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Whole-Genome Sequencing Analysis of
Human Metabolome in Multi-Ethnic
Populations
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Xihao Li 3, UsmanA. Tahir4, Zilin Li 3,5, KevinM.Mendez6,7, Rachel S. Kelly 6,
Qibin Qi8, Han Chen1,2, Martin G. Larson9, Rozenn N. Lemaitre 10,
AlannaC.Morrison 1, CharlesGrieser11, Kari E.Wong11, Robert E. Gerszten 12,13,
Zhongming Zhao 1,2, Jessica Lasky-Su6, NHLBI Trans-Omics for Precision
Medicine (TOPMed)* & Bing Yu 1

Circulating metabolite levels may reflect the state of the human organism in
health and disease, however, the genetic architecture of metabolites is not
fully understood.We have performed awhole-genome sequencing association
analysis of both common and rare variants in up to 11,840 multi-ethnic parti-
cipants from five studies with up to 1666 circulating metabolites. We have
discovered 1985 novel variant-metabolite associations, and validated 761
locus-metabolite associations reported previously. Seventy-nine novel variant-
metabolite associations have been replicated, including three genetic loci
located on the X chromosome that have demonstrated its involvement in
metabolic regulation. Gene-based analysis have provided further support for
seven metabolite-replicated loci pairs and their biologically plausible genes.
Among those novel replicated variant-metabolite pairs, follow-up analyses
have revealed that 26 metabolites have colocalized with 21 tissues, seven
metabolite-disease outcome associations have been putatively causal, and 7
metabolites might be regulated by plasma protein levels. Our results have
depicted the genetic contribution to circulating metabolite levels, providing
additional insights into understanding human disease.

Circulating metabolite levels are highly heritable1, and positioned
along the pathway between the genetic determinants and a wide
variety of health outcomes. The latter include numerous Mendelian
disorders, in which imbalanced blood or tissue metabolites levels are
observed2–5, as well as various complex diseases, for which metabolite
patterns are being investigated6–9.Most previous genetic studies of the
human metabolome have focused on common variant analysis in
European populations, predominantly using genome-wide association
studies10–15, with few studies investigating Hispanic16 and African-
American17 participants. Inclusion of ethnically diverse populations
may lead to genetic discovery in broader populations, and therefore,

better understanding of disease18. Additionally, most previous studies
focused on investigating autosomal chromosomes. Exploration of the
X chromosome can further enrich our understanding of the genetic
architecture of metabolites. Adding to the complexity, the number of
measurable circulating metabolites has been growing19, while only a
modest proportion of the metabolites, typically including several
hundreds of traits20, have been explored in relation to genotypic data.

In this investigation, we performed association analyses using
whole-genome sequencing (WGS) to investigate the association of
common and rare variants with 1666 circulating metabolites in multi-
ethnic populations, using single variant and gene-centric analyses. We
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aggregated up to 11,840 adult participants of African, European, and
Hispanic ancestries from five studies involved in the Trans-Omics for
Precision Medicine (TOPMed) program for discovery analyses (full list
of TOPMed authors is available in Supplementary Data 1)1,21,22. Our
novel findings were further investigated using independent adult
samples from TOPMed (up to 6763 participants), and two publicly
available datasets (up to 11,322 participants), as replication. We also
performed a gene network analysis, in which we integrated genome-
wide associations with the human protein interactome to discover
important interactions among metabolite-associated genes and their
functions in biological pathways.

The centralized analyses utilizing jointly called WGS and harmo-
nized metabolite data enable us to rapidly detect common and rare
variants withmaximized statistical power. The associations discovered
in the present investigation advance our knowledge on the genetic
architecture of circulating metabolites, as well as provide context for
the identification of further connections betweenmetabolic processes
and disease phenotypes.

Results
Study design
In the discovery analyses we analyzed up to 15,660,619 common
(Minor Allele Frequency [MAF] ≥5%), low-frequency (1% <MAF < 5%)
and rare (MAF ≤ 1%) variants belonging to autosomal chromosomes
and the X chromosome for association with 1666 rank-normalized
circulating metabolites in up to 11,840 participants (mean age at 56.7
years old, 57%women) fromapooled sample of 1843 African-American
(AA), 5938 European American (EA), and 4059 Hispanic (HIS) partici-
pants from the Atherosclerosis Risk in Communities study (ARIC),
Hispanic Community Health Study/Study of Latinos (HCHS/SOL),
Framingham Heart Study (FHS), Cardiovascular Health Study (CHS),
and Multi-Ethnic Study of Atherosclerosis (MESA) (Methods). For
replication analysis, we obtained summary statistics from up to five
cohort studies (independent participants from FHS, Women’s Health
Initiative [WHI], Jackson Heart Study [JHS], FENLAND, TwinsUK),
including 2466 AA and 15,619 individuals of European ancestry, for a
total sample size of up to 18,085 individuals (“Methods” section). The
information on participating cohorts, as well as metabolite measure-
ment methods and genotyping information is presented in Supple-
mentary Data 2. Demographics of study participants, the biochemical
name, pathway and missingness for each metabolite are summarized
in Supplementary Data 3. The study design, applied statistical and

functional analyses, and an overview of the known and novel findings
are displayed in Fig. 1.

