h post-transfection. Live PC12 cells were
imaged in the isotonic condition in buffer A (145mM NaCl, 5mM KCl,
1.2mMNa2HPO4, 10mMD-glucose and 20mMHepes, pH 7.4) at 37 °C.

Plasmids and fluorescent nanobodies
pmEos2-Munc18-1 (SNM) (Munc18-1-mEos2), pmEos2-N1 syntaxin 1a
(Sx1a-mEos2), and pEGFP-N1 syntaxin 1a (Sx1a-EGFP) have been pre-
viously described11. Fluorescently labeled antibodies (Synaptic Sys-
tems, anti-GFP Atto647N tagged nanobodies, Cat#: GFP sdAb -
FluoTag-Q - N0301-At647N-L) were reconstituted as per the manu-
facturer’s instructions and utilized at 3.19 pg/μl in live uPAINT
experiments.

SMLM acquisition
PC12 cells transfected with Sx1a-mEos2 or Munc18-1-mEos2 were ana-
lyzed by sptPALM. PC12 cells transfected with Sx1a-EGFP were ana-
lyzed by universal point accumulation in nanoscale topography
(uPAINT) as described in ref. 48, and tracked using anti-GFP Atto647N
tagged nanobodies46,57,58 at 3.19 pg/µl.

Live transfected cells were visualized on a Roper Scientific Total
Internal Reflection Fluorescence (TIRF) microscope equipped with an
iLas 2 double-laser illuminator (Roper Scientific), a NikonCFI Apo TIRF
×100/1.49 NA oil-immersion objective, and an Evolve 512 Delta EMCCD
camera (Photometrics). Time-lapse TIRFmovies (16,000 frames) were
captured at 50Hz for ~320 s at 37 °C.

For single-particle tracking photoactivated localization micro-
scopy (sptPALM) analysis, samples were illuminated simultaneously
with a 405 nm laser (Stradus, Vortan Laser Technology) to photo-
activate mEos2-tagged proteins, and a 561 nm laser (Jive, Cobolt
Lasers) for excitation of the photoconverted mEos2. A double-beam
splitter (LF488/561-A-000, Semrock) and a double-band emitter (FF01-
523/610-25, Semrock) were used to isolate the mEos2 signal from
autofluorescence and background signals. To achieve optimal spatial
and temporal separation of stochastic mEos2 blinking, the power of
the 405 nm and 561 nm laser was adjusted to 7.13mW/cm2 and
2.04 × 105mW/cm2, respectively, at the focal plane.

For uPAINT, experiments were performed according to
Giannone48. An anti-GFP nanobody57 tagged with ATTO 647N-NHS-
ester (Atto-Tec GmbH) was used to track Sx1a-EGFP single molecules.
PC12 cells were double transfected with Munc18-1-mEos2 and Sx1a-
EGFP to perform dual-color imaging. ATTO 647N–tagged anti-GFP
nanobodies were added at 1 nM for low-level stochastic labeling. Time-
lapse TIRF movies (16,000 frames) were recorded at 50Hz at 37 °C on
a TIRF microscope (Roper Technologies) equipped with an ILas2
double-laser illuminator (Roper Technologies). Each cell was imaged in
both control condition and stimulated condition (2mM BaCl2). A
quadruple beam splitter (LF 405/488/561/635-A-000-ZHE; Semrock)
and a quad band emitter (FF01-446/510/581/703-25; Semrock) were
used for illumination. The power of the 642 nm laser used was 60% of
the initial laser power (2.16 × 105mW/cm2measured at the focal plane).

All SMLM data were acquired using MetaMorph (Meta-Morph
Microscopy Automation and Image Analysis Software, version 7.7.8;
Molecular Devices) and further processed using the PalmTracer
software59. NASTIC uses trajectory data in the TRXYT format,

consisting of four header-less space-separated columns correspond-
ing to trajectory number, x coordinate (µm), y coordinate (µm) and
detection time (s). In this study, PalmTracer output was converted to
TRXYT format using a custom Matlab script. Typical TRXYT data:

1 9.0117 39.86 0.02
1 8.9603 39.837 0.04
1 9.093 39.958 0.06
1 9.0645 39.975 0.08
etc.

