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Modelling genetic stability in engineered cell
populations

Duncan Ingram 1 & Guy-Bart Stan 1

Predicting the evolution of engineered cell populations is a highly sought-after
goal in biotechnology.Whilemodels of evolutionary dynamics are far fromnew,
their application to synthetic systems is scarce where the vast combination of
genetic parts and regulatory elements creates a unique challenge. To address
this gap, we here-in present a framework that allows one to connect the DNA
design of varied genetic devices with mutation spread in a growing cell popu-
lation. Users can specify the functional parts of their system and the degree of
mutationheterogeneity to explore, afterwhich ourmodel generates host-aware
transitiondynamicsbetweendifferentmutationphenotypesover time.Weshow
howour framework can be used to generate insightful hypotheses across broad
applications, fromhowadevice’s components canbe tweaked tooptimise long-
termprotein yield andgenetic shelf life, to generating newdesignparadigms for
gene regulatory networks that improve their functionality.

The engineering of cells with synthetic DNA is one of themost promising
technologies of recent decades1, facilitating applications fromproducing
life-saving pharmaceuticals2 to making biomaterials with revolutionary
properties3. While significant progress has been made on the methods
underlying these achievements, a number ofproblemshave continued to
prevent them from reaching their full potential. One recurring issue is the
ubiquitous effect of evolution; when sustaining a population of cells
engineered with synthetic DNA, mutations will typically disable that
DNA’s function and lead to its progressive removal from the system.
While the effects of this are generally not critical in laboratory experi-
ments, they often have significant consequences when enacting larger-
scale projects, such as stunting the yield of synthetic protein from cells in
bioreactors4, causing biosafety concerns when deploying cells into the
environment5, and allowing devices to evolve in unpredictable ways6.
Being able to understand, predict and control evolution, therefore, has
the potential to transform cell engineering from an already-promising
tool to a leading technology in modern society.

Our quantitative understanding of how mutations spread in popu-
lations has developed since Fisher7, Haldane8 and Wright9 pioneered
mathematical descriptions of allele frequency changes in systems. Dif-
ferent formulations of these models have arisen to account for other
modelling techniques10,11, more complex population structures12, and the
presence of external selection pressures13, but they are all united in
describing how genotypes change over time. Since the advent of these
models, concepts like ‘fitness’ and ‘fixation’ have been used to enhance

our description of mutation spread14, enabling us to better interpret how
systems adapt given different starting conditions. While such models
capture changes on the scale of individual genes, applying them to
evolution in modern-day synthetic systems is inherently more challen-
ging, where accounting for variation amongst smaller genetic parts and
intricate genetic constructs is necessary. Not only do different combi-
nations of promoters, ribosome binding sites, coding sequences and
terminators create large variations in the potential evolution of a system,
but when genetic components are designed with regulatory feedback15,
the scopeofmutationdynamics soars. As a result, successfully describing
evolution in synthetic systems requires a more targeted approach that
can consider the combinatorial impact of mutating multiple linked
genetic parts.

Current progress in capturing the mutation dynamics of synthetic
constructs is varied. Experimentally, researchers have developed a litany
of techniques that constrain evolution, such as removing repeats and
methylation sites16, using different combinations of genetic parts17, and
coupling the expression of a synthetic device to an essential gene18.While
these experiments shed light on the workings of specific mutation
mechanisms, they provide little insight into how evolution can be pre-
dicted a priori. More general and quantifiable approaches have resulted
using deterministic models that define separate parameters for (i) the
genetic stability of a synthetic construct and (ii) the selection pressures
that act on the cells containing the construct19,20. Here, genetic stability is
captured by assigning a parameter for the rate at which a function-
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disabling mutation occurs. A number of computational tools21–23 exist to
quantify this rate, typically focusing on how the construct’s sequence
composition influences errors during DNA replication24. Selection pres-
sure,meanwhile, ismodelled using a parameter for the cell’s growth rate,
noting that cells typically grow faster when not expressing additional
genes25. The larger the difference in growth rate between cells that do
and do not express synthetic material, the faster the mutant phenotype
grows in the evolving population. While these models are good starting
points, they are unable to capture themyriad of mutation dynamics seen
in typical experimental data17. Recent discussions in the literature6 have
attempted to address this issue by suggesting that dynamic evolutionary
landscapes can be used to represent an evolution in synthetic systems.
Such landscapes would display the likely evolutionary routes of devices
by adapting in response to sequence composition, fitness-based pres-
sures, and functional effects. While enticing, the vast range of mutation
effects means that implementing them would require overcoming sig-
nificant computational challenges, and as such, no implementations have
been made.

More tangible routes to improving models of mutation spread in
synthetic systems could result by focusing on more targeted aspects of
evolution. One such area of improvement would be linking the growth
rate of cells to synthetic gene expression, such thatmodelling constructs
with different designs naturally results in different cell growth rates and
thus, different selection pressures. Implementing this would require
capturing the effects of gene expression burden, such that expressing
additional proteins reduces the availability of shared cellular resources
and stunts cell growth26. These effects are especially important to
account for under high expression levels as the resulting stresses are
known to cause additional growth defects and unintended
behaviours25,27. The prevalence of these phenomena in synthetic systems
has since motivated the development of host-aware28 cell models that
consider how resources are shared between the host and synthetic
constructs29–34, although their application to population-scale evolution
is scarce. Another area of improvement would be accounting for how
individual mutations can have varied effects, akin to the ‘distribution of
effects of mutations’ in population genetics35,36. This trait has been
applied acrossmany scales, fromdescribing phenotypic variety in cancer
cells37 to quantifying epigenetic variation38; however, like the use of host-
aware models, it has not yet been used to capture evolution in engi-
neered populations. Doing this would require amore targeted approach,
such as modelling which genetic parts are affected by mutations and the
extent to which they are affected.

To address the gap in our ability to capture varied mutation
dynamics in engineered cell populations, we here-in present a model-
ling framework that is mutation-aware, host-aware, and flexibly
accounts for varied gene construct designs in line with present-day
synthetic biology. The model allows a user to specify their device’s
genetic design and the degree of mutation heterogeneity to explore,
after which it automatically generates equations that simulate the
relevant fitness effects and selection pressures in the evolving popu-
lation. Throughout the paper, we show how our framework can gen-
erate important hypotheses about the effects of evolution in real-world
systems, which in the future could produce new insights into strategies
for assessing and mitigating the effects of evolution in synthetic devi-
ces. For example, for systems focused on protein production, we sug-
gest how a synthetic device’s DNA design can be tweaked to optimise
long-term protein yield and genetic shelf life. In addition, we show how
our model can propose new mutation-driven design paradigms for
gene regulatory networks and illustrate this using the toggle switch and
the repressilator.

