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Inefficient prioritization of task-relevant
attributes during instrumental information
demand

Isabella Rischall1,2,5, Laura Hunter1,2,5, Greg Jensen1,2,3 &
Jacqueline Gottlieb 1,2,4

In natural settings, people evaluate complex multi-attribute situations and
decide which attribute to request information about. Little is known about
how people make this selection and specifically, how they identify individual
observations that best predict the value of a multi-attribute situation. Here
show that, in a simple task of information demand, participants inefficiently
query attributes that have high individual value but are relatively unin-
formative about a total payoff. This inefficiency is robust in two instrumental
conditions in which gathering less informative observations leads to sig-
nificantly lower rewards. Across individuals, variations in the sensitivity to
informativeness is associated with personality metrics, showing negative
associations with extraversion and thrill seeking and positive associations with
stress tolerance and need for cognition. Thus, people select informative
queries using sub-optimal strategies that are associated with personality traits
and influence consequential choices.

In many conditions, people must decide between alternative propo-
sitions or courses of action and, perhaps more primarily, must select
which information to gather for guiding their actions. Choices of
information have been de-emphasized in traditional research but are
increasingly investigated in recent literature on information demand
that examines how people become motivated to request or avoid
information (see refs. 1,2 for recent reviews). These studies have used
diverse methodologies, including probing how participants request
information about simple simulated scenarios involving personal
finance or health1,3,4 or how they choose among “lotteries” that provide
probabilistic rewards with different value, uncertainty, and informa-
tion availabiity2,5–10.

Together, the studies suggest that information demand is driven
by several factors1,2. On one hand, people seek to obtain information
that guides utility-relevant actions, suggesting that they are motivated
by the instrumental rewards they obtain when acting on the informa-
tion. On the other hand, people also seek to obtain information that
cannot be exploited for reward gains (is not instrumental), suggesting

that they value information as a good in itself. Moreover, the value of
non-instrumental information reflects two interacting motives—a
desire to reduce uncertainty as early as possible and a drive to obtain
observations that predict favorable but not unfavorable outcomes
(e.g., a reward rather than a lack of reward)6,7.

The latter, value-based, motive is striking because it can oppose
uncertainty-dependent information gathering and drive people to
avoid information and choose ignorance (higher uncertainty) if the
outcome is likely to be unfavorable1,2,4,6,7,9,11,12. The common explana-
tion of these value effects is in terms of anticipatory utility—a hedonic
or emotional bias that motivates people to anticipate and savor
desirable outcomes but avoid the anticipation and dread of undesir-
able outcomes (e.g. refs. 1,12). However, key open questions remain
about the nature and scope of value-based biases in information
gathering.

One significant question is how value effects differ across choice
situations. Many studies of information demand test how participants
trade off advance information against the rewards they obtain, by
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asking them to choose among alternative lotteries that vary indepen-
dently in their expected value (EV), uncertainty, and information
availability. In many natural settings, however, people choose among
multiple observations that are relevant to a single eventual outcome.
For example, in question-asking scenarios, participants are faced with
a task (e.g., solving a puzzle or making a categorization decision) and
can choose between questions (queries) that are relevant to the
task13–16. Translated to a lottery task, this implies a distinct choice
situation, inwhichparticipants receive combined rewards fromseveral
lotteries and choose which lottery to inquire about to best predict the
total eventual outcome. Thus, rather than choosing among competing
sources of income, one chooses among competing observations that
are relevant to a single eventual income.

Studies of question-asking abilities show that in such situa-
tions participants often generate inefficient, suboptimal queries13–16,
but the nature of these inefficiencies are not well understood. A spe-
cific question arising from the discussion above is whether choices
among alternative observations are subject to value confounds.

This question is brought into focus by normative theories, which
predict that observations should be prioritized strictly based on their
ability to resolve uncertainty about the full situation regardless of any
individual value that may be associated with the observation7,17. To
illustrate this prediction, imagine that you want to predict the total
cost of a vacation that includes a hotel and a car. The two items may
independently differ in value and prior uncertainty; e.g., the hotel cost
may be higher but more predictable than that of the car. If you only
have time to inquire about the precise cost of one of the items, which
itemshould youprioritize to best predict the total cost of the package?
The normative strategy is to query the item that has the highest prior
uncertainty (is most difficult to predict in advance) as this will most
efficiently reduceyour uncertainty regarding the total. The valueof the
individual item, however (e.g., whether the hotel costs more than
the car) should be irrelevant to your inquiry as it does not affect the
uncertainty that the observation resolves.

Contrary to this clear prediction, a recent report from our
laboratory suggests that value-based biases affect the demand for
alternative observations7. Kobayashi et al. used a task similar to the
scenario above, in which participants received combined payoffs from
two lotteries but could only request advance information about the
precise prize from one lottery. They found that a vast majority of
participants inquired about the lottery with the higher individual value
even when the inquiry resolved less uncertainty about the total payoff.
Importantly, the findings could not be explained by a reinforcement
learning model of anticipatory utility in which participants are
assumed to assign value to observations recursively, based on the total
rewards an observation predicts to accrue later on7,12. Instead, the
findings imply that people myopically savor individual observations
regardless of the total future payoffs. That is, they value the oppor-
tunity to learn about a high-value individual prize regardless of the
uncertainty this resolves about the full situation.

However, two features of the study of Kobayashi et al. limit its
broader applicability. First, the study focused on non-instrumental
conditions in which participants had no monetary incentives to mini-
mize their uncertainty, raising the possibility that people adopted
arbitrary strategies that may vanish in more important instrumental
conditions. Second, while the study showed that information demand
had individual variability, we found no evidence that this variability
was associatedwith a limited set of personality scores, which contrasts
with recent reports that did find such associations in lottery-based
tasks10 and simulated scenarios involving personally relevant
information3,4. Since personalitymetrics are stable overmultiple tasks,
their association with information demand may provide valuable
bridges between studies in multiple settings.

In the present experiment, we examined both questions by
extending the task of Kobayashi et al. to include two distinct

instrumental conditions and examining a broader range of personality
metrics.We show that inefficient information gathering is replicated in
instrumental conditions despite leading to much lower rewards.
Moreover, inter-individual variability in sampling efficiency was asso-
ciated with personality traits, in particular need for cognition, extra-
version, and the tolerance for uncertainty.

