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Retention time prediction for
chromatographic enantioseparation by
quantile geometry-enhanced graph neural
network

Hao Xu 1,2, Jinglong Lin1, Dongxiao Zhang 3,4 & Fanyang Mo 1,5

The enantioseparation of chiral molecules is a crucial and challenging task in
the field of experimental chemistry, often requiring extensive trial and error
with different experimental settings. To overcome this challenge, here we
show a research framework that employs machine learning techniques to
predict retention times of enantiomers and facilitate chromatographic enan-
tioseparation. A documentary dataset of chiral molecular retention times in
high-performance liquid chromatography (CMRT dataset) is established to
handle the challenge of data acquisition. A quantile geometry-enhanced graph
neural network is proposed to learn the molecular structure-retention time
relationship, which shows a satisfactory predictive ability for enantiomers. The
domain knowledge of chromatography is incorporated into the machine
learning model to achieve multi-column prediction, which paves the way for
chromatographic enantioseparation prediction by calculating the separation
probability. The proposed research framework works well in retention time
prediction and chromatographic enantioseparation facilitation, which sheds
light on the application of machine learning techniques to the experimental
scene and improves the efficiency of experimenters to speed up scientific
discovery.

In recent years, the rapid development of machine learning intelligence
has brought prosperity to the field of ‘machine learning for chemistry’1,
which spawns a series of applications including molecular properties
prediction2, drug discovery3, and retrosynthetic analysis4–6. Although
diversified machine learning models have been invented to accomplish
requirements in many research scenarios7–9, fundamental limitations
still lie in the aspects of dataset generation and molecular representa-
tions, which hinder the integration of machine learning and chemistry.

Datasets are fundamental to machine learning since the quantity
and quality of data directly relate to the performance of machine

learning models. Unfortunately, the generation of chemical data is
usually time-consuming and labor-intensive due to the experimental
attributes in chemistry. Therefore, high-throughput techniques com-
bined with automation have been developed to accumulate standar-
dized experimental data efficiently10,11. For example, our prior work12

has created an automated platform to conduct high-throughput thin-
layer chromatographic analysis. However, high-throughput systems
are usually expensive and targeted at specific scenarios, which is dif-
ficult to promote tobroaderfields. An alternativeway is collecting data
from published articles, but the quality usually varies from objective
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factors. It means that the uncertainty of data needs to be taken into
consideration.

Molecular representation is another issue that needs to be handled
properly. Chemical molecules usually have a variety of classic repre-
sentation ways, including SMILES13, fingerprints14, and descriptors15.
Although these ways have achieved gratifying performance in con-
structing quantitative structure-activity relationships (QSAR), they have
difficulty in representing 3D conformer-related properties like chirality
(Fig. 1a), which confines their further application. Fortunately, the
derivatives of the graph neural network (GNN), including geometry-
enhanced graph neural network (GeoGNN)16 and Uni-mol17, attempted
to incorporate 3D information to enhance the molecular graph repre-
sentation. However, massive data are required for training, which is
unaffordable in the experimental scene where data are usually scarce
and expensive.

In viewof the above-mentionedpain points,weexplore a research
framework to incorporate machine learning techniques into practical
problems in experimental chemistry. The prediction for chromato-
graphic enantioseparation is presented as a persuasive example in this

work, which is of great significance in synthetic chemistry, material
science, and biopharmaceutical18–20. High-performance liquid chro-
matography (HPLC) is the mainstream way for chromatographic
enantioseparation21; however, the choice of the experimental condi-
tion needs trial-and-error, which is tedious and time-consuming since
each trial may take tens of minutes (Fig. 1b). Therefore, in this work,
we construct a machine learning model that can predict the retention
time (RT) of given chiral molecules and recommend the most suitable
condition with the highest possibility of separation (Fig. 1b). Different
from previous works that focus merely on the quantitative
structure–retention relationship (QSRR) models22–25, we take a step
further to consider how the machine learning models can promote
chemical experiments practically. To this end, we pay more attention
to the normal-phase HPLC that is usually employed to separate chiral
molecules instead of reversed-phase HPLC in existing literatures25,26.
Our contribution can be summarized as follows:

1. A chiral molecular retention time dataset (CMRT dataset) is
established in this work by collecting experimental data reported in
644 articles about asymmetric catalysis. The CMRTdataset constitutes

Fig. 1 | The scheme for chromatographic enantioseparation. a The diagram for
chiral molecules, which are mirror images of each other, but not superimposable.
b The comparison between classic separation ways by multiple trials with different
conditions and machine learning (ML) models that can recommend the most sui-
table conditions with the highest separation probability. c The generation

procedure and contents of the chiral molecular retention time dataset (CMRT
dataset) in this work. Experimental data of 25,847molecules (including 11,720 pairs
of enantiomers) are extracted from 644 articles about asymmetric catalysis, con-
taining SMILES, experimental information, HPLC column information, and corre-
sponding retention time.
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the retention time of 25,847 molecules, which contains 11,720 pairs of
enantiomers, experimental information, and HPLC column informa-
tion. The molecules are recorded in the form of SMILES (Fig. 1c).

2. A machine learning framework called quantile geometry-
enhanced graph neural network (QGeoGNN) is constructed by com-
biningquantile learning andGeoGNN,which takes thedata uncertainty
and chiral molecular representation into consideration and shows
satisfactory performance in predicting retention times of chiral
molecules. In this framework, the domain knowledge of chromato-
graphy and experimental conditions are also incorporated into the
model to enhance its extendibility.

3. The prediction model can guide chromatographic enantiose-
paration by predicting the separation possibility in different condi-
tions and thus eliminating repeated trials, which provides a framework
for the utilization of machine learning techniques to facilitate experi-
mental chemistry where data are expensive and unstandardized.

Results
Backgrounds and the CMRT dataset
As a ubiquitous phenomenon in nature, molecular chirality is a sig-
nificant factor that affects molecular properties. A pair of chiral
molecules is termed as enantiomers, which are mirror images of each
other, but not superimposable (Fig. 1a). Although the molecular con-
stitution of enantiomers is identical with the same atoms and bonds,
their properties may be disparate due to the chirality. As an example,
left-handed thalidomide is an effective tranquilizer for parturition,
while the right-handed enantiomer leads to developmental abnorm-
ality in fetuses, and the mixture of enantiomers in the drug once
triggered a tragedy27. Generally, separating chiral molecules is a chal-
lenge because the constitutions of chiral molecules are identical. In
order to obtain enantiomerically pure compounds, several chroma-
tographic enantioseparation techniques have been developed in the
past decades to separate and analyze the chiral compounds28. Among
these techniques, high-performance liquid chromatography (HPLC)
becomes the mainstream way benefiting from its high efficiency and
popularity21. In HPLC, the retention time (RT) is a fundamental char-
acteristic, which is defined as the time of chromatographic compo-
nents from injection to peak (Fig. 1b). It can be used as a qualitative
basis for chromatographic enantioseparation since each compound
corresponds to a retention time under certain condition. In the chro-
matographic enantioseparation, the normal-phase HPLC column is
adopted where stereoregular chiral polymers are employed as chiral
stationary phases (CSPs) to differentiate chiralmolecules. Considering
that there exist diversified CSPs, different types of HPLC columns have
discrepant chiral recognition capacities for different chiral com-
pounds. However, the choice of experimental conditions, including
the column type, flow speed, and elution proportion, is currently
determined by experience and repeated trials (Fig. 1b). Therefore, this
work attempts to construct a machine learning prediction model to
predict retention times of chiral molecules and thus facilitating chro-
matographic enantioseparation.

