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Overestimated nitrogen loss from
denitrification for natural terrestrial
ecosystems in CMIP6 Earth System Models

Maoyuan Feng 1,2, Shushi Peng 1,2 , Yilong Wang3, Philippe Ciais 4,5,
Daniel S. Goll4, Jinfeng Chang 6, Yunting Fang 7, Benjamin Z. Houlton8,
Gang Liu1,2, Yan Sun9 & Yi Xi 1,4

Denitrification and leaching nitrogen (N) losses are poorly constrained in Earth
System Models (ESMs). Here, we produce a global map of natural soil 15N
abundance and quantify soil denitrification N loss for global natural ecosys-
tems using an isotope-benchmarking method. We show an overestimation of
denitrification by almost two times in the 13 ESMs of the Sixth Phase Coupled
Model Intercomparison Project (CMIP6, 73 ± 31 TgN yr−1), compared with our
estimate of 38 ± 11 TgN yr−1, which is rooted in isotope mass balance. More-
over, wefind a negative correlation between the sensitivity of plant production
to rising carbon dioxide (CO2) concentration and denitrification in boreal
regions, revealing that overestimated denitrification in ESMs would translate
to an exaggeration ofN limitation on the responses of plant growth to elevated
CO2. Our study highlights the need of improving the representation of the
denitrification in ESMs and better assessing the effects of terrestrial ecosys-
tems on CO2 mitigation.

Nitrogen (N) is a crucial nutrient that regulates plant growth and its
response to elevated carbon dioxide (CO2) concentration in a wide
range of terrestrial ecosystems1–3. Incorporating the interactions
between nitrogen (N) and carbon (C) into Earth SystemModels (ESMs)
helps improve future projections of the coupled carbon-climate
system4–6. In the fifth Phase of the Coupled Model Intercomparison
Project (CMIP5) for the IPCC AR5 report, the terrestrial N cycle was
represented in only two ESMs (CESM and NorESM)7, both of which
relied on the same land surfacemodel (Community LandModel, CLM)
to estimate N cycle interactions. This land surfacemodel was found to
include an unrealistic representation (coarse overestimation) of the N
losses from the denitrification pathway8–10. In the most recent

assessment (CMIP6), 24 out of 44 ESMs include the N cycle, but rely on
different assumptions/theories for relevant processes6,7,11,12. It remains
unclear whether current ESMs have improved the N loss estimates
compared to the CMIP5 models.

Nitrogen losses are pivotal in determining N availability for plants
and microbes3,13,14. However, the evaluation of N loss fluxes is chal-
lenging due to the difficulties of measuring the denitrified dinitrogen
(N2) emissions directly15,16 and scaling up point scale observations to
globalfields9,17,18. ThenaturalN isotope ratio (15N/14Norδ15N) in soil is an
important indicator for partitioning gaseous N losses (denitrification
and volatilization) from aquatic (leaching) ones, since the former
pathway has a much stronger discrimination against the heavier
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isotope (15N)19,20. Using a simple global map of soil δ15N upscaled from
~50 observations and linear relationships with climate drivers21, Houl-
ton et al8. utilized a framework of isotope mass-balance equations to
constrain the ratio (fdenit) of N loss fromdenitrification relative to total
N losses, and found that the Community Land Model (CLM-CN) coar-
sely overestimated both the pattern and magnitude of fdenit. Thou-
sands of soil δ15N observations have occurred since the first global soil
δ15N map from Amundson et al.21 was published in 2003. These new
observations can be leveraged to improve the quality of both the
global soil δ15N map and fdenit. Moreover, applying a machine learning
method and accounting for additional predictors, including climate
drivers, microbial associations22,23 and soil properties24,25, has been
shown to improve continental-scale soil δ15N estimates (e.g., in South
America, by Sena‐Souza et al.26), and is therefore expected to further
improve the reliability of the global soil δ15N map27.

In this study, our objective is to improve the current isotope
benchmarking technique by deriving a spatial distribution of fdenit
estimates from soil δ15N observational data coupled with machine
learning, and then use the model to constrain denitrification N losses
as simulated by the CMIP6 models. First, we use 5887 direct mea-
surements of soilδ15N in natural ecosystems from the literature26,28 (see
Methods; Supplementary Fig. 1), and produce a global soil δ15N map at
a spatial resolution of 0.1° × 0.1° by using a Random Forest (RF) model
(see Methods and Supplementary Text 1; Supplementary Fig. 2). This
global soil δ15Nmap is used to benchmark the globalmapof fdenit using
isotope mass balance equations proposed by Houlton et al.19 and
Houlton and Bai20 (Supplementary Texts 2–4). With the global map of
isotope-benchmarking based fdenit, we then estimate the denitrifica-
tion N loss of global natural terrestrial ecosystems under steady state
(total N losses equal to total N inputs) and non-steady state with the

total N losses simulated by the CMIP6 ESMs. Our results indicate that
the CMIP6 models substantially overestimate denitrification N losses.