Results
Task
Participants (n = 610) performed an online task in which they attemp-
ted to predict the sum of two random draws by inquiring about the
precise value of one of the draws. Participants were shown two lot-
teries, each of which could deliver one of twopossible point quantities
indicated with numbers and markings on a 500-point scale (Fig. 1a).
One lottery had a high variance (hiVar, 120 point difference between
the possible values) and the other had a low variance (loVar, 30 point
difference). The relative EV of the lotteries varied independently of
uncertainty so that, across trials, the hiVar lottery could have lower,
equal, or higher EV relative to the loVar lottery. Participants were told
that one point quantity would be drawn from each lottery, randomly
and with equal probability, and the trial’s payoff would be the sum of
the draws. The precise values of the draws were not shown by default
but participants were asked to inquire about one of the draws to
estimate the total payoff.

We presented the same information sampling stage in three tasks
that differed in the post-sampling steps—the actions that participants
took after gathering information (Fig. 1b). In the Observe task, the
information was non-instrumental, as there were no actions that peo-
ple could take to alter the draws, whereas, in the Estimate and Inter-
vene tasks, participants made instrumental decisions based on the
information they sampled. In the Estimate task, after revealing a draw,
participantswereprompted to guess if the sumof the drawswas above
or below a criterion of 500 points (the sum of the lottery EVs; Fig. 1b,
middle). If the guesswas correct, thepayoffwas equal to the sumof the
draws but, if the guess was incorrect, the payoff was 0 points. Thus,
participants were incentivized to request the information they
believed would best allow them to predict the total payoff. In the
Intervene task, participants could improve the draw from the lottery
they inspected. After inquiring about one lottery, participants could
decide if they wanted to keep the draw they obtained or switch to the
average EV of the lottery (Fig. 1b, right). The payoff was equal to the
draw from the unrevealed lottery (which was hidden and beyond
the participants’ control) plus the draw from the inspected lottery
(which was known and potentially altered). Thus, participants were
incentivized to inspect the lottery from which they could recuperate
the largest amount if they happened to obtain a low draw.

Each task was presented in blocks of 126 trials and was preceded
by detailed instructions, practice trials, and quiz questions to ensure
comprehension (see the “Methods” section). Participants received no
feedback about the sum of the draws or the accuracy of their instru-
mental decision. At the end of each block, one trial was randomly
chosen from those the participants had played, and its payoff deter-
mined the bonus (at a conversion rate of 2000 points = $1, announced
in advance). To test for possible strategy transfer between instru-
mental and non-instrumental conditions, we presented the Observe
task first, followed by the Estimate and Intervene tasks counter-
balanced in the 2nd and 3rd blocks and a final block repeating the
Observe task.

Reasoning about information gathering
In each task, the optimal strategy forminimizing uncertainty regarding
the sumwas to reveal the prize from the hiVar lottery regardless of the
EV of this lottery. The task was sufficiently simple that this strategy
could be deduced from the description alone without the need for
learning or elaborate computations. To illustrate this reasoning, Fig. 1c
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traces the outcomes that were possible in a representative trial after
inspecting each lottery. If the participants inspected the loVar lottery
and observed a high draw, they could expect to receive that draw (315
points) plus an uncertain amount of either 260 or 140 points from the
unobserved lottery (Fig. 1c, top row). Thus, the possible total draws
were 575 and 455 points and their range was 120 points, equal to the
range of the unobserved hiVar lottery. Alternatively, if participants
inspected the hiVar lottery and observed the high draw, they could
expect to receive 260 points plus either 315 or 285 points from the
loVar lottery (Fig. 1c, bottom row). The possible sumswere 575 and 545
points and their range was only 30 points— equal to the range of the
loVar lottery. Thus in both cases, the uncertainty of the sumwas equal
to the uncertainty of the unobserved lottery, and was therefore mini-
mized after inspecting the hiVar lottery. Note also that observing a
high-value individual draw did not necessarily predict a higher total
payoff. In the examples above, the highest possible total value was 575
points for both observing decisions and the lowest possible total value
was lower after the higher-value observation than after the low-value
observation (455 vs. 545 points, top vs bottom panels). Thus, the EV of
the individual observed lottery was irrelevant to the total payoff. Only
the uncertainty of this lottery affected the uncertainty about the
payoff.

In instrumental conditions, a less uncertain estimate of the total
translated into higher instrumental rewards. In the Estimate task, after
revealing a high or low draw from the hiVar lottery, participants could
be certain that both possible sums were, respectively, higher or lower
than the criterion of 500 points (Fig. 1c, bottom). In contrast, an

observation from the loVar lottery was equally consistent with the sum
being higher or lower than the criterion. Thus, revealing the hiVar
versus the loVar lotterywas associatedwith a doubling of the expected
accuracy of the guess from 50% to 100% (Fig. 1c, top). In the Intervene
task, if participants observed a lowdraw, they couldexchange it for the
average of the inspected lottery. Because the respective differences
between a low draw and the mean were 60 vs. 15 points, participants
could recuperate 4 times more points by inspecting the hiVar versus
the loVar lottery. Supplementary Tables 1 and 2 and the related dis-
cussion show further detail on these calculations, as well as the earn-
ings that participants missed due to their sampling. Note, however,
that precise calculations were not necessary for good performance;
qualitative reasoning sufficed to determine that instrumental rewards
could be 2–4 times higher after revealing the hiVar relative to the loVar
lottery.

Inefficient sampling persists in instrumental conditions
To analyze the participants’ sampling, we plotted the average prob-
ability of revealing the hiVar lottery (%reveal hiVar) as a function of the
relative EV of this lottery (ΔEV, defined as the EV of the hiVar lottery
minus the EVof the loVar lottery). The uncertainty-minimizing strategy
was a function that was flat at 100%, indicating sampling that depen-
ded strictly on uncertainty and was insensitive to EV (Fig. 2a, black).
The participants’ choice functions were shifted upward toward values
greater than 50%, suggesting a bias toward sampling the hiVar lottery,
but this bias was far from the normative strategy, and importantly, the
functions had strong positive slopes showing a preference for the

Fig. 1 | Task. a Lotteries and generation of payoffs. On each trial, participants
received two “lotteries”, each comprising two point prizes depicted with numbers
and vertical markings (yellow lines) on a vertical scale (blue column). The two
lotteries had, respectively, low or high variance and different relative EV. To gen-
erate the payoff, the computer randomly drew one prize from each lottery and
calculated the sum of the prizes. The precise prizes that were realized were kept
secret (“?”) but participants requested to reveal the precise prize from one lottery.
The sampling step was identical across all task blocks. b Post-sampling actions.
Participants completed three variants of the task that differed in the actions they
were required to perform after gathering information. In the Observe (non-

instrumental) block, participantsmerely progressed to the next trial after revealing
a prize (in this example, 315 points). In the Estimate block, participants made a
second decision about whether the sum of the prizes was greater or smaller
than 500 points. In the ‘Intervene’ block, participants made a second decision
whether to keep the prize they revealed or exchange it for the average (EV) of the
lottery. In all figures, we use blue for Observe, red for Estimate, and yellow for
Intervene blocks. c Prospective reasoning about information gains. Reasoning
about the possible sums upon the reveal of the high draw from the loVar (top) or
hiVar (bottom) lottery in the example trial in (a). See text for further details.
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higher-EV lottery (Fig. 2a, colored traces). This was the case even in
instrumental conditions when this preference led to the loss of
rewards.