Single Variant Tests
Overall, 150,468 single variant-metabolite associations reached the
statistical significance threshold (P-value ≤ 3 × 10−11); 2999 associations
were conditionally independent (P-valueconditional ≤ 5 × 10−8, “Methods”
section), of which 1014 pairs (602 variants, 520 metabolites, 159 loci)
were known (SupplementaryData 4) and 1985 pairs (1906variants, 230
metabolites, 909 loci) were novel (with 708 loci reported for the first
time for any metabolite, Supplementary Data 5). Inflation in our whole
genome-wide single variant tests was well controlled with mean of
genomic control lambda at 1.00 (standard deviation [SD] = 0.03,
Supplementary Data 3). Consistent with our previous report16, rare and
low-frequency variants (0.5% ≤MAF< 5%) on average had 6.2 times
larger effect onmetabolites levels compared to common variants. The
mean effect was at 1.39 SD and0.22 SD change perminor allele for rare
and low-frequency, and common variants respectively (Supplemen-
tary Fig. 1). Likewise, around 63% of detected variants belonged to
genes, harboring 9% exonic variants (Supplementary Fig. 1)16.

Among 1985 novel independent associations identified, 488 sta-
tistically significant variant-metabolite association pairs were available
for replication, and 79 pairs of 65 unique variants and 65 metabolites
were successfully replicated (P-value ≤ 1.02 × 10−4, with consistent
direction of effect in both discovery and replication sets), with
explained variances ranging from0.3% to 17% (Supplementary Data 6).
Novel replicated loci affect metabolites from eight super pathways,
including lipid-related metabolites (46%) amino acids (30%), cofactors
and vitamins (9%), nucleotides (9%), carbohydrates (4%), organic acids
(4%), energy (2%), and xenobiotics (2%), with 13 loci affecting more
than one metabolite. Overall, among 79 novel replicated findings, the
signals are relatively consistent across three ancestries − 73 had the
same direction of effect across all the analyzed ancestries (Supple-
mentary Data 5c). We attempted to extend those novel variant-
metabolite pairs into two pediatric studies (1734 Hispanic children,
“Methods” section), however, only one association was validated
(rs7458962 - methylated nucleoside 5-methyluridine pair, (Supple-
mentary Data 7), suggesting limited generalizability, which may be in
partdue to the focus ofHispanic backgroundandasthmacondition for
the pediatric populations.

Genetic loci associated with metabolites identified on the X
chromosome are sparse. We identified 18 novel loci on the X

Fig. 1 | Study design. We performed single variant analysis of up to up to
15,660,619 variants with each of 1666 metabolites in up to 11,840 participants
(Methods). Summary association statistics for variants in novel loci with P-
value ≤ 3 × 10−11 (Methods section and Supplementary Data 5) were obtained from

five independent studies (up to 18,085 participants). Only variants that were
associated with a metabolite at P-value ≤ 1.02 × 10−4 in the replication analyses and
had concordant directions of effect across studies (“Methods” section) were con-
sidered replicated.
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chromosome, 3 of which were successfully replicated. For example,
the strongest associations for the novel replicated loci were detected
on the chromosome X, for two amino acid-related metabolites
involved in lysine metabolism (N-6-trimethyllysine - TMLHE, P-
value = 9.89 × 10−68; N6-acetyllysine - HDAC6, P-value = 9.27 × 10−57).
TMLHE encodes trimethyllysine dioxygenase, which converts tri-
methyllysine into hydroxytrimethyllysine in the carnitine biosynthesis
pathway. HDAC6 encodes histone deacetylase 6, a protein implicated
in deacetylation of lysine residues on the N-terminal part of the core
histones23. The minor A allele of the missense variant, rs61735967
(MAF = 2.1%), in HDAC6, was associated with high levels of N6-acet-
yllysine, a risk factor for neurological deficits.

Gene-based rare variant analysis
Toexplore the effect of anaggregationof rare variants in eachof 17,174
genes for 230 metabolites associated with novel loci (Fig. 1), we per-
formed gene-centric analysis using STAAR-O, a newly developed
method that provides powerful and robust rare variant association
tests by dynamically incorporating multiple functional annotations
(“Methods” section)24,25. STAAR-O groups rare variants into multiple
coding and non-codingmasks for each gene, including putative loss of
function ([pLOF], stop gain, stop loss and splice), missense, synon-
ymous, promoter and enhancer masks.

We detected 253 statistically significant (P-value ≤ 1.05 × 10−9,
accounting for 17,174 analyzed genes, 230 metabolites and 12 cate-
gories) metabolite-gene-functional category associations. A total of
128metabolite-gene association pairs (including 75 coding and 73 non-
coding genes), had 106 unique genes associated with 45 metabolites
(Supplementary Data 8 and 9 and Supplementary Fig. 2a). Thirty-nine
identified gene-metabolite pairs (58 gene-metabolite-functional cate-
gory associations) are located outside of novel or known loci identified
using single variant analysis; 78 gene-metabolite pairs were located
within known loci, and 11 – within novel loci (including 8 replicated
locus-metabolite associations). Three replicated variant-metabolite
pairs were annotated to genes that were also statistically significant in
gene-centric analyses with respective metabolites (guanidinoacetate -

SLC25A45, deoxycarnitine - SLC25A45, and N-acetylputrescine -
HDAC10).

Gene-centric analysis implicated a biologically plausible
gene ALPL, located ~55Mb downstream of rs1697421, aggregation of
missense variants in which was significantly associated
(P-value = 3.87 × 10−10) with glycerol 3-phosphate levels. Interestingly,
ALPL encodes the tissue-nonspecific alkaline phosphatase protein –

an enzyme involved in thedephosphorylationof several phosphorus-
containing metabolites. Mutations in this gene have been linked to
hypophosphatasia26,27, a disorder characterized by loss of miner-
alization and joint pain.

