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Retrosynthesis prediction using an end-to-
end graph generative architecture for mole-
cular graph editing

Weihe Zhong1,2,5, Ziduo Yang1,5 & Calvin Yu-Chian Chen 1,3,4

Retrosynthesis planning, the process of identifying a set of available reactions
to synthesize the target molecules, remains a major challenge in organic
synthesis. Recently, computer-aided synthesis planning has gained renewed
interest and various retrosynthesis prediction algorithms based on deep
learning have been proposed. However, most existing methods are limited to
the applicability and interpretability of model predictions, and further
improvement of predictive accuracy to a more practical level is still required.
In this work, inspired by the arrow-pushing formalism in chemical reaction
mechanisms, we present an end-to-end architecture for retrosynthesis pre-
diction called Graph2Edits. Specifically, Graph2Edits is based on graph neural
network to predict the edits of the product graph in an auto-regressive man-
ner, and sequentially generates transformation intermediates and final reac-
tants according to the predicted edits sequence. This strategy combines the
two-stage processes of semi-template-based methods into one-pot learning,
improving the applicability in some complicated reactions, and alsomaking its
predictionsmore interpretable. Evaluated on the standard benchmark dataset
USPTO-50k, our model achieves the state-of-the-art performance for semi-
template-based retrosynthesis with a promising 55.1% top-1 accuracy.

Organic synthesis is a central part of several areas of chemistry,
including drug discovery, chemical biology, and materials science,
which aims to efficiently construct compounds through various
organic reactions. Retrosynthesis1 is a method widely used by organic
chemists to design synthetic routes to a targetmolecule by recursively
decomposing it into simpler precursors. Retrosynthesis analysis is a
one-to-many problem that is challenging even for experienced che-
mists due to the huge search space of all possible chemical transfor-
mations and the incomplete understanding of the reaction
mechanism. Therefore, researchers have been seeking efficient and
accurate methods based on the computer-aided synthesis planning
(CASP) for decades2–4. In recent years, with the rapid development of
artificial intelligence (AI) technology and accumulation of chemical

data, data-driven methods have sprung up and assisted chemists
to save tremendous time and efforts in designing synthetic
experiments5–15.

Existing machine-learning-based retrosynthesis models can be
roughly divided into three categories16,17: template-based, template-
free methods and semi-template-based. A template-based approach is
conceptually similar to the process by which organic chemists select a
known reaction type to apply to a target molecule. The templates
encode the core reactive rules that describe the molecular changes
during the reaction and are typically extracted from chemical reaction
datasets18,19. After a library of reaction templates is constructed, the
algorithms match a target molecule with these templates and convert
product molecules into reactant molecules by the matched template.
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Since the selection and application of suitable templates to generate
chemically feasible reactants is a more efficient and interpretable way,
various works20–23 have been proposed to use different approaches to
prioritize templates. Retrosim20 ranked the candidate templates based
onmolecular fingerprint similarity between the target product and the
compounds in the corpus. Segler and Waller21 employed a hybrid
neural-symbolicmodel (Neuralsym) to learn amulti-class classification
task for template selection. GLN22 treated chemistry knowledge of
reaction templates as logic rules and learned the conditional joint
probability of rules and reactants using graph embeddings. Recently,
LocalRetro23 evaluated the suitable local templates (atom/bond tem-
plates) at the predicted reaction centers of a target molecule and
considered the nonlocal effects of chemical reactions using global
reactivity attention, which achieved the state of the art in the template-
based methods. Despite their great potential and interpretability in
retrosynthesis prediction, template-based methods have limited cov-
erage due to the inability to predict reactions outside template library
and cannot be extended to large-scale template sets because of the
expensive computational cost.

By contrast, template-free methods bypass the need to construct
an external template database by directly transforming products into
potential reactants. Existing works24–36 in this field recognized that
retrosynthesis could be treated as a neural machine translation pro-
blemby representingmolecules as text, e.g. simplifiedmolecular input
line entry system (SMILES) strings37. One early example is a sequence-
to-sequence (seq2seq) model24 which converted the SMILES of a pro-
duct to the SMILES of its reactants by a long short-term memory
(LSTM) architecture38. Building on this work, subsequent researches
achieved better performance by applying a more advanced natural
language processing (NLP)model, Transformer39. The key drawback of
these approaches is that not all generated SMILES strings result in a
valid chemical structure. Zheng et al.26 proposed the SCROP model
whichadded agrammar corrector on theTransformer to attempt tofix
the syntax errors of outputs. And to fully exploit the structural infor-
mation of molecules, Graph2SMILES30 combined the sequential graph
encoder with a Transformer decoder to translate themolecular graphs
into the SMILES sequences and showed a comparable accuracy with a
template-based baseline model. Compared with the template-based
approaches, the template-free methods directly generate the reactant
SMILES character-by-character without subgraph matching computa-
tion, which have greater generalization potential and a relatively low
computational cost. However, linear SMILES representations cannot
effectively capture the rich structural information in a molecule, such
as the interatomic relationships. And as thesemodels generate SMILES
strings by sequentially outputting individual symbols, their predic-
tions are limited in variety and interpretability.

Motivated by chemists’ expert experience, semi-template-based
approaches16,40–43 for automating retrosynthesis prediction have recently
been developed to address the aforementioned issues. The semi-
template-based method is defined as not using a reaction template, nor
directly converting the product to the reactant, but predicting the final
reactant through the intermediates or synthons generated in multiple
steps. Based on the fact that only a small fraction of the molecular
structure is modified in a chemical reaction, most existing researches
decomposed the retrosynthesis into two steps: first identifying the
reaction center using graph neural network (GNN) to form synthons via
molecular editing, and then completing the synthons into reactants by
either a graph generative model40, a Transformer41,42, or a subgraph
selection model16. These two-stage frameworks enhance the scalability
and diversity through simplifying the one-to-many generation problem
into multiple one-to-one translation processes, and show promising
performance in retrosynthesis prediction task. However, such methods
require training two separate modules to complete the transformation,
ignoring a strong link between center identification and synthon com-
pletion in chemical reactions. Besides, most of them only focus on at

most one atom or bond center, making it challenging to deal with
reactions involving multiple centers, which are particularly common in
ring formation processes. In contrast, MEGAN44, an end-to-end frame-
work, modeled the single-step retrosynthesis as a process of applying a
sequence of edits to product graph, but the performance was relatively
low due to the long edits sequence.