To achieve this goal, the CMRT dataset is established by auto-
matically extracting experimental results from the relevant literature,
the extraction procedure of which is provided in the Method section.
Several interesting aspects of the field of asymmetric catalysis can be
reflected in the statistical analysis of the dataset including the con-
tribution of authors, the average new enantiomers reported in the
literature, and the usage frequency of HPLC columns, which are
detailed in Supplementary Information S1.1. Meanwhile, visualization
of molecules in the CMRT dataset is provided in Supplementary Fig. 3.

Construction of QGeoGNN
Benefiting from the natural graphic attribute of molecular struc-
ture, graph representation has attracted increasing attention in
recent years29. The atoms and chemical bonds in the molecule are

easy to be interpreted as a graph, which is referred to as Graph G
(Fig. 2a). The node and edge features in Graph G are related to the
characteristics of the molecular atoms and bonds, respectively.
Meanwhile, considering that the bond length and angle can
reflect the information of 3D conformation, another bond-angle
graph, Graph H, is constructed as a complement for Graph G to
incorporate geometry characteristics. In Graph H, the node fea-
ture is the bond length and the edge feature is the bond angle
(Fig. 2a). Compared with traditional molecular representations,
the graph representation can reflect chirality by the chiral tags for
labeling the handedness of chiral centers. Based on Graph G and
H, the quantile geometry-enhanced graph neural network
(QGeoGNN) is constructed. As illustrated in Fig. 2b, the proposed
QGeoGNN takes experimental settings (i.e., elution proportion)
into consideration, which makes the framework more appropriate
to address practical experimental scenes. Meanwhile, the incor-
poration of relevant molecular descriptors further assists to dis-
tinguish enantiomers from macroscopic molecular properties.
Through the graph convolution, the graph representations are
obtained and then transformed into the prediction through a
fully-connected layer. Details for the construction of QGeoGNN
are provided in the Method section.

According to the chromatographic process equation30, there
exists an inverse proportional relationship between the retention time
and flow rate, which is written as:

RT = t0 1 +K
Vs

Vm

� �
≈
1
v
ðVm +KVsÞ, ð1Þ

where RT is the retention time, K is the partition coefficient, v is
the flow rate, Vm and Vs are the volume of mobile and stationary
phase, t0 is the dead time, respectively. The equation has been
verified through experiments in our laboratory with controlled
experimental conditions, as described in the Method section.
However, since the data used in this study were collected from
diverse literature sources, variations in experimental environ-
ments may affect the accuracy of the equation. In general, we
expect the overall error of the equation to be around 1 (min×mL/
min), which is an acceptable level of accuracy for most applica-
tions. Upon analysis of the CMRT dataset, we discover that the
measured error of the equation is 1.37, which is slightly higher
than the expected error but still within an acceptable range
(Supplementary Fig. 4). It is important to note that this level of
error is not expected to affect the prediction of enantiosepara-
tion, as the experimental conditions for enantiomers will be the
same. Therefore, the prediction target is set to be RT×v (abbre-
viated as RTv) in this work to incorporate the chromatographic
process equation. Another important component of the proposed
QGeoGNN is the utilization of quantile learning, which takes
uncertainty into account. Conventional retention time prediction
tasks usually focused on the accuracy of the predicted retention
time while the uncertainty is neglected. However, the experi-
mental error will bring inevitable deviations to the measured
retention time. Specifically, in this case, the task of the prediction
model is not only to predict the retention time but also to further
guide chromatographic enantioseparation. Traditionally, whether
enantiomers can be separated is decided by the difference
between retention times, and the threshold is very small (usually
tens of seconds), which means the uncertainty and errors have a
great influence on whether the enantiomers are predicted to be
separable. Therefore, this work adopts an alternative way to
involve uncertainty to calculate the separation probability. The
measurement of uncertainty in deep learning models has
been studied extensively and diversified techniques have
been proposed, including the Bayesian techniques31,32, probability
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Fig. 2 | The construction of QGeoGNN. a An example of the translation from the
3D conformation of a molecule to two graphs including the atom-bond Graph G
and thebond-angleGraphH. Each graphconsists of node, edge, and corresponding
features. The edges are represented in the form of the adjacent matrix. b The
scheme of the QGeoGNN, the experimental settings, andmolecular descriptors are
incorporated in Graph G and H, respectively. The output neuron of QGeoGNN is 3,

namely, the 90th quantile, the prediction, and the 10th quantile. c The constituent
of the loss function inQGeoGNN, including the quantile loss, the quantile limit, and
the deadtime limit. Here, ytrue, ypred, y10, and y90 are the observation, prediction, the
predicted 10th quantile, and the predicted 90th quantile, respectively. ReLu refers
to the linear rectification function.
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distribution modeling33, and quantile learning34. Compared with
other methods that require sophisticated modification of the
model, quantile learning has better universality and applicability
since it can predict the percentiles by simply adding quantile loss
to the loss function, which is written as:

Lαðytrue,yαÞ=
X

i = ytruei <yαi

ð0:01α � 1Þ∣ytruei � yαi ∣

+
X

i= ytruei ≥ yαi

0:01α∣ytruei � yαi ∣
ð2Þ

where Lα is the quantile loss, α is the quantile, ytrue and yα are the
observed data and the quantile prediction. In this work, the loss
function of QGeoGNN consists of three parts, namely quantile loss,
quantile limit, and deadtime limit (Fig. 2c). The quantile loss enables
the QGeoGNN to learn the predicted value, 90th quantile, and 10th
quantile simultaneously, while the quantile limit and deadtime limit
function as the constraints to make outputs conform to the mathe-
matical and physical restriction.

Single-column prediction
As illustrated in Fig. 3a, in the area of asymmetric catalysis, various
kinds of columns are adopted to handle diversified molecules due to
the difficulty of chromatographic enantioseparation. The differences
between HPLC column types come from many aspects like CSPs and
column model, which affects the chiral recognition ability of HPLC
column towards a wide variety of compounds. Among them, ADH,
ODH, IC, IA, and OJH are the most frequently utilized column types in
the dataset that we collected. From Fig. 3b, it can be seen that the
probability density distribution of the retention times in these col-
umns is similar, where the RTs of most molecules are in the range of
5min to 30min. To better demonstrate the prediction ability of the
proposed QGeoGNN, in this section, single-column prediction is con-
ducted where a prediction model is created in each column type. The
benefits of the single-column prediction lie in that the conditions of
the column are fixed in each predictive model, which means that the
data has a good consistency and is conducive to learning the under-
lying molecule structure-retention time relationship. For each model,
the dataset is split into the training dataset, validating dataset, and
testing dataset by 90/5/5. The training dataset is utilized to train the
model and the validating dataset is employed for early stopping. The
testing data is utilized to examine themodel’s performance of the out-
of-sample prediction. Considering the distribution of RT values, data
pointswithRTvgreater than60aredropped. Thepredicted results and
corresponding mean average error (MAE), median relative error
(MRE), andR2 are shown in Fig. 3c. It is observed that theQGeoGNNhas
a good predictive ability for each columnwith R2 all larger than 0.7 and
the MAE all below 3, which indicates that the molecular structure-
retention time relationship has been learned well.