Sampling shows individual variability
Consistent with the findings of Kobayashi et al., individual participants
combined sensitivity to both uncertainty and EV. To parametrize this
dual sensitivity and its individual variability, we first fit each partici-
pant’s data with a sigmoid function in which the intercept (a) captured
sensitivity to uncertainty and the slope, (b), captured sensitivity to EV
(see the “Methods” section, Eq. (1)). Preliminary analyses showed that,
while this strategy worked well in most cases, a sizeable minority of
participants who had high uncertainty sensitivity were fit with strongly
negative intercepts due to minor variations in their (non-significant)
slopes (Fig. S1a; b ~ 0). To circumvent this ambiguity, we explored an
alternative approach in which we used model comparisons to deter-
mine, for each participant, if their choices were better fit with the two-
parameter sigmoid function above, versus a one-parameter function
characterized only by an intercept c (see the “Methods” section,
Eq. (2)). This reduced the indeterminacy of the fits and produced a
monotonic relationship between %reveal hiVar and the intercept
parameters (aor c),while capturing EV sensitivity through the separate
parameter b (Fig. S1a vs. S1b).

This procedure, in turn, suggested that participants could be
classified as being sensitive or insensitive to EV based onwhether their
data were better fit by the sigmoid or flat functions. To evaluate the
validity of this view, we compared the model-based classification with

the overall probability of revealing the hiVar lottery (%reveal hiVar),
which is proportional to earnings in instrumental conditions (Supple-
mentary Table 1) and serves as a simple model-free measure of sam-
pling efficiency.

The analysis rejected the hypothesis that the distributions of %
reveal hiVar values were unimodal (Hartigan’s Dip Test, n = 610 parti-
cipants, bootstrapped p <0.001 in each task) and suggested that par-
ticipants adopted three distinct strategies that mapped onto the
model-based classification (Fig. 2b top). Thefirst andmainmodeof the
distributions included participants whom we designated as EV-
sensitive based on the lower BIC values when fit with a sigmoid rela-
tive to a flat function (Fig. 2b, second row; Fig. S1a). All participants in
this group showed significant slope parameters (b; 95% confidence
interval (CI) did not include 0), and the vast majority showed positive
slopes indicating a preference to inspect the high-EV lottery (Fig. 2c,
left; b was positive (rather than negative) for 97%, 93%, and 97% of EV-
sensitive participants in, respectively, Observe, Estimate, and Inter-
vene blocks). Further confirming their EV sensitivity, theseparticipants
showed reaction times for the sampling decision that peaked at low
values of ΔEV (Fig. S2). Finally, individuals in this group had %reveal
hiVar ranging between ~50% and ~80%, falling on a continuum of
reward and uncertainty sensitivity as reported by Kobayashi et al.7 (Fig.
S1a and further below).

The choices of the remaining participants were classified as
insensitive to EV based on their lower BIC when fit with the flat rather
than sigmoid function and, in turn, fell into two distinct groups. One
group had parameter c that was not significantly different from

Fig. 2 | Sampling behavior. a Average psychometric curves showing the percen-
tage of trials in which the participants revealed the high-variance lottery as a
function of the difference between the lottery EVs (ΔEV, defined as the difference
between the EV of the hiVar minus that of the loVar lottery). The colored curves
show the average behavior across all participants (n = 610; blue: Observe, red:
Estimate; yellow: Intervene). Error bars are omitted for clarity. b Model-free

measure of sampling efficiency and model-based categorization. The traces show
the distributions of %reveal hiVar by task (color-coded as in a), for all participants
(top) and for participants classified according to the modeling analysis (bottom).
cBest fitting psychometric curves for each participant, categorized as indicating an
EV-sensitive, Random, or Uncertainty-only strategy. N indicates the number of
participants in each category.
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chance (95% CI included 0.5) indicating that their sampling did not
significantly depend on uncertainty or EV (Fig. 2c, Random). This
participant group had overall low accuracy for the post-sampling
instrumental decisions (even in the Intervene task in which this
decision was trivial; Supplementary Table 2) suggesting that they
were inattentive or disengaged from the task. Thus, although the %
reveal hiVar values of Random participants overlapped with those of
the EV-sensitive group (Fig. 2b), these participants pursued a distinct
strategy.

Importantly, the remaining EV-insensitive participants had
parameter c that was significantly >0.5 (95% CI was above 0.5) indi-
cating a near-optimal strategy focused on the hiVar lottery (Fig. 2c,
Uncertainty-only). This group formed a distinct mode of the %reveal
hiVar distribution with values > 90% (Fig. 2b, bottom) and showed
reaction times that were insensitive to ΔEV (Fig. S2), confirming their
model-based designation. We verified that the classification results
were robust to the choice of criterion (Fig. S1b), showing that our
parametrization reliably quantified individual sensitivity to uncer-
tainty and EV and identified meaningful information-gathering
strategies.

Instrumental demands modestly enhance uncertainty
sensitivity
We next used parametrization above to compare results across tasks.
The findings suggested that sampling efficiency was enhanced by
instrumental incentives, but the increases were modest and included
changes in both uncertainty and EV sensitivity.

We first focused on a subset of 265 participants who pursued EV-
sensitive strategies in all tasks (Fig. 3a, b). Comparisons of the choice
functions suggested that these participants had higher uncertainty
sensitivity (an upward shift of the functions) in the Intervene and
Estimate relative to the Observe task (Fig. 3a). This was confirmed by
the distributions of differences between parameter a, which were
significantly greater than 0 in comparisons between Intervene and
Observe (Fig. 3b, left, mean ± standard error (SEM) of the differences:
0.38 ±0.02; two-tailed Wilcoxon signed-rank test vs. 0, n = 265 parti-
cipants) and between Estimate and Observe (0.39 ±0.02; p < 0.001 vs.
0, two-tailed Wilcoxon signed-rank test vs. 0, n = 265 participants).
This result was not explained by the order of presentation of the
Estimate and Intervene tasks (2-way ANOVA on the parameter a; effect
of the order, p = 0.757, F(df = 794) = 0.10, effect size η2 = 0.0014;