In organic synthesis, it is crucial to understand the reaction
mechanism by applying the arrow-pushing approach which simplifies
the stepwise electrons shift using sequences of arrows in molecular
graphs45. As shown in Fig. 1a, a simplified mechanism example in the
Mitsunobu reaction: the reagent PPh3 (triphenylphosphine) combines
with DEAD (diethyl azodicarboxylate) to generate a phosphonium
intermediate that binds to the alcohol oxygen (reactant 2), activating it
as a leaving group, then the nucleophile oxygen anion (3) and the
phosphonium ion (4) to perform nucleophilic substitution to yield
the final product (5). Based on the approximate reaction mechanism,
there have been some machine learning models proposed for forward
reaction prediction44,46–49. Bradshaw et al.46 proposed a generativemodel
for reaction mechanism prediction, which formulated the reaction
electron paths as a sequence of graph transformations including bond
removal and addition. Fooshee et al.47 also introduce a deep learning
approach to predict and rank reaction outcomes through identifying
electron sources and sinks. Similarly, GTPN48 integrated GNN and rein-
forcement learning (RL) to predict an optimal sequence of operation on
atom pairs that transforms the reactants into products. However, most
of these methods cannot be directly used for retrosynthetic prediction
since no other leaving groups or atoms need to be added in the forward
reaction prediction. And it should bementioned that the semi-template-
based MEGAN44 was the first to model the reaction as an editing
sequence for retrosynthesis prediction. Perhaps due to the complex
encoder-decoder framework and the add operations at the atomic level,
that work made the reactant generation challenging and performed not
well in reactions that require attaching the large leaving group, and
showed relatively low accuracy on benchmark dataset.

Inspired by the arrow-pushing formalism used in the description
of reaction mechanisms mentioned above, we describe retrosynthesis
as predicting the reactant graphs by sequentially modifying the pro-
duct graph based on the simplified mechanisms of reaction transfor-
mations. Such a strategy can combine the advantages of both
template-based and template-free methods and provide greater
interpretability of predictions. It is worth noting that unlike MEGAN
model, we simplify the network architecture to effectively learn
molecular representations, replace the add-atom actions with attach-
ing substructures to reduce generation steps, and improve the effi-
ciency for generating the reactants.

In this work, we propose a graph-to-edits framework, Graph2E-
dits, based on simplified reaction mechanisms for retrosynthesis pre-
diction. Specifically, we formulate retrosynthesis as a product-
intermediates-reactants reaction reasoning process completed by a
series of interconnected graph edits. Our design enables the model to
learn the rules of reaction transformation to a certain extent, enhan-
cing the applicability and generalization ability in complicated reac-
tions. Throughout the study, Graph2Edits achieves a top-1 exactmatch
accuracy of 55.1% on the benchmark USPTO-50k dataset, improves the
diversity and interpretability of prediction results.

Results
Following the reasoning logic of chemists, our approach focuses on
inferring what local changes occur during the formation of a given
product in terms of bond formation or breaking and functional group
addition or removal. Therefore, we design an end-to-end architecture
(Graph2Edits), based on GNN, to predict a sequence of edits on bonds
and atoms of a product molecule. According to the generated edits
sequence, the product molecule can be sequentially converted into
intermediates and reactants by the RDKit tool50.
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Data preparation and model architecture
We use the publicly available benchmark dataset USPTO-50k51,
containing 50016 reactions with the correct atom-mapping which
have been classified into 10 distinct reaction types. We adopt the
same split as reported in Coley et al.20 and divide it into 40k, 5k, 5k
reactions for the training, validation, and test sets, respectively. To
remove the information leak of USPTO-50k dataset mentioned in
the previous studies16,41, we also canonicalize the product SMILES
and re-assign the mapping numbers to the reactant atoms fol-
lowing the method given by Somnath et al.16

In order to construct the required output graph, we first
derive a set of edits from the USPTO-50k reaction database that
can be applied to the input graph. Since the reaction product and
reactants are atom-mapped, edits can be automatically extracted
by comparing the difference of atoms and bonds between the
product and reactants. We build the edits vocabulary in the
training set, and these edits cover 99.9% of the reactions in the test
set, including 6 bond edits, 152 atom edits (7 Change Atom and 145
Attach LG), and a termination symbol:
1. Delete Bond: deletes a bond between two atoms.
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Intermediate 1

Product

Reactants
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Graph 
Encoder

Graph 
Encoder

Graph 
Encoder

Graph 
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Fig. 1 | Themotivation and overview of Graph2Edits. a An example of the arrow-
pushing formalism in the mechanism reasoning process of Mitsunobu reaction.
The steric configurationof the carbonatom in the reaction center is reversed. In the
retrosynthesis prediction, DEAD (diethyl azodicarboxylate) and PPh3 (triphenyl-
phosphine) are two reaction reagents that were removed, and we regard the pro-
cess of the simplified mechanism derivation as sequence of graph edits on the
molecular structure. b The architecture of Graph2Edits for retrosynthesis predic-
tion. The autoregressive model is for generating edits sequence and the graph
encoder is for edits prediction. First, the product molecular graph is encoded by

directed message passing neural network (D-MPNN) to generate atom/bond fea-
tures and graph representations for atom/bond edits and termination symbol
predictions. Next, applying the predicted edit on the input graph to obtain inter-
mediate for the following generations. In this example, in the first step, the model
predicts to delete the bond between C:4 and O:6, and generates intermediate 1.
Subsequently, according to the graph of the intermediates, Graph2Edits predicts
the change in chirality and attaches the leaving group ‘*O’ on atom C:4. Finally, the
generation process will be complete when Graph2Edits outputs a termination
symbol.
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2. Change Bond: changes the bond type to single, double, or triple, or
changes the stereo configuration of the bond to any, cis or trans.

3. Change Atom: changes the number of hydrogens on an atom to0,
1, 2, or changes the chiral type of atom to unspecified, R or S.

4. AttachLG: attaches the functional group called leaving group (LG)
to the atom.

5. Terminate: indicates the current molecules are reactants and the
generation process terminate.

As in previously reported research16, few samples in the training set
have new bond formations, and we also predict bond edits only for
existing chemical bonds rather than for every atomic pair to reduce
computational complexity. Ingeneral, theprioritizationofground-truth
edits for retrosynthesis reactions isconsistentwithchemicalknowledge.
Specifically, theatomcenter reactionshowninSupplementaryFig. 1a isa
deprotection reaction and the retrosynthetic transformation is to first
reducethenumberofhydrogensattheN:1andfollowedbyattachmentof
a leaving group (‘*C( =O)c1ccccc1C(*)=O’, the dummy atom * in the leav-
ing group represents the position of attaching). Supplementary Fig. 1b
shows an example of bond center reactions, and in this retro-reaction, a
C−CbondisremovedandconnectedbyaBrandadimethylaminogroup
respectively. Formultiplecenters reactions inSupplementaryFig. 1c, the
edits sequence isorganizedbybreaking thebond, followedbychanging
thepropertyoftheatomorbond,andfinallyattachingtheleavinggroup.
More details about the graph edits could be found in SectionMethods,
SupplementaryData 1, and Supplementary Fig. 2.

Additionally, we also use the original USPTO-full dataset from the
entire USPTO (1976-Sep2016) to verify the scalability of ourmodel. We
use exactly the same splits as Dai et al.22, which contain approximately
800k/100k/100k training/validation/test reactions, and repeat the
procedures given in the above USPTO-50k dataset processing.

We employ the directed message passing neural network (D-
MPNN)52, a variant of the generic message passing neural network
(MPNN)53, to obtain the atom representations and then utilize the
integrated local atom/bond and global graph features to predict atom/

bond edits and a termination, respectively. The overall inference
process of Graph2Edits is shown in Fig. 1b.