To eliminate the influence of randomness in splitting the dataset,
cross-validation is conducted for each column type, and the results are
shown in Supplementary Fig. 5. From cross-validation, it is discovered
that the model’s performance is restricted to some extent since there
exist multiple mild outliers, which means the prediction accuracy of
the model for some samples needs to be improved. As intuitively
discovered in the previous literature25, the performance of the ML
model usually depends on the similarity between the predicted and
trained molecule’s structure. Considering that the advantage of using
the MLmodel instead of just using literature search for retention time
prediction and chromatographic enantioseparation is to be able to
predict the enantiomers not reported in the literature, the general-
ization ability of the model to enantiomers with different levels of
similarity is further investigated. In this study, the Tanimoto similarity
coefficient is employed to measure the similarity between 2D struc-
tures of two molecules, the range of which is from 0% to 100%. For

each model in cross-validation, the Tanimoto similarity coefficient
between each enantiomer in the testing dataset and all enantiomers in
the training dataset are calculated. Several similarity thresholds are
utilized to differentiate the similarity level including 95%, 90%, 80%,
70%, 60%, and 50%. Therefore, all data are categorized into six groups
where the molecules in each group as the testing dataset have at least
one similar molecule in the training dataset above a specific similarity
threshold. The ODHmodel is taken as an example here, where the size
of groups are n95 = 923 (18.7%), n90 = 1009 (20.4%), n80 = 1672 (33.8%),
n70 = 3030 (61.3%), n60 = 3956 (80.1%), and n50 = 4491 (90.9%),
respectively. Of note, there are 9.1% of enantiomers whose similarity
with anymolecule in the training dataset do not exceed 50%. TheMAE
andMRE of the prediction in these groups are illustrated in Fig. 3d. It is
confirmed that the generalization ability is highly related to the
molecular similarity since the prediction accuracy of the model
diminishes evidently with the decrease of similarity. For molecules
with over 90% similarity, the model’s performance is satisfactory with
average relative and absolute errors of only 12.7% and 2.0, while the
error raises to 15.7% and 3.0 with over 50% similarity. Compared with
existing literature that predicts retention time in UPLC35 and reversed-
phase HPLC25, the prediction error of our model is slightly higher. It is
mainly because the inner similarity of the CMRTdataset obtained from
the literature is overall lower than the dataset obtained from actual
experiments. Meanwhile, the task of chromatographic enantiose-
paration in normal-phase HPLC is more complex and the retention
times are typically longer.

To better reveal the predictive ability of the proposed QGeoGNN,
the influence of data volume and noise is investigated where the pre-
diction on the ODH column is taken as an example. The data noise is
added as:

ŷ= y+ ε � stdðyÞ � Nð0,1Þ ð3Þ

where ŷ is the noisy data, y is the observation data, std(y) refers to the
standard deviation of the observation data, and N(0,1) is the normal
distribution. The results are illustrated in Fig. 3d. It is discovered that
the QGeoGNN is robust to data noise since the performancemaintains
stability faced with 10% data noise. At the same time, the observation
data itself has inevitable experimental errors, which further verifies the
superiority of the proposed method in dealing with noise. In terms of
data volume, it is found that the prediction accuracy increaseswith the
increase of training data ratio, and the trend of increase keeps
apparentwith 90%of the data, whichmeans that ifmore sufficient data
is provided, the prediction accuracy of QGeoGNN still has ample room
for improvement.

Multi-column prediction
On the basis of the satisfactory performance of QGeoGNN in single-
column prediction which confirms that the proposed framework is
able to learn the molecular structure–retention relationship well,
multi-column prediction is conducted in this section that acquires to
integrate thepredictionof diversified types of columns into a synthetic
model. Here, the domain knowledge of chromatography is combined
with machine learning techniques to facilitate model construction. In
the HPLC column that is depicted in Fig. 4a, CSPs are derived from
polysaccharides, including cellulose and amylose which are some of
the most common chiral bio-based polymers in nature. As the insuf-
ficient chiral recognition ability of cellulose and amylose, their deri-
vatives such as esters and carbamates modified with corresponding
substituents are more frequently applied for both analytical and pre-
parative enantioseparations36. The CSPs are usually immobilized or
coated to silica gel. Therefore, in this work, three main factors are
taken into consideration that affect the chiral recognition perfor-
mance of HPLC columns, including the CSPs, the connection type
(immobilized or coated), and the packing material (silica) size.
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In this work, all types of HPLC columns in the dataset are com-
posed of different collocations of two substrates and seven sub-
stituents (Fig. 4a). The substrate is digitized by 0 (amylose) and 1
(cellulose), and the connection type is digitized similarly by 0
(immobilized) and 1 (coated). They are incorporated into the edge

features in Graph G of QGeoGNN along with the packing material size
(Fig. 4b). The properties of CSPs described by relevant descriptors
are added to the edge features in Graph H. As illustrated in Fig. 4b, the
edge features of Graph G and Graph H can be represented by feature
matrixes and the incorporation of column features can be conducted

AmountAmountAmount Retention time

ADHADH
Pr

ed
ic

tio
n

Observation

MAE=2.87
MRE=16.5%
R2=0.724

MAE=2.74
MRE=15.8%
R2=0.778

MAE=2.68
MRE=16.1%
R2=0.832

MAE=2.91
MRE=12.9%
R2=0.739

ADH ODH IC IA

M
AE

M
R

E(
%

)