Fig. 3 | Consistency across blocks. a Best fit psychometric functions averaged
across the n = 265 participants who showed EV-sensitive strategies in all 3 blocks.
The blue, red, and yellow curves correspond to data from Observe, Estimate, and
Intervene respectively. The shaded areas correspond to the standard area of each
curve. b Paired comparisons between the Estimate and Intervene relative to the
Observe block, for the 256 participants in (a). The panels show the distributions of
the differences between the best-fit intercepts (a), slopes (b), and raw percentages
of revealing the hiVar lottery in the instrumental task and the first Observe
block (top row, red: Estimate task; bottom row, yellow: Intervene task). The white
lines show medians and stars denote p <0.001 for each distribution relative to 0
(Wilcoxon signed-rank test). In themiddle panel, the outer stars/vertical line shows

p <0.001 for Estimate vs. Intervene, Wilcoxon signed-rank test. c Strategies across
blocks. All participants (n = 610) were categorized into 8 groups based on the
combination of blocks in which they showed uncertainty-only strategies (1 in x-axis
label). The white numerals show the number in each group (note the break in the
vertical scale). Only groups 7 and 8 showed efficient sampling in both instrumental
blocks. d Strategy changes across the two instrumental blocks. Participants were
separated by the order of performing the Estimate and Intervene tasks and counted
according to whether, given that they started with an EV-sensitive or Uncertainty-
only strategy in the first instrumental block, they repeated the same strategy in the
second instrumental block.
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interaction between order and instrumentality, p = 0.300, F(df = 794)
= 1.08, effect size η2 = 0.20, n = 265 participants). Finally, as docu-
mented in detail in Fig. S3a,b, an increase in uncertainty sensitivity in
instrumental conditions was replicated in participants who pursued
EV- sensitive strategies only in some of the tasks and in participants
pursuing Uncertainty-only strategies.

Although the increases in uncertainty sensitivity were reliable and
consistent, they resulted in only modest improvements in sampling
efficiency. The EV-sensitive group showedmedian increases in %reveal
hiVar of, respectively, 4% and 6.4% in the Estimate and Intervene
relative to the Observe task (Fig. 3b, right). To more specifically mea-
sure how efficiency was impacted by these samplers’ uncertainty and
EV-sensitivity, we reasoned that their %reveal hiVar values at ΔEV= 0
measured the contribution of uncertainty sensitivit, while the differ-
ence between these values and overall %reveal hiVar (across all levels
of ΔEV) measured the additional contribution of EV sensitivity. In the
Observe, Estimate, and Intervene tasks %reveal hiVar at ΔEV =0 was
below optimal by, respectively, 31.79 ± 1.15%, 24.96 ± 1.17%, and
17.00 ± 1.03%. The overall %reveal hiVar values were an additional
6.46 ± 1.31%, 8.53 ± 1.16%, and 15.15 ± 0.97% lower than the values at
ΔEV =0. Thus, participants had losses of efficiency of 17–32% due to
imperfect sensitivity to uncertainty and additional losses of 6–15% due
to sensitivity to ΔEV.

Sampling strategies are inconsistent across tasks
A possible explanation for the inefficient sampling we find is that
participants failed to identify informative observations based on the
reasoning in Fig. 1b. Two aspects of our findings support this
interpretation.

First, had participants identified the optimal strategy, we would
expect them to sample identically in the two instrumental conditions
in which this strategy was incentivized. Contrary to this view, sampling
showed significant differences between the Intervene and Estimate
tasks. Participants who consistently pursued EV-sensitive strategies
had higher value sensitivity in the Intervene relative to the Estimate
task (Fig. 3b, middle panel; paired differences in parameter b,
1.70 ± 0.232; p <0.001 two-tailed Wilcoxon signed-rank test vs 0,
n = 265 participants) as also found in those who pursued EV-sensitive
strategies in some of the tasks (detailed statistics in Fig. S3a, b). We
found no credible evidence of correlations between the task effects on
parameters a and b (task difference between the Intervene and Esti-
mate task in parameter a versus the difference in parameter b,
Spearman’s r =0.06, p =0.319, n = 256 participants). Uncertainty-only
participants had higher uncertainty sensitivity in the Intervene vs the
Estimate task (detailed statistics in Fig. S3a, b). Thus, although the
optimal sampling strategy was identical in all tasks, participants made
task-specific adjustments in their sampling strategy including inde-
pendent adjustments in uncertainty and EV sensitivity.

Second, we reasoned that, if participants had correctly inferred
the optimal strategy in the first instrumental block they encoun-
tered, they should repeat it in the second instrumental block. To
evaluate this possibility, we measured the probabilities that a par-
ticipant would repeat an Uncertainty-only strategy in the second
instrumental block, conditional on having adopted that strategy in
the first block. Conditioning on the initial strategy controlled for
base rates and allowed us to compare this probability against that of
repeating an EV-sensitive strategy. We found no credible evidence
that participants were more likely to repeat an Uncertainty-only
relative to an EV-sensitive strategy (Fig. 3d). In fact, a significant
difference in the opposite direction was found in the full data set
(Fig. 3d; one-way chi-square test, χ2 (df = 1) = 12.42, p < 0.001, effect
size V = 0.17, n = 452) and in the participants who encountered the
Estimate task first (χ2 (df = 1) = 18.57, p < 0.001, effect size V = 0.41,
one-way chi-square test, n = 224) with no credible evidence for a
difference in those who encountered Intervene first (χ2 (df = 1) =

0.82, p = 0.366, effect size V = 0.09, one-way chi-square test,
n = 228). Consistent with this finding, only 11% of participants pur-
sued Uncertainty-only strategies in both the Intervene and Estimate
tasks while 14% inconsistently switched strategies across tasks
(Fig. 3c; groups 7–8 vs. groups 3–6; see Fig. S4 for the full choice
functions across tasks). Thus, some participants who used an
Uncertainty-only strategy appeared not to have realized that this
strategy was optimal in all tasks.

No credible evidence that sampling the loVar lotterywas related
to the uncertainty of the post-sampling decision
A possible explanation for the participants’ sampling of the loVar
lottery is that they believed, incorrectly, that the prize they
observed in this lottery was correlated with the prize they would
obtain from the hiVar lottery and, thus, was predictive of the total
payoff. If this hypothesis were correct, we expect that, in the Esti-
mate task, participants would be equally confident when making a
guess based on a loVar and hiVar observation. Contrary to this view,
reaction times for the post-sampling decision (i.e., the time parti-
cipants took for estimating the sum) were much longer after
observations from the loVar versus the hiVar lottery, suggesting
that participants had lower confidence in the former case (Fig. S5a;
p < 0.001; Wilcoxon signed rank test, n = 358 participants with EV
sensitive strategies in the Estimate task). Moreover, the probability
that a participant inspected the loVar lottery was negatively corre-
lated with the probability that they “obeyed” the observation from
this lottery (i.e., estimated the sum to be high or low when the
revealed prize was correspondingly high or low; Fig. S5b; Spear-
man’s r = −0.527, p < 0.000; n = 358 participants). Thus, we found no
credible evidence that participants overestimated the informative-
ness of the loVar lottery.