Results
A modular framework captures varied mutation dynamics
The accumulation of cells withmutated synthetic DNA can bemodelled
by considering transitions between different mutation phenotypes
over time. A turbidostat is chosen as the growth setting such that the
number of cells is kept at a constant value, N, by diluting with fresh

media. In its simplest form, the model encompasses two states: engi-
neered cells (E-cells) of quantity E, which have fully-functioning syn-
thetic DNA, and mutant cells (M-cells) of quantity M, whose synthetic
DNA has beenmutated and rendered inactive (Fig. 1a). These cells grow
at rates λE and λM respectively, and all cells belonging to a particular
state are assumed to be identical. During the course of a cell cycle, a
mutation that fully inactivates the synthetic DNA can occur with
probability zM, leading to the production of one E-cell and one M-cell
upon division. By considering the growth rate of each cell type, the
division rate of an E-cell intoone E-cell andoneM-cell is λE ⋅ zM,while the
division rate into two E-cells is λE ⋅ (1 − zM). Here, growth rate is analo-
gous to fitness, such that cells with higher growth rate are fitter and are
more likely to be selected for within a growing population. Mutations
are assumed to be irreversible such that M-cell division always pro-
duces two M-cells at a rate of λM.

When the optical density (OD) in a turbidostat surpasses a target
value, cells are typically diluted by a fixed volume of media which causes
theODto drop. This creates a periodic rise and fall of cell number around
a fixed value over time. For simplicity, we approximate this process by
assuming that dilutionoccurs instantaneously in response to cell growth,
keeping the OD at the target value, and hence keeping the number of
cells at a fixed value,N. This requires a dilution function ‘dil’, which, when
E +M >N, removes cells in proportion to their abundance above N:

dil =
E +M � N, if E +M>N

0, otherwise :

�
ð1Þ

Based on these considerations, an ordinary differential equation (ODE)
model capturing the dynamics of each cell type can be formulated as
follows:

_E = E � λE � ð1� zMÞ � E � dil , ð2Þ

_M = E � λE � zM +M � λM �M � dil : ð3Þ

In order to simulate realistic cell behaviours, parameter values for
growth rate should consider the impact of synthetic gene expression on
host cell growth. We capture these effects by combining the state tran-
sition equations (Equations (2)–(3)) with the host-aware cell model from
ref. 29, chosendue to its comparative simplicity and easeofmanipulation
compared to other host-awaremodels30–32. In its base form, it uses a set of
ODEs that describes how essential resources are distributed in an engi-
neered E. coli cell (Equations (S2–S14), where the prefix ‘S’ refers to
content in the supplementary information), chosen due to its simplicity
and ubiquity in cell engineering. In this model, the cell is assumed to
contain a fixed protein quantity split between four fractions: ‘ribosomal’
for translation, ‘enzymatic’ for energy metabolism, ‘heterologous’ for
synthetic gene expression, and ‘housekeeping’which is auto-regulated to
remain constant and constitutes the remaining protein mass. Protein
expression is assumed to use a finite supply of cellular energy, and the
growth rate is then calculated from the combined production rate of
each fraction (Equation (S16)). As synthetic protein expression occurs,
the cell’s growth rate dynamically changes based onhowmany resources
are diverted from growth-supporting processes (such as producing
energy and ribosomes) to synthetic gene expression. For purposes of
generality, this model focuses on the general effect of synthetic gene
expression on cell fitness and does not consider the functional effect of
the gene. For specific systems, however, additional functional effects
could be added by modifying the equations that govern the growth-
supporting processes in the cell, such as energy metabolism or ribo-
some production (Supplementary Note Section S4). While the model is
structured based on E. coli, it is noted that it could be adapted to
other bacterial hosts by changing the cell-based parameter values. For
precise details of Weisse et al.’s framework, see Supplementary Note
Section S1.1.

We integrate Weisse et al.’s framework into our mutation model by
forming one set of ODEs for each cell state. A given set of ODEs contains
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an equation for that state’s cell quantity (such as Equation (2) for E-cells)
alongside thehost-aware cell equations (denoted as a subset of equations
called ‘Ψ’, SupplementaryNote SectionS1.1) from29.Within this structure,
each equation set is adjusted to reflect its associated state’s mutation
phenotype by considering specific parameter values for the synthetic
construct’s expression dynamics. One such parameter is the E-cell’s

maximum transcription rate (αE) which can be interpreted as the con-
struct’s promoter strength. By setting αE to 0, for example, transcription
is fully inhibited and the synthetic gene’s expression becomes inacti-
vated, hence capturing the behaviour of an M-cell. To model the
dynamics of the whole population, each set of ODEs for all cell states are
simulated together. By letting _ΨX denote the host-awareODEs specific to
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Fig. 1 | The modular mutation-aware framework. a The base model is repre-
sented by a two-state chemical reaction network in a turbidostat: engineered (E)
cells express synthetic genes while mutant (M) cells do not. Cells belonging to a
particular state are assumed to be identical. Transition rates are shown next to the
arrows. λE, λM: growth rate of E-cells and M-cells, respectively; zM: probability that
an E-cell produces one E-cell and one M-cell upon division; dil: dilution rate from
the turbidostat. Growth rates are inferred using a host-aware model of E. coli that
considers transcription (TX), translation (TL) and energy metabolism (Metab). An
independent cell model is used for each state to reflect differences in mutation
phenotypes. b The two-state model is extended to consider variation in mutation
location (`dimensions') and mutation severity (`states per dimension'). The
dynamics of each mutable part are captured by states positioned along new
orthogonal axes. Additional states added to a particular axis add variation in
mutation severity, with states ordered in severity. For each state, a newcellmodel is

used that reflects the state’smutation phenotype. Transitions between states occur
independently and are mono-directional such that mutation severity can only
increase. d: number of dimensions. s: number of states per dimension. [sy, dx] a
framework where [s, d] = [y, x]. Some areas between states are shaded to help visual
clarity. c Simulation of a [s3, d1] framework where a single gene’s promoter is
considered to vary between three mutation states: E, I (intermediate) and M. The
number of cells belonging to each state is plotted over time. Parameter values: [αE,
zM, αI, zI] = [104, 10−9, 6 × 103, 10−2]. d Simulation results from the [s3, d1] framework
are fit to fluorescence decay data from ref. 17. Each data set represents a variant of
the synthetic constructT9002 grown in E. coli cells. For simulations, fluorescence is
the total amount of synthetic protein currently in the population and `time' is
converted to `generations' using the cells' growth rates. See Supplementary Note
Section S2 for parameter values and fit statistics.
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state X, the full set of ODEs composing our two-state mutation-aware
model is defined as:

Two-state mutation-aware model≜ _E, _ΨE, _M, _ΨM

n o
: ð4Þ

In reality, mutations to synthetic constructs can affect a cell’s phe-
notype in different ways depending on (i) the functional part they affect
(mutation location) and (ii) the degree to which they affect it by (muta-
tion severity), otherwise known as the ‘fitness effect’. To capture these
aspects of mutation heterogeneity, the two-state framework can be
augmented by considering additional states that represent different
mutation phenotypes (Fig. 1b). Location-specific mutations can be
modelled by adding a dimension to the framework in Fig. 1a for each new
part being considered. We define a ‘dimension’ as a distinct functional
unit, such as a promoter or an RBS. Fine-graining mutable elements into
further sub-functions could be considered, such as splitting a promoter
into −35, spacer and−10 regions; however, thesedetails would need tobe
captured in the corresponding cell model equations. In order to analyse
the mutation dynamics of x parts simultaneously, x orthogonal axes are
drawn whereby the states along one axis correspond to one part’s
mutation state. As such,moving parallel to an axis represents a change to
the mutation phenotype of that axis’ associated part. We define the
parameter d as the number of dimensions in a framework, with the
notation dx denoting that d = x. For example, column ‘d2’ in Fig. 1b
represents frameworks that modelmutations into two parts. As depicted
in Fig. 1b, dimensions can also represent mutations to parts across multi-
gene constructs: d3, for example, could capture the mutation dynamics
of a three-gene repressilator by considering each gene’s promoter for
mutation. We assume that mutations to different parts develop inde-
pendently, such that transitions are restricted to one axis at a time.
Furthermore, we assume that each part functions independently, such
that the occurrence ofonemutation does not influence the probability of
another.