Noise level Training data ratio

a b

c

d

Similarity

ODHODH

ICIC IAIA

Fig. 3 | The performance of QGeoGNN for single-column prediction. a The data
amount of each column type in the CMRTdataset established in this work. Only the
first 12 column typeswith the largest volume are displayedhere.bThe violin plot of
the retention time in the subset of ADH (5418 data), ODH (4972 data), IC (2091
data), and IA columns (1849 data). The black linesmean theminimum,median, and
maximum values, respectively. Molecules with retention time larger than 70min
are rare and are regarded as outliers. c Observation versus prediction for the

proposed QGeoGNN to predict out-of-sample molecules. Only testing data are
shown in plots. The dashed line is the y = x line. The measurements are the mean
average error (MAE), median relative error (MRE), and coefficient of determination
(R2).dThe influence of similarity (left), data noise (middle), and data volume (right)
on the single-column prediction model. Source data are provided as a Source
Data file.
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by the augmentation of the respective feature matrix. Details of the
incorporation of column information are provided in the Method
section. In this way, all data in the CMRT dataset can be adapted to
train a synthetic model for multi-column prediction, which enhances
the availability of data. Considering that it is unrealistic to establish
single-column prediction models for some less frequently used col-
umns, where the data volume is small and insufficient for model con-
struction, the multi-column prediction models combine the domain
knowledge of chromatography with the machine learning model so
that it can handle a variety of columns, which further improves the
flexibility and scalability of the framework. The predictive perfor-
mance of the multi-column prediction models is illustrated in Fig. 5a,
where the entire data is split into 90/5/5 and the prediction on testing
data is depicted in the figure. Facedwith data fromdiversified columns
and experimental conditions, the R2 and MAE of the predictive model

still achieve0.702 and3.40,which confirms thepredictive ability of the
synthetic model. An additional experiment is conducted in Supple-
mentary Information S2.3 to observe the influence of column features
in the multi-column prediction, and the results show that the incor-
poration of column information is of great importance for the accu-
racy of QGeoGNN.

In order to better demonstrate the superiority of the proposed
QGeoGNN, conventional machine learning techniques, including LGB,
XGB, artificial neural network (ANN), and GNN, are adopted to train
prediction models for comparison. In LGB, XGB, and ANN, the mole-
cular fingerprints and descriptors are employed for representation,
while GNN only utilizes Graph G for molecular representation. The
column information is incorporated into these models as well and
other conditions are kept the same. For LGB, XGB, and ANN, the col-
umn information is combined with the input fingerprints and

Fig. 4 | The incorporation of column features inmulti-columnprediction. aThe
domain knowledge of chromatography by HPLC, which is consisted of the chiral
stationary phase (CSP) and mobile phase. For CSPs, the packing material size,
substrates, substituents, and connection type (immobilized or coated) will affect
the chiral recognition ability of HPLC columns. The inner diameter and column
length can also influence the chiral recognition ability, but they are kept the same in
commercial HPLC columns. b The illustration for the incorporation of column

information. num_messages_G and num_messages_H refer to the number of mes-
sage paths (normally equals the number of edges) for Graph G and H, respectively.
The column properties include the packing material size, substrates (cellulose or
amylose), and connection type (immobilized or coated). The CSP descriptor
includes moran coefficient (MATS), total polar surface area (TPSA), relative polar
surface area (RPSA), relative hydrophobic surface area (RASA), and molecular dis-
tance edge (MEDC) of the CSP.
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descriptors. For GNN, the column information is formed similarly and
incorporated in Graph G. More details of implements of these con-
ventional models are provided in the Method section. The results are
provided in Fig. 5b. It is obvious that classic tree-basedmodels like LGB
and XGB have poor predictive performance. On the other hand, the
ANN can grasp the general relationship, but the accuracy needs to be
improved. In comparison, theGNN-basedmodels show superior ability
where R2 of GNN and QGeoGNN achieve 0.620 and 0.702 while the
MAE reaches 3.95 and 3.40, respectively. This is an interesting phe-
nomenon since the conventional tree-based and ANN-based models
often perform well in most chemical molecular prediction tasks,
including previous literature on RT prediction24–26. In order to reveal
the reasons behind this phenomenon explicitly, we provide the pre-
diction of two pairs of example enantiomers given by different
machine learning models in Table 1. It is evident that the conventional
models have difficulty in differentiating enantiomers since the pre-
dicted RTs are very close, even the same, which accounts for the poor
performance on the CMRT dataset with enantiomers. In contrast,
the QGeoGNN can not only distinguish enantiomers well but also pro-
vide an accurate predicted RT and its value range. The results demon-
strate that the representation of chiral information is of great
significance in the chromatographic enantioseparation task considered
in this work, and the graph is proven to be a superior representation
method than the conventional molecular fingerprints and descriptors
when dealing with enantiomers. In addition, compared with GNN, the
additional Graph H that incorporates the information of 3D conforma-
tion assists to learn the inherent molecular structure–retention rela-
tionship, which further improves the predictive ability of the model.

Chromatographic enantioseparation probability assessment
The ultimate goal of the retention time predictionmodel is facilitating
chromatographic enantioseparation, which has been an outstanding
issue all along. The difficulties for machine learning mainly con-
centrate on two aspects including chiral representation and error
sensitivity. Specifically, chiral representation decides the ability to

distinguish enantiomers while the error sensitivity determines the
accuracy. Benefiting from the geometry-enhanced graph representa-
tion and the quantile learning, the proposed QGeoGNN provides a
promising way to handle the above-mentioned challenges and thus
facilitate chromatographic enantioseparation. In order to quantita-
tively evaluate the probability of enantioseparation under certain
experimental conditions like column types, flow rate, and elution
proportion, a chromatographic separation probability Sp is proposed
based on the predicted value ranges of enantiomers. In this work, Sp is
defined based on the naïve principle that the area within the over-
lapping part of the value range is considered inseparable, while other
areas are separable. The conceptual formula can be written as:

Sp =
Lseparable
Ltotal

ð4Þ

where Lseparable refers to the length of the value range in which the
enantiomers are predicted to be separable and Ltotal refers to the total
length of the value range. As detailed in the Method section, the
separation probability Sp is derived and calculated as:

Sp = 1�
maxð0,RTmin

90 � RTmax
10 Þ

RTmax
90 � RTmin

10

ð5Þ

where RTmax
90 and RTmin

90 are the maximum and minimum of 90th per-
centiles for both enantiomers, RTmax

10 and RTmin
10 are the maximum and

minimum of 10th percentiles, respectively (Fig. 6a). The unit of RT is
minute while Sp is dimensionless. The defined chromatographic
separation probability Sp ranges from 0 to 1. A higher Sp refers to a
higher possibility that the enantiomers are predicted to be separable
by the model. Some examples are given in Fig. 6a to better illustrate
the separation probability. It is found that the proposition of Sp assists
to eliminate the impact of prediction errors to some extent. Specifi-
cally, single predicted values have low fault tolerance since the
separation threshold is rigorous (usually tens of seconds). In

Fig. 5 | The comparison betweenQGeoGNN and conventionalmachine learning
techniques formulti-column prediction. aObservation versus prediction for the
proposed QGeoGNN to predict out-of-sample molecules in diversified high-
performance liquid chromatography (HPLC) columns. b Observation versus pre-
diction for LightGBM (LGB), XGBoost (XGB), artificial neural network (ANN), and

graph neural network (GNN) for comparison. Only testing data are shown in plots.
The dashed line is the y = x line. The measurements are the mean average error
(MAE), median relative error (MRE), and coefficient of determination (R2). Source
data are provided as a Source Data file.
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comparison, quantile learning provides potential value ranges in
consideration of uncertainty, which can provide a separation prob-
ability instead of simple yes or no, which improves fault tolerance rate,
and is more meaningful for chromatographic separation. Meanwhile,
chromatographic enantioseparation prediction requires the model to
learn the difference between enantiomers well. It means that although
the prediction error in multi-column prediction (MRE= 18.3%) seems
to be much greater than the separation threshold, chromatographic
enantioseparation prediction is still possible.