Results and discussion
A global map of isotope-benchmarking based fdenit
We derived a global soil δ15N map using a robust RF model (Fig. 1a, see
Methods and Supplementary Text 1), which performswell in capturing
the nonlinear relationships between soil δ15N observations and pre-
dictors (R2 =0.92, RootMean Square Error (RMSE) = 0.77‰) and also in
predicting the soil δ15N (R2 =0.55, RMSE = 1.83‰) (Supplementary
Text 1; Supplementary Figs. 2 and 3). The soil δ15N map has a global
mean of 4.8‰ weighted by grid level N input (proportional to soil N
content at steady state, and estimated as the product of N input flux
and grid area) (Fig. 1a; Supplementary Fig. 4), which is slightly lower
than the previous estimate of 5.5‰8,21. The spatial pattern of the soil
δ15N map indicates a decreasing trend from low to high latitudinal
regions, resulting in a latitudinal gradient of −0.5‰ per 10° increase in
latitude. Compared to the soil δ15N map produced by a linear regres-
sionmodel by Amundson et al.21, our RFmodel greatly increased the R2

between observations and predictions across 933 grid cells from 0.20
to 0.93 and decreased the RMSE from 2.82‰ to 0.77‰ (Supplemen-
tary Fig. 5).

Based on the isotope balance equations of Houlton et al.19 and
Houlton and Bai20 (see Methods), we used the global soil δ15N map to
benchmark the fdenit (Fig. 1b, Supplementary Text 2). The isotope-
based fdenit relies on the relative fractions of N inputs from rock N
weathering, N deposition, and biological nitrogen fixation (BNF) that
have contrasting δ15N signals15. To account for the uncertainties in
these N input data, we derived an ensemble of global maps of isotope-
based fdenit using six sets ofN inputs by combining a globalmapof rock

Fig. 1 | Global maps of the soil δ15N and the isotope-benchmarking based
fraction of denitrification N loss (fdenit) in natural terrestrial ecosystems.
aGlobalmap of themeanof soil δ15N produced byRandomForestmodels.bGlobal
map of the ensemble mean of fdenit derived using six sets of N inputs. The colored

dots represent the field measured soil δ15N and corresponding fdenit in (a) and (b),
respectively. Note that these two maps are upscaled from climate, soil and
microbial symbionts, andother predictors (Supplementary Table 7) only for natural
ecosystems.
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N weathering29 (10 TgN yr−1 with a global mean δ15N of 4.02‰), two
global maps of N deposition30,31 (an average of 40TgNyr−1 with a
constant δ15N of 0‰) and three global maps of BNF32 (an average of
57 TgNyr−1 with a constant δ15N of −2‰) (see Methods and Supple-
mentary Text 2). The ensemble of global maps of isotope-based fdenit
are similar, providing a global N input weighted average of fdenit equal
to 0.42 ±0.01 (mean ± standard deviation (SD)) (Supplementary
Table 1), i.e., 42 ± 1% of N losses in natural ecosystems occur via the
denitrification pathway, slightly higher than previous area-weighted
estimates of 26–40%under similar isotope-based frameworkbutwith a
global map of soil δ15N from Amundson et al.21 and different
parameterizations8,19,20. Here, we show the isotope-benchmarking
based fdenit as the ensemble mean derived from the six sets of N
inputs (107 ± 19 TgN yr−1, with a δ15N of −0.66 ± 0.21‰) (Fig. 1b), with
detailed ensembles of global fdenit maps presented in the Supple-
mentary Information (Supplementary Text 2; Supplementary Fig. 6).
Spatially, the isotope-benchmarking based fdenit decreases from low to
high latitudinal regions, with a latitudinal gradient of −0.05 per 10°
latitude increase (Fig. 1a). In Amazonia and South Africa, the fdenit is
higher than 0.6, while in most grid cells over mid- and high latitude
regions fdenit is lower than 0.3. This spatial pattern is consistent with
previous isotope-based studies (Supplementary Fig. 7)6,8, and empiri-
cal knowledge, indicating a more open nitrogen cycle in the tropics
compared with the boreal regions1,2,13. The uncertainty (quantified by
standard deviations, SDs) of the isotope-based fdenit across the six
maps (Supplementary Fig. 8b) ismuch lower than the uncertainty from
the benchmarking fdenit that is propagated from the map of soil δ15N
(Supplementary Fig. 8a).