Variations in mutation severity can be included via additional states
along each axis. Cells within these intermediate (I) states are modelled
using parameter values that change the activity of the corresponding part,
but do not completely inactivate it. For a gene’s promoter, for example,
the maximum transcription rate of cells within an I-state (αI) would be
distinct from αE. We focus our analyses on mutations that decrease the
activity of a part, such that αE >αI > 0; however, this is not a requirement
and the implications of activity-increasing mutations are discussed in
Supplementary Note Section S4. Mutations with different severities are
assumed to occur with distinct probabilities, requiring different para-
meters for the probabilities of creating I-cells (zI) and M-cells (zM) upon
division. Additional I-states can be added to each axis to represent states
with varying degrees ofmutation severity, with these states being ordered
by decreasing part functionality. Furthermore, we allow parts to sustain
mutations of any severity, meaning that individual transitions can bypass
I-states.We assume thatmutations are irreversible, however,meaning that
previous states cannot be revisited. Akin to the parameter d, we define the
parameter s as the number of states per dimension, with the notation sy
denoting that s= y. For convenience, we use the notation [sy, dx] to
represent a framework with x dimensions and y states per dimension.
Frameworks up to [s3, d3] are shown in Fig. 1b; however, our model gen-
erates the appropriate framework structure for any integer values of s
and d.

Whenusing frameworkswithmultiplemutation states, careneeds to
be taken when interpreting the core mutation parameters. First, an
association between the maximum transcription rate, αE, and a con-
struct’s promoter strength can be obtained by measuring what para-
meter value corresponds to the maximum protein expression level of a
single construct. For the probability of a severe mutation, zM, values can
be inferred using tools such as the EFM calculator; however, care should
be taken regarding the proper interpretation, as outlined in Supple-
mentary Note Section S2. For frameworks with s > 2, it is inherently
challenging to give meaning to the parameters that govern specific
intermediate mutation pathways, such as E-to-I. In reality, cell popula-
tions likely undergo multiple mutation pathways with subtly different

effects, so values of αI and zI should not be interpreted as describing one
specific mutation pathway. Instead, it is more appropriate to interpret
the combined effect of these parameters as the ‘degree of mutation
heterogeneity’ in a system, which can be loosely defined as the extent to
whichmutationdynamicsdeviate fromthe foundational E-to-Mmutation
pathway. In turn, systems with high mutational variation will be best
modelled by combinations of αI and zI that result in sustained
I-subpopulations. If a user feels that their experimental dynamics are not
sufficiently captured by an s3 framework, they can then explore frame-
works with s > 3.

A complete set of equations describing any framework can be
representedby generalising Equation (4). By denoting a generalmutation
state as Xi, where i∈ [1, n], the full set of ODEs composing our mutation-
aware model is defined as:

General mutation-aware model≜ _X 1, _ΨX1
, . . . , _Xn, _ΨXn

n o
: ð5Þ

As before, _Xi represents the equation for the cell quantity in state Xi, and
ΨXi

represents the set of host-aware cell equations in state Xi (Section
S1.1). Within these equations, the parameters governing the synthetic
construct’s expression, such as the maximum transcription rate αXi

, are
chosen to reflect the mutation phenotype of the cells in that state.

To illustrate typical changes between states over time, a simulation
of the [s3, d1] framework is shown in Fig. 1c where a single gene’s pro-
moter is considered to vary between threemutation states. Here, all cells
start in the E-state (black line), before transitioning to I- and M-states
(yellow and red lines, respectively). In a two-state population model, the
E-state andM-state curves would be expected to have symmetric rates of
change, as any cell leaving the E-state becomes part of the M-state by
definition. The presence of an I-state, however, skews these curves, as is
seen by the E-state curve having an inflection point below its half-
maximal value. This added asymmetry from partially-inactivating muta-
tions may be important when capturing a larger variety of mutation
dynamics in cell populations.

To demonstrate the benefits of capturing mutation heterogeneity
with our model, we use our [s3, d1] framework to fit simulation results to
experimental data from ref. 17 (Fig. 1d). As in Fig. 1c, we apply this fra-
mework by modelling a single gene’s promoter varying between three
mutation states in order to approximate the effect ofmutations that fully
inactivate the construct. In their experiments, the authors engineer E. coli
with variants of the same fluorescent-tagged synthetic construct (T9002
and six variants appended ‘-A’ to ‘-F’), and record how each population’s
fluorescencedecays over timedue to the onset ofmutations. Fits to three
of these experiments are shown here (T9002 in blue, T9002-D in green
and T9002-F in orange), with more complete details of fitting to all
experiments given in Section S2. In our simulations, ‘fluorescence’
represents the total amount of synthetic protein currently in the popu-
lation, and ‘time’ is converted to ‘generations’ using the cells’ growth
rates. The full details of these adjustments are given in Supplementary
Note Section S2.

The different designs associated with each T9002 construct cause
changes to both the mutation probability of the construct and the
associated growth rate of the cells. The precise combination of these
factors is typically unknown without extensive experimental investiga-
tion; however, they can be estimated by fitting key mutation parameters
in ourmodel (αE, zM, αI, zI) to the experimental data. For the experiments
shown in Fig. 1d, optimal fits are obtained for T9002 and T9002-F using
values for αI and zI, while fitting to T9002-D was best achieved without
these parameters. Given that good fits can be obtained in some instances
without describing intermediate mutations, it is evident that our model
strikes a balance between the number of parameters and the ability to
capture complex behaviours. While this is not equivalent to obtaining a
complete predictive association between a system’s genetic design and
its evolutionary dynamics, experimental interpretations can still be
obtained for our framework’s key mutation parameters, as outlined
previously. Amore thorough discussion of these fits and their underlying
methodology is given in Supplementary Note Section S2.
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Synthetic construct design impacts protein production over cell
generations
The impact ofmutations on protein production is of particular interest in
biotechnology, affecting both product yields and the reliability of
experiments4,39. While cell strains with higher expression loads produce
higher synthetic protein yields per unit time, they are also selected
against faster in a growing cell population17. This trade-off between
genetic shelf life andproteinproduction yield is oftenunclear, and canbe
explored using our mutation-aware framework.