Performance evaluation
We adopt the top-k exactmatch accuracy as themetric to evaluate the
retrosynthesis performance. The exactmatch accuracy is computedby
comparing the canonical SMILES of predicted reactants to the ground
truth in the dataset. We additionally adopt the round-trip31 and
MaxFrag32 accuracy to evaluate the performance of our model. The
round-trip accuracy is calculated by comparing the ground-truth
product with the product predicted by a forward reaction prediction
model using the predicted reactants, and is to evaluate the correctness
of the predictions generated by the retrosynthetic model as there
might be multiple different reactants can be used to synthesize the
same product. We here use the pretrained forward-synthesis predic-
tion model Molecular Transformer (MT)54 to evaluate the round-trip
accuracy. TheMaxFragaccuracy, inspiredby classical retrosynthesis, is
to calculate the exact match of only the largest fragment to overcome
the prediction limitation due to the existence of unclear reagent
reactions in thedataset. Considering the changes of stereochemistry in
the reactions, we retain the chirality and cis-trans isomer information
in the molecule for comparison. And for evaluating the overall per-
formance, we compare the prediction results of Graph2Edits with
several template-based, template-free, and semi-template-based
methods, including current state-of-the-art models. Semi-template-
based G2G40, RetroXpert41, RetroPrime42, MEGAN44 and GraphRetro16

are primary baselines as their design ideas use a similar two- or multi-
step generation and achieve excellent performance. To show the
broad superiority of model, we also take the template-based
Retrosim20, Neuralsym21, GLN22, LocalRetro23 and template-free
SCROP26, Augmented Transformer32, GTA29, Graph2SMILES30 and
Dual-TF33 as strong baseline models for comparison.

The results of top-k exact match accuracy on the USPTO-50k
benchmark are shown in Table 1. To avoid over-tuning and giving
overly optimistic results, we only report the test results for models

Table 1 | Top-k exact match accuracy of the proposed Graph2Edits and baselines on USPTO−50k dataset

Model Top-k accuracy (%)

Reaction class unknown Reaction class known

k = 1 3 5 10 50 1 3 5 10 50

Template-Based Methods

Retrosim 37.3 54.7 63.3 74.1 85.3 52.9 73.8 81.2 88.1 92.9

Neuralsym 44.4 65.3 72.4 78.9 83.1 55.3 76.0 81.4 85.1 86.9

GLN 52.5 69.0 75.6 83.7 92.4 64.2 79.1 85.2 90.0 93.2

LocalRetro 53.4 77.5 85.9 92.4 97.7 63.9 86.8 92.4 96.3 97.9

Template-Free Methods

SCROP 43.7 60.0 65.2 68.7 – 59.0 74.8 78.1 81.1 –

Aug.Transformer 53.2 – 80.5 85.2 – – – – – –

GTA 51.1 67.6 74.8 81.6 – – – – – –

Graph2SMILES 52.9 66.5 70.0 72.9 – – – – – –

Dual-TF 53.6 70.7 74.6 77.0 – 65.7 81.9 84.7 85.9 –

Semi-Template-Based Methods

G2G 48.9 67.6 72.5 75.5 – 61.0 81.3 86.0 88.7 –

RetroXperta 50.4 61.1 62.3 63.4 64.0 62.1 75.8 78.5 80.9 83.5

RetroPrime 51.4 70.8 74.0 76.1 – 64.8 81.6 85.0 86.9 –

MEGAN 48.1 70.7 78.4 86.1 93.2 60.7 82.0 87.5 91.6 95.3

GraphRetro 53.7 68.3 72.2 75.5 – 63.9 81.5 85.2 88.1 –

Graph2Edits (MPNN) 52.7 77.2 85.3 91.0 97.1 65.7 87.3 92.0 95.3 97.8

Graph2Edits (D-MPNN) 55.1 77.3 83.4 89.4 92.7 67.1 87.5 91.5 93.8 94.6

Graph2Edits (MPNN) and Graph2Edits (D-MPNN) use the message passing neural network (MPNN) and the directed message passing neural network (D-MPNN) as graph encoder, respectively.
aThe results are taken from https://github.com/uta-smile/RetroXpert.
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with the highest top-1 accuracy during validation. When the reaction
class is unknown, our method achieves a 55.1% top-1 accuracy which
outperforms all the baseline models, and for larger k (k = 3, 5, 10, 50),
Graph2Edits also beats prior models by a large margin except for the
LocalRetro model. For a more precise comparison, Graph2Edits
reaches the state-of-the-art performance for semi-template-based
methods and is more accurate than GraphRetro and MEGAN model
by a margin of 1.4% and 7.0% respectively in top-1 accuracy. With the
reaction class given, Graph2Edits outperforms all baselines in all
metrics with the exception of top-5, -10 and -50 accuracy in template-
based LocalRetro. As shown in the table, our method is ultimately
superior to the other semi-template-based models and exceeds the
GraphRetro by 3.2% andMEGANby 6.4%with a 67.1% top-1 accuracy. In
addition, although the higher accuracies at higher k have been
achieved inMPNN-based models as the redundancy in node messages
passing52,55 may help to improve the probability of predicting the
ground-truth leaving group on the reaction centers, using D-MPNN
encoder has a clear advantage over conventional MPNN, yielding
improvements of 1.4 and 2.4 points on top-1 accuracywith andwithout
giving reaction class, respectively. It is worth noting that in the semi-
template-based methods, Graph2Edits not only improves the perfor-
mance on top-1 accuracy, but also hasmore advantages on top-k (k > 1)
accuracies, and it can be observed that the top-3 accuracy is higher
than top-10 accuracies of GraphRetro andG2Gmodel without reaction
type given. We deduce that the advantages of Graph2Edits are largely
derived from strengthening the correlation between the generation
steps and efficiently expanding the search of the diverse reaction
space by sequentially editing and attaching substructure on atoms
and bonds.

The results of round-trip and MaxFrag accuracy of our model
tested on USPTO-50k are shown in Table 2. The top-1 round-trip
accuracy of our model reaches nearly 86%, which is comparable to
GraphRetro and outperforms MEGAN by a large margin. Additionally,
perhaps due to the detailed difference of the calculation methods,
the round-trip accuracies of the LocalRetro23 for USPTO-50k seem to
be higher than our results. As there is no related code for calculating
the round-trip accuracy in LocalRetro GitHub, in order to make a fair
comparison in the semi-template-based methods, we calculate the
round-trip accuracies based on the trained models provided by
MEGAN and GraphRetro, and provide the LocalRetro’s round-trip

accuracy results as a reference. Graph2Edits also beats prior semi-
template-based models on top-3, -5, -10, and -50 predictions. For
MaxFrag accuracy, Graph2Edits outperforms all baselines by a large
margin and achieves 59.2% accuracy at top-1 predictions.