Large discrepancy between isotope-benchmarking based fdenit
and ESMs
Our findings reveal a large discrepancy between the isotope-
benchmarking based fdenit and the values simulated by the CMIP6
ESMs (Fig. 2 and Supplementary Fig. 9). Inmost of these ESMs (except
ACCESS-ESM1-5 and EC-Earth3-Veg), fdenit is relatively uniform across
the globe and follows a highly skewed, roughly binary distribution, i.e.,
>90% of grid cells are at ~1 and the remaining <10% of grid cells are at

~0, resulting in an overestimated fdenit. The overestimation of fdenit is in
line with the previous isotope-based analysis8 and observation based
comparisons9,10. Moreover, the overestimated fdenit is also found in
CESM8–10, one out of the two CMIP5 ESMs that included nitrogen-
carbon interactions, suggesting little improvement has been made in
the representation of denitrification in this ESM. Note that the isotope-
benchmarking based fdenit is sensitive to the isotope effect of deni-
trification (εdenit), which hasbeen reported to have large variations, i.e.,
10–20‰ in natural soil communities20 and 31–65‰ in pure incubation
in the laboratory33,34. As δ15N observations in natural soil were collected
in this study, following Houlton and Bai20 and Houlton et al.8, we
adopted a value for the isotope effect of denitrification (εdenit) of 13‰,
at the lower end of previously reported values20, resulting in a con-
servative (high) estimate of fdenit (see Methods). If a higher εdenit had
been adopted, the isotope-based fdenit would have been even lower,
pointing to an even more substantial overestimation of fdenit in the
CMIP6 ESMs (Supplementary Text 3; Supplementary Table 2; Supple-
mentary Fig. 10).

We found that ESMs with a higher global mean estimate of fdenit
had a higher fraction of grid cells with fdenit ≈ 1, the upper bound
(Supplementary Fig. 11). Thus, most of the ESMs with overestimates of
fdenit are likely to be constrained by the upper bound and show small
seasonal and interannual variations of fdenit (Supplementary
Figs. 12–14), which is contradictory to the empirical knowledge that the
fraction of N loss from denitrification is highly dependent on the
temperature and soil moisture35–37. Moreover, highly overestimated
values of fdenit (≈ 1) also imply that the N leaching losses were close to
zero, which runs counter to the observation that dissolved N losses
contribute substantially to N balances in many terrestrial
ecosystems16,38,39. These contradictions suggest that denitrification, or
related N cycle processes, are still poorly represented in the CMIP6
ESMs (Supplementary Text 1). Theoretically, denitrification rates
depend on nitrogen and carbon availability, temperature, soil moist-
ure, pH, and other factors35,40,41. We summarized the representations of
denitrification and leaching N losses in the CMIP6 ESMs (Supplemen-
tary Table 3; Supplementary Text 5), and found that five families of
models (CESM2, NorESM2, AWI-ESM1, MPI-ESM, and MIROC)

Fig. 2 | Comparison of global maps of the fraction of denitrification N loss
(fdenit) simulated by CMIP6 Earth System Models (ESMs) with the isotope-
benchmarking based estimate of this study. a Global map of the isotope-
benchmarking based fdenit of this study. b–i Global maps of fdenit during the period

2005–2014 simulated byCMIP6 ESMs, with each representing a family of ESMswith
similar patterns of fdenit. In each panel, the histogram in the bottom left corner
shows the frequency distribution of fdenit values across the globe. All crop and
pastural areaswereexcluded from the analysis and are representedby grey regions.
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simulated the denitrification rate as a product of the simulated soil
mineral N pool by using a scaling factor function of environmental
variables. Three families of models (ACCESS-ESM1-5, EC-Earth3, and
UKESM1) assume that the denitrification is a fraction of net or gross
mineralization rates. Both groups of ESMs overestimated fdenit except
for EC-Earth3-Veg in which the denitrification rate is simulated as 1% of
the gross mineralization rate5. Thus, in EC-Earth3-Veg, the spatial pat-
tern, a decreasing latitudinal gradient of fdenit from tropical to boreal
regions, essentially reflects that of gross mineralization rate. Overall,
the representation of denitrification processes should be improved by
accounting for recent advances in theoretical understanding and data
availability related to currently omitted but crucial processes in the
nitrogen cycle, such as N-related microbial processes42,43, retention of
reduced and oxidized N form44, and interactions between plant and
soil microbes45.

Overestimated denitrification N loss from global natural eco-
systems in CMIP6 ESMs
By applying the isotope-benchmarking based fdenit under the steady-
state assumption (total N losses equal to total N inputs), we estimated
the denitrification N loss from global natural terrestrial ecosystems
as 45 ± 9 TgN yr−1 (Fig. 3; Supplementary Table 1; Supplementary
Table 4; Supplementary Fig. 15) using six sets of global N inputs
(107 ± 19 TgNyr−1), close to the recent estimates of 44–47 TgNyr−1