In order to evaluate protein production through the lens of muta-
tions, quantitative metrics can be defined in the context of our model. In
a turbidostat, the yield of a given protein type can be defined as the
cumulative amount of that protein extracted from cells that leave the
chamber as a result of dilution. Here-in, ‘heterologous’ (H) will be used to
describe proteins and variables related to the expression of synthetic
gene constructs. The rate of H-production attributed to cells in a general
state ‘Xi’ can be calculated bymultiplying the amount of H-protein in one
of those cells, HXi

ðtÞ, the growth rate of one of those cells, λXi
ðtÞ, and the

abundance of that cell type in the turbidostat, Xi(t). The rate of
H-production in the entire population is therefore the sum over all cell
types. To compare results between continuous cultures of different sizes,
we can furthermore represent this quantity as a per-cell average by
dividing by N. It follows that the per-cell average rate of H-protein pro-
duction in the population (unit: moles h−1 cell−1) is:

HrateðtÞ=
Xn
i= 1

HXi
ðtÞ � λXi

ðtÞ � XiðtÞ
N � lnð2Þ , ð6Þ

with the factor lnð2Þ required to link growth rate todoubling time. In turn,
the per-cell average protein yield (unit: molecs cell−1) between two time
points T0 and T is the integral of Hrate(t):

HyieldðT0,TÞ=
Z T

T0

HrateðtÞ dt: ð7Þ

Intuitively, Equation (7) represents the amount of new cell mass that is
converted to H-protein as the population grows during the time interval
[T0, T].

Figure 2a shows how Hyield(T0, T) can be obtained from our frame-
work in a simple case. Herewe consider a populationof cells expressing a
single synthetic construct whose promoter is subject to fully-inactivating
mutations ([s2, d1]). The promoter is chosen because its inactivation
blocks all downstream gene expression, thereby approximating the
effect of fully inactivating the gene. As t approaches 30 h in this simu-
lation, the accumulation of non-producing M-cells leads to Hrate(t)
decreasing to zero, meaning that no additional protein yield can be
obtained.

When growing a cell population for synthetic protein extraction, it
may not be desirable to wait until the mutations have become wide-
spread before altering or terminating the experiment. This is because
(i) beyond a certain time, the quantity of experimental resources
required may outweigh the gains in protein yield and (ii) researchers
may want to maintain a population above a particular threshold of
active synthetic gene expression by restocking the turbidostat chamber
with viable cells. For these reasons, it is useful to simulate the impact of
different construct designs on protein production when measuring (i)
the yield at fixed time intervals and (ii) the time taken for the popula-
tion’s protein expression rate to drop below a particular threshold.
These can be calculated by varying parameters that are intimately tied
to the construct’s design: the mutation probability (zM), which is sig-
nificantly influenced by a construct’s sequence composition22, and the
maximum transcription rate (αE), which depends on the choice of
promoter and affects the cell’s growth rate via the diversion of shared
cellular resources towards heterologous gene expression rather than
biomass production.

While it is intuitive that increasing zM decreases protein yield, the
effect of increasing αE is less obvious as higher expression rates typically
correlate with slower growth rates. To explore this further, we calculate
Hyield(0, T) for the simple [s2, d1] framework in Fig. 2a over different

−12 −3
2.5

5 1.5
106

0.2

12 h

10
α

E
, α

 =
M

ax
im

um
 T

X
 

ra
te

/m
ol

ec
s

h−
1  c

el
l−

1

α
E

10zM, zM = mutation
probability

zM

48 h

−12 −3
2.5

5 3.7
106

0.6

10zM

H
yi

el
d 

at
 ti

m
e 

in
te

rv
al

/m
ol

ec
s 

ce
ll−

1

tall mutated

−12 −3
2.5

5 4.3
106

0.6

10zM

b

10zM, zM = mutation
probability

zM

Ti
m

e 
un

til
 H

ra
te

 
dr

op
s 

to
 %

 o
f m

ax
.96

0
−12 −3

2.5

5

−12 −3
2.5

5

−12 −3
2.5

5 96

0

96

0

50% of max. 10% of max. 0% of max.

10zM 10zM

10
α

E
, α

 =
M

ax
im

um
 T

X
 

ra
te

/m
ol

ec
s

h−
1  c

el
l−

1

α
E

c

a
104

10

0
0 30

Time/h

H
ra

te
/m

ol
ec

s
h−

1  c
el

l−
1

Hyield (molecs cell−1)

192 h

12 h

48 h

96 h

24 h

6 h 12 h

48 h

96 h

192 h

24 h

12 h

48 h

96 h

24 h

6 h

Fig. 2 |Modelling protein yield and viability of protein production. a Simulation
of a framework where fully-inactivating mutations of a single gene’s promoter ([s2,
d1]) are modelled. The rate of synthetic protein production, Hrate(t), is plotted. The
synthetic protein yield, Hyield(T0, T), is the area under this curve. Parameter values
for the synthetic gene: [αE, zM] = [1.05 × 104moles h−1 cell, 10−12]. b Heat maps of
synthetic protein yield for the [s2, d1] framework in (a), calculated by varying the
mutation probability (zM) and the maximum transcription rate (αE). Yield mea-
surements are taken at three intervals ([0,T] whereT∈ {12, 48h, tall mutated}) to show

how the optimal parameter combinations change over time. cContourmaps of the
time taken for Hrate(t) to drop to certain percentages (50%, 10% and 0%) of its
maximum value for the [s2, d1] framework in (a), calculated by varying zM and αE as
in (b). Tracing any contour line gives the combinations of zM and αE that ensure a
minimum protein production rate (given by the map) for the duration of that
contour’s time value.White dots represent constructswith the same value of αE and
zM, with arrows pointing in the direction of the maximum increase in contour time
values.
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intervals (T∈ {12, 48 h, tallmutated}), and observe how the optimum com-
binations of zM and αE are predicted to vary (Fig. 2b). Here, tallmutated is
the time at which all cells in the turbidostat have becomeM-cells. Results
are displayed over time as successive heat maps, with lighter regions
indicating combinations of zM and αE that produce more H-protein. As
time progresses, the optimum value for αE drops, suggesting that lower
protein expression delivers higher protein yieldwhenculturing cells over
longer time periods. This can be explained via the trade-off between the
rate of protein expression and the effect of selection pressure: while
higher transcription rates deliver more H-protein per unit time, these
cells use more shared cellular resources and so grow more slowly com-
pared to those with weaker H-protein expression. They are therefore
diluted from the turbidostat at a faster rate, leaving fewer protein-
producing cells in the population. This adverse effect on protein yield is
relatively small at the beginning of an experiment but becomes more
significant as time progresses, leading to a steady decline in the optimal
value of αE.

For the mutation probability zM, the range of values that
maximise protein yield becomes smaller over time, with later time
points more significantly penalising higher values of zM. This can be
explained by considering that the accumulation of mutant cell types
in a population accelerates over time. During early population
growth, a limited number of mutant cells are produced according to
themutation probability, however, as these cells grow faster than other
cell types, a tipping point is eventually reached that allows their com-
bined growth to accelerate beyond the growth of other cell types. This
aligns with the observed protein production dynamics from Figs. 1d,
2a, where a fast decline in protein production is typically seen following
a sustained period of protein expression. Together, these results sug-
gest that optimising a synthetic construct’s sequence for mutation
becomes more crucial the longer that protein production is sus-
tained for.