Co-localization of metabolites with eQTLs
To interpret the underlying biological activity beyond the identified
replicated loci, we performed colocalization analysis with gene
expression in GTEx V8 to investigate whether any of the 46 meta-
bolite loci containing replicated variant-metabolite pairs also have
effect on gene expression levels in various tissues (Supplementary
Data 10). We identified that across 25 genetic loci, 29 variants (40
variant-metabolite pairs), have evidence of colocalization with 40
tissues (posterior probability, PPr > 0.6). For the majority of these
loci (18 loci, 26 locus-metabolite associations), a single potential
causal variant underlies both the expression of a single gene and the
metabolite(s).

Overall, nineteen replicated novel independent variants were
colocalizing for the associationwith 26metabolites and 26 gene eQTLs
in 21 tissues (Fig. 2), suggesting that the expression of these genesmay
be the reason behind the variation ofmetabolite levels associatedwith
these loci. Among 26 novel replicated variant-gene eQTL pairs, 27%
were pertaining to 5 missense variants, and 13 - to 10 intronic variants.
Additionally, four intronic variants (rs67481496-ETFDH, rs17125278-
PANK1, rs1077989-TMEM229B and chromosome 6:160139865-
SLC22A1), one synonymous variant (rs10405636-SSBP4) and one mis-
sense variant (rs1799958-ACADS) colocalize with expression of the
gene to which they were annotated (with the most deleterious func-
tional consequence).
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Fig. 2 | Novel replicated variant-metabolite pairs colocalizing for the associa-
tion with gene eQTLs. The direction of the effect of minor allele on metabolite
levels and gene expression is shown in the legend. At the bottom of the graph, in
light gray, are the names of the metabolites. Above the names of metabolites are
eQTL gene-tissuepairs. If both the effect ofminor allele onmetabolite levels andon
gene expression is more than 0, such variant-metabolite-gene eQTL combinations
are marked in yellow, and annotated as “Same Direction: Positive”. If the effect of
minor allele on metabolite levels and on gene expression is less than zero, such

variant-metabolite-gene eQTL combinations are marked in purple, and annotated
as “Same Direction: Negative”. If the effect of minor allele on metabolite levels is
less than zero and the effect of minor allele on gene expression is more than zero,
or vice versa, such variant-metabolite-eQTL combinations are marked in gray, and
annotated as “Opposite Direction”. Additionally, the following acronymswere used
for tissues: BPBG brain putamen basal ganglia, BCH brain cerebellar hemisphere,
EBV-TL - Cells EBV-transformed lymphocytes.
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notype odds (purple), or decreases FinnGen phenotype odds (blue). The number
on the center of each square indicates the number of variants used to obtain each

result.B. pQTL effect onmetabolites.Metabolites are provided on the x-axis, pQTL
are provided on the y-axis. The color indicates whether increase in pQTL levels
increases metabolite levels (purple), or decreases metabolite levels (blue). The
number on the center of each square indicates the number of variants used to
obtain each result.
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Gene network and pathway analysis
To enhance the biological insight obtained from our findings, we
performed gene network analysis and pathway enrichment analysis of
the 65 metabolites with statistically significant replicated findings,
aiming to identify gene networks associatedwith eachmetabolite. The
densemodule search of GWAS (dmGWAS version 2.7) was used for our
network-based analysis, where the input was gene-level weights, based
on MAGMA association scores, and the human protein interactome,
comprised of experimentally validated protein-protein interactions
(PPIs), annotated in PathwayCommons28. We then performed enrich-
ment analysis for gene sets from the top resulting network modules
using the over-representation analyses (ORA, see Methods).

Overall, 31 metabolite-gene set pair had significant association (P-
value ≤ 2.70 × 10−8 Bonferroni correction for 28,438 Biological Process
terms in Gene Ontology annotations and 65 metabolites). Among
those, 2, 6, and 4metabolite-gene set pairs contained genes belonging
to 2 known metabolite loci, 4 novel metabolite loci, and 3 novel
replicated metabolite loci respectively. The latter included one
metabolite-gene pair (N-acetylputrescine-HDAC10, Supplementary
Data 11), which was also detected and replicated in single variant
analysis (missense variant rs61748567 - N-acetylputrescine) and
detected by the coding gene-centric analysis. Among them, several
genes associated with N-acetylputrescine, were enriched in several GO
Biological Process terms, including intracellular receptor signaling
pathway (GO:0030522) and covalent chromatin modification
(GO:0016569), with HDAC10 being a part of the latter pathway.
HDAC10 is involved in deacetylation of polyamines, including N-
acetylputrescine29, whereas other members of the HDAC family have
been shown to act as deacylases as well as deacetylases30. Moreover,
putrescine (N-acetylputrescine precursor) depletion was previously
suggested to affect chromatin structure in brain tumor cells31. There-
fore, our data provide additional biologicalmechanisms of the genetic
and metabolomic engagement in the above processes.

Mendelian randomization
To identify putatively causal relationships between various pheno-
types in FinnGen and the 65 metabolites associated with replicated
variants, we performed a series of MR analyses (Methods) using: (1)
1801 phenotypic traits from FinnGen, and (2) summary statistics for
3283 plasma proteins to elucidate the possible causal pathways (see
Methods).