using similar isotope based framework but with different parameters
and global N inputs15,20. In recent decades, natural terrestrial ecosys-
tems have acted as a N sink due to the accumulating terrestrial carbon
sink46,47. Thus, the actualdenitrificationN loss in recent decades should
be much lower than our steady-state estimate (45 ± 9 TgNyr−1). Across
the 13 CMIP6 ESMs, the mean denitrification N loss is 73 ± 31 TgNyr−1,
with the mean of the terrestrial N sinks (vegetation plus soil N sinks)
being 25 ± 7 Tg N yr−1 and the mean of the N inputs being
119 ± 24 TgNyr−1 (Fig. 3; Supplementary Table 5). With these N inputs
and sinks from the ESMs, we utilized the isotope-benchmarking based
global map of fdenit to estimate the denitrification N loss as 38 ± 11
TgNyr−1 (Fig. 3; Supplementary Table 6), considering that the effect of
the terrestrial N sinkon the isotope-based fdenit is very limited (< 1%; see
Methods and Supplementary Text 6; Supplementary Fig. 16). This
calculation suggests that the CMIP6 ESMs overestimate the deni-
trification N loss by 92%, which would further bias the atmospheric
chemistry (e.g., atmosphere N2O, NO and NO2 concentrations and

attendant chemical processes) if resolved in the ESMs. Conversely, the
CMIP6 ESMs underestimate the leaching N loss by 62% (Fig. 3), which
implies underestimated N loads to global aquatic ecosystems and the
ocean, and consequently underestimate eutrophication in aquatic
ecosystems and ocean productivity in themodels. Note that themodel
bias is defined as the difference between isotopically constrained
estimates and ESMs’ simulated values, which provides an approxima-
tion of the truemodel bias aswe lack direct observations of N losses at
global scale. Our results suggest that the denitrification and leaching N
losses in ESMs should be cross-constrained by δ15N data and N flux in
stream and river discharges before using ESMs to study the N cycle
between land and the ocean/atmosphere. Moreover, the responses of
total N losses (denitrification plus leaching) to future climate change
will be biased in the CMIP6 ESMs: a biaswhich could further propagate
into the CMIP6 simulations of carbon-climate feedback7.

Exaggerated N limitation on plant growth due to overestimated
denitrification N losses
Under elevated levels of atmospheric CO2, nitrogen losses affect the
occurrence of N limitation for the plant growth in natural ecosystems
by controlling the rate at which the soil N availability changes over
time6. Thus, we hypothesized that the overestimated denitrification N
losses in ESMs lead to an underestimation of soil N availability and a
further exaggeration of N limitations on the responses of plant growth
to elevated CO2 levels. We used a parameter βNPP to quantify the
sensitivity of Net Primary Production (NPP) to elevated atmospheric
CO2 concentration using a regression approach from the historical
simulations of ESMs (see Methods). We found a negative correlation
between βNPP and fdenit across 10 ESMs in boreal regions (50°–90°N)
where N availability was generally low during the period 1960–2014
(Fig. 4, R2 = 0.69, p =0.003). In other words, an ESMwith a higher fdenit
is more likely to underestimate βNPP and exaggerate the effect of N
limitation on plant productivity. In boreal regions, compared to the
isotope-benchmarking based fdenit (0.23 ± 0.05), the value of fdenit is on
average overestimated by 170% in the ESMs (0.62 ±0.28). Considering
an increase of CO2 concentration of 81 ppm during the period
1960–2014, the overestimation of fdenit results in an underestimation
of βNPP by the ESMs of 0.07%ppm−1 which corresponds to 6% of the
NPP increase in boreal regions. Our results highlight that ESMs exag-
gerate the N limitation on the responses of plant growth to elevated
CO2 in boreal regions. The exaggeration of the N limitation in ESMs
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Fig. 3 | Synthesis of nitrogen fluxes over global natural terrestrial ecosystems.
The denitrification N loss at steady state was estimated as the product of the
isotope-benchmarking based fdenit and total N losses that were assumed to be equal
to the six sets of N inputs (atmospheric N deposition, biological nitrogen fixation
(BNF), and rock N weathering; Supplementary Table 1). The error bars on the
steady-state N fluxes are standard deviations derived from the six sets of N inputs

(Supplementary Table 1). The N fluxes simulated by the Earth System Models
(ESMs) were directly downloaded from CMIP6 (https://esgf-node.llnl.gov/search/
cmip6/). The third group of N fluxes retain the ESMs’N inputs and sinks, but use the
isotope-benchmarking based fdenit to re-allocate the total N losses simulated by the
ESMs. The error bars on the N fluxes are standard deviations across the 13 ESMs
(Supplementary Table 6). Source data are provided in Source Data file.
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may also propagate to future scenarios, and, in turn, exaggerate the
future N limitation on the C sink.

In summary, the isotope-benchmarking based fdenit indicates that
most CMIP6 ESMs overestimate fdenit, and shows little improvement
over the CMIP5 models8. Due to the overestimation of fdenit in the
CMIP6 ESMs, the denitrification N loss is overestimated by 92%. These
large overestimations of fdenit and denitrification N loss suggest that
the denitrification and/or related N cycle processes are under-
represented4,17,48. Furthermore, we found that this overestimation in
denitrification N loss is closely related to the exaggeration of the N
limitation on the simulation of plant growth under elevated CO2 in the
CMIP6 ESMs. Thus, to improveprojections of the future landC sink,we
call for improvements in the representation of denitrification pro-
cesses, e.g., by incorporating the global distribution of microbial
symbionts and its dynamics22,23,45, and the changes in the soil oxygen
condition (aerobiotic or anaerobic) and its heterogeneity25. Combining
with recent advances27, our isotope-benchmarking approach could be
further used to partition the gaseous N loss into its components (e.g.,
N2O, NO and N2), allowing for a more refined assessment of ESMs.
Overall, our upscaled globalmap of soil δ15N provides a useful tool and
a benchmark for constraining N-loss pathways in ESMs, highlighting
that the representation of the N cycle needs to be improved in ESMs.