A separate consideration is monitoring a population’s rate of
protein production over time. This may allow researchers to gain
insight into their device’s genetic shelf life and, in turn, allows them to
predict when a system should be replenished with unmutated (E-state)
cells. The impact of synthetic construct design on these aspects can be
analysed using contour maps of the time taken for the population’s
protein expression rate, Hrate(t), to drop to certain percentages of its
maximum value, maxðHrateðtÞÞ (Fig. 2c). In each map, tracing any con-
tour line gives the combinations of zM and αE that ensure a minimum
protein production rate (either 50, 10 or 0%) for the duration of that
contour’s time value. For example, if a user wants to design their con-
struct to sustain a minimum of 50% production rate for at least 24 h,
they could choose any parameter values bounded below the 24 h con-
tour line in the left-most map.

In each contour map, it can be seen that higher zM and αE lead to
faster mutation accumulation, as displayed by the upper-right regions
of the maps displaying contour lines with lower time values. This is as
expected, as both of these parameters are positively associated with
selection pressure. Other trends can be seen by comparing the efficacy
of zM and αE on increasing shelf life. To illustrate this, white dots are
added to the ‘50%’ and ‘0%’ maps that represent a synthetic construct
with equivalent maximum transcription rate and mutation probability.
The arrows leaving these dots point in the direction of maximum
increase in contour time values, such that changing αE and zM in this
direction is the most direct way to increase the genetic shelf life. As
more mutations are allowed to accumulate in a population (moving
between maps left to right), the direction of maximum increase
becomesmore vertical, meaning that αE has an increasingly large effect
on shelf life relative to zM. These results suggest that, if researchers are
committed to growing cells until cell viability drops to low values, they
can better sustain synthetic gene expression by varying the cell’s rate of
protein production (e.g. by changing the promoter) rather than its
mutation probability (e.g. by removing mutagenic sequence features).
While this trend is specific to the construct design indicated by the red
mark, it can be seen to hold formany other designs as the contour lines

straighten between maps (left to right) across large regions of the
parameter space.

Genetic toggle switches lose switching capacity over time
So far, we have shown how our framework can be used to explore the
mutation dynamics of a single-gene construct with a simple protein
output. Although this is useful to capture fundamental trends in synthetic
protein expression, it does not represent more complex genetic devices
such as those with multiple genes and regulatory components. To better
demonstrate our framework’s potential, we apply it to two of the most
influential gene regulatory motifs in synthetic biology: the toggle switch
and the repressilator. The mutation dynamics and subsequent protein
expression behaviours of these devices are unintuitive a priori and so
constitute prime examples for the application of our mutation-aware
modelling framework.

In its simplest form, a toggle switch comprises two genes whose
protein outputs mutually inhibit the transcription of the other. They are
typically designed to be bistable, with the two asymptotically stable
steady states corresponding to one gene being highly expressed while
the other is silenced and vice versa. Specific external protein inhibitors
can be added at a sufficiently high concentration to switch the toggle
from one steady state to another. This capacity for switching is arguably
the most fundamental feature of a toggle switch and is hence used in
multiple applications, from the regulation of gene expression40,41 to
controlling biofilm formation42. Until now, theoretical analyses of the
switching behaviour of toggle switches have assumed unchanging pro-
tein expression dynamics43–45, whereas in reality, one would expect
mutation accumulation to reduce the ability of these genetic constructs
to switch between states.

In our analysis, we consider a symmetric toggle switch that
expresses mutually repressing species protein-A and protein-B at con-
centrations A and B, respectively (Fig. 3a, top). Our simulations start in
the asymptotically stable steady state corresponding to the high
expression of protein-A. At a given time, a species IA is added at con-
centration IA to inhibit the ability of protein-A to repress the expression
of protein-B. The inhibitor is assumed to be evenly mixed in
thepopulation such that it isdistributed to each cell type inproportion to
its abundance. If IA is sufficiently high, a switch from the high protein-A
stable state to the high protein-B stable state occurs in the cells that still
express synthetic proteins. As time passes, however, the accumulation of
mutations means that an equivalent concentration of inhibitor may lead
to fewer cells switching frommore protein-A to more protein-B. In other
words, the onset of mutations may cause the population to lose its
capacity to switch from one stable state to the other over time. These
effects are qualitatively illustrated in the middle row of Fig. 3, which
tracks the concentrations of A and B averaged per cell. If PXi

denotes the
concentration of a protein within cell state Xi, and if the quantity of that
cell type in the population is Xi, then the average concentration of that
protein per cell (P, unit: moles cell−1) is defined as:

P =
Xn
i= 1

PXi
� Xi

N
: ð8Þ

To quantitatively track a population’s change in switching capacity,
we add the inhibitor at successive time points and different concentra-
tions, and record the number of cells whose protein concentrations
satisfy B >A. When adding an inhibitor to any system, we assume that it is
evenly mixed in the system and taken up by cells instantaneously. To
compare the effect of the inhibitor across different simulations, at each
time point that we add it, we record its concentration required to induce
at least 50% of the population’s cells to switch from one steady state to
another. Thismetric does not consider the distance between fixed points
in phase space, and as such, our measure of a population’s switching
capacity is defined purely as the ability to switch states rather than the
strength of the corresponding switch.
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Withnomutations (Fig. 3a), adding the inhibitor at a sufficiently high
concentration will cause all cells in the population to switch from high
protein-A to high protein-B, such as the dynamics shown in the middle
panel. Furthermore, the constant value of IA in the bottom panel means
that this switching effect is independent of when the inhibitor is added.
This suggests that the switching capacity of the system does not change
over time, a feature found in traditional theoretical analyses of toggle
switches.

To explore the impact of mutations, we can first apply the [s2, d2]
framework, which models fully-inactivating promoter mutations to each
synthetic gene (Fig. 3b). The top panel shows how the states can be
interpreted by adding the construct design that corresponds to the
relevant mutation phenotype. When the inhibitor is added to this system
at the same concentration and at the same time point as in the case with
nomutations, different dynamics are seen: the effect of inhibition starts a
transition fromprotein-A toprotein-B; however, due to the accumulation
of mutations, the average concentration of protein-B falls before any
steady state value is reached. It can be imaged how the greater the onset
of mutations in a system, the lower the concentration that protein-B
reaches, and in turn, the fewer the cells satisfy B >A. In these cases, for an

equivalent number of cells to switch from more protein-A to more pro-
tein-B, a greater concentration of inhibitor would therefore be required.
This relationship is shown in the bottom panel, which plots the con-
centration of inhibitor required to cause ≥50% of cells to switch from
more protein-A to more protein-B when added at different time points.
As shown, adding inhibitors at progressively later time points requires
higher values of IA, indicative of the system losing its switching capacity
over time. This continues until the curve reaches a vertical asymptote, at
which point the mutation accumulation is too great for switching
to occur.