Using summary statistics from FinnGen, 27 statistically significant
(P-value ≤ 1.51 × 10−7, accounting for 65 metabolites, 1801 traits and
3283 pQTLs) metabolite-outcome association pairs were detected,
where 12 (5 metabolites, 6 FinnGen outcomes) had two Instrumental
Variables (IV) available (Supplementary Data 12 and Fig. 3). Among 15
associationswithmore than two instrumental variables (9metabolites,
7 FinnGen outcomes), seven associations (3 metabolites, 6 outcomes)
remained nominally significant (P-value < 0.05) in MRPRESSO
outlier test. For example, genetically regulated higher
1-linoleoylglycerophosphoethanolamine levels demonstrate a putative
causal effect on Type 2 Diabetes (OR [95%CI] = 0.82 [0.80–0.85]).
Additionally, higher 1-stearoylglycerophosphoethanolamine levels
show putative causal effects on disorders of choroid and retina (OR
[95%CI] = 0.81 [0.78–0.84]), degeneration of macula and posterior
pole (OR [95%CI] = 0.71 [0.67–0.76]), wet age-related macular degen-
eration (AMD,OR [95%CI] = 0.49 [0.44–0.55]), and age-relatedmacular
degeneration (OR [95%CI] = 0.56 [0.51–0.61]). Likewise, higher
1-palmitoylglycerophosphoethanolamine (GPE) levels have a sig-
nificant causal effect on age-related macular degeneration (OR [95%
CI] = 0.60 [0.55–0.66]). The latter two associations are due to several
conditionally independent variants in or near ALDH1A2 and GCKR,
associated with 1-palmitoyl-GPE and 1-stearoyl-GPE levels. ALDH1A2 is
involved in retinoic acid synthesis32, and is known tobe associatedwith
AMD33. GCKR is a well-known gene associated with diabetes, and

diabetes is a risk factor for AMD34. Wet AMD is accompanied by severe
loss of photoreceptors and ganglion cells35. Metabolite 1-palmitoyl-
GPE was reported to induce neurite outgrowth;36 therefore, 1-
palmitoyl-GPE may play a protective role against the loss of ganglion
cells in wet AMD. Moreover, 1-palmitoyl-GPE and 1-stearoyl-GPE
both belong to saturated lysophosphatidylethanolamine species.
Given the concordant OR, it is possible that saturated lysopho-
sphatidylethanolamines in general might influence the age-related
macular degeneration. However, functional investigations are needed
to support these findings.

To determine robustness of the identified metabolite–phenotype
putatively causal associations, we performed additional MR analyses
using a set of independent studies (UKBiobank, European Bioinfor-
matic Institute [EBI] and BioBank Japan [BBJ]), matched by the out-
come. Seven metabolite-outcome association pairs met stringent
Bonferroni correction (P-value ≤0.05/11 = 4.55 × 10−3) and had the
same direction of effect as in metabolite FinnGen MR analyses (Sup-
plementary Data 12).

The interaction between metabolite and protein plays a critical
role in controlling cellular homeostasis37. To identify possible causal
pathways, we performedMR to identify putatively causal relationships
between plasma proteins using summary statistics for 3283 protein
quantitative trait loci (pQTLs) from the INTERVAL study38 and 65
metabolites associatedwith the replicated genetic loci.Wedetected 52
statistically significant pairs (P-valueIVWMR < 4.93 × 10−7, accounting for
65 metabolites and 1561 pQTLs), where twelve metabolites were
affected by 44 proteins (Supplementary Data 13 and Fig. 3b). For
example, genetically regulated increased N-acylethanolamine-hydro-
lyzing acid amidase (ASAHL) levels were causal of decreased N-
oleoyltaurine levels. ASAHL plays role in N-acyl ethanolamines
degradation39–43, and has hydrolytic activity against the ceramides39.
Therefore, our data suggests thatASAHLmayalsoaffectN-acyl amines.
Metabolites may reversely affect protein levels, such as protein-
metabolite interactions or post-translational modifications44,45. We
additionally tested the potential causal associations between meta-
bolite and plasma proteins using the same analytical approach. There
were eleven metabolites causally associated with 17 proteins with a
total of 24 significant metabolite-pQTL associations pairs (with
P-valueIVW MR < 1.51 × 10−7, accounting for 65 metabolites, 1801
traints and 3283 pQTLs). For example, 1-palmitoyl-
glycerophosphoethanolamine (GPE) levels were predictive of P5I11
levels, and 1-stearoyl-GPE levels - predictive of GGT2, P5I11, PSG5, and
PKB beta levels (product of AKT2); Supplementary Data 14 and Sup-
plementary Fig. 4.

Discussion
We conducted aWGS study to detect genetic loci associatedwith 1666
circulating metabolites in a multi-ethnic population, and identified 75
novel replicated metabolite-genetic locus associations, with 22 asso-
ciations driven by nonsynonymous variants. A comprehensive gene-
centric rare variant analysiswas performed for a subset ofmetabolites,
with 126 gene-metabolite pairs detected, showing associations
between 45 metabolites and 105 genes. Using Mendelian Randomiza-
tion, we showed that the levels of 13 metabolites were associated with
the risk of 12 phenotype outcomes, including type 2 diabetes and
macular degeneration. Moreover, 16 metabolites were associated with
29 protein QTLs. Our study represents the first WGS of human meta-
bolome in multi-ethnic population, which provides novel insights
beyond previous GWAS.