In order to demonstrate the ability of the proposed model to
facilitate chromatographic enantioseparation, several experiments are
conducted in this section. First, 412 pairsof enantiomers (i.e., 824data)
are randomly selected from the CMRT dataset to form the testing
dataset while the training dataset (23,020 data) and validating dataset
(904 data) are randomly chosen from the remaining data to train the
prediction model. The separation probability Sp of the enantiomers in
the testing dataset is calculated and illustrated in Fig. 6b. Considering
that the proposed separation probability is a naïve estimation of the
probability of enantioseparation under certain experimental condi-
tions, the threshold todeterminewhether enantiomers are regardedas
separable is decided in the practical scene to be 0.38, which is detailed
in Supplementary Information S2.4. Therefore, in this work, we regard
those enantiomerswith Sp >0.38 as separable, and the accuracy for the
separation of 412 pairs of enantiomers reaches 85.7%. The high accu-
racy confirms the ability of the proposed QGeoGNN to predict chro-
matographic enantioseparation. In order to assess the influence of
molecular similarity on the accuracy of enantioseparation prediction,
additional investigations are conducted using the same methodology
as described above. Specifically, we use six similarity thresholds (>95%,
>90%, >80%, >70%, >60%, and >50%) to group themolecules, resulting
in different group sizes: n95 = 4 (0.97%), n90 = 17 (4.13%), n80 = 118
(28.6%), n70 = 273 (66.3%), n60 = 367 (89.1%), and n50 = 403 (97.8%),
respectively. As illustrated in Fig. 6c, our results demonstrate that the
accuracy of the model is highly dependent on the structural similarity
of the enantiomers being predicted. Specifically, the prediction accu-
racy of the model reaches an accuracy rate of 100% and 94.1% for
molecules with a similarity of >95% and >90%, respectively. However,
as the similarity threshold decreases, the prediction accuracy of the
model also decreases, indicating that the model may have limitations
in accurately predicting enantioseparation for more dissimilar com-
pounds. It is worth noting that chromatographic enantioseparation
prediction differs from typical classification tasks owing to its dis-
tinctive requirements. Considering the difficulty of chromatographic
enantioseparation, a suitable separation condition is very important
but scarce, which means that it is unaffordable to predict a separable
situation as inseparable (Type I error) since it may miss the precious

suitable separative conditions. In contrast, it is relatively acceptable to
predict the inseparable condition as separable (Type II error), because
this will only induce additional experiments. Benefiting from themulti-
column prediction accomplished by QGeoGNN, the separation prob-
abilities of the same enantiomers in different types of HPLC columns
can be obtained and compared, which can directly reflect the pre-
dicted chiral recognition ability of each column to the given enantio-
mers, thus providing suggestions on selecting proper experimental
conditions without tedious trails and errors. In Fig. 6d, we provide an
example of the utilization in practical application. To separate enan-
tiomers, multiple candidate conditions composed of six column types
and corresponding proportions and flow rates are considered to select
the most proper separative condition. The selected column types are
those frequently utilized in chromatographic enantioseparation and
commonly seen in the organic laboratory. For each column, the pro-
portion and flow rates of the candidate condition are determined by a
domain expert that is likely to generate a suitable retention time. If
experiments are conducted to try with all these conditions, it will take
several hours. In contrast, theQGeoGNNonlyneeds seconds topredict
the separation probability under each condition, which can be visually
depicted in the figure, and easy to find themost proper situations with
the largest Sp and moderate predicted retention time, thus saving
appreciable time for experimenters. The experimental experiments
confirm that the enantiomers can only be separated in the IG column,
which is consistent with the prediction. For comparison, four con-
ventional techniques including XGB, LGB, ANN, and GNN, are trained
under the same condition and tested with the same enantiomer and
candidate conditions. The4RT is calculated for each of the candidate
conditions, which is denoted as ∣RT 1 � RT2∣. The results are depicted
in Fig. 6e. Traditionally, whether the enantiomers can be separated is
decided by the 4RT , and the separation threshold is usually 0.3min
(black dotted line in Fig. 6e). It can be seen that ANN, LGB, and XGB
cannot distinguish enantiomers since the predicted retention time of
enantiomers is similar and even the same (4RT close to 0). Therefore,
these threemethods tend to predict all enantiomers to be inseparable,
which proves that they do not have the ability for chromatographic
enantioseparation prediction. It is found that GNN can learn the
difference between enantiomers, however, the prediction is com-
pletely wrong. As shown in the figure, it predicts ADH, IC, and ID to
be separable while ODH, IG, and ASH are inseparable. Nevertheless,
the real situation is that only the IG column can separate the enan-
tiomers. It proves the accuracy of GNN is limited and insufficient
to provide correct guidance for practical experiments. The compar-
ison further proves the superiority of the proposed QGeoGNN
and separation probability in chromatographic enantioseparation
prediction.

Table 1 | Predicted retention time of two pairs of example enantiomers given by different machine learning models, including
LightGBM (LGB), XGBoost (XGB), artificial neural network (ANN), and the proposed QGeoGNN

Reference 20.1 23.7 17.2 19.7

XGB 15.1 15.1 17.1 17.1

LGB 14.7 14.7 17.3 17.3

ANN 33.1 30.2 14.0 14.0

QGeoGNN 19.3–22.0 (20.7) 22.8–26.0 (24.5) 16.8–19.1 (18.0) 18.9–21.3 (20.1)

The result of QGeoGNN is presented in the form of the 10th quantile to 90th quantile (predicted retention time)
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Discussion
In thiswork, a research framework is proposed to incorporatemachine
learning techniques into the field of experimental chemistry to pro-
mote the efficiency of the researchers practically when faced with
chromatographic enantioseparation. The proposed framework of
quantile geometry-enhanced graph neural network (QGeoGNN) focu-
ses on addressing several core issues including data acquisition, chiral
molecular 3D representations, and data uncertainty. Firstly, Benefiting
from the consistency of standardized commercial HPLC columns, this
work manages to construct a chiral molecular retention time dataset
from numerous articles in the area of asymmetric catalysis and thus
solve the problem of data acquisition. Secondly, a specialized graph
neural network called QGeoGNN is established by incorporating
molecular 3D conformation, experimental conditions, relevant
descriptors, andquantile learning tobemore suitable for experimental
practice. Considering that the experimental results inherently have
uncertainty, the quantile learning technique attempts to capture the
uncertainty during the training process and can provide a value range.
Thirdly, domain knowledge like chromatographic process equation

and HPLC column features is combined with machine learning tech-
niques to further improve the predictive performance of the model.
Finally, separation probability is defined in this work to measure the
predictive probability of enantiomers being separated under a given
condition to facilitate chromatographic enantioseparation.