Software
While initial investigations were performed using multiple command
line driven Python scripts, we subsequently consolidated the analysis
into a suite of single-script graphic user interfaces (GUIs) suitable for
general use by non-programmers: NASTIC (nanoscale spatiotemporal
indexing clustering), Segment NASTIC (segNASTIC), Two-color NASTIC
(NASTIC2C) and two-color segNASTIC (segNASTIC2C). The programs,
collectively referred to as NASTIC, require Python 3.8 or greater, and a
number of modules which can be installed using:

python -m pip install scipy numpy matplotlib matplotlib-venn
pysimplegui rtree scikit-learn statsmodels colorama

The GUI was constructed using the tk version of PySimpleGui
(https://pysimplegui.readthedocs.io/). NASTIC was developed under
and should runwithout issues on 64 bitWindows 10 andWindows 11. It
will run withminor tk interface anomalies under Linux, but the authors
cannot guarantee optimum performance under MacOS. NASTIC uses
the Python multiprocessing module to fork computationally intensive
operations onto all available cores of thephysical or virtualmachineon
which it runs. This results in a significant increase in performance but
precludes packaging into standalone executables using PyInstaller,
and NASTIC will therefore only run on a computer with a Python 3.8+
environment.

TheNASTIC interface divides the analysis workflow into a series of
tabs that broadly allow the user to: (1) load, screen and display the
detections from an SMLM TRXYT file; (2) select or load one or more
rectangular or irregular regions of interest (ROIs) and optionally adjust
the density of selected trajectories within the ROIs; (3) adjust cluster-
ing parameters and apply NASTIC to the selected trajectories; (4)
display and save the results of the clustering with a high degree of
control over the presentation of trajectories, centroids and clusters;
and (5) run a series of post clustering analyses to visualizemetrics such
as segment overlap, MSD, diffusion coefficient and cluster overlap
probabilities, and save tabulated data for downstream comparative
analyses. Typical visualizations are shown in Figs. 3 and 4. Visualized
data are saved as 300 dots per inch (dpi) PNG files, and the main
clustering images can be additionally saved at a user-specified dpi in a
range of user-specified file formats (EPS, PDF, PNG, PS, SVG, TIF). The
coordinates of the ROIs are saved as tab separated roi_coordinates.tsv:
ROI, x coordinate (µm), y coordinate (µm), which can be loaded back
into the NASTIC ROI tab to facilitate future analyses. Analysis metrics
are saved as tab separated metrics.tsv, which can be viewed in any
spreadsheet or text editor, and further processed for comparative
studies using NASTIC Wrangler or other software.

Comparative analysis of multiple tabulated data files (generated
during step 5 above) from twoexperimental conditionswas performed
using another simple Python GUI designated NASTIC Wrangler. This
program allows the user to specify two directories, each consisting of
further subdirectories containing saved tabulated metrics data. NAS-
TIC Wrangler recursively reads and compiles the tabulated metrics
data from the subdirectories of each specified directory and outputs a
series of annotated comparative bar plots, thereby allowing the user to
examine the degree and significance of the change of a number of
spatiotemporal clustering metrics. The significance of any differences
in bar plots between conditions is determined by unpaired two-tailed
Student’s t-test.
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Statistics & reproducibility
Statistical analyses of clustering metrics returned by NASTIC were
performed via t-test as described above. Kolmogorov–Smirnov (KS)
was used to test for uniformity of distribution of trajectory centroids
with respect to x- and y- axes. Statistical tests are indicated in the figure
legends. Data were considered significant atp < 0.05 and are displayed
such that ns = no significance, *p <0.05, **p <0.01, ***p <0.001,
****p < 0.0001.

Data availability
The TRXYT data used during this study is available for download from
the publicly accessible institutional data repository of The University
of Queensland (UQ eSpace) https://doi.org/10.48610/0901bca. Source
data are provided with this paper.

Code availability
All Python codes used in this study are available at the GitHub repo-
sitory https://github.com/tristanwallis/smlm_clustering. The v1.0.0
release of the NASTIC suite is available at https://doi.org/10.5281/
zenodo.7847776. NASTIC and associated scripts are released under a
Creative Commons CC BY 4.0 licence: you are free to use and modify
the code on the proviso that you make any changes freely available,
acknowledge the original authors in derivative works and do not
release said works under a more restrictive licence.
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