Previous metabolite genetic studies often restricted to single
metabolomic platform1,46, used other platform results for replication46,
or combined cross-platform results using meta-analyses21. We
demonstrated a contemporary approach to analyze cross-platform
harmonized metabolite levels in pooled samples, which largely
improved computational efficiency. Our results showed that this new
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approach well controlled genomic inflation, reproduced hundreds of
known metabolite loci, and enabled novel gene identification via rare
variant analyseswithin amodest sample set, revealing the advantageof
joint analyses, specifically for large genomic initiatives, wheremultiple
studies are involved. Importantly, we are the first to extendmetabolite
genetic association discovery into multi-ethnic populations. The
diverse ancestral backgroundpromoted novelfindings beyond studies
focusing on single ancestral population1,16,47, even with tens of thou-
sands of participants21. Furthermore, our findings provided additional
insights into biological pathways by investigating the interacting
effects between proteins and metabolites, where most past studies
dedicated to illustrate the putative causal effect between metabolites
and health outcomes.

Although using pooled samples is considered computationally
efficient, the variant-set test is intensive and costly for whole-genome
analyses. We performed gene-centric rare variant analyses among 230
metabolites, which had significant common variant findings, as we
considered those metabolites had relatively high heritability and used
this opportunity to explore rare variants contribution to those meta-
bolites. For the current analyses, more than 5500 jobs were run,
including both single variant and gene-centered analyses, on the
DNAnexus platform using the instance type “mem3_ssd1_v2_x32”,
which provides 32 cores, 224GB ofmemory (> =7GB/core), and 640GB
of solid-state drive storage (20GB/core)48. Future efforts arewarranted
to further explore rare-variant effects across all metabolites.

To understand possible mechanisms underlying the replicated
novel findings, we applied versatile analytic approaches, including
colocalization and pathway analyses, which provided an additional
level of detail for the identified loci. Using colocalization analyses, we
identified 18 unique loci where the novel replicated variant colocalized
with the eQTL for 26 unique genes in GTEx tissues, highlighting the
biologically plausible genes. For example, the splice site intronic
SLC22A1 variant (chromosome 6:160139865) is associated with
increased levels of the lysine metabolism metabolite glutarylcarnitine
(C5). Our colocalization analysis also showed that 6:160139865 colo-
calizes with decreased SLC22A1 levels in the liver - the primary
expression site of the latter protein49. SLC22A1 encodes a plasma
membrane transporter organic cation transporter 1 (OCT1)49, which
plays a role in regulating levels of acylcarnitines50 and
isobutyrylcarnitine51. Therefore, our data suggests that SLC22A1 plays
role in regulation of blood levels of glutarylcarnitine.

Another replicated intronic ELL variant rs8109573 is colocalizing
with decreased expression of ISYNA1 in ovaries and increased myoi-
nositol levels. ISYNA1 is located ~68 kilo base-pairs (kbp) downstream
of ELL, and encodes an inositol-3-phosphate synthase enzyme, which
plays a key role in myoinositol synthesis pathway52. Intronic variant,
rs67481496, located in ETFDH and ~7 kbp from the replicated variant
rs17843966, is colocalizing with increased expression of ETFDH in
heart tissues, liver, and skeletalmuscle anddecreasedglutarylcarnitine
(C5-DC) levels. The latter association is consistent with the association
observed in patients with glutaric acidemia, caused by deleterious
mutations in the ETFDHgene,which, amongothermetabolite changes,
is accompanied by increased blood levels of glutarylcarnitine (C5-
DC)53,54.

Pathway analysis provided additional biological insights. For
example, top results of the pathway analysis identified biological
functional terms of coagulation and the regulation of body fluid levels
for the metabolite acylcarnitine linoleoylcarnitine (C18:2 carnitine),
with 15 overlapping genes between these pathway annotations (Sup-
plementaryData 11 and Supplementary Fig. 3). Noneof the genes in the
gene sets for those pathways belonged to ‘known’ or ‘novel’ loci
identified by single variant analysis for this metabolite, and none were
statistically significantly associated with linoleoylcarnitine in gene-
centric analysis. Nevertheless, gene network analysis of the GWAS
summary statistics allowed us to identify these important gene

interactions. Previously, observational studies showed the involve-
ment of acylcarnitines in blood coagulation. For example, Deguchi
et al. showed that long-chain acylcarnitines, including linoleoylcarni-
tine, are lower in patients with venous thromboembolism, compared
to age-matched controls (P-value = 0.02), and that linoleoylcarnitine
possesses anticoagulant properties, possibly, due to the capability of
acylcarnitines to bind with factor Xa55. Later, Zeleznik et al. showed
that metabolites in the acylcarnitine pathway, including lino-
leoylcarnitine, are depleted in the intermediate/high-risk group of
pulmonary embolism compared to the low-risk group56, further sup-
porting the notion of acylcarnitines involvement in coagulation.
However, no coagulation-related genetic loci were previously identi-
fied for linoleoylcarnitine, making our pathway analysis the first
genetic evidence to link this metabolite to blood coagulation.

The MR analyses have been adopted to various phenotypes to
help identify the causal relationships, specifically the potential bi-
directional associations between proteins and metabolites. For
example, genetically regulated higher levels of CUZD1 contribute to
decreased levels of several lipid-related metabolites, including C56:4
TAG, C34:3 DAG, C20:3 CE, and 1-stearoyl-GPE. CUZD1 is located in the
secretory granules in thepancreas andpancreatic secretions. Although
it’s exact biological function is unknown, it is thought to play a role in
immune response due to its involvement in inflammatory bowel dis-
ease (IBD)57, with anti-CUZD1 autoantibodies suggested as a marker of
the IBDs58. At the same time, patients with IBDs may have altered lipid
profiles, compared to healthy individuals59. Therefore, our data sug-
gests that CUZD1 affects the levels of various lipid-relatedmetabolites,
although further functional studies are needed to explore these rela-
tionships further.