Methods
Global map of soil δ15N
To produce the global soil δ15N map, we used a global soil δ15N dataset
comprising 5887 direct measurements (5609 measurements from
Craine et al.28 and 278 fromSena‐Souza et al.26). As the original soil δ15N
dataset from Craine et al.28 covers multiple soil depths and contains
soil samples from various sites, we used only the δ15N data from soils
with depth ≤30 cm, while δ15N data with the following conditions were
excluded: (a) soil depth >30 cm; (b) C:N ratio is too low (< 1 gC gN−1) to
be considered as natural; (c) N concentration is too low (< 0.02mgg−1)
to be considered as natural; (d) the sample is only collected from
organic horizon without mineral layers, or C concentration is too high

(> 610mg g−1) to be considered as mineral; (e) the sample is collected
from litter layer, the top layer of the soil column; (f) the sample site is
adjacent to a marine ecosystem, which may involve a lot of N trans-
formation processes in aquatic/coastal ecosystems (e.g., benthic N
fixation, upwelling, burial, and phytoplankton uptake)49–51 (g) the
sample is from cropland; (h) the sample is from pastures, drystocks,
dairy and industrial sites. The soil δ15N within the depth of 30 cmwere
averagedweightedby soil N content ifmultiple depthsweremeasured.
We adopted 16 predictors with gridded fields: three climate drivers
(precipitation (P), temperature (T) and aridity index–the ratio of pre-
cipitation over potential evapotranspiration (PET)), seven soil prop-
erties (bulk density (BD), soil pH, fractions of clay, silt and sand,
organic carbon (OC), and soil C:N ratio (C/N)), three abundances of
microbial symbionts (arbuscular mycorrhizal (AM), ectomycorrhizal
(ECM) fungi, and N fixing bacteria (Nfix)), gross primary production
(GPP), and NHx and NOy depositions (Supplementary Table 7). The
0.5° × 0.5° monthly P, T and PET data (1981–2018) were obtained from
the Climatic Research Unit (CRU) Time-Series (TS) v4.03 datasets. The
10 km× 10 kmBD, pH, fractions of clay, silt and sand,OC, andC/Nwere
obtained from the Global Soil Datasets for Earth System Modelling
produced by Beijing Normal University (BNU)24, which provides soil
information for eight soil layers (covering depths from 0 to 2.3m); we
used soil information for the upper four layers (~30 cm). The 1° × 1°
natural abundance of AM, ECM, and Nfix were from Steidinger et al.22

The0.5° × 0.5°monthly GPP (1981–2016) andNHx andNOy depositions
(2004–2015) were sourced from Keenan et al.52 and Tian et al.30,
respectively. The 1° × 1° NHx and NOy depositions (2010) from the
European Monitoring and Evaluation Programme (EMEP)31 were also
obtained, as an alternative to help account for the uncertainties in
global soil δ15N and fdenit resulting from N deposition. Monthly data
were averaged to obtain a mean annual value, and all these datasets
were re-gridded to 0.1° × 0.1° spatial resolution.

First, we aggregated the 5887 site-level measurements of soil δ15N
into 933 0.1° × 0.1° grid cells (locations shown in Supplementary Fig. 1).
Using the soil δ15N and 16 predictors in the 933 grid cells, we employed
a Random Forest (RF) algorithm to produce a global soil δ15N map,
using the well-established Python v3.8.5 package, RandomForestRe-
gressor (Supplementary Text 1). This machine learningmodel explains
92% and 55% of the variances for training and testing samples,
respectively (Supplementary Text 1; Supplementary Fig. 2). The K-fold
(K = 10) cross-validation indicated that withholding 10% of the samples
decreased the explained variances only slightly (Supplementary Fig. 3),
i.e., the RF model is robust in predicting soil δ15N across the globe.
Compared to the linear models used by Amundson et al.21, where cli-
mate drivers (T and P) were the only two predictors, the RF model
increased the R2 between observations and predictions across 933 grid
cells from 0.20 to 0.93 and decreased the RMSE from 2.82‰ to 0.77‰
(Supplementary Fig. 5). Moreover, the RF model indicated that
microbial symbionts (Nfix and ECM) andNOydeposition, in addition to
climate (T and P/PET), play crucial roles in predicting soil δ15N (Sup-
plementary Figs. 17–21). The crucial roles ofmicrobial symbionts result
from that theNfixingbacteria assimilates atmosphericN2 into soil with
itsδ15N signal close to zero, and the plants associatedwith ECMandAM
have different pathways of N uptake from soil, with the isotope frac-
tionation higher for ECM than AM33,34.