We also compare the performance of Graph2Edits on the larger
USPTO-full dataset with other baselines for retrosynthesis prediction.
The results are presented in Supplementary Table 2. Although the
USPTO-full is much noisier than the cleanUSPTO-50k, ourmethod still
has competitive performance with a top-1 accuracy of 44.0%, on par
with the semi-template-based method RetroPrime and outperforming
MEGANby a largemargin. In addition, on larger k (k > 1), especially top-
10 accuracy, Graph2Edits significantly outperforms all other methods
except Aug.Transformer, showing similar superiority to the perfor-
mance on the USPTO-50k dataset.

Analysis of correct and incorrect predictions
To more comprehensively understand the model performance, we
conduct an error analysis of predictions on the USPTO-50k test set.
First, 100 random reactions where the results predicted by Graph2E-
dits differ from the ground-truth reactants are analyzed by profes-
sional organic chemists. The assessment gives 85% of the reactions in
which the predicted reactants are feasible and considered correct by
the chemists, and interestingly, this result is close to the top-1 round-
trip accuracy described previously. We here present 30 random
examples in Supplementary Table 3 and display that the proposed
reactants by Graph2Edits are difficult to distinguish from the ground-
truth reactants in terms of reaction feasibility. To further analysis of
the incorrect predictions, we then show some reaction samples in
Fig. 2 and find that the most common reason for error predictions is
ignoring the influence by other functional group in the molecular
structure. The prediction by our model in Fig. 2a may fail due to the
low reactivity of secondary amine and the steric hindrance of benzyl
group. In Fig. 2b, a more nucleophilic aromatic amine group can lead
to a completely different product. And also, Graph2Edits sometimes
fails to detect multiple reaction sites, possibly resulting in low yield
and some by-products (Fig. 2c). These results indicate that there is still
significant scope for improvement in the performance of retro-
synthesis prediction, such as introducingmore chemically meaningful
modules to capture the molecular structure information and identify
the reactivity of different reaction sites.

In addition, we visualize the top-10predictionswhich are different
from the ground truth reactants for two cases in Supplementary Fig. 3.
We can observe that the common feature of these two products is to
have multiple possible reaction centers, and thus can be yielded
through a variety of different reaction types. In fact, all top-10 pre-
dicted reactants are feasible and can be synthesized by standard
methods, although the reaction yields may vary. In Supplementary
Fig. 3a, ourmodel provides the options of replacing ‘I’with ‘Cl’ and ‘Br’
on top-3 and top-7 prediction and amide condensations on top-1 and
top-5 prediction. And in Supplementary Fig. 3b, it is worth emphasiz-
ing that the ground-truth reactants in USPTO-50k test set is probably
wrong, as it is unlikely to introduce stereochemistry far from the
reaction center. And Graph2Edits successfully proposes reactions all
start from chiral substrates and the top-2 prediction is perfectly fine.
Furthermore, we conduct a more in-depth performance comparison
with the baseline model MEGAN and show a comparison of the reac-
tion examples presented by MEGAN in Supplementary Fig. 4. We
observe that the top-1 prediction for the first three reactions by our
model are feasible and completely consistent with the ground-truth
reactants. And although the top-1 prediction for the last reaction is
similar to those by MEGAN, the subsequent top-2 prediction by our
method provides a decent alternative. Moreover, we also evaluate the
invalid rates generated by Graph2Edits and the results can be seen
in Supplementary Notes and Supplementary Table 4.

Table 2 | Top-k Round-Trip and MaxFrag accuracy of the
proposed Graph2Edits and baselines on USPTO-50k dataset

Category Model Top-k (%)

k = 1 3 5 10 50

Round-Trip
accuracy

LocalRetroa 89.5 97.9 99.2 – –

MEGANb 82.0 89.9 91.7 94.0 96.4

GraphRetrob 86.0 89.9 90.7 91.4 91.6

Graph2Edits (MPNN) 84.9 93.6 95.7 96.9 98.9

Graph2Edits
(D-MPNN)

85.9 93.5 95.1 96.4 97.3

MaxFrag
accuracy

Aug.Transformer 58.5 73.0 85.4 90.0 –

LocalRetro 57.8 82.1 89.7 95.0 98.4

MEGAN 54.2 75.7 83.1 89.2 95.1

Graph2Edits (MPNN) 56.8 80.3 87.5 92.8 95.4

Graph2Edits
(D-MPNN)

59.2 80.1 86.1 91.3 93.1

Graph2Edits (MPNN) and Graph2Edits (D-MPNN) use the message passing neural network
(MPNN) and the directed message passing neural network (D-MPNN) as graph encoder,
respectively.
aThe results are taken from the LocalRetro paper.
bThe results are implemented based on the available trained models in the open-source code.
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Effect of edits sequence length and stereochemistry
We further conduct more in-depth studies to exhibit the superior
performance and generalization of our proposed Graph2Edits on ret-
rosynthetic prediction. Specifically, we investigate the performance
effect of some complex reactions in the USPTO-50k, including reac-
tions with long edits sequence length and stereochemistry.

According to the edits sequence length of reactions preprocessed
on the test set, we present the distribution of data and top-10 accuracy
in Fig. 3. Similar to the distribution of reaction types reported
previously22, the distribution of reactions with various edits length is
highly unbalanced. As is shown in Fig. 3a, most reactions have an
editing length of 2, 3, or 4, with 207 (4.1%), 3938 (79.7%), 702 (14%)
pieces of data, respectively. And the reactions with edits sequence
length 5, 6, 7 or longer account for a small proportion, which have 93
(1.9%), 30 (0.6%), 7 (0.1%) and 27 (0.5%) cases respectively. FromFig. 3b
we can see the performance of our model does not decrease sig-
nificantly with the increasing edits length, especially for the situations
with small amounts of data. For reactions with 8 or longer edits length,
the top-10 accuracy still achieves 81.5%, indicating that the continuous
generation of Graph2Edits remains relatively robust even in the com-
plicated reactions. These results demonstrate that our performance is
not obtained by overfitting to one particular category of reactions.

As revealed by MTExplainer56, scaffold bias in the USPTO dataset,
where similar molecules appear in both the training and the test set
and undergo similar transformations, makes the models achieve high
accuracy and does not reflect the true generalization performance of
the models. To remove the structural bias and further investigate the
performance on diverse reaction products, we re-split the USPTO-50k
dataset via the Tanimoto similarities57 of the reaction products to train
the retrosynthetic prediction models. Following the Tanimoto-based
splitting given by MTExplainer, the initial USPTO-50k dataset is ran-
domly split 85%:15%, and for the Tanimoto similarity threshold σ = 0.6
and σ = 0.4, the ratios after Tanimoto splitting are 88.3%:11.7% and
95%:5%, respectively. We then train our Graph2Edits along with the
other semi-template-basedmodels (MEGAN andGraphRetro) on these

twodatasets. Table 3 shows that although the performance ofboth our
Graph2Edits and the baselines decrease upon the new train/validation/
test split datasets, our model still outperformMEGAN and GraphRetro
by a large margin. These results show that our model could also
achieve relatively good generalization performance on the structurally
diverse test set.