Likewise, genetically high levels of N-acetylarginine decrease the
levels of IGFBP-6. IGFBP-6 has cancer-protective properties, plays a
role in the immune system60,61 and in neuronal protection62. N-acet-
ylarginine is a guanidino compound that is capable of inducing sei-
zures in animal experiments;63 high levels of this compound present in
argininemia that is characterized by neurological symptoms64.

In this project, we applied a stringent Bonferroni correction to
define significance for replication, and a modest amount (79 out of
488) of our novel association were replicated. However, most asso-
ciations (304 out of 488) showed the same direction of effects, pro-
viding supportive evidence of our findings, which are warranted for
further investigation. Of note, our replication set included participants
from several studies with a modest sample size, whichmay impact the
replication due to possible heterogeneity across studies and lack of
sufficient statistical power, specifically for low-frequency variants.

Of note, most our novel findings are consistent across ancestries.
For examples, associations of rs1697421- glycerol 3-phosphate,
rs6440123 − 1-stearoyl-2-oleoyl-GPE (18:0/18:1), rs68008113 - cer-
otoylcarnitine (C26), rs113680823 - arabitol/xylitol and rs5112 − 1-
stearoyl-2-arachidonoyl-GPE (18:0/20:4) had the same directions of
effect in three ancestries, European, African and Hispanic Americans.
High statistical significance (p-value < 1.85 × 10−5 in each ancestral
group) in European and Hispanic Americans were observed though
there was no significance in African Americans. Ancestry-specific
results (Supplementary Data 5c) are provided to facilitate further dis-
section of potential differences across ancestral groups.

In summary, we showed the feasibility of performing computa-
tionally efficient pooled analysis, using both metabolomics and WGS
data,which canbeapplied for the future researchprojects. Additionally,
this study provides further determination of the genetic architecture of
circulating metabolites in a multi-ethnic population, using both com-
mon and rare variants, comprehensive functional annotation, and a
systematic identification of potential causal relationships between the
genes, metabolites, various phenotypes and plasma protein levels. Our
results can be widely used in future studies to expand further our
understanding of the biological processes in health and disease.
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Methods
Genetic studies
Five cohorts contributed to the discovery stage of the analysis (ARIC,
FHS, CHS, MESA, and HCHS/SOL) with a total of 11,840 participants,
including 5938 EA, 1843 AA, and 4059 HIS. Study-specific character-
istics, metabolite measurement procedures, genetic sequencing
information, and quality control for the studies are provided in Sup-
plementary Data 2A, while basic study characteristics are listed in
Supplementary Data 3.

For replication, summary association statistics were requested
(for the novel variant-metabolite associations with P < 3 × 10−11) from
three cohorts: FHS (2969 EAs), WHI (1328 EA), and JHS (2466 AAs).
Additionally, we obtained publicly available summary statistics from
9363 European FENLAND participants21 and 1959 EUR TwinsUK
participants1. In total, up to 18,085 individuals (including 15,619 Eur-
opean ancestry participants and 2466 AA participants) were available
for replication meta-analysis. Study-specific characteristics are pro-
vided in Supplementary Data 2B.

All the participating studies were approved by corresponding
institutional review boards, and all participants provided written
informed consent.

Metabolite measurements
Details of the metabolites measurements are provided in Supple-
mentary Data 2, while for the previously published studies, these can
be found in the respectivemanuscripts1,21. In brief, blood samples were
collected in participating studies, processed and stored at−70 °C since
collection. Overall, 1666 metabolites were measured by untargeted,
gas and/or liquid chromatography-mass spectrometry-based quanti-
fication protocol (Supplementary Data 3)65,66. In HCHS/SOL and ARIC,
metabolites weremeasured byMetabolon Inc. (Durham,NC) platform.
For CHS, FHS, JHS MESA, and WHI, metabolites were measured by
Broad Institute.

Genotyping, quality control, and imputation
Blood samples were sequenced on the Illumina HiSeq X; for MESA and
FHS, sequencing was performed by the Broad Institute of MIT and
Harvard; for CHS and HCHS/SOL - by the Baylor College of Medicine
Human Genome Sequencing Center, while for ARIC - by both centers.
Variants calling was completed using the GotCloud pipeline67.

Quality control procedures have been described elsewhere67. In
short, variant filtering was performed by calculating Mendelian con-
sistency scores using known familial relatedness and duplicates, and
by training a Support VectorMachine classifier between known variant
sites (positive labels - SNPs polymorphic either in the 1000 Genomes
Omni2.5 array or in HapMap 3.3, with additional evidence of being
polymorphic in the sequenced samples) and Mendelian inconsistent
variants (negative labels - having the Bayes Factor for Mendelian
consistency <0.001; or if 10% or more of families or pairs of duplicate
samples show Mendelian inconsistency within families or genotype
discordance between duplicate samples). Additionally, excess het-
erozygosity filter was applied to variants with the Hardy–Weinberg
disequilibrium P-value < 1 × 10−6 in the direction of excess hetero-
zygosity after accounting for population structure. Mendelian dis-
cordance filter was applied when ≥5% of families show Mendelian
inconsistency or genotype discordance.