Global map of isotope-benchmarking based fdenit
Following the isotope balance equations proposed by Houlton et al.19,
Houlton andBai20, andBai andHoulton53, the soil δ15N is determinedby
δ15N of N input and the isotopic fractionation involved in the deni-
trification, volatilization and leaching processes, i.e.,

δ15Nsoil =δ
15Ninput + fdenitεdenit + f leachεleach + f volεvol ð1Þ

y=-0.19x+0.32

R2=0.69, p=0.003
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Fig. 4 | Negative correlation between the parameter βNPP (% ppm−1) and the
fraction of denitrification (fdenit) simulated by the 10 Earth System Models
(ESMs) in boreal regions (50°–90°N) during the period 1960–2014. The black
line and shaded area are the best-fit regression line and its 95% confidence interval,
respectively, across the 10 ESMs. The unfilled symbols indicate parameter βNPP
estimated from the 1pctCO2-bgc experiments, with the changes in the CO2 con-
centration equivalent to that during the period 1960–2014. The unfilled symbols
were used only for comparison and not for showing the negative correlation with
fdenit, due to the limited number of ESMs (n = 5) for which the 1pctCO2-bgc
experiment data was available. Source data are provided in Source Data file.
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where δ15Nsoil and δ15Ninput are δ15N signals of soil and input, respec-
tively; fdenit, fleach, and fvol are fractions of N losses from denitrification,
leaching and volatilization, respectively (fdenit+fleach+ fvol = 1); εdenit,
εleach and εvol are corresponding fractionation factors. Despite the
volatilization of NH3 occurring mainly in agricultural regions or high
pH soils and accounting for only <5% of the total N loss flux in natural
ecosystems46,54,55, this small NH3 flux could have a substantial effect on
soil δ15N due to its very high fractionation effects (29–35‰)34,56. Thus,
we used four NH3 volatilization scenarios to analyze the impact of fvol
on fdenit and the derived denitrification N losses. There is only a small
change of fdenit (< 0.03 or < 7%) under the four NH3 volatilization sce-
narios (Supplementary Text 4; Supplementary Tables 8 and 9).
Because of the limited impact of fvol on fdenit and the large uncertainty
in the assumedNH3 volatilization as 1%or 5%of totalN losses, aswell as
the NH3 volatilization flux not being available in the CMIP6 ESM out-
puts, we ignore fvol here, i.e., fdenit+fleach ≈ 1. Following Eq. (1), the
fraction of N loss from denitrification (fdenit) can be derived20 as:

fdenit =
δ15Nsoil � δ15Ninput � εleach

εdenit � εleach
ð2Þ

The N inputs include atmospheric wet and dry N depositions, biolo-
gical N fixation (BNF), and rock N weathering29,30,53,57. By considering N
inputs from these three sources, δ15Ninput in each grid cell can be
obtained as follows:

δ15Ninput =
Idepδ

15Ndep + Ibnfδ
15Nbnf + Irockδ

15Nrock
Idep + Ibnf + Irock

ð3Þ

where Idep, Ibnf, and Irock are the N input fluxes from deposition, BNF
and rockweathering, respectively. δ15Ndep, δ

15Nbnf, and δ15Nrock are δ
15N

signals in atmospherically deposited N, BNF and rock N weathering,
respectively. The δ15N in atmospherically depositedN is typically in the
range of −3–3‰19,58,59, and we adopted a central value of 0‰. The δ15N
of BNF was reported to be −2 ± 2.2‰34, and again we adopted the
central value of −2‰. The δ15N of rock N varies greatly across rock
types (e.g., igneous, sedimentary and others; Supplementary
Table 10)33,60 and thus we produced a global rock δ15N map based on
the lithologic composition of the Earth’s continental surfaces gener-
ated by Dürr et al.61 and the δ15N signals of different rock types as
summarized by Holloway and Dahlgren60 (Supplementary Fig. 22). On
average, the global mean of rock δ15N weighted by rock N flux is 4.02
‰, and the lower and upper bounds of this rock δ15N are 1.47‰ and
6.57‰, respectively. To assess the uncertainty due to N inputs, we
produced the isotope-benchmarking based fdenit with six global maps
ofδ15Ninput usingonedataset of rockNweathering fromHoulton et al.29

(10 TgNyr-1), two global maps of N deposition from Tian et al.30

(39 TgNyr-1) and EMEP31 (42 TgNyr-1), three global maps of BNF from
Peng et al.32 (46, 44 and 81 TgNyr-1) (Supplementary Table 1;
Supplementary Text 2). Moreover, the impacts of global δ15N signals
of rock N fluxes were assessed by adopting three levels (low, medium
and high) of the δ15N signal for a given rock type (Supplementary
Table 2; Supplementary Text 3).

