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Diminishing storage returns of reservoir
construction

Yao Li 1,4, Gang Zhao 2,5, George H. Allen 3 & Huilin Gao 1

Surface water reservoirs are increasingly being relied upon to meet rising
demands in the context of growing population and changing climate. How-
ever, the amount of water available in reservoirs (and the corresponding
trends) have not been well quantified at the global scale. Here we use satellite
observations to estimate the storage variations of 7245 global reservoirs from
1999 to 2018. Total global reservoir storage has increased at a rate of
27.82 ± 0.08 km3/yr, which is mainly attributed to the construction of new
dams. However, the normalized reservoir storage (NS)—the ratio of the actual
storage to the storage capacity—has declined by 0.82 ± 0.01%. The decline of
NS values is especially pronounced in the global south, while the global north
mainly exhibits an NS increase. With predicted decreasing runoff and
increasing water demand, these observed diminishing storage returns of
reservoir construction will likely persist into the future.

Although global reservoirs have a much smaller total capacity com-
pared to natural lakes, their flow regulation represents the most
intensive human-induced alteration of the hydrological cycle1–5. The
20thCenturywitnessedamassivedamconstructionboom,first starting
in North America and then spreading to the rest of the inhabited world.
Behind these dams, sprawling reservoirs have fundamentally enhanced
our ability to manage Earth’s freshwater resources6–8, but have also
imposed adverse environmental and social effects9–13. After a decline in
growth during the 1990s14, hundreds of large new dams have been
added in Asia, Africa, and South America3. In addition, over 3700
hydropowerdams (eachover 1MWincapacity) arebeingplannedor are
under construction as of 2014, most of which are in developing
countries15. With water scarcity intensified by both climate change16–19

and increasing water demand20, reservoir water availability is essential
for sustainable development21. Yet dam construction and reservoir
operations are rarely coordinated amongst countries despite nearly half
of all land being covered by international river basins22. To best inform
future decision-making related to global surface water management,
the storage conditions of reservoir impoundments—particularly those
newly constructed—should be carefully evaluated.

However, knowledge about the long-term variation of reservoir
storage is very limited at a global scale. In situ measurements of
reservoir storage are often not shared, especially across international
river basins23. Land-surface and hydrologic models produce highly
uncertain storage estimates, largely due to the lack of reservoir
operations/management information24–26. By relating reservoir surface
area and elevation values, satellite remote sensing provides a viable
alternative for monitoring storage27–31. Although recent studies have
quantified long-term surface area time series values and seasonal ele-
vation variations of reservoirs globally5,32, reliable storage estimations
have only focused on reservoirs built before 1999 (hereafter referred
to as “pre-1999 reservoirs”)27–31.

Here, we develop the Global Reservoir Storage (GRS) dataset to
evaluate the conditions of global reservoir impoundments—particu-
larly reservoirs constructed after 1999 (hereafter referred to as “post-
1999 reservoirs”). We built GRS using multi-source satellite data by
converting monthly reservoir water areas from the Global Reservoir
Surface Area Dataset (GRSAD)32 to monthly storage values using
bathymetric maps33 and, where necessary, an improved bathymetry
simulation method34 (see “Methods”). The GRS dataset is the most
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comprehensively validated long-term storage record for all of the
consistently mapped reservoirs in the Global Reservoir and Dam
Database (GRanD)3, and represents a major advancement in tracking
global reservoir storage conditions. GRS is comprised of storage
records from1999 to 2018 for 7245 reservoirs (6658 km3 total capacity)
as reported in GRanD3 (Fig. 1a). While post-1999 reservoirs only
account for 7.14% of the number of reservoirs, their combined storage
contributes to 14.34% of total global capacity (834.78 km3).

Results and discussion
We introduce “normalized storage” (NS), a new term defined as the
ratio of the actual storage from a group of reservoirs to the storage
capacity of these same reservoirs. The NS offers a unique flexibility for
quantifying and comparing the storage returns of impoundment from
different groups of reservoirs across global, continental, and basin
scales. This makes regions with different storage capacities compar-
able, and it is not affected by the increased storage from new reser-
voirs. The use of NS allows us to: (1) split the pre- and post-1999
reservoirs and directly evaluate the behaviors of newly constructed
reservoirs; (2) compare theNS trendswith the actual storage trends for

new insights; and (3) assess reservoirs grouped by different function-
alities (e.g., hydropower, irrigation).

While the newly constructed reservoirs have contributed to a
steady increase in global storage capacity, their storage returns (in
terms of NS) are found to be smaller than those built in the 20th
century (over the periodof 1999–2018). TheNSvalues of the post-1999
reservoirs are significantly lower (and with larger seasonal variations)
than the pre-1999 ones, at 60.59 ± 4.33% and 70.36 ± 1.36%, respec-
tively (Fig. 1b). The NS values also depend on reservoir function. For
instance, the NS values in reservoirs whose primarily function is
hydropower are generally higher than those whose primarily function
is irrigation or flood control. Therefore, we further compared the NS
values for pre-1999 and post-1999 reservoirs in terms of reservoir
function, at both global and basin scales. Regardless of the function
and/or spatial scale, all results lead to the same conclusion—that post-
1999 reservoirs have lower NS levels, but larger seasonal variations,
than pre-1999 reservoirs (Fig. 2). It is worth noting that there are many
social-economic benefits to building reservoirs (e.g., hydropower
generation,flood reduction,water supply, and recreation), but herewe
are framing the returns only in terms of normalized water storage.