Statistical analysis
Single variant tests. We applied a two-stage procedure for rank nor-
malization in genotype-metabolite association analyses68. The fully
adjusted two‐stage approach was chosen due to its ability to reduce
excess Type I errors and to improve statistical power, as well as due to
having a lower degree of inflation compared to approaches without
rank-normalization68. It has been widely applied to large-scale GWAS
studies for complex traits69–71, including metabolomic measures in the

mixed populations16. As in above studies, data preparation for the
single variant analysis involved several steps. First, each of the 1666
metabolites were inverse rank normal transformed by study, race and
batch. Second, we obtained the residuals using generalized linear
mixed model adjusting for age, sex, race, study, and study variables
(such as recruitment center), and the first 11 principal components
with randomeffects accounting for inter-individual correlation (due to
either relatedness, shared household, or census block group). Third,
above residuals were inverse normal transformed, and finally, these
inverse transformed residuals were used in the genetic analyses again
adjusting for all of the aforementioned covariates, along with esti-
mated glomerularfiltration rate (eGFR)72. For this study,we considered
both autosomal and X chromosome variants. Overall, up to 15,660,619
variants (MAF ≥0.5%, N ≥ 200, minor allele count [MAC] ≥ 5) were
analyzedwith eachmetabolite. Analyses were performed in GENESIS73,
using additive genetic models. Significance for single variant analysis
was defined as two-sided P-value ≤ 3 × 10−11 (accounting for ~1,000,000
independent variants and 1666 metabolites).

Conditional analysis
Across the analyzed genome, we defined metabolite-associated
genetic loci as containing all statistically significant variants within
500 kbp from each other. To account for linkage disequilibrium, we
added 500 kbp to each side of the region, and all the overlapping
regions were merged. We identified 922 loci, containing 2614 locus-
metabolite pairs.

For every locus-metabolite pair, we performed conditional ana-
lysis using GENESIS to identify the independent leading variants.
Conditioning was performed step-wise. In each round, conditioning
was performed on the variant(s) with the lowest P-value in the region.
Variants that were both statistically significant in the primary analysis
(P-value ≤ 3 × 10−11) and genome-wide statistically significant
(P-valueconditional < 5 × 10−8) in the conditional analysis were considered
conditionally independent associations.

We identified 2999 conditionally independent variant-metabolite
associations (Supplementary Data 4–5). A majority (2330) of the
metabolite-genetic region pairs had one conditionally independent
variant; 218 pairs had2 conditionally independent variants; 41 pairs − 3;
18 pairs − 4; and 3 pairs − 6 conditionally independent variants. For
each statistically significant independent variant-metabolite associa-
tion, we used R to calculate proportion of variance in corresponding
metabolite explained by the variant74.

Annotation of the known and novel findings
To annotate the identified 2999 independent variant-metabolite
associations, we obtained reports from the Metabolomic GWAS
Server12, TwinsUK study1, GWAS Catalogue, GRASP Search, previous
reports from our group16,75–77 and performed manual search through
published papers to detect known loci that overlapwith ourfindings. If
a variant from a variant-metabolite pair was previously associated with
any of the metabolites in its sub-pathway (Supplementary Data 3), the
variant-metabolite pair was considered known, otherwise the variant-
metabolite pair was considered novel.

Replication analysis
We performed inverse-variance weighted meta-analysis of single var-
iant summary statistics obtained from five studies (Supplementary
Data 5), using meta version 4.18-0 R package. Out of 1985 novel
variant–metabolite associations, 488 variant-metabolite associations
(107 metabolites, 458 unique variants) were available in at least one
replication cohort. Significant replication was defined as: (1) had two-
sided P-value ≤ 1.02 × 10−4 = 0.05/488 in meta-analysis or in a single
replication cohort (when association was available only in one cohort)
and (2) had consistent direction of effect in both discovery and repli-
cation meta-analysis.
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Generalization in pediatric populations
We requested summary statistics for 1985 novel variant-metabolite
associations from two children studies - Childhood Asthma Man-
agement Program (CAMP) and Genetic Epidemiology of Asthma in
Costa Rica (CRA) (Supplementary Data 7), and obtained summary
statistics for 51 novel variant-metabolite pairs. For these associations,
we also performed inverse-variance weighted meta-analysis between
the two studies (CAMP and CRA). Significant associations were
defined as: (1) had two-sided P-value ≤ 9.8 × 10−4 = 0.05/51 in meta-
analysis and (2) had consistent direction of effect in both discovery
and meta-analysis.

Gene-centric rare variant analyses
To test whether rare variants in aggregate affect metabolite reg-
ulation, we performed gene-centric rare variant analyses for 230
metabolites associated with novel loci, using variant-set test for
association using annotation information omnibus test (STAAR-O)
in discovery dataset24, which boosts the power of rare variant
association tests by incorporating multiple variant functional
annotations. For each test, we included variants with MAF ≤ 1%
(Supplementary Fig. 2b). To ensure the robustness of the results,
gene-metabolite associations with the sample size of <5000 and
cumulative MAC of <100 were excluded. Aggregation was based on
each of the following five functional variant categories for the gene-
centric coding genome - missense, synonymous, putative loss of
function (stop gain, stop loss, and splice), disruptive missense, and
combined putative loss of function and disruptivemissense. For the
gene-centric non-coding genome, aggregation was performed
based on the following seven variant categories: downstream,
enhancer variants overlaid with Cap Analysis of Gene Expression
(CAGE) sites, promoter CAGE, enhancer variants overlaid with
DNAse HyperSensitivity (DHS), promoter DHS, upstream and UTR25.
Gene-metabolite associations with two-sided P-value ≤ 1.05 × 10−9

(accounting for 17,174 analyzed genes, 230 metabolites, and 12
categories), were considered significant.