The most widely used values of the fractionation factors involved
in the derivation of the global map of fdenit are summarized in Sup-
plementary Table 11. Hydrological leaching has been reported to have
quite minor fractionation effects15,19,20, and thus we adopted a value of
zero for εleach. Denitrification involves a chain of multiple chemical
processes and its fractionation has been reported to have large varia-
tions, i.e., 10–20‰ in natural soil communities20 and 31–65‰ in pure
incubation conditions in the laboratory33,34. As this study uses δ15N
observations in natural soil, we followed Houlton and Bai20 and Houl-
ton et al.8, and selected a 13‰ isotope effect for εdenit in our analysis,
leading to the derivation of a conservative estimate of fdenit (Fig. 1b). As

the choice of εdenit is expected to have substantial impacts on the
derived globalmap of fdenit, we assessed the sensitivity of fdenit to εdenit
by varying the isotope effect from 10‰ to 20‰. Furthermore, we also
adopted two contrasting temperature-dependent scenarios for εdenit
to derive the global map of fdenit (Supplementary Text 3; Supplemen-
tary Fig. 10; Supplementary Table 2).

We used a Monte Carlo approach to evaluate the uncertainty in
fdenit for each 0.1° × 0.1° grid cell. In each grid cell, the uncertainty of
soil δ15N was captured by ensembles from the RF model and all
involved parameters were assumed to have Gaussian distributions.
Specifically, the δ15Ninput SD was assumed to be 5% of the δ15N mean,
and the impact of this percentage was examined by carrying out a
sensitivity analysis (Supplementary Fig. 23). Following Bai and
Houlton53 and Bai et al.15, the uncertainties in εdenit and εleach were
controlled within 4‰ and 2‰ (i.e., SD = 1.02 and 0.51‰), respectively.

Simulated fdenit and N losses in the CMIP6 ESMs
We collected historical N losses from the gaseous/denitrification and
leaching pathways and landN stocks of 15 ESMswith N related outputs
from CMIP6 (https://esgf-node.llnl.gov/search/cmip6/). The details of
the ESMs, including their spatial resolution, and the experiments and
variants, are summarized in Supplementary Table 12. The ESMs can be
divided into families, with the ESMs in the same family having similar
patterns of fdenit. Therefore, for comparison with our isotope-
benchmarking based fdenit (Fig. 1b), we selected only one ESM from
each of these families. Thus, eight out of the 15 ESMs were screened
out, and Fig. 2 shows the global patterns of fdenit for the eight ESM
families. In the following analysis, the EC-Earth3-Veg-CC model was
excluded due to themagnitudes of its N losses being in error, while the
ACCESS-ESM1-5 was excluded because its N losses and inputs were
much higher than those of the other ESMs. With the remaining 13
ESMs, we evaluated the 10-year (2005–2014) means of global deni-
trification and total N losses, and the N loss weighted global means of
fdenit simulated by the ESMs. Furthermore, we evaluated the terrestrial
N sink as themeanannual increaseof landnitrogen stocks, andderived
the N input of the ESMs as the sum of the terrestrial N sink and the N
losses from denitrification and leaching pathways. Notice that we
excluded crop and pastural areas for all global maps of fdenit and N
losses (both those inferred from soil δ15N and those from ESMs), fol-
lowing the land cover map of HYDE v3.262.

Denitrification N loss derived from the isotope-benchmarking
based fdenit
With the isotope-benchmarking based fdenit, we first estimated the
denitrificationN losses at steady state as the products of our six sets of
globalmaps of fdenit and N inputs (Supplementary Table 1). Further, we
used the isotope-benchmarking based fdenit to re-allocate the total N
losses simulated by the CMIP6 ESMs into denitrification and leaching
pathways (SupplementaryTable 6). Reallocating the total N losseswith
the isotope-benchmarking based fdenit could result in some biases
since the natural terrestrial ecosystems have been sequestering N in
recent decades, while the isotope-benchmarking based fdenit was
derived under steady state conditions. Thus, we assessed the effects of
terrestrial N sinks on the isotope-based fdenit in Supplementary Text 6
(Supplementary Fig. 12). Across the 13 CMIP6 ESMs, the terrestrial N
sink is 25 ± 7 TgNyr-1 with its maximum andminimum values of 44 and
18 TgNyr-1, respectively. Since a larger terrestrial N sink is expected to
have a larger effect on isotope based fdenit, we selected the mean and
maximum values of the N sink for this sensitivity analysis. Specifically,
the mean terrestrial N sink (25 TgNyr-1) could increase the soil δ15N by
0.02‰, resulting in a 0.002 increase in the isotope-based fdenit. The
maximum terrestrial N sink (44 TgNyr-1) could increase the soil δ15N by
0.04‰, which results in a 0.004 increase in the isotope-based fdenit.
Overall, the terrestrial N sinks could, at most, result in a < 1% (0.004/
0.42 = 1%) bias in fdenit between steady and non-steady states.
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Parameter for plant growth response to elevated CO2, βNPP
To estimate the parameter βNPP from the framework tailored for this
purpose (i.e., 1% yr-1 increasing CO2 experiments)7, we obtained the
simulation results from the CMIP6 fully coupled (1pctCO2) and only
biogeochemically coupled (1pctCO2-bgc) experiments. However, data
from these two experiments are only available for five ESMs (Supple-
mentaryTable 12), sowe also used a regressionmethod to estimate the
parameter βNPP using Eq. (4) and (5)63,64. We used historical simulation
outputs of net primary production (NPP), precipitation (P), and tem-
perature (T) for 10 ESMs for which these data were available in CMIP6,
and CO2 concentration trajectories as specified in the protocols of the
CMIP6 experiments65. We focused on the βNPP analysis in boreal
regions because N limitation on βNPP is expected in these regions. To
eliminate the collinearity effects across P, T, and CO2, we first eval-
uated the sensitivities of NPP to P and T with detrended values using a
multivariate linear regression method, i.e.,