Stereochemistry plays a significant role in organic chemistry and
is also important in drug discovery. It is challenging to predict the
change of stereochemistry in the reaction. We count 157 reactions
containing the change in stereochemistry in USPTO-50k test set and
check them one by one. We found that more than half (51.6%) of
ground-truth reactions gavewrong stereochemical information, which
is consistent with the noisy stereochemical data reported by Schwaller
et al.31, and in 82.2% of the reactions, the top-1 prediction proposed by
Graph2Edits was considered correct by experienced organic chemists.
We show the 30 random reactions in Supplementary Table 5, and
display that our method performed well on the chiral substrate-
induced asymmetric reactions (examples 4, 8, 20), chiral auxiliary-
induced asymmetric reaction (example 26), asymmetric hydrogena-
tions (examples 24, 30). Although this stereochemical data set is too
limited to claim the performance on stereochemistry, these assess-
ments offer strong evidence that our model has an advantage in pre-
dicting stereoselective reactions and can learn some rules of
stereochemistry changes.

Analysis of model reasoning process
To better understand the reasoning process of Graph2Edits, we ran-
domly select 3 reactions with different reaction types from the test set
of USPTO-50k and visualize the generation predictions in Fig. 4. The
first example is the Suzuki cross-coupling reaction, which describes
the formation of a carbon–carbon bond between a halocarbon and a
borate ester. Our model predicts a C-C bond break with a high prob-
ability of 0.97 and then the top-1 and 3 predictions are to attach the
bromine andborate ester in adifferent order for producing the ground
truth. It is worth noting that the top-2 result provides a solution for a

a

b

product ground-truth reactant top-1 prediction
c

product ground-truth reactant top-1 prediction

product ground-truth reactants top-1 prediction

Fig. 2 | Examples of top-1 prediction by Graph2Edits for different errors. a The
low reactivity of secondary amine and the steric hindrance of benzyl group,

b Ignoring amorenucleophilic aromatic aminegroup, and (c) fail to detectmultiple
reaction sites.
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boronic acid substrate instead of a boronic ester. The second is Paal-
Knorr reaction for the pyrrole synthesis. Our retrosynthesis prediction
is first to delete the two bonds of the pyrrole ring, followed by chan-
ging the type of bond from double bond to single bond, and finally
attach two double bond oxygen groups to generate the reactants.
Although this generation process goes through 7 steps, each step
generates the correct edit with high probability, which further
demonstrates the robustness of our model to continuous inference
edits. Another challenging example is the Mitsunobu reaction for
synthesis of ether accompanied by the reversal of chiral configuration.
Graph2Edits successfully predicts a change in chirality after ether bond
breaking and infers candidates with an overall high score. More
examples of predictions can be found in Supplementary Fig. 5.

Diversity on predicted reactants
Evaluation of the diversity of the predicted reactions is crucial, as it is
related to whether the predictions of our method can cover a broad
range of chemical reactions in multi-step retrosynthetic route plan-
ning. Benefiting from our design strategy, Graph2Edits can con-
tinuously generate graph edits in an autoregressive manner, and
output multiple different reaction centers and leaving groups in beam
search, thus enabling the ability to predict reactants with different
scaffolds and structures. To analyze the diversity of predicted results,
we first present three examples of diverse reactants predicted by
Graph2Edits in Supplementary Fig. 6. The first example is 1, 3-dipolar
cycloaddition reaction. Our model predicts four different reaction
centers, including a nitrogen atom in triazole (top-1, 3, 4, 6, and 9), the
whole triazole ring (top-2 and top-5) and two carbon-carbon bonds
between aromatic rings (top-7 and top-8). And among these results,
three reaction types (the amino protection with different protective
groups, 1, 3-dipolar cycloaddition and the Suzuki cross-coupling
reaction) are predicted to yield the product. In the second example,
Graph2Edits suggests a reduction of the ethyl ester or methyl ester

(top-1 and top-2), which matches the ground-truth reaction. In addi-
tion, our method further offers the options of the hydroxyl protection
and the aromatic coupling reaction. In the last example, for the reac-
tion of the amide dehydration to form the cyano group, our approach
generates the ground-truth reactants in top-1 prediction, and can also
provide the heterocycle formation, aminoprotection anddouble bond
reduction with multiple distinct substrates.

To quantitatively analyze the diversity of predictive results, we
investigate the molecular similarities among them. For each product,
the similarity is quantified by the mean Tanimoto similarity between
the predicted reactants and other top-10 predictions, based on the
concatenated ECFP4fingerprints, and the lower similarity indicates the
higher diversity of predicted results. We also use the K-means clus-
tering algorithm to cluster the products according to the similarity of
predicted reactants, similar to that used by Chen et al.43. As shown in
Fig. 5, the first four clusters (dark red to orange) have lower prediction
similarities (0.22, 0.36, 0.44, and 0.50), which can be regarded as high-
diversity clusters, accounting for about 30%of the test set. The average
similarity onmiddle three clusters (light orange and light blue) is 0.55,
0.60, and 0.65, respectively, and thus can be referred to as medium-
diversity clusters, accounting for nearly 54% in test set. And the last
three clusters (dark blue), considered as low-diversity clusters, have a
small proportion and relatively higher prediction similarities (0.71,
0.80, and 0.98). These results clearly show that Graph2Edits can pre-
dict diverse results.

Graph embedding visualization
To further evaluate the interpretability of the model, we explore the
performance of the molecular embedding representation learned by
Graph2Edits at each edit step. Specifically, we randomly select 50
reactions with edits length 2, 3, 4, and 5, respectively, and together
with all reactions with edits length greater than or equal to 6, a total of
263 reactions from the test set. The product graphs of these reactions
are fed into Graph2Edits for generating the high-dimensional features
with a 256-dimensional embedding at each edit step. The high-
dimensional vector, similar to the fingerprint vector representation of
a molecule, is reduced to the 2D embedding space by t-distributed
neighbor embedding (T-SNE)58. Figure 6 shows the distribution
visualization of molecular embeddings at each edit step, and the a–d
represents the test results of these reactions on training epochs 5, 25,
50, and 123 (best validate accuracy epoch).

At the beginning of model training, the initialization parameters
are roughly optimized for multi-step edits generation and the

Table 3 | Evaluation of single-step retrosynthetic models on
different train-test splits of USPTO-50k dataset

Data split Model Top-k accuracy (%)

k = 1 3 5 10

Original ran-
dom split

MEGAN 48.1 70.7 78.4 86.1

GraphRetro 53.7 68.3 72.2 75.5

Graph2Edits
(D-MPNN)

55.1 77.3 83.4 89.4

Tanimoto simi-
larity <0.6

MEGANa 47.0 69.2 76.2 83.6

GraphRetroa 49.1 63.2 66.9 69.1

Graph2Edits
(D-MPNN)

52.0 75.6 83.2 89.4

Tanimoto simi-
larity <0.4

MEGANa 45.4 68.4 76.9 84.6

GraphRetroa 44.2 56.2 58.7 59.6

Graph2Edits
(D-MPNN)

47.5 71.7 80.1 88.0

Graph2Edits (D-MPNN) uses the directed message passing neural network (D-MPNN) as graph
encoder.
aDenotes that the result is implemented by the open-source code with well-tuned
hyperparameters.