Experiments have confirmed that the QGeoGNNhas a satisfactory
ability to predict the retention time of chiral molecules in single-
column and multi-column predictions. Furthermore, the QeoGNN can
predict the separation probability in diversified conditions quickly and
flexibly, and recommend suitable conditions by comparison, which
will promote the efficiency of chromatographic enantioseparation.

At present, this research remains some shortcomings that can be
improved in the future. Firstly, the representativeness and quality of
the data are uncontrolled and sometimes biased since they are
extracted from existing literature, which will affect the predictive
performanceof themachine learningmodel. Second, due to the lackof
repeated test data reported in the literature for the same molecule,
data uncertainty is learned from similar molecules. Third, prediction
accuracy still needs to be improved when faced with unfamiliar

Fig. 6 | Definition and application of Chromatographic enantioseparation
probability assessment. a The definition of separation probability and some
examples under different conditions, including an inseparable situation under the
ADH column and two separate situations under ODH and OJH columns. The red
cross refers to the observed data while the lines in error bar refers to 90th quantile,
predicted retention time (RT), and 10th quantile, respectively, which are predicted
by the model. b The violin plot of the distribution of calculated Sp for 412 pairs of
testing enantiomers. The black lines mean the maximum, median, and minimum

values, respectively. c The accuracy of enantioseparation prediction for the enan-
tiomers with different thresholds of similarities. d An example of the utilization in
practical application, including prediction of retention time and Sp for the
same enantiomers under different columns made by multi-column prediction
model (left), and verification experiments (right). Sp refers to the separation
probability. e The4RT for each of the candidate conditions with four conventional
ML methods. The dark dotted line refers to the separation threshold. Source data
are provided as a Source Data file.
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molecules with low similarity. Lastly, the feature extraction process
could be further optimized to better represent chiral-related infor-
mation. Despite these limitations, we believe that this framework has
significant potential to facilitate the experimental process by enabling
more efficient and effective determination of proper experimental
conditions in chromatographic enantioseparation.

Methods
The graph representation for molecules
In this work, the molecular representation is accomplished by con-
structing two graphs, Graph G and H (Fig. 2a). In data science, graphs
are often used to describe unstructured data like social networks,
chemicalmolecules, and traffic networks. A typical graph is composed
of several nodes and edges that indicate the connection relationship.
As illustrated in Fig. 2a, Graph G expresses the plane structure of the
chemical molecule where the nodes refer to the atoms and the edges
refer to the chemical bonds. The feature of each node in Graph G
contains 9 properties of the corresponding atom, including the atomic
number, chiral tag, degree, explicit valence, formal charge, hybridi-
zation, implicit valence, aromaticity, and the number of connected
hydrogen atoms. The feature of each edge in Graph G contains 3
properties of the corresponding bond including bond direction, bond
type, and whether in the ring or not. In this work, the experimental
condition, elution proportion, is also added to the feature of each
bond. On the other hand, Graph H describes the 3D conformation of
the molecule where nodes refer to the bond and edges refer to the
bond angle (Fig. 2a). The feature of eachnode inGraphH contains only
one property, the length of the corresponding bond, while the feature
of each edge in Graph H contains six properties including the bond
angle and five relevant descriptors, namely total polar surface area
(TPSA), relative polar surface area (RPSA), relative hydrophobic sur-
face area (RASA), molecular distance edge (MEDC), and moran coef-
ficient (MATS). Themolecular descriptors are calculated by the python
package Mordred and chosen according to the spearman coefficient
that identifies the correlation with retention time. In multi-column
prediction, the features of HPLC columns are incorporated in the edge
feature of Graph G.

Details for QGeoGNN
The optimization of the graph neural network (GNN) is accomplished
based on the message-passing mechanism. Specifically, for node i, its
representation vector hk

i at the kth iteration can be written as:

ak
i =A

kðhk�1
i ,hk�1

j2NðiÞ,xijÞ, ð6Þ

hk
i =C

kðhk�1
i ,ak

i Þ ð7Þ

Here, Ak and Ck are the aggregation function and the update
function in the kth iteration. They function as aggregating messages
from a node neighborhood and updating the node representation16.
N(i) is the neighborhood of node i, and xij is the edge that connects
node i and its neighborhood node j. In the final iteration, the readout
function, i.e., the pooling function, is employed to obtain the graph
representation hG from the node representations in the final iteration
K. The formula can be expressed as:

hGraph =RðhK
i ∣i 2 IÞ ð8Þ

whereR is the readout function and I is the collection of all nodes in the
graph. In this work, the readout function is the summation.

The GeoGNN proposed in this work involves the massage passing
in two graphs, Graph H and G, simultaneously. Therefore, its optimi-
zation mechanism is a little more complex, which is detailed in this
section. In GeoGNN, the node representations in Graph H are first

calculated in the same way as Eq. (6), which can be formalized as:

ak
Hi
=AH

kðhk�1
Hi

,hk�1
Hj2NðHiÞ,xHiHj

Þ, ð9Þ

hk
Hi
=Ck

Gðhk�1
Hi

,ak
Hi
Þ ð10Þ

whereHi andHj are the node i, j in Graph H. Considering that the node
of Graph H and the edge of Graph G are both related to the bonds of
the molecules, a bridge that transforms information between Graph H
andG is constructed. Therefore, the node representations in theGraph
G are obtained in consideration of the hk�1

Hi
, which is written as:

ak
Gi
=AG

kðhk�1
Gi

,hk�1
Gj2NðGiÞ,h

k�1
Hi

Þ, ð11Þ

hk
Gi
=Ck

Gðhk�1
Gi

,ak
Gi
Þ ð12Þ

It can be seen that the information ofGraphH is incorporated into
the node representations of Graph G. Then, the readout function is
conducted to obtain the graph representation of QGeoGNN as:

hGraph =RðhK
Gi
∣i 2 IÞ ð13Þ

In this way, the information of 3D conformation for the molecule
including the bond length and bond angle is incorporated into the
QGeoGNN to get a graph representation that can distinguish the
enantiomers.Considering that thehGraph is a vectorwith thedimension
of embedding size, a fully connected layer is adopted to transform the
graph representation into the prediction.

Quantile geometry-enhanced graph neural network (QGeoGNN)
The QeoGNN is constructed based on the graph representation and
the graph isomorphism network (GIN). The fundament of GIN is the
graph isomorphic convolution layer (GINConv)37, which is defined as:

x0i =hθ ð1 + εÞ � xi +
X
j2NðiÞ

xj

 !
ð14Þ

where x0
i and xi are the node representations in the next layer and

current layer, respectively. xj is the representation in the adjacent
nodes. hθ is a multilayer perceptron (MLP) andε is a constant that
equals 0 in this work. In the QGeoGNN, the node embedding is per-
formed for each node in Graph H to obtain the corresponding node
representation based on GINConv. Then, the node representation of
Graph H is added to the edge representation of Graph G to build a
bridge for information transmission between Graph G and Graph H.
Afterwards, the node representation of each node in GraphG obtained
by node embedding is pooled to get the graph representation. Finally,
a fully-connected layer is used to transform the graph representation
into the prediction. Deep quantile learning is incorporated into the
QGeoGNN by modifying the loss function.