Fig. 1 | Comparison of normalized storage (NS) variations of global pre- and
post-1999 reservoirs. a Locations of the global reservoirs (with pre-1999 reser-
voirs in red and post-1999 reservoirs in cyan). b Comparison of the NS values of

global pre- and post-1999 reservoirs (excluding regulated natural lakes), alongwith
the accumulative storage capacity of the post-1999 reservoirs.
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The global total reservoir storage shows a nearly continuous
increase during the last two decades (Fig. 3), with a mean value of
4236.32 ± 181.64 km3 (mean ± std) and a growth rate of 27.82 ±
0.08 km3/yr (Supplementary Table 2). This increase is primarily attri-
butable to the construction of new reservoirs at a mean rate of
41.61 km3/yr (Supplementary Fig. 1). Unlike the total storage, the global
NS has a significant decreasing trend (at a rate of −0.82 ±0.01%/20 yr).
The contrasting storage and NS trends indicate that the recent storage
returns of global reservoir construction have been declining since the
start of the 21st century.

At the continental scale, this decreasing normalized storage is
particularly evident in Asia, Africa, and South America, which are the
continents wheremost of the newly constructed reservoirs are located
(Fig. 1a). Asia holds the largest number of reservoirs (2352) and the
highest storage capacity (2386.78 km3) of any continent. It also has the
most rapid storage increase with a growth rate of 16.76 ±0.05 km3/yr,
accounting for 60.04% of the global trend from 1999 to 2018. This
increase is mainly attributed to new reservoir construction. While the
NS of all Asian reservoirs combined has a decreasing trend
(−0.18 ± 0.01%/20 yr), the NS value of the pre-1999 reservoirs shows a
significant increase (1.30 ±0.01%/20 yr), which suggests that the
overall reduction of NS is attributed to the post-1999 reservoirs. Both
Africa and South America show increasing storage but decreasing NS.
Their storage growth is primarily driven by newly impounded

reservoirs. However, the pre-1999 reservoirs in Africa (−3.81 ± 0.03%/
20 yr) and South America (−4.28 ±0.04%/20 yr) have experienced
significant NS drops, which is the driver for the overall NS decrease in
these two continents (−3.99 ±0.03%/20 yr and −3.53 ± 0.04%/20 yr,
respectively). For the other three continents—which are dominated by
developed countries, and have few post-1999 reservoirs—the storage
andNS trends coincide. North America and Europe particularly exhibit
significant increasing trends in NS, which together offset the overall
global decreasing NS trend. Note that the decreasing NS trends are
conservative, as we did not consider the impacts of sedimentation
when conducting the trend analysis (see Methods).

Basin-scale reservoir storage information is essential for mana-
ging local water resources and assessing changes to the hydrological
cycle, yet this knowledge is lacking at the global scale—particularly for
transboundary river basins35. Thus, we evaluate the storage variations
at the basin scale (Fig. 4). The majority of the Earth’s basins experi-
enced storage growth (Fig. 4a). Asian basins have the most storage
growth, while basins in southern Africa have suffered from storage
losses. The highest increase is found in the Yangtze River Basin (3.34 ±
0.01 km3/yr), which is characterized by the most intensive dam con-
struction activities in Asia (e.g., Three Gorges Dam)15. The fastest
storage decline occurred in the Colorado River Basin (−0.62 ±
0.003 km3/yr), due to the combined effects from an extended drought
since 200036 and increasing water use37. With regard to NS (Fig. 4b),
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Fig. 2 | Comparison of normalized storage (NS) in terms of reservoir function at
global and basin scales. aReservoir storage capacity proportion corresponding to
primary function for pre-1999 (outer ring) and post-1999 (inner ring) reservoirs
globally. b–d Comparison of the NS values of global pre- and post-1999 reservoirs
(excluding regulated natural lakes) with primary functions of hydropower, irriga-
tion, and flood control, along with the accumulative storage capacity of the post-

1999 reservoirs. e Comparison of the NS values of pre- and post-1999 reservoirs
(excluding regulated natural lakes) for ten basins that have more than five post-
1999 reservoirs with the same primary function. Box ranges represent the upper
and lower quartiles, whiskers extend to 1.5 times the interquartile range, and out-
liers are denoted as dots. The statistical results are summarized in Supplementary
Table 1.
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Fig. 3 | Monthly reservoir storage and normalized storage (NS) variations at the global and continental scales from 1999 to 2018. aGlobal, b Asia, cNorth America,
d Africa, e South America, f Europe, and g Oceania.
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Fig. 4 | Reservoir storage and normalized storage (NS) variations from 1999 to
2018 at the basin scale. a Storage trends, b NS trends, c Long-termmean NS, and
dMean annual coefficient of variation (CV) of NS. Note that with the basins shown

in (a) and (b), the significant trends (p <0.05) are delineated in white, and the non-
significant trends (p >0.05) are delineated in black. The number of reservoirs and
the total storage for each basin are shown in Supplementary Fig. 2.
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decreasing trends predominate—especially over the Southern Hemi-
sphere, including those areas in South America and southern Africa.
The basinswith increasedNS aremainly in East Asia, Europe, andNorth
America. However, fewer basins in Asia show significant increases inNS
compared to storage—and the NS increases in European and North
American basins are generally weak.