Edits length 
= 3,  79.7% 2,  4.1%

≥ 8,  0.5%

6,  0.6%

5,  1.9%

4,  14%

7,  0.1%
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b
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Fig. 3 | The performance effect of edits sequence length. a The distribution of
different edits sequence length reactions in the test set, (b) Top-10 accuracy per
each edits length. type. The source data are obtained from the USPTO-50k test set
and well-trained model, and can be found in Supplementary Data 2.
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intermediates molecular representations over edit steps are still in a
mixed state in 2D mapping space at epoch 5 (Fig. 6a). Notably, the
generation process of reactions with long edit steps is likely to termi-
nate in small editing steps, indicating that themodel has not yet learned
the transformation law of the complex reactions. After 20 epochs
training (Fig. 6b), the mixing degree of red dots and blue dots weakens
and displays aggregation phenomenon to some extent, especially for
the molecular representations in the first edit step (red dots). Subse-
quently, it has been clearly observed in Fig. 6c that themodel can better
distinguish the molecular vectors in the first and second edit step (red
and blue dots), and shows that the Graph2Edits iterations are opti-
mizing in the right direction and learn the underlying rules of reaction.
Finally, the model has reached the best performance on retrosynthesis
prediction task at epoch 123 (Fig. 6d), and the molecular representa-
tions in the first edit step are gathered in the upper left corner of the
space. As the editing step lengthens, the molecular representations

move to the lower right of the space, and further illustrate why the
model can also perform well in complex reactions with long edit steps.
These results suggest that our model can perceive the molecular
characteristics on different edit steps for retrosynthesis prediction.

Multistep retrosynthesis prediction
To verify the practical use in synthesis planning, we also extend our
one-step model trained on the USPTO-50k dataset to full pathway
design by sequentially performing retrosynthetic predictions. We
choose 3 target compounds as examples, all of which have significant
medicinal importance, including the oral SARS-CoV-2 Mpro inhibitor
Nirmatrelvir for treatment of COVID-1959, the third-generation EGFR
inhibitor Osimertinib for treatment of non-small cell lung carcinoma60

and the Lenalidomide for treatment of multiple myeloma61. Note that
none of these input structures (products and intermediates) in the
three examples appears as a product in our training set. As shown in

Product

b

c

Product

a

Product

Step 1

P = 0.97

Step 2

Step 2

Step 2

P = 0.41

P = 0.53

P = 0.05

Step 3

Step 3

Step 4

P = 1.0

P = 0.78

P = 1.0

Rank 2

Rank 1 3 
(Ground truth)

Step 3

P = 1.0

Step 4

P = 1.0

Rank 1 (Ground truth)

Rank 1 (Ground truth)

Step 1

P = 0.99

Step 2

P = 1.0

Step 3

P = 0.82

Step 5 

P = 0.95

Step 7

P = 1.0

Step 2

P = 1.0

T

T

T

T

Step 4

P = 1.0

Step 6 

P = 1.0

Step 1

P = 0.71

Step 3

P = 1.0

Step 4

P = 1.0

Fig. 4 | Retrosynthesis reasoning predictions by our model. a Suzuki coupling
reaction, (b) Paal-Knorr reaction, and (c) Mitsunobu reaction. The ‘P’ is the prob-
ability of model prediction, and the ‘T’ represents a termination symbol. The red,

blue, and orange steps represent reaction center identification, leaving group
attaching, and generating termination, respectively.
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Fig. 7, our method successfully reproduces the complete synthetic
pathway for these compounds.

The first example for Nirmatrelvir has been reported in the lit-
erature by Pfizer62 (Fig. 7a). Although the synthetic pathway consists of
six reaction steps, our method succeeds at the rank-1 prediction for all
steps except the third one predicted at rank-6, which directly
demonstrates the superiority of our method. The first and second
steps, which are the core reactions, can be easily reproduced by our
model as dehydration of the amide to form the cyano group, followed
by a condensation reaction to yield the key intermediate (6). The
subsequent step is an amine ester exchange reaction, preceded by the
common deprotection and ester hydrolysis, and the final step involves
the amide formation, which exactly matches the published synthesis.
The second example is the retrosynthetic pathway planning of Osi-

mertinib, as depicted in Fig. 7b. Finlay et al.63 proposed a five-step
reaction pathway for this drug, which is derived from readily available
starting materials. Our model first suggests an acylation reaction with
acryloyl chloride (14) and then correctly predicts a reduction of the
nitro group with rank-1. In the next two steps, sequential nucleophilic
aromatic substitution reactions (SNAr) are predicted to introduce
amino side chain andnitroaniline. And the final step, unlike the Friedel-
Crafts arylation reported in the literature, ourmodel suggests a Suzuki
cross-coupling reaction to produce 3-pyrazinyl indole (20). In the third
example, the retrosynthesis pathway planning for Lenalidomide has
also been demonstrated by Retrosim20 and LocalRetro23 models, and
our model can perfectly recover the route suggested by the Retrosim
method. The first and third steps are suggested as the nitro reduction
and the bromination with N-bromosuccinimide (26), which are also
consistent with published literature pathway64. And in the second step,
our model predicts a formation of the five-membered ring with the
acid chloride (25), rather than the methyl ester, which is feasible in
synthetic chemistry. These results clearly show that our approach can
generate nearly identical retrosynthetic pathways as those in the lit-
erature, mostly within the rank-2 predictions, and further demonstrate
the great potential of ourmodel for practical multistep retrosynthesis.

Discussion
In this study, we developed an end-to-end semi-template-based ret-
rosynthesis prediction model, Graph2Edits, which predicts a possible
sequence of edits from the product graph and sequentially generates
the intermediates and reactants. In contrast to previous template-
based methods that limit predictions to template sets and template-
free models that fail to capture the rich structural information in
molecular graph, Graph2Edits is a graph-based model that treats one-
step retrosynthesis as applying a sequence of graph edits to product
graph and generates reactant molecules just as chemists think about
how a reaction happened. Comprehensive evaluations on the bench-
mark dataset USPTO-50k demonstrate that our method achieves a

a

c

b

d

5 epoch

25 epoch

50 epoch 123 epoch (best)

Fig. 6 | Visualizations of molecular embeddings generated by Graph2Edits at
each edit stepduring the learning process.The test results on training epochs (a)
5, (b) 25, (c) 50, and (d) 123 (best validate accuracy epoch). The 256-dimensional

graph embeddings at each edit step in the training process are reduced to a 2D
embedding space by using T-SNE.