As explored with our varied framework designs, mutations may not
completely inactivate a component, but could also partially reduce its
activity. Such details may be important to capture when attempting to
fully understand the dynamics of complex gene regulatory networks.
These effects can be considered for the toggle switch by applying our [s3,
d2] framework, which additionally models mutations that partially inacti-
vate each gene’s promoter (Fig. 3c, top). The construct designs associated
with select states are shown, with genes containing partially-mutated
components being annotated with a prime (0) symbol. These partially-
inactivating mutations cause genes to produce proteins at a lower rate,
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Fig. 3 | Applying our framework to study the mutation-driven dynamics of a
toggle switch. a Simulation of a cell population expressing a toggle switchwithout
mutations ([s2, d1]).Top: the gene network topology of a toggle switchwhose genes
express species protein-A and protein-B, and an inhibitor to the repression of
protein-B labelled IA. Middle: average concentrations of protein-A and protein-B
per cell over time (left y-axis), and thenumber of cells in various statesover time, as
labelled (right y-axis). The inhibitor is added at t = 9 h (vertical dashed line) at a
concentration of 1500 moles cell−1, causing a transition from the high protein-A
steady state to the high protein-B steady state. Bottom: the concentration of
inhibitor required for at least 50% of the cells to transition frommore-A tomore-B.
Variation in this quantity is monitored when adding inhibitors at different time
points. For each synthetic gene, αE = 105molecs h−1 cell−1. b A simulation of a
population expressing a toggle switch where fully-inactivating promoter

mutations to both genes ([s2, d2]) are modelled. Top: each mutation state can be
mapped onto the framework shown. All cells start in the non-mutated E-state (top-
right). Middle: as in (a). With multiple cell types, the inhibitor is assumed to be
distributed proportionally between each type. Bottom: as in (a), with a dashed line
showing the concentration of inhibitor required when no mutations occur. For
each gene, [αE, zM] = [105molecs h−1 cell−1, 10−6]. c An equivalent system to (b) but
additionally considering partially-inactivating mutations to each gene’s promoter
([s3, d2]). Top: as in (b), with partially-mutated genes annotated with a prime (0)
symbol. Numbers denote the growth rate of cells within select states relative toM-
cells, in simulations without inhibitors. Middle: as in (a) and (b), but with the
inhibitor added at t = 18 h. Bottom: as in (b). For each synthetic gene, [αE, zM, αI,
zI] = [105moles h−1 cell, 10−6, 5 × 103moles h−1 cell−1, 5 × 10−2].
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leading to reduced resource consumption and faster cell growth. This is
indicated by the values adjacent to select states which show the growth
rate of cells in those states relative to M-cells, in simulations without
inhibitors. Cells with higher growth rates aremore strongly selected for in
a growing cell population, and as a result, their impact on the population’s
protein expression can often be seen. This effect is shown in the middle
panel, where the number of cells with partially-inactivating mutations to
both synthetic proteins is plotted over time (yellow region). Despite
expressing synthetic protein at a lower rate, the accumulation of this cell
phenotype enables the average concentration of protein-A to restabilise at
a new lower value after initially declining, indicative of transitions from the
E-state to the I-state.

Given that lower concentrations of protein-A inevitably require
less inhibitor to cause a transition from more protein-A to more pro-
tein-B, the presence of cell phenotypes with higher growth can have
interesting implications on a system’s switching capacity. For example,
when inputting inhibitor at t = 18 h after protein-A has dropped (vertical
dashed line in middle panel), it can be imagined how the concentration
required to cause ≥50% of cells to switch is lower than when no muta-
tions are present. This can be seen in the lower panel of Fig. 3c, which
shows that, while the population’s switching capacity initially declines,
it begins to regenerate at t ≈ 8 h and results in a time period where the
system’s switching capacity surpasses that of a system with no muta-
tions, as indicated by the solid line dipping below the horizontal dashed

line. After this, mutations to the faster-growing cell phenotype even-
tually lead to the system’s complete loss of switching capacity, and the
concentration of inhibitor required reaches a vertical asymptote, as
with the [s2, d2] framework. These results suggest that, while mutations
inevitably lead to the complete loss of switching capacity, the presence
of mutation heterogeneity can permit toggle switches to enhance their
switching abilities, as measured by the number of cells that are able to
transition from havingmore of one protein species tomore of another.

Repressilators are resistant to single points of failure
Repressilators are genetic oscillators typically consisting of three genes
inhibiting eachother in a one-way ring structure (Fig. 4a)withwidespread
application in synthetic biology46. Naturally-occurring genetic oscillators
are robust to shifts in period or amplitude, often due to in-built feedback
mechanisms47,48; however, when implemented synthetically, their ability
to sustain regularly-repeating oscillations diminishes49,50. One cause of
this loss of regularity may be the oscillator’s genes losing functionality
over time; however, experimental data that explores this is scarce. We,
therefore, apply our framework to examine a synthetic repressilator’s
dynamics in a growing cell population, and in turn, explore how muta-
tions may impact the regularity of oscillations.

In our analysis, we consider a repressilator that expresses species
protein-A, protein-B and protein-C at concentrations A, B and C,

Fig. 4 | Applying our framework to study the mutation-driven dynamics of a
repressilator. a Simulation of a cell population expressing a repressilator without
mutations ([s1, d3]). Top: the gene network topology of a repressilator whose genes
express species protein-A, protein-B and protein-C.Middle: average concentrations
of protein-A, protein-B andprotein-Cper cell over time (left y-axis), and the number
of cells in various states over time, as labelled (right y-axis). Bottom: energy capa-
city per cell relative toM-cells (left y-axis, black) and growth rate per cell relative to
M-cells (right y-axis, green). For each synthetic gene, αE = 105molecs h−1 cell−1.
b Simulation of a cell population expressing the genes of a repressilatorwhen fully-
inactivating promotermutations ([s2, d3]) are considered. Top: eachmutation state
canbemappedonto the framework shown.All cells start in the non-mutated E-state

(top-right). Numbers denote the time-averaged growth rate of cells within a state
relative toM-cells.Middle: as in (a). Bottom: as in (a) but for cells with one synthetic
promoter fully inactivated. Horizontal dashed lines are added to indicate the time-
averaged energy capacity and growth rate for cells with no mutations. For each
synthetic gene: [αE, zM] = [105moles h−1 cell−1, 10−6].cAnequivalent system to (b), but
additionally considering partially-inactivating mutations to each gene’s promoter
([s3, d3]). Top: as in (b) with partially-mutated genes annotated with a prime (0)
symbol. Middle: as in (b). Bottom: as in (b) except modelling cells where one gene
has a partially-inactivated promoter. For each synthetic gene, [αE, zM, αI,
zI] = [105molecs h−1 cell−1, 10−6, 1.2 × 104moles h−1 cell−1, 1.2 × 10−2].
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respectively. To understand the construct’s behaviour at the popula-
tion level, we plot the average concentration per cell (Equation (8)) of
each protein and characterise the oscillations that result. To further
understand how the repressilator’s activity impacts the host, we addi-
tionally record the energy capacity of cells in certain states relative to
that in the M-state (Equation (S2)). In the host-aware cell equations,
energy is essential for the expression of all genes and thus constitutes a
key growth-limiting resource. As with the protein species, this variable
is recorded as the average concentration of molecules per cell.

With nomutations (Fig. 4a), the construct behaves as expected, with
the proteins oscillating with uniform period and amplitude (middle
panel). The energy capacity and growth rate of each cell is recorded over
time, shown in the bottom panel as black and green lines corresponding
to the left and right y-axes, respectively.