To assess the overall reservoir water availability and stability, we
also examined the long-termmean and variation of the NS values from
1999 to 2018 at the basin scale (Fig. 4c, d). The reservoirs in high-
latitude regions (e.g., the Great Lakes and Siberia) have relatively high
NS values. This is attributable to the fact that these northern reservoirs
are less affected by human activities due to low population density. On
the other hand, the basins in South and Southeast Asia (e.g., the Indus
and Yangtze basins) have lowNS levels likely because of the highwater
demand driven by the large populations in these areas. Moreover, the
annual mean coefficient of variation (CV) of the NS values (Fig. 4d)
indicates that the reservoirs in high-latitude areas—as well as those in
Europe and North America—are relatively stable, with comparatively

small dynamics. In contrast, theAsian reservoirs—with the exceptionof
those in high-latitude regions—show large intra-annual variability. The
large NS variability in the Amazon basin is attributable to the extensive
damming of highly seasonal Amazonian rivers38. Finally, the basin with
the highest annual CV value—the Indus basin in India—has experienced
substantial groundwater depletion39, suggesting that surface water
and groundwater levels have both beendominatedbyhumanactivities
in response to the region’s severe water shortage.

Reservoir NS is impacted by multiple factors, including upstream
runoff, population density, and reservoir function—which directly
affect reservoir storage values through inflow, demand, and operation
(see “Methods” and Fig. 5). The global runoff, especially in tropical
regions, suggests a considerable decrease during the last two decades
(Fig. 6a). This suggests that declines in runoff may be the driver of the
observed trends (of decreasing NS) in reservoirs with large storage
variations. The decreasing trends in runoff are most significant in
SouthAmerica followedbyAfrica,which contribute to the reductionof
NS values in these regions (Fig. 6a). These trends may exacerbate

Fig. 5 | The potential drivers of normalized storage (NS) patterns at the basin
scale. a Long-termmean runoff (Q) values from 2000 to 2018, cMean population
density (2000–2020), and e Storage capacity percentage of hydropower reser-
voirs. Plots b, d, and f show the respective correlations between the metrics to the

left (shown in a, c, and e) alongwith the long-termmeanNS values (2000–2018) for
global basins that contain more than five reservoirs. Note that a log transformation
was applied to the runoff and populationdata to correct for heteroskedasticity (see
“Methods”).
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Fig. 6 | Global water stress under population growth. a Runoff (Q) trends from
2000 to 2018 at the basin scale, with the significant trends (p <0.05) delineated in
white and the non-significant trends (p >0.05) delineated in black. b Population
density trends from 2000 to 2020 at the basin scale, with the significant trends
(p <0.05) delineated inwhite and the non-significant trends (p >0.05) delineated in
black. cTheworld population, global reservoir storage, andper capita storage from

1999 to 2018. Shading illustrates the 95% confidence intervals for the best-fit linear
trends, and ʻaʼ represents the trend value. The world population data were col-
lected from the World Bank (https://data.worldbank.org/indicator/SP.POP.TOTL),
and the annual total reservoir storage values were derived by averaging the
monthly Global Reservoir Storage dataset. The per capita storage is the ratio of
global reservoir storage and world population.
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already stressed reservoirs where NS is significantly decreasing
(Fig. 4b). In the last two decades, global population growth is out-
pacing increases in reservoir storage, causing a significant decrease in
the per capita storage (−0.38 ± 0.04 m3/yr, Fig. 6c). If regionally
declining runoff persists into the future, it will likely add considerable
pressure on global reservoirs for meeting the anticipated rising
demands on water resources. In particular, we expect that regions in
Africa and South Asiawill experience increasingwater shortages under
the predicted extensive decrease in runoff16,40,41 and increase in
population (Fig. 6). Special attention should be paid to reservoir water
management strategies in these hotspots of water scarcity39,42.

Our analysis reveals that the global reservoir normalized storage
(i.e., NS) has significantly declined in the 21st century despite an
increase in total storage due to the construction of new reservoirs. The
changes mainly occurred in South America, and Africa, where the
world’s developing countries are located. However, these negative
trends have been weakened at the global scale due to the significant
increasing NS in the Global North—North America (2.61 ± 0.01%/20 yr)
and Europe (1.50± 0.01%/20 yr). In particular, the NS values of the
post-1999 reservoirs aremuch smaller than those of the pre-1999ones.
Asia, South America, and Africa are the primary “hotspots”wheremost
future dam construction activities are planned, with Brazil, China, and
the Democratic Republic of Congo taking the lead15. However, future
development of new reservoirs likely will not alleviate the water stress
caused by increasing municipal and industrial water demand in south
Asia (e.g., India) and southeast Asia (e.g., China). In South America and
Africa, the reduced NS values are mainly associated with the large
decreases in runoff trends. The results from this study highlight the
challenges of resolving finite water resources through reservoir reg-
ulation—particularly in developing countries, where the storage
returns from these impoundments are diminishing. These findings
offer a new perspective for reevaluating the socio-economic benefits
of new reservoir construction, and the tension between growing water
demand and lessening water availability in developing countries.