Learning and trial-by-trial adjustments
Although we attempted to minimize learning by withholding trial-by-
trial reward feedback, participants may have learned based on other
clues in the task. One potential mechanism is that participants would
increase or decrease the subjective value they ascribe to a lottery
based on whether the lottery signaled a high or low prize in the pre-
vious trial. However, a sequential trial analysis provided no credible
evidence for this view, as observing a high (low) draw on one trial did
not alter sampling on the following trial (Fig. S6a) nor was the mag-
nitude of the prior-trial effect correlated with individual EV sensitivity
(Fig. S6b).

An alternative possibility is that participants improved their
sampling simply by spending more time on the task and reflecting on
the optimal strategy. However, as noted in Fig. 3d, we found no
credible evidence that sampling efficiency improved between the first
and second instrumental blocks. Similarly, we found no credible evi-
dence that efficiency in non-instrumental conditions improved after
performing the instrumental conditions—i.e., in the second relative to
the first Observe blocks (Fig. S7).

Our findings, however, support a third possibility—that some
participants adjusted their sampling by monitoring their instrumental
decisions. Participants with non-random strategies showed modest
but significant increases in sampling efficiency during the course of a
block in instrumental but not non-instrumental conditions (Fig. S6c).
Importantly, these improvements were strongest in participants with
Uncertainty-only strategies who had already high levels of hiVar sam-
pling at the start of the block. At both the group and individual levels,
Uncertainty-only participants showed significant increases in sampling
efficiency in both the Intervene and Estimate tasks, while EV-sensitive
participants did so only in the Estimate task (see Fig. S6c for details).
Thus, participants seem to have used clues from the instrumental
decision in ways that were gated by their initial understanding of the
optimal strategy.
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Sampling strategies relate to personality data
To determine if information demand relates to personality traits, we
obtained ratings on 5 personality questionnaires, including the Beha-
vioral Inhibition-Approach Scale18 (BIS/BAS), Big 5 Personality
Inventory19, Need for Cognition20, and 5-Dimension Curiosity Scale21. A
multiple-regression analysis (see the “Methods” section) produced no
credible evidence that value and uncertainty sensitivity were reducible
to personality constructs, as individual personality scores typically
explained much less than 1% of the variance in the sensitivity to
uncertainty or EV with no score explaining more than 2.5%. Never-
theless, a support-vector machine (SVM) trained using all the person-
ality metrics produced above-chance classification of sampling
efficiency, showing that our constellation of personality metrics cap-
tured significant features of information gathering.

Training SVMclassifiers to predict sampling efficiency (high/low%
reveal hiVar classification based on a median split; see the “Methods”
section) produced classification accuracy that was reliably above
chance in all tasks (Fig. 4a, left; across 100 cross-validated iterations,
means and 95% confidence intervals (CI) for excess accuracy (accuracy
minus chance) were 10.2% [9.5%, 10.8%] in the Observe task, 11.6%
[11.0%, 12.4%] in the Estimate task and 11.1% [10.3%, 12.0%] in the
Intervene task). In contrast, training the classifiers to predict EV sen-
sitivity produced much lower accuracy (Fig. 4a, right; Observe, 2.7%

[1.8%, 3.6%]; Estimate, 2.1% [1.3%, 3.0%]; Intervene, 2.6% [1.8%, 3.4%]; see
the “Methods” section). Moreover, we found no credible evidence of
consistent associations between EV sensitivity and individual person-
ality scores, reinforcing the view that uncertainty and reward sensi-
tivity are distinct constructs.

Further analyses identified specific individual scores that were
consistent predictors of sensitivity. The most consistent predictor in
all tasks was the Big5 extraversion score (Fig. 4b). This score had a
negative weight, indicating that more efficient sampling was asso-
ciated with low extraversion. This was confirmed by a second analysis
of participants who adopted Uncertainty-only strategies in both
instrumental blocks, showing that, in contrast with the other strategy
groups, these participants fell primarily in low-extraversion quar-
tiles (Fig. 4c).

An additional predictor of higher efficiency sampling was a higher
need for cognition, consistent with the idea that identifying informa-
tive observations required reflection and inference about the task
structure (Fig. 4c). Finally, %reveal hiVar was predicted by two uncer-
tainty subscales of the 5DC curiosity questionnaire, including thrill
seeking with negative weights and stress tolerance with positive
weights (Fig. 4c). As we elaborate in the “Discussion” section, these
findings suggest an intricate association between uncertainty sensi-
tivity as measured by our task and the curiosity scale. All the results

Fig. 4 | Associations with personality scores. a Decoding of uncertainty-based
sampling based on personality and demographic indicators. The distribution of
SVMdecoding accuracy for classifyingparticipants intowhether their %reveal hiVar
or %reveal high EV was above vs. below the median. Excess accuracy is the per-
centage of correct classifications when the SVMwas trained on true dataminus the
percentage of correct classifications when the SVM was trained on randomized
data. Distributions are over 100 bootstrap iterations with 50:50 cross-validation.
b Trait coefficients (β) from the SVM classification boundary ordered by the aver-
age magnitude of the coefficients across all tasks. The points show the mean and

95% confidence intervals over 100 bootstrap iterations; black indicates p <0.05
relative to 0. Demographic indicators (age, sex, and education) were included as
predictors in each SVM but did not show significant coefficients and are omitted
from the figure for clarity. c Instrumental sampling as a function of extraversion.
Participants were divided into quartiles based on extraversion scores (green
shading) and into two groups based on their sampling strategies (EV-sensitive or
random in both instrumental blocks (groups 1–2 in c) or Uncertainty-only in both
instrumental blocks (groups 7 or 8 in Fig. c). The y-axis shows the percentage of
each extraversion quartile falling in each strategy group.

Article https://doi.org/10.1038/s41467-023-38821-x

Nature Communications |         (2023) 14:3174 7



were replicated using logistic classification and linear regression ana-
lyses, confirming the reliable association between these personality
metrics and uncertainty sensitivity in our tasks.

Discussion
We investigated information demand in a question-asking scenario in
which people prioritized information about different lotteries that
contributed to a single payoff. We show that a large majority of par-
ticipants generated inquiries that failed to minimize the uncertainty
about the total payoff. The results replicated in three distinct task
versions, showing that inefficient prioritizationpersists in instrumental
conditions when it is associated with two- or four-fold lower reward
probability. Finally, we show that sampling efficiency was associated
with personality traits, helping link studies of information gathering
across different domains of research.