Fig. 5 | The cluster results on USPTO-50k test set based on predicted reactants
similarities. The numbers above the bars represent the average similarity of the
predicted reactants, and the lower the similarity, the higher the diversity. The
source data are obtained from the USPTO-50k test set and well-trained model, and
can be found in Supplementary Data 3.
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promising 55.1% top-1 exact match accuracy and shows comparable or
improved performance compared to the other state-of-the-artmodels.
In the large and noisy USPTO-full dataset, Graph2Edits also achieves
the top-1 accuracy of 44.0%, which is significantly higher than the
baseline MEGAN, and is close to the state-of-the-art models. These
encouraging results display that our model has excellent general-
ization and robustness. Crucially, since the multi-step generation
predicts arbitrary length edits, the model can more efficiently search
the latent space of the plausible reactions and improve the diversity of
prediction results. Extensive experiments verified the superiority of
the proposed method in some complicated reactions. In particular,
detailed analyses of model predictions including molecular repre-
sentations suggest that this strategy can enhance the rationality and
interpretability of retrosynthetic models. Our main contributions are
as follows:
(a) We propose Graph2Edits, an end-to-end architecture that

generates arbitrary length graph edits in an auto-regressive way,
to combine the center identification and synthon completion

processes into a one-pot learning and improve the applicability in
reactions containing multiple reaction centers.

(b) We introduce a D-MPNN which encodes the local atom/bond and
global graph features to predict atom/bond edits and a termina-
tion, respectively. Instead of adding a atom or benzene to the
graph, we attach the subgraphs, called leaving groups, to the
intermediates to complete reactants generation. This can sig-
nificantly reduce the length of graph editing and further enhance
predictive performance.

(c) Rather than only considering the changes in atomic hydrogens
and bond type between product and reactants, we refine the edit
labels by introducing chirality and cis-trans isomerism in
predefined atom and bond edits in an attempt to predict the
stereochemistry of certain reactions.

There still remain certain challenges for the widespread applica-
tion of Graph2Edits. First, the model cannot handle attaching the same
leaving group to more than one atom in a molecular graph as there is

a

b

c

Fig. 7 | Multistep retrosynthesis predictions by Graph2Edits. a The oral SARS-
CoV-2 Mpro inhibitor Nirmatrelvir, (b) The third-generation EGFR inhibitor

Osimertinib, and (c) Lenalidomide. The reaction center in the atom and bond
transformations are highlighted in different colors at different reaction steps.
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no bond addition in the predefined edits. A typical example is the
reaction of protecting a carbonyl or aldehyde group to a cyclic acetal
(Supplementary Fig. 2). Additionally, extraction of graph edits from
datasets is highly reliant on atom-mapping information between pro-
ducts and reactants, which means incorrect matches would generate
misleading edit sequences that bias the trained model. It should
bementioned that due to the lack of reaction conditions, there may be
some gaps between the reaction generation process predicted by our
model and the actual chemical reaction mechanism in the generation
order or other details. And because of this, our model can provide a
variety of reactants for target compound based on the frequency of
reaction transformation rules in the training set, as the retrosynthesis is
a one-to-many mapping problem and there might be several different
reaction pathways to synthesize the target compound. Thus, this
challenge can prompt us to design AI retrosynthesis model closer to
chemical knowledge in the near future. Furthermore, although a target
compound may have multiple reaction centers and produce diverse
substrates through different reaction types, its reactivity may be spe-
cific to unique chemical environments. Future work on introducing
more chemically meaningful modules and collecting high-quality
reaction datasets will allow to better boost the applicability and inter-
pretability of the model for the single-step retrosynthesis prediction.

Methods
Details of graph edits
Our graph edits are derived from the training set and represent the
process of graph transformations in the retro-reactions. Since each
atom is mapped on product and reactants, we mark the edit atoms or
bonds to specify the positions and changes in each reaction. There are
four different types of edits in reactions: (1) Delete bond, (2) Change
bond, (3) Change atom, (4) Attach leaving group (LG) on atom, andour
priority order for graph edits is Delete bond > Change bond > Change
atom > Attach LG. The examples of edits derived from reactions are
shown in Supplementary Fig. 1.

As shown in Supplementary Fig. 1a, thefirst edit is (‘ChangeAtom’,
(0, 0)) on the atom 1, and the two numbers in brackets represent the
number of hydrogen and the chiral type to be changed, respectively.
And then, the graph edits is ('Attaching LG', ‘*C( =O)c1ccccc1C(*)=O’)
represents the ‘*C( =O)c1ccccc1C(*)=O’ is added on the atom 1. At the
reaction shown in Supplementary Fig. 1b, the bond [2, 3] is deleted and
then the ‘*N(C)C’ and ‘*Br’ group are added on the atom 2 and 3,
respectively. At the bottom of Supplementary Fig. 1c, the edit is first to
delete the bond [6, 7] and [10, 11], this sequence may not match the
true reaction mechanism, but it does not affect the final result of the
graph transformation. Next, the bond edits (‘Change Bond’, (2, 0)),
(‘Change Bond’, (1, 0)), (‘Change Bond’, (1, 0)) are operated on bond [7,
8], [8, 10], [6, 11], and the two numbers in brackets of bond edit
represent the bond type and the bond stereo configuration to be
changed. Finally, the leaving group ‘*=O’ and ‘*Br’ are attached on the
atom 11 and 6, respectively.

There are also some incorrect graph edits sequence which derived
from a small number of reactions using our automatic preprocessing
method. The examples are shown in Supplementary Fig. 2. A common
feature of these reactions is that the same leaving group needs to be
added to more than one atom. And since there is no bond addition
in the predefined edits, our method cannot handle this. Fortunately,
there is little reactions of new bond formation in the training set
(about 0.1%)16.

After generating the ground truth edits sequence based on the
atom mapping in reactions, we build the edits vocabulary. All graph
edits were derived from the training set of USPTO-50k dataset,
including 6 bond edits, 152 atom edits (7 Change Atom and 145 Attach
LG), and a termination symbol and the details can be seen in Supple-
mentary Data 1. The same procedure was used to build the edits
vocabulary on USPTO-full dataset and the difference is that the edits

Attach LG must appear at least 50 times in the training set of USPTO-
full before itwill be collected into the vocabulary. This edits vocabulary
include 6 bond edits, 336 atom edits (8 Change Atom and 328 Attach
LG), and a termination symbol.

Input representation
Given a compound, we represent it as a molecular graph G = ðV,EÞ,
where vertices V and edges ε are atoms and bonds. Each node vi 2 V
has a corresponding feature vector xi and each edge eij 2 E has a fea-
ture vector xij. The initial features used for atoms and bonds can be
found in the Supplementary Table 6 and 7.

Graph encoder
The MPNN is a framework for multi-layer spatial convolutional GNNs,
which operates on an undirected graph G to build the atom repre-
sentations of molecule. Each layer comprises two main components,
namely, message passing (Eq. (1)) and update (Eq. (2)):

ml + 1
i =

X
vj2NðviÞ

Ml hðlÞ
i ,hðlÞ

j ,eij
� �

ð1Þ

hðl + 1Þ
i =Ul hðlÞ

i ,mðl + 1Þ
i

� �
ð2Þ

where NðviÞ denotes a set of neighbors of a given atom vi. In short, at
iteration/layer l, node messages mðlÞ

i and hidden states hðlÞ
i associated

with eachnode vi areupdatedusing themessage functionMl andnode
update function Ul . This has the effect that at each iteration, a node
would be updated with the features from all of its adjacent nodes.
However, such a mechanism is likely to introduce noise into the graph
representation (a node message can appear more than once in a
path)52,55,65.