Methods
Reservoir storage estimation
To estimate the time series of reservoir storage variations, we used the
reservoir list/information, the surface area, and the Area-Storage (A-V)
relationships.

We extracted the information for 7245 reservoirs from the Global
Reservoir and Dam Database (GRanD)3 (latest version v1.3). GRanD
documents geospatially referenced dams and their associated reser-
voirs (larger than 0.1 km3). GRanD also provides multiple attributes,
such as dam height and length, reservoir area, and reservoir storage.
The recently released GRanD v1.3 contains 7320 records, with a
cumulative reservoir storage capacity of 6811 km3. Note that some
dams are not associated with reservoirs. We assessed the storage
variations for the 7245 reservoirs, which account for a total capacity of
6658 km3. There are 57 reservoirs in GRanD without reported storage
capacity values. The capacity values for these were estimated based on
empirical relationships established in Lehner et al.3. However, we
found that this did not significantly impact the findings of this study
(by comparing the results between including and excluding these
reservoirs). Note that this study did not include a comprehensive
census of the world’s reservoirs, especially with regard to the very
small reservoirs. The GlObal geOreferenced Database of Dams
(GOODD) provides the locations of 38,667 dams, but the associated
reservoir shapes and other attributes are not available43. Lehner et al.3

estimate that there were approximately 2000 km3 more reservoirs
(mainly small reservoirs) than the 6197 km3 included in GRanD v1.1 (as
of early 2011). Couto and Olden44 reveal that 82,891 small hydropower
plants (SHPs) are being operated or are under construction—but their
analysis is at the nation scale, and georeferenced location information
for the individual SHPs are not accessible. Malerba et al.45 detected

1.765million farmdams that occupy a volume of 10.99 km3. It has been
estimated that the cumulative reservoir storage capacity is around
7000–8300 km3 1,3,43,46, and GRanD accounts for about 83% of this.

We adopted the surface area time series values for these reser-
voirs from the Global Reservoir Surface Area Dataset (GRSAD)32.
Leveraging the Landsat-based Global Surface Water (GSW) dataset47—
which contains Earth’s monthly surface water maps at a 30m resolu-
tion from 1984 to 2018—GRSADcorrected the underestimations due to
image contamination (e.g., clouds and ice/snow) using a novel algo-
rithm. However, this algorithm cannot be applied to images when
more than 95% of the reservoir area is contaminated. Under these
conditions, themissingmonthly reservoir area valueswerefilled inby a
linear interpolation. It should be noted that, although Landsat obser-
vations for areas such as the United States and Australia are sufficient
for seasonal and interannual evaluations from the early 1980s onward,
the coverage for other regions is relatively low before the launch of
Landsat-7 in 199948–50. Therefore, the seasonal and interannual varia-
tions of reservoir storage were analyzed starting from 1999 in
this study.

The monthly storage time series were generated by applying
GRSAD area estimations to the A-V relationships for the 7245 reser-
voirs. TheA-V relationshipswere adopted from twosources. Thefirst is
the high-resolution Global Reservoir Bathymetry Dataset (GRBD)33,
which provides A-V relationships for 347 global artificial reservoirs. By
combining the Surface Water Occurrence (SWO) images from GSW
with lidar/radar altimetry data, the Area-Elevation (A-E) relationships
were first derived for each reservoir. Then, the A-E relationships were,
in turn, applied to the corresponding SWO images to obtain the
bathymetry values. From the 3-D bathymetric maps, the A-V relation-
ships were then derived51.

The other source is a new A-V dataset produced by modifying a
simulation method developed by Yigzaw et al.34, which was used for
the 6898 reservoirs not included in GRBD. Themodification wasmade
in two aspects. First, we improved upon the representation of the
reservoir areas at capacity. Yigzaw et al.34 assumed that the polygon
areas in GRanD represented the surface areas at storage capacity.
However, the reservoir polygons were primarily based on information
from the static Shuttle Radar Topography Mission (SRTM) DEM col-
lected in February of 2000—a period when most reservoirs were
unlikely to be at their peaks (because of low fill, a dry season, or some
other factors). To minimize this kind of uncertainty, we calculated the
95th percentile area value for each reservoir from the GRSAD dataset,
and compared it with the associated area provided in GRanD. The
larger value of the two was then selected to represent the area at
capacity (for each given reservoir). A total of 5152 reservoir records
were updated to the 95th percentile area values. Second, we combined
each reservoir’s vertical and bottomprofile shapes to estimate the area
at each layer by scaling to the area at capacity (i.e., the top layer area).
Yigzaw et al.34 used the effective length andwidth of the reservoirs, but
did not consider the fact that the complexity of the surface shapesmay
lead to large uncertainties. We selected three possible bottom profile
shapes—parabolic, linear, and square root—and used them in combi-
nation with four vertical profile shapes—prism, bowl, wedge, and
concave wedge—to obtain twelve different reservoir geometries to
choose from. A diagram of a reservoir geometry with a parabolic
bottom profile and a prism vertical profile is shown in Supplementary
Fig. 3a, with the corresponding parameters denoted in Supplementary
Fig. 3b. The selected vertical and bottom profile shapes are shown in
Supplementary Figs. 3c and 3d, respectively.