Our analyticalmethod formeasuring the influences of uncertainty
and EVwas similar to that of Kobayashi et al., but added a classification
of strategies as falling into EV-sensitive, Random and Uncertainty-only
categories. Several observations suggest that this classification cap-
tured meaningful aspects of the behavioral data. First, we confirmed
the conclusions of Kobayashi et al. that the EV-sensitive group—the
largest class in our study—showed reward and uncertainty influences
that were captured by independent parameters and showed marked
inter-individual variability that fell along a continuum of uncertainty
and reward sensitivities. Second, our classification procedure identi-
fied a distinct group of participants who sampled randomly and were
likely to have been disengaged from the task. Finally, and particularly
important, our procedure correctly identified a small subset of parti-
cipants who formed a distinct mode of the %reveal hiVar distribution
and pursued strictly uncertainty-based strategies. Some of the parti-
cipants in this group seem to have correctly recognized the normative,
EV-insensitive strategy, as they had Uncertainty-only strategies in all
tasks (or at least in the two instrumental conditions). However, others
used EV-sensitive strategies in some of the tasks, suggesting that they
lacked a true understanding of the optimal strategy. In sum, our results
confirm those of Kobayashi et al. and refine the analysis of the parti-
cipants’ strategies.

As we note in the “Introduction” section, the sensitivity to EV we
describe may have a distinct computational substrate than that of the
phenomenon of anticipatory utility7. A reinforcement learning model
of information demand proposed that anticipatory utility arises when
informational states gain positive or negative value by virtue of pro-
ducing, respectively, positive or negative reward prediction errors
(RPEs)12. However, as explained in detail in Kobayashi et al.7, themodel
assumes that participants assign value to a state by recursively
aggregating all the outcomes that are expected to follow that state.
Thus, the model predicts that anticipatory utility depends on the total
EV that follows information gathering and cannot explain why parti-
cipants favored a lottery with higher individual EV, which was inde-
pendent of the total (constant) EV.

Our results thus have two possible explanations. One possibi-
lity is that participants showed preferences over information
valence that had a non-recursive computational form7. That is, they
may have myopically savored information about a high-value indi-
vidual prize regardless of the rewards that would accrue down the
line. An alternative possibility is that participants incorrectly rea-
soned about uncertainty. While more studies are needed to settle
this question, several aspects of our data support the latter account.
First, participants were not sensitive to the valence of the infor-
mation in the previous trial as may be expected from a
reinforcement-learning account. Second, many participants incon-
sistently switched strategies across tasks, inconsistent with a purely
preference-based explanation. Finally, as we discuss further below,
personality metrics accounted for the sensitivity to uncertainty but
not for EV. Thus, at least some of our participants may have used

imperfect heuristics to prospectively reason about the information
gains of alternative observations.

This view is consistent with previous studies suggesting that
identifying informative observations requires difficult mental simula-
tions of future events22 and can be suboptimal in question-asking
tasks15,23,24. However, while previous studies used settings with high
computational complexity in which participants had to evaluate many
possible queries24,25, our results were remarkable in showing inefficient
inquiries in a very simple task with only 2 possible inquiries. This
suggests that people use imperfect heuristics for reasoning about
uncertainty regardless of computational complexity.

A better understanding of these heuristics is thus an important
question for future research. One possibility is that rather than pro-
specting about future outcomes and belief states as assumed by nor-
mative models, people estimate informativeness merely based on
surface descriptors. Thus, in our conditions, participants may have
sampled based on combinations of EV and uncertainty simply because
thesewere the two features describing the available lotteries. This view
may also explain why participants were sensitive to the precise type of
post-sampling decision (Estimate versus Intervene), which was irrele-
vant for optimal sampling but relevant for performing the task. Thus, a
critical question for future research concerns how sampling is altered
(improved or impaired) by framing effects, including the relative
emphasis on various task features15,26, the specific instrumental use of
the information, and the participants’ intuitions and knowledge about
themeaning (semantics) of the information27,28. A second hypothesis is
that participants extended to this question-asking scenario an
approach they used in explore-exploit settings in which it is often
optimal to use a best-first (not uncertainty-first) strategy29. Distin-
guishing between alternative accounts of inefficient question-asking
strategies will be an important goal of future research.

Our results further suggest that the participants’ task under-
standing affected not only how they sampled but also how they
adjusted their samplingwhile performing a task. Although participants
had no access to conventional reward feedback, they showed sig-
nificant improvements during the course of instrumental blocks,
suggesting that they refined their information gathering based on cues
from the post-sampling decisions. In the Estimate task, participants
may have monitored their confidence about estimating the sum and
noted that confidence was higher after sampling the high- versus low-
variance lottery. In the Intervene task, participants could have noted
that the amount they recuperated was higher after observing the hiVar
relative to the loVar lottery. Notably, Uncertainty-only participants
showed learning in both tasks while EV-sensitive participants did so
primarily in the Estimate task, suggesting that people differently
weight task cues depending on their understanding of the sampling
strategy.

Individual variability and personality traits
The fact that our participants requested low-informativeness obser-
vations seems consistent with the phenomenon of information
avoidance, whereby people reject information about personally rele-
vant topics if it is expected to signal a negative outcome (e.g., a
financial loss or bad medical diagnosis)3,11,30. While this parallel must
clearly bemadewith caution given the verydifferentmethodologies of
these tasks, our results on personalitymetrics provide insights into the
common and different processes tapped by the tasks.

Consistent with the reports of Ho and colleagues3 and Kobayashi
et al.7, we found no credible evidence of associations between efficient
sampling and standard measures of risk attitudes or demographic
factors of age, sex, and educational level. However, using a broader
range of personality metrics relative to that earlier study, we found
reliable associations with extraversion and need for cognition, a
measure correlated with fluid intelligence31. Importantly, these pre-
dictors were consistent across our three tasks of information demand,
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supporting the conclusion of Ho et al. that personality correlates were
consistent even as the level of information avoidance could change
across topics (i.e., finance vs. health vs. social perception3). Thus,
personality metrics may capture elements of information gathering
that are common across distinct methodologies and tasks.

Also instructive are the differences between our findings and
those of Ho and colleagues. In contrast with our results, Ho et al.
found significant associations with neuroticism or openness to
experience, possibly reflecting their use of information with rich
semantic and personal content. On the other hand, we made a fine-
grained distinction between uncertainty and value-based motives
which is difficult to achieve in verbal-based tasks, and revealed that
personality traits weremuchmore predictive of uncertainty relative
to reward sensitivity.