Benefiting fromthedeepquantile learning technique employed in
this work, the quantiles of the prediction that is seen as a variable can
be obtained. In this work, we choose the 90th quantile and 10th
quantile as the upper and lower bound to measure the uncertainty of
the predicted RTv. Therefore, the output neuron of the fully-
connected layer is 3. The quantile learning is accomplished by the
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quantile loss in the loss function, which is written as

Loss =
1
N

XN
i = 1

ytruei � ypredi

� �2
+ L90 ytrue,y90

� �
+ L10 ytrue,y10

� �

+
1
N

XN
i= 1

ReLu y10i � ypredi

� �
+

1
N

XN
i= 1

ReLu ypredi � y90i
� �

+
1
N

XN
i= 1

ReLuð2� ypredi Þ:

ð15Þ

The loss function is composed of three parts including the
quantile loss, quantile limit, and deadtime limit. The quantile loss
function is defined in Eq. (2). The essence of quantile loss is a seg-
mented function, which separates overestimated and underestimated
cases and gives different coefficients. Through the quantile loss, the
different quantiles of the target value can be learned during training. It
is worth noting that themean squared error is utilized in predicting the
RTv instead of the mean absolute error in conventional quantile
learning becausewe find that it ismore suitable for the optimizationof
the geometry-enhanced graph neural network. Meanwhile, some
physical and mathematical constraints, including quantile relation-
ships and the dead time limit. For example, the relationship
y10 ≤ ypred ≤ y90 should be satisfied. In the HPLC column, dead time
refers to the retention time of components that do not interact with
fixation, which is the lower bound of the retention time (RT). In this
work, the deadtime limit of RTv is 2, which is decided based on the
analysis of the datasets. These constraints in the loss function can
avoid the QGeoGNN to make predictions that do not conform to
physical and mathematical laws, which improves its accuracy and
confidence.

The incorporation of column information
For multi-column prediction, the column information is incor-
porated into the QGeoGNN. In this section, the details for the
incorporation of column information are detailed. As illustrated
in Fig. 4b, QGeoGNN involves two graphs, the atom-bond graph
(Graph G) and the bond-angle graph (Graph H). In the graph
neural network, the graph structure is described in the form of
the adjacent matrix (Fig. 2a). Considering that the adjacent matrix
is usually sparse, a compact form called the coordinate matrix
(COO matrix) is adapted to represent the sparse matrix to
improve storage and computing efficiency. Therefore, the edge
index of a graph can be represented in the form of a COO matrix
with the size of [2, num_messages]. The variable num_messages
refers to the number of massage paths, which normally equals the
number of edges. The feature of each edge corresponds to a
relevant vector that incorporates several important attributes.
Therefore, the feature for all edges can be expressed by a matrix
with the size of [num_messages, num_features], where the variable
of num_features refers to the number of relevant attributes. In the
multi-column prediction, the connection type, substrates, and
packing material size are incorporated into the edge features in
Graph G. The properties of CSPs are described by relevant
descriptors and are added to the edge features in Graph H. As
illustrated in Fig. 4b, the edge feature of Graph G turns to be the
size of [num_messages_G, 7] by adding the attributes of the col-
umn’s properties, including the packing material size, substrates
(cellulose or amylose), and connection type (immobilized or
coated), and each of them is represented by a vector with the size
of [num_messages_G, 1]. Of note, the substrate is digitized by 0
(amylose) and 1 (cellulose), and the connection type is digitized
similarly by 0 (immobilized) and 1 (coated). Similarly, the column
descriptors (CSP descriptors) are incorporated into Graph H to
augment the feature matrix to the size of [num_messages_H, 11]. In

this work, the graph neural network (GNN) with merely graph G is
employed for comparison. Therefore, for GNN, all column infor-
mation including the column’s outer features and descriptors are
added to the edge feature matrix of Graph G along with the
molecular descriptors to generate a matrix with the size of
[num_messages_H, 17].

Automatic construction of the CMRT dataset
In this work, a chiral molecular retention time (CMRT) dataset is
established by extracting experimental outcomes from 644 articles
about asymmetric catalysis. The dataset constitutes the retention time
of 25,847 molecules, which contains 11,720 pairs of enantiomers,
experimental information, and HPLC column information. The basic
flowsof constructing the dataset involve severalmajor steps, including
determining the data sources, downloading the supplementary infor-
mation, converting the format, extracting the information, and pre-
processing the data. First, 18 research groups that are committed to
the research of asymmetric catalysis for years are considered to be the
data sources. Then, the supplementary information of relevant articles
(644 articles) is downloaded from the journal websites successively
and manually. Afterward, the pages of HPLC experimental reports in
each article are extracted and converted to text format (.txt). The
converted texts from each article are copied and combined into a
separate text file. Benefitting from the similar format of reporting the
experimental outcomes in the literature of asymmetric catalysis, the
experimental results can be extracted automatically through natural
language processing techniques, which is detailed below. Finally, the
extracted data are pre-processed to obtain the formatted data, where
rapid verification is conducted manually to exclude data with obvious
errors caused in the extraction process.

Benefitting from the similar format of reporting the experimental
outcomes in the literature of asymmetric catalysis, we can extract the
data automatically. A typical experimental report in the article is pro-
vided in Supplementary Figure. 1 as an example38. This experimental
report is usually placed in the supplementary materials of the relevant
literature, which have been downloaded beforehand. For each repor-
ted chiral molecule, there will exist a corresponding experimental
report. A program is written to extract data automatically and the
principle is detailed below. As shown in Supplementary Fig. 1a, the
molecular name is located by the word (S) or (R), which indicates that
the compound is a chiral molecule with fixed conformation. After
extracting the molecular name, the verification word ‘HPLC’ is utilized
to decide whether this report employs the HPLC to recognize the
molecule. If not, the report will be dropped and the subsequent one
will be considered. When satisfying the demand of the verification
word, all relevant information is extracted step by step including col-
umn type, elution proportion, flow rate, the retention time for this
conformer, and its enantiomer by corresponding keywords (Supple-
mentary Fig. 1b).