Aswith the toggle switch analysis, we can first apply a framework that
models fully-inactivating mutations to each synthetic gene’s promoter
(Fig. 4b). The top panel shows how the construct design that corresponds
to eachmutation phenotype can bemapped to each state from the [s2, d3]
framework. Values adjacent to the states indicate the time-averaged
growth rate of cells within that state relative to that of M-cells. When
recording the protein concentrations over time, we see that the oscilla-
tions remain robust for an extendedperiod of time before their amplitude
eventually reduces to zero (middle panel). This is also reflected by the
number of cells in the E- and M-states (right y-axis, white and red areas),
whose values only change significantly towards the end of the simulation.

These sustained regular oscillations can be understood by com-
paring the energy capacity and growth rate of cells in different states
(bottompanel).Whenonegene is fully inactivated, the energy capacity in
the cell falls below that in cellswith nomutations (black dashed line). As a
result, there is less energy capacity to sustain protein expression, which
causes the growth rate to drop compared to cells with no mutations
(green dashed lined). Cells with one gene inactivated will therefore get
removed from the turbidostat at a faster rate than E-cells. In other words,
while transitions from the E-state to directly connected states are pos-
sible, there is little selective pressure to do so, explaining why stable
oscillations persist over an extended period of time. As M-cells have the
highest growth rate in the population, they gradually become dominant
relative to other cell types. As a result, a tipping point is eventually
reached whereby M-cells out-compete other cell states.

The reported drop in growth rate is initially counter-intuitive, as one
may expect cells to gain more resources for growth-supporting pro-
cesses when inactivating any one genes. A plausible explanation is that,
for cells with no mutations, sustaining a cycle of mutually repressing
species prevents any one protein from reaching high expression levels
and thus prevents an excessive drain on cellular resources. By removing
one component and thereby breaking the repression cycle, one protein is
able to becomedominant and, in turn, causes a higher drain on resources
compared with when all three genes are active.

Mutation dynamics can be analysed in greater detail by additionally
considering the effects of partially-inactivatingmutations on each gene’s
promoter. The top panel in Fig. 4c shows how this can be achieved using
the [s3, d3] framework, with construct designs associated with select
states being shown. In contrast to Fig. 4b, the introduction of partially-
inactivating mutations causes the regularity of oscillations to change
from the offset, alongside an immediate reduction in the quantity of
E-cells. This behaviour can again be understoodby comparing the energy
capacity and growth rate between different states. The bottom panel
shows that, when mutation events partially inactivate the promoter of
one gene, the cell’s energy capacity oscillates at a higher average value
than with no mutations. In turn, the greater availability of resources
allows for the expression of proteins at higher levels, which boosts the
growth rate of cells with partially-inactivating mutations cells relative to
E-cells. This suggests that reducing the repression of any protein, while
not totally inactivating it, is selectively advantageous and allows the
corresponding cell types to accumulate in the turbidostat at a faster rate.
The erratic nature of the oscillations observed later in the simulation can
be explained by comparing the protein dynamics in different states, as is
outlined in Supplementary Note Section S3.2.

The higher energy capacity resulting from partially-mutated genes
can again be explained by considering the strength of repression within
different gene constructs. Partially reducing the expression of one gene
reduces its drain on the cell’s resources. However, its remaining activity
prevents the other protein species from dominating to excessive levels.
The resulting sum of repression is, therefore, sufficiently low such that
the cell’s available energy capacity increases. Contrasting this with the
effects of fully-inactivating mutations, our results suggest that synthetic
repressilators are typically resistant to single points of failure.

Discussion
Our modelling framework has been designed to model evolution in
synthetic constructswith variation in genetic parts, numberofgenes, and
feedback regulation. Once a user specifies their system’s design and the
degree of mutation granularity to explore, equations are generated that
govern transitions between different mutation phenotypes, taking into
account (i) sequence-dependent mutation probabilities and (ii) gene
expression-dependent growth rates. In order to model how each muta-
tion phenotype is connected to one another, we position states asso-
ciated with a different mutation location along a new orthogonal axis,
and states associated with a different mutation severity along
equivalent axes.

In outlining our framework, we use different mutation locations to
resemble distinct functional parts, such as the promoter or the RBS of a
gene construct. In doing so, a natural question arises about the granu-
larity of functional parts: with a promoter, for example, subtly different
functional effects could result frommutating its ‘ − 35’, ‘ − 10’ and spacer
regions, thereby necessitating different mutation states for each. Taking
this to the extreme, one could in theory assign a mutation state to each
nucleotide in a synthetic construct and explore the resulting evolu-
tionary dynamics through an extremely high-dimensional space. Scaling
frameworks to this level of resolution would create more problems,
however, such as the impossibility of predicting the effect of mutating
each nucleotide, or the challenge of determining how insertions and
deletions would be represented. These themes are the subject of dis-
cussion by6 who theorise how predictive evolutionary landscapes can be
designed, suggesting that the sequence space of differentmutation types
can be navigated by forming probability distributions for a device’s fit-
ness and its function. At the other end of modelling granularity, a syn-
thetic construct could instead be considered as either wholly active or
wholly inactive, rather than dissecting it into individual genetic parts. In
many scenarios, this effect can be approximated by mutating a gene’s
promoter region, as doing so would block all downstream gene expres-
sion. This effect is utilised in our analysis, where we approximate the
complete inactivationofgene constructs bymodellingmutations to their
promoters.

Regardless of how distinct functional parts are defined, exploring
mutations with a part-driven approach strikes a balance between model
complexity and usability. Despite this, one may want to consider the
computational cost associated with our framework when varying the
number of mutation locations and severities. As proxies for model
complexity, we can consider the total number of states (‘n’) and the total
number of state transitions (‘T’) in a system, which can be calculated as

‘n = sd’ and ‘T =
s
2

� �
� d � sd�1’, respectively (Section S5). Given that each

mutation state uses an entire set of host-aware cell equations (Sec-
tion S1.1), it is recommended that care is taken in first determining the
most relevant mutagenic parts of a system in order to minimise com-
putational cost and to simplify the model output. Further detail can be
added after this, if desired. For example, modelling each mutable part
with only one intermediate state might be sufficient to capture the
mutation heterogeneity present in a system, or modelling mutations to
just the promoter and not the RBS might produce the desired dynamics.
The capabilities of modelling at these levels of granularity are shown in
our results, where we uncover unique design considerations of genetic
constructs using frameworks that consider only promoter mutations
with one intermediate mutation state.
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Additional variation in mutation dynamics can also be added by
modelling gene expression in more detail. The current cell equations,
based on the model by29, describe transcription and translation elonga-
tion as single-step processes, and in doing so allow users to change the
values of parameters associated with a gene’s maximum transcription
rate andmRNA-ribosome binding rate. Despite this, the equations do not
describe other core components like the coding sequence (CDS), ter-
minator, and origin of replication, and therefore cannot capture the
effects of codon efficiency, termination efficiency, and copy number.
Adding variation to the CDS’s function, for example, could be important
when considering variable codon design. This is because inefficient
codons are known to cause ribosomal traffic jams on mRNA
transcripts51–53, thereby hindering the translation of other proteins that
are essential for cell survival. Some existing models of translation con-
sider these effects in detail34,53–55, with34 additionally modelling their
impact on shared cellular resources and cellular growth rate. In addition
tomodelling genetic parts in greater details, variation could be added by
specifying different energy sources, adding other proteome fractions for
the effects of transcription factors, or including more resource pools for
other metabolites like tRNAs and NTPs. These may be particularly
important when capturing other consequences of high protein expres-
sion, such as the accumulation of toxic metabolites56 or misfolded
proteins57,58. Some host-aware models capture these effects well31,32, and
so just likewithmodelling the CDS inmore detail, they could in theory be
accounted for in our mutation-aware framework.