The simulation method included two steps: First, the optimal
geometry was determined for each reservoir. The total storage value
was calculated for each of the twelve possible geometries by inte-
grating the area with respect to the depth. Then the geometry with the
estimated total storage closest to the reported capacity value inGRanD
was selected as the optimal geometry. Second, for a given area value,
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the corresponding storage value was calculated by integration, and
then the A-V relationship was derived.

Here we use a reservoir geometry with a parabolic bottom profile
and aprismvertical profile (Supplementary Fig. 3a) to demonstrate the
process of creating a simulated A-V relationship. As shown in Supple-
mentary Fig. 3b, A0 represents the area at capacity that is associated
with a depth of D0, which was derived from the dam height
HðD0 =0:95HÞ34. It shouldbe noted that for reservoirswith no available
dam height information, D0 was substituted by the average depth—
which was calculated using the ratio of storage and area values at
capacity. Next, for a given layer with a depth of D which is z meters
below the top layer (z =D0 � D), its corresponding water area A can be
calculated based on the bottom and vertical profile shapes (Eq. (1)).

A=A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z
D0

r

ð1Þ

The estimated total storage ðV0Þ is calculated by integrating the
area ðAÞ with respect to the depth (Eq. (2)).

V0 =
Z D0

0
A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z
D0

r

dz =
2
3
A0D0 ð2Þ

Similarly, the estimated total storage ðV0Þ values for the other
geometries are obtained using the equations in Supplementary
Table 3. Then, the reported storage capacity value (Vc) is compared
with the estimated total storage values, and the geometry with the
closest estimation is selected. It shouldbe noted that some geometries
have the same estimated storage values, such as a prismvertical profile
with a linear bottom profile and a bowl vertical profile with a parabolic
bottom profile (Supplementary Table 3). In this case, either one can be
selected, which has no effect on the storage calculation.

Next, Eqs. (1) and (2) are combined to derive the A-V relationship
(Eq. (3)).

V =
2
3
AD=

2
3
A D0 � z
� �

=
2
3
AD0

A
A0

� �2

ð3Þ

The storage equations for other geometries are summarized in
Supplementary Table 3.

We selected 16 reservoirs with available in situ A-V relationships
from which to compare our modified simulation method with that of
Yigzaw et al.34 (Supplementary Fig. 4). Results show that our mod-
ification can greatly improve the accuracy of the A-V relationships.

Evaluation of storage estimations
We collected in situ measurements for 277 reservoirs from the United
States, Australia, and India to validate the storage results (a total of
101,041 pairs). As shown in Supplementary Fig. 5, the set of estimated
storage values agrees well with gauge observations, with an R2 value of
>0.99 and a slope of 1.01. The volumes of the validation reservoirs are
primarily between 2 and 5 km3.With regard to the validation results, 49
reservoirs (22 from the United States, 22 from India, and 5 from Aus-
tralia) employed the A-V relationships derived from bathymetry data.
To further evaluate the performance of the two storage estimation
methods, we used the simulation method to derive the A-E relation-
ships for these same 49 reservoirs, and then compared the estimated
storage values. Supplementary Fig. 6 shows that the estimated storage
values from the two methods are in overall good agreement with the
observations. For the storage estimations using the bathymetry-based
A-V relationships, the coefficient of determination (R2) ranges from
0.41 to0.99, themeanbias error (MBE) from−1.32 km3 to0.63 km3, and
normalized root mean square error (NRMSE) from 4.40% to 30.80%
(Supplementary Table 4). With regard to the results from the
simulation-based method, the R2, MBE, and NRMSE values range from

0.41 to 0.99, −1.84 km3 to 4.92 km3, and 6.26% to 127.73%, respectively
(Supplementary Table 4). In general, the bathymetry-based method
(with mean MBE and NRMSE values of 0.041 km3 and 13.28%) per-
formed better than the simulation method (with mean MBE and
NRMSE values of 0.23 km3 and 24.30%). Although the bathymetry-
based A-V relationships are only available for 347 reservoirs, they
represent 51.08%of the total global capacity (according toGRanD v1.3)
—which can help to reduce the overall error/uncertainty. It should be
noted that the storage estimates from the simulation method have a
relatively large bias in some cases. For example, the Rana Pratap Sagar,
Yeleru, and Nagarjuna Sagar reservoirs have NRMSE values of 127.73%,
87.14%, and 73.09%, respectively. However, the estimated storage
values for these reservoirs have good correlations with in situ data
(with R2 values of 0.80, 0.89, and0.81, respectively), indicating that the
patterns of variation can be successfully captured. Using the Rana
Pratap Sagar Reservoir as an example, the long-term trend derived
from the simulated storage time series is 0.006 km3/yr, which is con-
sistent with the value calculated from in situ measurements (0.005
km3/yr). Therefore, the effect of this relatively large bias should not be
significant because our analysis is focused on evaluating the trends of
storage variation across large scales.

We used the above-mentioned 277 reservoirs to evaluate the
uncertainty of the storage dataset. For eachmonth, the total estimated
storage value of these reservoirs was compared with the total in situ
measurement value to calculate the NRMSE (i.e., 4.15%), which was
used to represent the overall uncertainty of the validation dataset. It
should be noted that this overall NRMSE value is smaller than the
averagedNRMSE value (22.45%) of the 277 individual reservoirs, due to
theoffset effectbetween theoverestimations andunderestimations. In
addition, we compared the NS trend values derived from the simula-
tion method with the results from the bathymetry-based methods for
the 347 global reservoirs. Supplementary Fig. 7 shows that the NS
trend values derived from these two methods show good agreement
(R2 = 0.76), with themajority of the data aligningwith the 1:1 line (with a
slope value of 0.99).