The extracted raw data are saved in csv format. After the raw data
are obtained, further treatment is conducted to extract the simplified
columnname from the column type, and convert theproportion to the
ratio. For example, the elution proportion in Supplementary Fig. 1 (98/
02) will be transformed into 0.02. Considering that the report only
includes two retention times (major and minor), we only contain the
molecules with less than two chiral centers since the retention times
and enantiomers can be matched easily. The extracted names of
enantiomers are converted into SMILES through a website (https://
cactus.nci.nih.gov/chemical/structure). Specifically, an automatic
programwritten by Python is employed to open the URL that converts
molecule names to SMILES. For example, to obtain the SMILEs of D-
Lactose, the program will open the URL https://cactus.nci.nih.gov/
chemical/structure/D-Lactose/smiles and read the converted SMILES.
Other molecule names can be obtained in the same manner by repla-
cing the ‘D-Lactose’ with the molecule’s name in the above URL.
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Experimental verification of chromatographic process equation
In this work, in order to reduce the variable considered in
retention time prediction, the chromatographic process equation
is considered to construct the relationship between the retention
time and the speed, which is written in Eq. (1). Therefore, under a
fixed experimental condition where the K, Vm, and Vs are fixed,
the retention time for the molecule and the flow rate is inversely
proportional related. Therefore, in this work, the prediction tar-
get is set to be RT×v, which is abbreviated as RTv. In this section,
the chromatographic process equation is verified by an experi-
ment which is illustrated in Supplementary Fig. 4. In the ver-
ification, the retention times (RT) of a pair of enantiomers with
different flow rates v are measured in the laboratory. The
experimental condition is the IG column with elution propor-
tion=0.001. In some situations, the outcome is measured
repeatedly. The fitted curve and observed retention times are
illustrated in Supplementary Fig. 4a. It is discovered that the
chromatographic process equation functions well when the flow
rate is not so small (bigger than 0.2). Fortunately, there are only
smaller than 0.5% data where the flow rate is smaller than 0.2,
which means that most data in the dataset satisfies the chroma-
tographic process equation. Therefore, it is rational to incorpo-
rate the chromatographic process equation into QGeoGNN to
satisfy the underlying relationship between the retention time
and the speed and facilitate model construction.

According to the chromatographic process equation and the
above experiments in the laboratory, the RTv should keep con-
stant with different flow rates when other experimental condi-
tions are fixed. Nevertheless, considering that data in the CMRT
dataset are collected from various literature, errors will emerge in
the RTv model because of the difference between the experi-
mental environment of diversified laboratories. Therefore, the
scalability of the proposed RTv model in the dataset is further
investigated. Here, 364 pairs of the same enantiomer acquired in
different flow rates are selected from the CMRT dataset, where
the flow rates range from 0.3 mL/min to 1 mL/min and the
retention time range from 3.5 min to 60min. Most of these
enantiomers are measured in multiple laboratories indepen-
dently. In order to measure the error range of the RTv model, the
absolute error of the calculated RTv for the same pair of enan-
tiomers in different flow rates is obtained and analyzed. The
violin plot of the error distribution is displayed in Supplementary
Fig. 4b. The median error is 1.37. It is discovered that there exists
a certain degree of error in the RTv model but most of them are
small. Meanwhile, the existence of a few samples with extremely
large errors implies that there may be a few exceptions to the
chromatographic process equation or mistakes in the data.

Derivation of chromatographic separation probability
In this work, a measurement denoted as chromatographic
separation probability Sp is defined to measure the probability
that the ML model would correctly separate the enantiomers
under the specific experimental setting. In this section, the defi-
nition and derivation of chromatographic separation probability
are detailed. Benefiting from the proposed QGeoGNN, the value
range of the enantiomers’ retention time can be obtained. The
definition of chromatographic separation probability Sp is defined
based on the naïve principle that the area within the overlapping
part of the value range is considered inseparable, while other
areas are separable. Therefore, the definition of Sp can be written
as Eq. (4). In order to derive the formula of Sp, two typical sce-
narios are discussed. The example is illustrated in Supplementary
Fig. 7. For the situation in Supplementary Fig. 7a where the value
ranges of enantiomers are partially overlapped, the overlapping
region is predicted to be inseparable while other regions are seen

as separable. Therefore, in this situation, Lseparable and Ltotal can
be calculated as

Ltotal = RTmax
90 � RTmin

10 ð16Þ

Lseparable = Ltotal � Linseparable

= RTmax
90 � RTmin

10

� �
� RTmin

90 � RTmax
10

� � ð17Þ

the Sp can be derived as

Sp =
Lseparable
Ltotal

= 1� RTmin
90 � RTmax

10

RTmax
90 � RTmin

10

ð18Þ

Here, RTmax
90 and RTmin

90 are the maximum and minimum of 90th
percentiles for both enantiomers, RTmax

10 and RTmin
10 are the maximum

and minimum of 10th percentiles, respectively. For a special case
where the value ranges of enantiomers are completely overlapped, Sp
will be equal to 0 since the Lseparable = 0. For the situation in Supple-
mentary Fig. 7bwhere the value ranges of enantiomers aredisjoint. It is
obvious that the enantiomers are predicted to be separable within the
range of error, and the Sp = 1. In general, the Sp can be summarized as

Sp =
1� RTmin

90 �RTmax
10

RTmax
90 �RTmin

10
, RTmin

90 ≥ RTmax
10

1, RTmin
90 <RTmax

10

8<
: ð19Þ

which can be simplified as

Sp = 1�
maxð0,RTmin

90 � RTmax
10 Þ

RTmax
90 � RTmin

10

ð20Þ

Therefore, the defined chromatographic separationprobability Sp
ranges from 0 to 1. A higher Sp refers to a larger region of separable,
that is, a higher possibility that the enantiomers are predicted to be
separable by the QGeoGNN.

Experimental settings and parameters
In the QGeoGNN utilized in this work, the number of GINConv is 5, the
graph pooling strategy is the summation, the embedding dimension of
the node and edge representation is 128, and the batch size is 2048.
The training epoch is 1500, and the validate loss is adapted for early
stopping. The optimizer is Adam and the learning rate is 0.001. For
single-column prediction, the prediction models are established for
ADH, ODH, IC, and IA columns, respectively. For each column, the sub-
dataset is randomly divided into 90/5/5 to obtain the training, vali-
dating, and testing dataset. For multi-column prediction, the entire
dataset is split into 90/5/5 to train a synthetic model. For comparison,
the XGB, LGB, ANN, and GNN are also employed to train a predictive
model. The input of XGB, LGB, and ANN is composed of the 167-
dimensional MACCS keys that are utilized to represent the molecular
structure, the 5-dimensional molecular descriptors that are the same
as those utilized in QGeoGNN, and 3-dimensional column information.
For XGB, the number of estimators is 200, the maximum depth is 3,
and the learning rate is chosen to be 0.1. For LGB, themaximum depth
is 5, the learning rate is 0.007, the number of leaves is 25, and the
number of estimators is 1000. For ANN, there are 3 hidden layers with
50 hidden neurons in each hidden layer. The activation function is
leakyReLu and the optimizer is Adamwith a learning rate of 0.001. The
training epoch is 10,000 and early stopping is adopted. The con-
struction of GNN is similar to QGeoGNNwhile it only has Graph G, and
the loss function is of the mean squared error between the predicted
and observed value. The column information is incorporated into the
edge features for GNN.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CMRT dataset generated in this study have been deposited in the
Github repository, https://github.com/woshixuhao/Retention-Time-
Prediction-for-Chromatographic-Enantioseparation/tree/main/
dataset. Source data are provided with this paper.

Code availability
All original codehasbeendeposited at thewebsite https://github.com/
woshixuhao/Retention-Time-Prediction-for-Chromatographic-
Enantioseparation/tree/main/code. The version of the record of the
GitHub repo is doi:10.5281/zenodo.7623903.
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