In our results we showed how ourmodel can be applied to a number
of use cases that could aid researchers across many areas of cell engi-
neering. First, we showed how it can be used to model protein yield and
genetic shelf life. This is inherently usefulwhen trying to optimise systems
for function in the biotechnology industry, where reagent costs and
experimental reliability are often of large concern4. Our analysis during
the section on protein production dynamics showed how the design of
synthetic constructs impacts both yield and shelf life via the maximum
transcription rate ‘αE’ and themutation probability ‘zM’, both of which can
be altered by changing a construct’s promoter or its nucleotide
sequence22, respectively.When optimising yield, we showed how the time
scale of experiments impacts the choice of ‘αE’ due to a trade-off between
production capacity and selection pressure (Fig. 2b), a trend that is sup-
ported by recent experimental studies26. When improving shelf life, we
see that for many parameter values, changing ‘αE’ becomes increasingly
more impactful than changing ‘zM’ when more mutations accumulate
(Fig. 2c). Growing populations to high degrees ofmutation is not typically
viable; however, these results may empower researchers to justify one
experimental change to their synthetic construct over another. This
becomesmore important when either time or resources are limiting, as it
could be unfeasible to modify both a construct’s parts (to change its
growth rate, for example via ‘αE’) and its sequence (to change itsmutation
probability).

Tobetter illustrate thepotential ofour framework,we thenexplored
the utility of varying the granularity of mutation dynamics of the genetic
toggle switch and the repressilator. Both of these motifs have extensive
theoretical underpinnings; however, theirmutation-drivenbehaviour has
been far less explored. First, for a genetic toggle switch, we explored the
impact of mutations bymonitoring how its key trait is affected: its ability
to switch from one stable state to another. Intuitively, it was found that
the onset of mutations decreased the construct’s switching capacity;
however, more interesting observations were made when exploring the
effect of partially inactivating mutations. When permitting intermediate
mutations, we found that its capacity to switch between stable states can
temporarily increase (Fig. 3). In these instances, less inhibitor is required
to induce switching which could have varied experimental implications.
Inducing switching behaviour with less reagent could deliver a simple
economic benefit; however, a higher switching capacitymaymake toggle
switches more prone to unintended switching, for example due to leaky
gene expression. While these ideas have not been experimentally tested,
their implications could be important for applications that require pre-
cise and predictable switching behaviour. As shown in59, for example,
systems engineered to decouple cell growth from synthetic product

formation need to switch gene expression precisely in order to manage
cell toxicity and to not waste product formation.

Following this, we applied our framework to the mutation-driven-
dynamics of a repressilator. As expected, we found that the oscillations
of protein species decayed over time; however, our simulations also
suggest that repressilators are resistant to single points of failure, such
that such that completely inactivating any one gene is selectively dis-
advantageous (Fig. 4). We explain this by comparing the cell’s energy
capacity when in different mutation states, finding that it drops when
removing individual genes and thereby leads to a drop in growth rate.
While the mechanistic details of this have not been experimentally
tested, its foundational idea is supported by data from26 who show that
increased synthetic gene expression is correlated with higher gene
expression burden, lower cellular growth rate, and a higher selection
pressure for mutant cell phenotypes. Data that focus specifically on
repressilators are more scarce; however, some interesting comparisons
can be made from recent studies.60, for example, experimentally show
that decreasing sources of noise in their repressilator designs improved
the regularity of oscillations, while61 simulations suggest that positive
autoregulation plays an important role in maintaining oscillation
robustness. As a result, while our analysis suggests one source of irre-
gularity, such as mutation heterogeneity, other factors may be impor-
tant to consider when producing oscillation-driven applications.

The applications above show how new paradigms for synthetic
construct design could be used to enhance many synthetic devices. The
modularity of our frameworkmeans that these analyses can be extended
to any gene regulatory network and could potentially uncover other
insights into their evolutionary dynamics. For example, the mutation
dynamics of feedforward loops15 or those of motifs embedded in larger
networks62 would be unobvious a priori, and would therefore constitute
interesting candidates to analyse using our framework.

Methods
Numerical implementation
Themodelling framework is constructed as outlined in themain text and
is fully detailed in the supplementary information (Supplementary Note
Section S1). All code was written using MATLAB R2020a. ODEs were
solved using the stiff numerical solver ode15s with a relative tolerance of
10−6 and an absolute tolerance of 10−9. For cases where mutations were
permitted, simulations were run starting with all cells in the E-state and
continued until all cells reached the M-state. When simulating each fra-
mework, aprior simulationwas run toobtain the initial values of variables
for each state. At the end of each prior simulation, the last values of each
variable were used as the initial values for the variables in the main
simulation. For the models exploring protein yield and cell viability
(Fig. 2), the prior simulation was run without any synthetic construct
expression by setting values of mH, cH and H to zero. For the models
exploring the toggle switch dynamics (Fig. 3), the prior simulation was
run by setting values of mH, cH and H to an arbitrary positive value for
protein-A and to zero for protein-B. In addition, the prior simulation was
runwithout an inhibitor, aswewanted themain simulations to beginwith
a fixed concentration of protein-A. For the models exploring the
repressilator dynamics (Fig. 4), the prior simulation was run with arbi-
trary values ofmH, cH andH for each synthetic gene, with different values
for each gene to ensure that oscillations were produced. Full details of
how the model is constructed are given in Supplementary Note
Section S1.

Analysis of model fitting
We fit our model to data from ref. 17. The values of data points were
inferred using the online tool ‘WebPlotDigitizer’ (version 4.6). Simulation
results were fit to each data set by systematically varying the core
mutationparameters (αE, zM,αI, zI) for both [s2,d1] and [s3,d1] frameworks
until the closest fit was obtained, evaluated by the smallest root mean
square deviation. Values for all fits are given in Supplementary Note
Section S2. As part of the analysis in this section, we also compared our
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parameters with ‘relative instability predictor’ (RIP) scores generated by
the online tool ‘EFM calculator’ (version 1.0.1). The sequences used as
input for the EFM calculator were derived by searching for each part that
Sleight et al. report in their study within iGEM’s ‘Registry of Standard
Biological Parts’ and joining them together in the correct order and
orientation. The sequences are provided in Supplementary Note
Section S2.2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used in Fig. 1d and Fig. S2 are from the study of ref. 17 and can
be found at: https://doi.org/10.1186/1754-1611-4-12.

Code availability
All code used to implement the models can be found at the following
Github repository: https://github.com/ddmingram/Mutation-
aware-model.
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