Sources of uncertainty
The storage dataset is associatedwith uncertainties primarily from two
sources. The first is uncertainty due to reservoir sedimentation, which
can reduce the storage capacity52. Reservoir sedimentation is affected
by severalmajor factors, such as geometry, streamflow, sediment load,
particle size, deposit-specific weight, reservoir size, and operation
rules53–55. It has been reported that the sedimentation rate varies with
reservoir size, with the larger reservoirs having smaller rates56–58.
Recently, Wisser et al.58 evaluated the storage capacity loss for global
reservoirs in GRanD. Their analysis shows that the total storage capa-
city declined by 4.5% from 1990 to 2010, at an annual rate of 0.23%.
Moreover, Dendy et al.57 estimated the average annual loss rates for a
series of different size categories using the sedimentationdata for 1105
reservoirs. Based on the set of loss rates obtained from Dendy et al.57,
we calculated the annual storage sedimentation values for each
reservoir included in the GRS dataset. Then, the total storage sedi-
mentation was divided by the total storage capacity to estimate the
annual storage sedimentation rate—0.18%. Currently, a wide range of
techniques (e.g., flushing and dredging) have been developed and
implemented to control sedimentation, and to ensure the long-term
sustainability of the reservoirs55,59–61. It should be noted that a fraction
of the reservoirs in our dataset (e.g., some in the U.S. and India) were
evaluated in terms of live storage, which is more resistant to
sedimentation.

Although sedimentation can reduce storage capacity, reservoir
management does not allow for water to be stored higher than plan-
ned due to concerns about dam safety. One rare exception is when a
flood-control reservoir has a recreation pool for which a certain
volume of water is required to be maintained, and the surface level
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(of this required volume) is well below the elevation at capacity. In this
case, sedimentation can increase the surface area required to store the
specified amount of water. Flushing or dredging is usually applied for
mitigating the sedimentation effects on storage. In this study, our
method relies on using surface area to infer the storage and does not
consider the sedimentation effects. If the sedimentation amount is
notable in a reservoir, then both the storage and storage capacity can
be overestimated. However, based on the evaluation below, sedi-
mentation has a limited effect on the NS values and the NS trends.

To further evaluate the impacts of sedimentation,we selected 100
U.S. reservoirs that have sediment information from theDukeNicholas
Institute (https://nicholasinstitute.duke.edu/reservoir-national-
trends/sediment). The sediment rate values of these reservoirs range
from 0 to 18.18%/year, with mean andmedian values of 1.37%/year and
0.70%/year, respectively (Supplementary Fig. 8a). We compared the
NS trend values with and without considering the impacts of sedi-
mentation (Supplementary Fig. 8b). This comparison shows that
sedimentation can reduce the NS trend values. Note that the sediment
dataset has a relatively large uncertainty due to the scarcity of field
measurements, and to the effects of sediment removal activities (e.g.,
dredging and flushing). As demonstrated in Eqs. (4)–(6), the NS values
are lower when considering sedimentation processes, and therefore
(while the difference is very minor) the decreasing NS trends pre-
sented in this study are conservative.

NS=
V
Vc

ð4Þ

NSsediment =
V � ½Vc � Vc 1� að Þt �

Vc 1� að Þt
ð5Þ

NS� NSsediment =
V
Vc

� V � ½Vc � Vc 1� að Þt �
Vc 1� að Þt =

Vc � V
� �½1� ð1� aÞt �

Vcð1� aÞt > 0

ð6Þ

where V and Vc are the remotely sensed reservoir storage and storage
capacity values (km3), a is the sediment rate (%/year), t is the time
(year), and NSsediment and NS are the normalized storage values with
and without considering the sedimentation.

The second source is related to the modified simulation method
and the input data. The performance of the mathematical approx-
imation is sometimes not ideal because the reservoir geometry is very
complicated. However, it shows that the storage estimations from the
simulation method have overall good consistency with in situ mea-
surements (with a mean R2 value of 0.81), indicating that they can
successfully capture the storage variation patterns. In addition, some
uncertainty can be attributed to the input data (i.e., the dam height,
and the area and storage values at capacity) provided by GRanD.
According to the GRanD technical report, the storage capacity values
in GRanD can be classified as “maximum capacity”, “gross capacity”,
“normal capacity”, “live capacity” or “minimum capacity”. These are
not distinguished in the dataset, which can explain the relatively large
vertical bias from the simulation method for the 22 Indian reservoirs
(Supplementary Fig. 6 and Supplementary Table 4). The in situ mea-
surements provided by the IndiaWater Resources Information System
(India-WRIS) are live storage values. As shown in Supplementary
Fig. 9a, the storage capacity values from GRanD are larger than those
from India-WRIS. For example, the storage capacity value of Rana
Pratap Sagar Reservoir fromGRanD (2.90 km3) is twice asmuch as that
from India-WRIS (1.436 km3)—which resulted a large error (with an
NRMSE of 127.73%). Note that the storage values for Indian reservoirs
using the bathymetry-basedmethod are live storage values. For the 27
reservoirs in the United States and Australia, the storage capacity

values from GRanD agree well with those from water management
agencies such as the United States Geological Survey (USGS), the
United States Bureau of Recreation (USBR), and the United States
ArmyCorps of Engineers (USACE) (Supplementary Fig. 9b). Therefore,
the simulation method performed better in the United States and
Australia (with an average NRMSE of 15.38%) than in India (with an
average NRMSE of 35.24%). Moreover, this comparison of storage
capacity values also indicates that the input data provided by GRanD
are reliable.