Two consistent predictors of higher uncertainty sensitivity
were low extraversion and a higher need for cognition. Interest-
ingly, although extraversion is often linked to reward sensitivity32

we found no credible evidence that extraversion predicted reward
sensitivity in our task. We speculate that, instead, extraversion
captured different styles of inquiry, perhaps related to more gre-
garious (extraverted) versus reflective (introverted) personalities.
Together with the positive association between uncertainty sensi-
tivity and the need for cognition, this supports the idea that efficient
information gathering requires accurate reasoning about
uncertainty.

We also show that uncertainty sensitivity was associated with
thrill-seeking and stress tolerance, two subscales of the 5DC curiosity
inventory21. Interestingly, the relationshipswere complex and included
a negative association with thrill-seeking and a positive association
with stress tolerance. We speculate that participants who sampled
more efficiently may have been more motivated to achieve an early
resolution of uncertainty and sought to avoid later uncertain (risky)
decisions. These participants thus combined a greater willingness to
avoid risk, captured by lower thrill-seeking, with a greater ability to
engage cognitive processes for resolving uncertainty, captured by
higher stress tolerance. Thus, an important question for future
research concerns the relation between information gathering and
attitudes to uncertainty, which are known to vary across the lifespan
and in psychopatholgy10,33,34.

In sum, we show that a critical aspect of information gathering—
the ability to identify and prioritize informative observations—is
shaped by uncertainty, value-based and cognitive factors and is asso-
ciated with personality traits with significant implications for con-
sequential choices in natural settings.

Methods
Participants
All experimental procedures were approved by the Institutional
Review Board of Columbia University. Participants were recruited
through the online platform Amazon Mechanical Turk and completed
a battery of tasks that included the task and questionnaires we
describe here and eight additional tasks we will describe in different
publications. The tasks were implemented in customsoftware (Haratki
LLC) and were presented to each participant in a randomized order
over several days. Informed consent was obtained before for each
participant. To ensure quality data, we limited enrollment to partici-
pants who were (self-declared) adults over 18 in the United States, and
who were verified as having completed more than 100 previously
approved Amazon Turk tasks with an approval rate of over 80%. In
addition, we limited the minimum and maximum reaction times for
each trial and invited participants to perform additional tasks only
after stringent tests and quality controls designed to eliminate bots.
These safeguards are beyond those that produced reliable data
(comparable to that from participants tested in the laboratory) in the
study of Kobayashi et al.7.

Sample sizes
Our sample size was based on our previous study of a similar task in
non-instrumental conditions. A power analysis at a β level of 0.9, using
parameter statistics from Kobayashi et al., resulted in a minimum
sample size of n = 14 participants to detect non-zero uncertainty sen-
sitivity. The ultimate sample size of n = 610 was selected based on
collaboration with other projects with which this task was presented.
At aβ level of0.9, this sample size allowed for thedetectionof aneffect
size of 14% for n = 610, 20% for n = 305 (half), and 10% for n = 1220
(double). The 610 participants we discuss here completed the 2-lottery
task and a subset (n = 544) completed the 5 personality questionnaires
in a separate session. Demographic data (collected from 550 partici-
pants), shows that their ages ranged between 18 and 75 years old
(median category, 31–35 years old), 45% were women (55% men, 0%
other), and a majority completed college (58%) or a post-graduate
degree (24%) with the remaining having completed only high school
(17%) or a vocational school (1%).

Tasks
Participants completed the experiment in a single testing session that
lasted approximately 45–60min and was divided into four blocks of
126 trials each. In all blocks, a trial started with the presentation of two
lotteries as described in the text (Fig. 1a). In all trials, the lotteries were
easily identifiable as having, respectively, high or low variance (ranges
of 120 vs. 30 points between the possible values). The total EV of the
lotteries was constant at 500 points, but relative EV (ΔEV, defined as
the EV of the high variance lottery minus the EV of the low variance
lottery) was randomly drawn with uniform probability from the fol-
lowing set of possible values: [−110, −90, −80, −70, −60, −50, −40, −30,
−20, −10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 110]. Keeping the sum of
EV constant simplified the design of the task and allowed us to adopt a
simple criterion for magnitude judgments on the Estimate task.
Although thismanipulation introduced an inverse correlation between
the EVs of the lotteries, it did not significantly affect the independence
of the draws (high or low) that the lotteries generated.

Participants were instructed that (1) one prize will be selected
from each lottery, randomly and with uniform probability and (2) the
total point payoff of the trial will be the sum of the prizes. Participants
then chose one lottery whose precise value theywished to reveal while
remaining ignorant about the value realized from the other lottery.
Following the participant’s choice of a lottery, the realized prize was
revealed by emphasizing it in bold font and a black arrow and
removing the unrealized value from the display.

The events following the reveal differed across blocks. In the
Observeblock, after learning theprecise valueof theprize aboutwhich
they inquired, participants simply progressed to the next trial. In the
Estimate block, participants saw a 2nd screen displaying the revealed
and hidden prizes, along with a prompt to report if they believed the
sum of the prizes was higher or lower than 500 points. Participants
pressed an up/down arrow to indicate their estimate, and the task
advanced to the next trial without feedback regarding their guesses. In
the Intervene block, participants saw a second display which, in addi-
tion to the revealed and unrevealed prizes, showed a dashed line at the
EV of the inspected lottery. They indicated by pressing an arrow
whether theywished to keep the realizedprize or change it to the EVof
the lottery, after which the task proceeded to the next trial.

General procedures, payment, and instruction
Participants started with a block of the Observe task, followed by the
Estimate and Intervene tasks (in an order that was counterbalanced
across participants), and finished by repeating a block of the Observe
task. At the end of each block, one trial was selected randomly from
those the participants played. Both prizes were revealed for that trial,
and a bonus was calculated according to the block rules (equal to the
sum of the prizes for the Observe block, the sum of the prizes or 0 for,
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respectively, a correct or incorrect estimate on the Estimate block, and
the sum of the altered prize and the prize from the unrevealed lottery
on Intervene blocks). At the end of the session, the 4 bonuses were
converted to US dollars (2000 points = $1) and added to the show-up
fee ($1) and the total was paid to participants via Amazon Turk.

Before each block, participants received complete instruc-
tions regarding the task, which were accompanied by screenshots
illustrating the prize-generating procedure and examples of
representative trials, and were self-paced with unlimited oppor-
tunity to go back to previous screens. The instructions empha-
sized the fact that the two prizes were independently drawn and
summed on each trial and comprehensively covered the meaning
of the displays, distributions of lottery values, the post-reveal
choices and their implications for the possible bonus, the point-
to-dollar conversion and the procedure for determining and
selecting the bonus. To enable measurement of reaction times
(RTs), participants were instructed to hold their hands steady on
the keyboard such that their left thumb accessed the space bar,
and their right hand was over the numeric keypad with the index
and 4th fingers over the left arrow keys to report the reveal
decisions, and the middle finger accessing both the up and down
keys to report the instrumental decisions. They were informed
that the reaction times could be between 0.5 and 10 s, and any
key press outside of that range would cause the trial to be dis-
carded with a warning of, respectively, “Too slow” or “Too fast”,
and repeated at the end of the block.