NPPde = α̂TTde + α̂PPde + α̂const + ξNPP ð4Þ

where NPPde, Tde, and Pde are detrended values of NPP, T, and P,
respectively; α̂T and α̂P are the regressed sensitivities of NPP to T and P,
respectively; α̂const is the regression constant, and ξNPP is the regression
error. Next, we estimated the residual of NPP from P and T by using the
sensitivities α̂T and α̂P as Residual =NPP � α̂TT � α̂PP � α̂const . Finally,
the parameter βNPP was estimated by linear regression between the
residual of NPP and CO2 concentration, i.e.,

Residual = β̂NPPCO2 + α̂
0
const + ξresidual ð5Þ

where β̂NPP is the regressed parameter quantifying the sensitivity of
NPP to CO2 concentration; α̂`const is the regression constant, and
ξresidual is the regression error. The βNPP derived from this regression
method is close to that obtained by using simulations from the 1% yr-1

increasing CO2 experiments across the five ESMs for which the
required simulations were available (Fig. 4).

Data availability
The site-level soil δ15N measurements were obtained from Craine et
al.28 and Sena‐Souza et al.26 (https://esajournals.onlinelibrary.wiley.
com/action/downloadSupplement?doi=10.1002%2Fecs2.3223&file=
ecs23223-sup-0001-DataS1.zip). The climate data from the Climatic
Research Unit (CRU) Time-Series (TS) v4.03 datasets are available at:
https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167
d82. The soil properties from the Global Soil Dataset for use in Earth
System Model (GSDE) produced by Beijing Normal University (BNU)
are available at: http://globalchange.bnu.edu.cn/research/soilw. The
global maps of abundance of microbial symbionts (arbuscular
mycorrhizal (AM), ectomycorrhizal (ECM), and N fixing bacteria (N-
fix)) from Steidinger et al.22 are available at https://static-content.
springer.com/esm/art%3A10.1038%2Fs41586-019-1128-0/
MediaObjects/41586_2019_1128_MOESM4_ESM.zip. The global map of
the gross primary production (GPP) is from Keenan et al.52. The global
maps of nitrogen depositions (NHx andNOy) were obtained from Tian
et al.30 (https://data.isimip.org/), and the European Monitoring and
Evaluation Programme (EMEP)31 (https://thredds.met.no/thredds/
catalog/data/EMEP/Articles_data/Schwede_etal_Ndep_2018/catalog.
html). Three sets of global BNF maps simulated by the CSCA-CNP
model (with methods A, B and C) from Peng et al.32 were obtained by
requesting the data from the corresponding authors. Rock weathering
N flux from Dass et al.57 is available at: https://datadryad.org/stash/
dataset/doi:10.5061/dryad.5x69p8d1x. The global map of the litholo-
gic composition of Earth’s continental surfaces from Dürr et al.61 was
obtained by requesting the data from the corresponding author. All
the historical simulation outputs of the ESMs are available fromCMIP6
(https://esgf-node.llnl.gov/search/cmip6/). The global maps of soil

δ15N, fdenit andN loss produced in this study, aswell as their uncertainty
ranges, have been deposited at Figshare Database, and are publicly
available (https://doi.org/10.6084/m9.figshare.22147283.v3)66. Source
data for Fig. 3 and Fig.4 are provided with this paper. Source data are
provided with this paper.

Code availability
The python code for the Random Forest algorithm used to produce
the global soil δ15N map and the isotope mass balance model for
deriving the fraction of denitrification N loss is available at: https://
github.com/myFeng818/Codes-for-global-d15N-map-and-isotope-
based-fdenit.git67. TheMATLABcodeused to regress theparameter for
plant growth response to elevated CO2 is available at: https://github.
com/myFeng818/Codes-for-the-regression-of-Beta-and-NPP.git68.
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