Thewater area at capacity is an important input for the simulation
model. We adopted the 95-percentile areas to represent the water area
at capacity for the majority of the reservoirs. The 100-percentile areas
were not selected because these values may correspond to flooding
circumstances, which can lead to overestimated water area values at
capacity. However, most of the new reservoir polygons added in
GRanD v1.3 were based on the maximum (100-percentile) water
occurrence extent from the GSW dataset. Therefore, we conducted an
uncertainty analysis using the 95- and 100-percentile areas as inputs.
Specifically, we used the improved simulation method to derive the
storage values from 1999 to 2018, with water-area-at-capacity input
values from the 95- and 100-percentile areas, respectively. The in situ
storage values of the 277 reservoirs (that we used to validate our sto-
rage dataset) were used to validate the simulated storage. Validation
results (Supplementary Fig. 10a, b) indicate that the storage values
from the 95- and 100-percentile area inputs agree well with the in situ
measured values (with R2 values of 0.98 and 0.99, and RMSE values of
0.30 km3 and 0.29 km3).We then compared the storage values derived
from these two inputs (Supplementary Fig. 10c), which show good
agreement (with a slope of 1.0 and a bias of 0.015 km3). In addition, we
evaluated the impacts of the water-area-at-capacity inputs on the NS
values. We used the 100-percentile areas to replace the 95-percentile
areas to generate a different version of the global storage dataset, and
then compared the pre-1999 and post-1999 NS values between these
two datasets. Results show that the water-area-at-capacity inputs only
have a limited impact on the NS values (Supplementary Fig. 10d, e).

Comparisons with other storage datasets available at a
global scale
A number of remotely sensed global reservoir storage datasets have
been developed since the early 2010s27–31. All of these datasets are
based on using the A-E relationships to estimate the reservoir and/or
lake storage variations. The main difference between them is the
source of the satellite data. For example, Busker et al.29 combined the
GSWdataset and the satellite altimetry database DAHITI—Database for
Hydrological Time Series over Inland Waters—to establish the A-E
relationships, which provide long-term storage variation values for 137
lakes and reservoirs. Comparisons of A-E relationships in Busker et al.29

with ours show similar quality33. Tortini et al.30 used MODIS-based
water surface areas and a satellite radar altimetry dataset to establish
A-E relationships for 347 global lakes and reservoirs. In general, the
MODIS-based reservoir storage estimations have larger errors and
uncertainties than those of Landsat-based estimations31. In addition,
the Busker et al.29 and Tortini et al.30 datasets provide the time series of
storage variations (i.e., change in storage) rather than absolute storage
values.

Normalized storage calculation
We used the ratio of the total water storage in all of the reservoirs
relative to the total storage capacity for a geographical domain (i.e.,
global, continental, and river basin scales) to calculate the normalized
storage. In this way, the NS can be used as an overall indicator of the
relative storage variations at large scales. Note that we did not use the
average value of the NS for all of the reservoirs (with each reservoir
having equal weight). This is because it is a mathematical average
primarily determined by the NS of the large amount small reservoirs
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(accounting for a small percentage of actual storage), and thus would
not represent the actual storage conditions at a large scale. Further-
more, the NS values calculated using the current approach are more
physically comparable to the basin scale runoff.

The storage values during the impoundment periods of new
reservoirs could impact theNS values. To eliminate this effect, we used
two methods to determine the impoundment period for each post-
1999 reservoir. For the reservoirs listed in GRanD, we collected their
impoundment period information from various sources, such as water
management agencies, academic literature, and websites like Wikipe-
dia. Note that public impoundment information is only available for a
few reservoirs (e.g., Three Gorges reservoir). For the remainder of the
reservoirs, we used a semi-manual method to identify their
impoundment periods. We plotted their storage time series and then
identified the turning point after which the storage values maintained
consistent seasonal variations. For each of the post-1999 reservoirs,
the storage values during their impoundment periods were removed
before they were used for calculating the NS time series.