After finishing the instructions, participants answered three quiz
questions about each block. If they answered any question incorrectly,
they received an explanation about the correct answer and attempted
the question again until they gave the correct answer. After the quiz,
each participant completed two practice trials (with the option to
request twoadditional trials) and, when ready, pressed the spacebar to
start the experimental block. The instructions about the information
sampling stage were presented in detail before the first Observe block
and repeated in the abbreviated form before each consecutive block.

Personality questionnaires. As part of the task battery, participants
completed four personality questionnaires, namely, (1) Behavioral
Inhibition System/Behavioral Approach System (BISBAS); (2) Five
Dimensional Curiosity (5DC); (3) Big Five; and (4) Need for Cognition.
Typically, the questionnaires were completed on a separate day either
before or after themain task. Data from questionnaires were collected
from a subset of N = 501 participants.

Data analysis
Datawereanalyzed inMATLABversionR2020ausing customcode and
built-in functions as specified in each case. Unless otherwise noted, all
statistical comparisons used two-tailed non-parametric tests.

Modeling of choice data was based on trials that passed selection
criteria (RTs between 0.5 and 10 s) and used maximum a posteriori
estimation. Fitting was conducted by use of MATLAB’s built-in mle
function. We initially modeled each participant’s data with a two-
parameter logistic regression:

p revealð Þ= 1
1 + exp �b a+ΔEVð Þð Þ ð1Þ

in which p(reveal) is the probability of revealing the hiVar lottery, ΔEV
is standardized between −1 and 1 and a, b are free parameters esti-
mating, respectively, the sensitivity to uncertainty and EV. A weakly
regularizing, normally distributed prior was used for both a and b
(N 0,5ð Þ in both cases). This facilitated model convergence in cases of
near-exclusive preference without unduly influencing less extreme
cases. Parameters a and b were deemed significant if their 95% Cis did
not include 0.

The resulting parameter estimates are shown in the left columnof
Fig. S1a, with each point colored according to %reveal the hiVar lottery
(our model-free measure of sampling efficiency). Colored stripes are
approximately parallel to the ordinate, showing that the procedure
separated the two factors, with efficiency being captured mainly by
parameter a regardless of variations in slope (b), as intended. How-
ever, for participants with very low slopes (b ~ 0), high efficiency was
captured by large absolute values of a that could be either positive or
negative (note the points with a <0). This reflected an ambiguity in the
mathematical fit whereby slopes b very close to zero could have
positive or negative values as a function of residual noise, which then
dictated the sign of parameter a. This sign-flipping tendency persisted
even after we introduced regularizing priors.

To circumvent this ambiguity, we used an alternative method, in
which we compared for each participant the fit using Eq. (1) with that
from a univariate logistic regression:

pðreveal hiVarÞ= 1
1 + eð�cÞ ð2Þ

where c captures a constant rate of revealing the hiVar lottery
regardless of ΔEV (also computed using maximum a posteriori esti-
mation and placing a prior of N 0,5ð Þ on c). Parameter c was deemed
significant if its 95% CI did not include 0.5 (chance). To determine
which model best-captured behavior, we approximated the Bayes
Information Criterion (BIC) as

BIC Hi

� �
= � 2log Li

� �
+ ki � log nð Þ ð3Þ

(where,Hi is themodel, Li is the aposteriori likelihood,ki is the number
of free parameters, and n is the number of data points) and categor-
ized a participant as EV-sensitive or EV-insensitive if the BIC favored,
respectively, the bivariate or univariate model.

As shown in the right column in Fig. S1a, this alternative method
largely eliminated the indeterminacy. Most of the participants who
were formerly fit with negative intercepts were now categorized as EV-
insensitive (triangles, plotted atb =0) andwerefitwithparameter c that
was positive, and which monotonically captured sampling efficiency.

The criterion we used to define the two categories assumed that
participants were EV-sensitive by default and only categorized them as
EV-insensitive if there was strong evidence favoring the univariate
model (BIC difference > 4.6 in favor of the latter, equivalent to Bayes
factor = 10). However, the results were unchanged if we assumed
instead that participants were EV-insensitive by default and only
categorized them as EV-sensitive if there was strong evidence favoring
the bivariate model (BIC difference < −4.6, Bayes factor = 0.1). As
shown in Fig. S1b for the Estimate task, most BIC differences were far
from either criterion (mean absolute difference, 91.8 ± 3.4) and 93% of
participants had the same classification across the criteria, and the
same was true for the Observe (94.3 ± 3.9, 88%) and Intervene task
(86.2 ± 3.0, 94%).

Questionnaires were scored according to published instructions
for each. The resulting 15 scores were combined with demographic
indicators for age, sex, and education (see above) and used to train a
support vector machine (SVM) classifier to predict the probability of
sampling the quantity of interest (%reveal hiVar or %reveal hiEV
defined as high or low based on a median split) using 100 bootstrap
iterations with 50:50 cross-validation. We evaluated the excess accu-
racy for each bootstrap by randomly shuffling the parameter labels
and taking the difference between the proportion of correct classifi-
cations from the unscrambled and scrambled datasets. The coeffi-
cients of each trait were stored for each bootstrap and their
significance was determined by comparing 95% confidence intervals
against zero. As alternative methods, we repeated the analysis using
logistic classification andused linear regression to fit %reveal hiVar and
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%reveal hiEV as a linear combination of the 18 predictors. The pre-
diction accuracy as well as the sign and significance of the coefficients
replicated the SVM results in all cases.

To calculate the %variance explained by each questionnaire score,
weusedmultiple regression analysis and computed thedifference inR2

between amodel that included all the scores and amodel that included
all the scores except the one of interest. We applied this method, with
consistent results, to the model free-measures (%reveal hiVar and %
reveal hiEV) and to the estimated parameters (combining EV-sensitive
and EV-insensitive participants by pooling parameters a and c and
assigning b =0 to Uncertainty-only participants).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The processed lottery and
questionnaire data generated in this study have been deposited in the
EBRAINSDatabase. Access canbe obtained through https://doi.org/10.
25493/ZQZM-PPS. The raw lottery and questionnaire data are pro-
tected and are not available due to data privacy laws.

Code availability
Custom MATLAB scripts to preprocess data, generate psychometric
fits, and conduct the support vector machine analysis have been
deposited in the Code Ocean Database. Access to the code can be
obtained through https://doi.org/10.24433/CO.3745345.v1.
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