Here, in order to avoid the redundancy in node messages passing
with MPNN, we base our work on the D-MPNN, which propagates
messages along directed edges instead of nodes. And the corre-
sponding message passing update equations are as follows:

mðl + 1Þ
ij =

X
vk2NðviÞnvj

Ml vi,vk ,h
ðlÞ
ki

� �
ð3Þ

hðl + 1Þ
ij =Ut hðlÞ

ij ,m
ðl + 1Þ
ij

� �
ð4Þ

Note that hðlÞ
ij and mðlÞ

ij are distinct from hðlÞ
ji and mðlÞ

ji , where the
former are feature vectors along the edge ei!j while the latter are
feature vectors along the edge ej!i. And to update edge ei!j, Eq. (4)
passes messages from its neighboring edges ek!i that do not contain
the edge ej!i(the opposite direction to ei!j), ensuring that informa-
tion only flows in one direction and reducing redundancy. We imple-
ment the message passing functions Ml and edge update functions Ul

as follows:

Ml vi,vj ,h
ðlÞ
ij

� �
=hðlÞ

ij ð5Þ

Ul hðlÞ
ij ,m

ðl + 1Þ
ij

� �
=GRU hð0Þ

ij +mðl + 1Þ
ij

� �
ð6Þ

Prior to thefirst step ofmessage passing,we initialize edge hidden
states according to

hð0Þ
ij =Wiðxi k xijÞ ð7Þ

where Wi is a learnable weight matrix, || refers to concatenation
operation. After the final iteration L of edge features updates, the atom
vi is represented as the aggregation of all the incoming bonds
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features via:

hi = σ Wo xi k
X

vj2NðviÞ
hðLÞ
ji

0
@

1
A+ c

0
@

1
A ð8Þ

whereWo is the weights and c is the bias of the fully connected layer, σ
stands for the ReLU activation function.

Graph edits sequence generation
For given a product Gp, Graph2Edits first autoregressively generates a
sequence of edits (e1, . . . ,eT ), and then applies them to infer inter-
mediates Gm sequentially until the final reactants Gr are obtained. At
each generation step t, we take the intermediate graph GðtÞ

m (in the first-
generation step, Gð1Þ

m =Gp) as input and obtain the atom hidden states
hðtÞ
i by D-MPNN encoder. To enhance the connection between the

generation steps, we incorporate the previous step representations
into current atom features via:

hðtÞ
i = σ Wvh

ðt�1Þ
i +Wch

ðtÞ
i

� �
ð9Þ

Since the number of atoms changes after attaching the leaving
group, we zero-pad features of hðt�1Þ

i for any atom that was added to
the graph at step t. After the atom features are updated, the bond
features are represented by concatenating two atom features as

hðtÞ
ij = hðtÞ

i k hðtÞ
j

� �
ð10Þ

And we sum the atom hidden states to obtain a feature vector for
the molecule

hðtÞ
G =

X
vi2GðtÞ

m

hðtÞ
i ð11Þ

Finally, the logits sðtÞðij,bÞ, s
ðtÞ
ði,aÞ and sðtÞG for bond edits b 2 Ebond , atom

edits a 2 Eatom and termination symbol are calculated at each step t
through the fully connected layers

sðtÞðij,bÞ =ub
T ðσðWbh

ðtÞ
ij + cbÞÞ ð12Þ

sðtÞði,aÞ =ua
T ðσðWah

ðtÞ
i + caÞÞ ð13Þ

sðtÞG =uG
T ðσðWGh

ðtÞ
G + cGÞÞ ð14Þ

where ub and Wb are the weights and cb is the bias of bond edits
predictor, ua and Wa are the weights and ca is the bias of atom
edits predictor, uG and W G are the weights and cG is the bias of ter-
mination predictor.

Training
We utilize teacher forcing66 to train the model, that is, to predict each
step edits during graph generation, we use previous steps from the
ground-truth as input to themodel. At each edit step t, each bond eij in
GðtÞ
m has a label yðtÞðij,bÞ 2 f0,1g, each atom vi is associated with a label

yðtÞði,aÞ 2 f0,1g and graph label yðtÞG 2 f0,1g. The optimization goal for
prediction is to minimize the cross-entropy loss over possible edits,

aggregated over edit steps

L= �
X
t2T

X
ðGm ,EÞ

X
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yðtÞðij,bÞ log sðtÞðij,bÞ
� �0

@

+
X
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yðtÞði,aÞ log sðtÞði,aÞ
� �

+ yðtÞG log sðtÞG
� �1A

ð15Þ

Our model is implemented in PyTorch67. We also use the open-
source software RDKit50 to canonicalize product molecules, extract
edits from reactions, attach leaving groups to intermediates and gen-
erate reactant SMILES.

Evaluation and applying edits
We use beam search68 with a Softmax scoring function to generate
multiple ranked candidates for each product. During the generation
process, we set themaximumnumber of steps to 9 and thebeamwidth
k to 10. And at the step ðtÞth, for a beam width k, we first calculate the
probabilities of all possible edits and select k edits with highest scores,
then apply them to the input graph to obtain k intermediates. Once
this is done, the top k intermediates graphs among all the generated k2

graphs in the ðt + 1Þth generation step are selected as the input graphs
for the next step. During the beam search, a generation branch will
stop if step t reaches the maximum step or the graph representation
sðtÞG indicates a termination. Finally, the top k edits sequence and
graphs, ranked by their likelihoods, will be collected as the final pre-
dictions. Notably, Given the input product and edits sequence in the
test set, we can deduce the reactants by RDKit with 99.6% accuracy.

Model implementation details
Model trainings use the Adam optimizer for gradient decent optimi-
zation and the initial learning rate is set to 0.001 (0.0001 for USPTO-
full dataset) and controlled by learning rate decay. The learning rate
decay would monitor the validation accuracy and reduce the learning
rate bymultiplying a factor of 0.8when the accuracy reached a plateau
(a threshold value for improvement set to 0.01) within a patience of 5
epochs. Model gradients are clipped at maximum norm of 10. The
hidden dimension of the D-MPNN is set to 256, and each node is
updated for 10 iterations by message passing and node embeddings
is dropout with a probability of 0.15.We use the fully-connected layers
with hidden dimension 512 and dropout rate 0.2 for predicting the
initial edit scores.We train ourmodels for 150 epochswith a batch size
32. All modeling experiments on USPTO-50k were carried out in about
20-24 hours (15 days for training on USPTO-full) on a single NVIDIA
RTX 2060 GPU.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data and predictions that support the results of this study are
available at the Graph2Edits GitHub repo: https://github.com/Jamson-
Zhong/Graph2Edits. Source data are provided with this paper.

Code availability
The source code of this work and associated trained models are
available at the Graph2Edits GitHub repo: https://github.com/Jamson-
Zhong/Graph2Edits69,70.
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