Comparison of NS values between pre- and post-1999 reservoirs
The operation of a reservoir depends on the primary reservoir pur-
pose, which can impact the NS level. We compared the NS values for
global pre- and post-1999 reservoirs in terms of reservoir function.
Figure 2a shows that post-1999 reservoirs tend to be designed for
hydropower purposes (vs. pre-1999 ones; 80.9% vs. 63.6%), but less for
irrigation (7.8% vs. 19.9%) and flood control (3.4% vs. 6.9%). The NS
values for post-1999 reservoirs are lower (with larger seasonal varia-
tions) than pre-1999 reservoirs (Fig. 2b–d) for all of the reservoir
functions—hydropower (63.65 ± 4.66% vs. 71.37 ± 1.84%), irrigation
(52.39 ± 8.53% vs. 60.83 ± 2.88%), and flood control (50.98 ± 6.71% vs.
56.90 ± 3.09%). At the continental scale, the locations of pre- and post-
1999 reservoirs may play a role, because of the heterogeneous clima-
tology within the continent. Thus, we conducted the comparison—
taking the reservoir function into consideration—at the basin scale,
assuming that the climatology conditions within a basin were homo-
geneous. We only selected basins that have at least five post-1999
reservoirs with the same primary function, such that the NS values
would not be biasedby a small number of samples. A total of ten basins
were identified thatmet this criterion. Results show that, in nine out of
the ten basins studied, the mean NS values of post-1999 reservoirs are
lower than those of pre-1999 reservoirs—with the exception of post-
1999 reservoirs used for irrigation purposes in the India-South basin
(Fig. 2e and Supplementary Table 1). With regard to mean annual CV
values, the pre- andpost-1999 reservoirs used for irrigation in the same
basins have similar seasonal variations (Supplementary Table 1).
However, post-1999 reservoirs with hydropower as their primary
purpose exhibit greater seasonal variation than pre-1999 (hydropower
focused) reservoirs—except for those in the Parana basin (Supple-
mentary Table 1). Thus, these comparisons indicate that post-1999
reservoirs have lower NS levels—but larger seasonal variations—than
pre-1999 ones.

Trend analysis of storage and NS time series
We adopted the scheme developed by Pascolini-Campbell et al.62 to
evaluate the trends of storage and NS time series. First, the seasonal
cycle was removed using the climatology values, and then a moving
average of 15 months was applied to obtain the interannual variability
of the anomaly time series. Then, the non-parametric Mann-Kendall
significance test63,64 was used to statistically assess if there was a
monotonic upward or downward trend of storage (or NS) over time
(withα = 0.05). Finally, the Theil-Sen slope estimator65,66 was employed
to detect the linear trend of storage (or NS) time series. Note that the
first and last sevenmonthly values of the time series were not used for
the trend analysis.

Analysis of potential drivers of NS patterns
We analyzed the potential drivers of the NS patterns at the basin scale,
which included runoff, population density, and reservoir use. The
runoff data were provided by the GLDAS Noah Land Surface Model
L4 monthly 0.25 × 0.25 degree V2.1 (GLDAS_NOAH025_M 2.1) product
from 2000 to 201867. We calculated the long-term mean runoff value
for each basin that contained the studied reservoirs. The gridded
population density data were collected from the Gridded Population
of the World, Version 4 (GPWv4) data sets—which provide an estimate
of population density for the years 2000, 2005, 2010, 2015, and
2020 (https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-
density-adjusted-to-2015-unwpp-country-totals-rev11). We used the
average value from thesefive years to represent the population density
for each basin. The primary function of reservoirs is dominated by
hydropower across the world (Fig. 2a), and the NS values of hydro-
power reservoirs are generally higher than those of others (Fig. 2b–d).
We calculated the storage capacity percentage of hydropower reser-
voirs for each basin. Then, we analyzed the correlation between these
three drivers and the long-term mean NS values (2000–2018) at the
basin scale (Fig. 5). Note that a log-log transformation was applied for
the evaluation of the runoff and population density to correct for
heteroskedasticity.

Runoff varies greatly across global basins, with low values in
Central Asia, southern Africa, and Oceania; and high values in the
tropical regions and South Asia (Fig. 5a). As shown in Fig. 5b, the long-
termmean runoff andNS values show a significant positive correlation
(Pearson correlation r = 0.21,p < 0.05). The East and SouthAsia regions
are the most densely populated, represented by China and India
(Fig. 5c). Conversely, the high-latitude regions, the Amazon, and
Oceania are each sparsely populated (Fig. 5c). As indicated in Fig. 5d,
population density is significantly correlated with the NS pattern
(r = −0.36, p <0.001). We used the storage capacity percentage of
hydropower reservoirs for evaluating the role of reservoir function, as
hydropower reservoirs need to maintain relatively high water levels to
ensure that their generators operate efficiently. Figure 5e shows the
storage capacity percentage of the hydropower reservoirs within each
basin. The reservoirs in the high-latitude basins are primarily designed
for hydropower (and therefore have high hydropower percentages),
while the basins in sub-tropical regions have relatively lowhydropower
percentages. However, the basins in South America and central Africa
also have high hydropower percentages. The significantly positive
correlation (Fig. 5f) between hydropower percentage and NS (r = 0.37,
p <0.001) indicates that reservoir function is also an important driver
of NS level.

Data availability
TheGlobal Reservoir Storage (GRS) dataset generated in this study has
been deposited in the Zenodo68 under accession code https://doi.org/
10.5281/zenodo.7855477, with an interactive map on Google Earth
Engine platform (https://yao.users.earthengine.app/view/grs). The in
situ measurements for validating the storage estimations were pro-
vided by theUnited States Geological Survey (USGS), the United States
Bureau of Recreation (USBR), the United States Army Corps of Engi-
neers (USACE), the California Data Exchange Center (CDEC), the Aus-
tralia Bureau of Meteorology (BOM), and the India Water Resources
Information System (India-WRIS).

Code availability
The codes used for computations and statistical analyses are available
at https://doi.org/10.5281/zenodo.7874111.
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