Co-localization of metabolites with eQTLs
We performed co-localization analysis with GTEx V8 eQTLs summary
to investigate whether, for the 65 identified novel replicated genetic
locus-metabolite associations, these genetic loci share candidate
variants with the gene expression levels. Analysis was performed
using HyPrColoc, which can identify subsets of traits colocalizing at
distinct causal variants in the genomic locus. For each genetic locus
(Supplementary Data 3c), all metabolites associated with variants
within the locus with evidence of replication were analyzed simul-
taneously. Variants represented in both discovery dataset and all 49
tissues of GTEx V8 dataset were included78,79 (prior structure: p =
0.0001, γ = 0.98, Supplementary Data 10). As colocalizing, we con-
sidered variants with posterior probability (PPr) > 0.6 for colocali-
zation between metabolite(s) with gene eQTLs in tissue(s). We also
performed sensitivity analyses for the co-localization results
(including the metabolites and eQTLs detected in the primary co-
localization analysis), to address the causal configuration of priors
(Supplementary Data 10b).

Gene network and pathway analysis
Gene-level association scores were obtained for each of the 65
metabolites, based on respective single variant summary statistics.
The gene-level association analysis was performed by applying the
MAGMA (Multi-marker Analysis of GenoMic Annotation) tool version
1.09a.MAGMAmaps SNPs to genes during the “annotation step”, and
then performs SNP-wise mean for each gene to obtain gene-level P-
values during the “gene analysis step”80. In order to perform this
gene-level association test, a mixed population linkage dis-
equilibrium (LD) reference panel from the 1000 Genomes Project for

individuals of American ancestry was used as input, and the default
MAGMA parameters were applied. MAGMA employs a multiple
regression model to assess the additive effects of single variant
associations, while accounting for LD patterns. The 1000 Genomes
Project LD reference panel of American ancestry, which includes
individuals of multiple ethnicities, was used because it has been
previously recommended as an appropriate reference for investiga-
tions of a mixed population81. The P-values were then transferred to
Z-scores via the inverse normal distribution function. The calculated
Z-scores were used as gene weights in our network-based analysis of
GWAS signals. The dense module search of GWAS (dmGWAS version
2.7) tool was used to identify gene networks associated with each
metabolite28. The dmGWAS method uses GWAS-based gene-level
scores and a reference protein-protein interaction (PPI) network to
identify gene network modules associated with a phenotype of
interest. In this case, the reference PPI used was a collection from
PathwayCommons, representing the human protein interactome,
which included 39,240 annotations of experimentally validated
PPIs82. Next, gene sets from the top 10 ranking networkmoduleswere
extracted for each metabolite. The pathway enrichment analysis was
performed for each of these gene sets by over-representation ana-
lyses (ORA, Supplementary Data 11). The ORA was performed by
using theWebGestalt R package version 2019with theGeneOntology
Biological Process term annotations for genome protein-coding
genes. Default parameters were applied for ORA methods83.

Mendelian randomization
We performed a MR analysis using the summary statistics for 1801
traits in 135,638 participants from FinnGen (R3 - public release of 16
June 2020). For each of 65 metabolites associated with replicated
variants, we used all conditionally independent variants. For each
variant, we obtained a causal estimate as the ratio of the association of
the variant with each of 1801 FinnGen traits.

To determine robustness of the identified statistically significant
metabolite - FinnGen outcome phenotype associations, we per-
formed additional MR analyses using our summary statistics as
exposure and an additional set of independent studies (UKBiobank,
EBI, and BBJ) as outcomes. Thirty-three statistically significant
metabolite-FinnGen outcome association pairs were matched to a
comparable outcome obtained from one of the above datasets
(Supplementary Data 12).

We also used the Sun et al38. summary statistics for plasma
proteins for metabolite-pQTL MR38. For above two MR analyses,
associations with P-valueIVW MR < 1.51 × 10−7 (accounting for 65 meta-
bolites, 1801 traits and 3283 pQTLs) were considered statistically
significant.

We further performed MR for 1561 pQTL independent variants
reported by Sun et al38. as IV, with each of 65 metabolites associated
with replicated genetic loci as outcomes (significance threshold was
set at P-valueIVW MR < 4.93 × 10−7, accounting for 65 metabolites and
1561 pQTLs).

For all of the above MR analyses, if exposure was associated
with more than one variant, we performed a fixed effect inverse-
variance weighting meta-analysis (IVW) using TwoSampleMR to
obtain the overall estimates. Heterogeneity was assessed using the
Q-statistic. Further, if the exposure was associated with more than
two variants, we performed Egger MR using TwoSampleMR, as well
as MR-PRESSO outlier test (to detect outlier IVs), using MR-PRESSO
version 1.084. Egger MR, although conservative, generates valid
estimates even if not all the genetic instruments are valid, given that
the Instrument Strength Independent of Direct Effect assumption
holds85. Additionally, Egger MR intercept can help detect (unba-
lanced) pleiotropy. We obtained the F-statistic86 for the association
of genetic variants with corresponding metabolites to assess
instrument strength.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual whole-genome sequence data from the TOPMed program
are available through dbGaP. The dbGaP accession numbers are:
Atherosclerosis Risk in Communities (ARIC) phs001211, Cardiovas-
cular Health Study (CHS) phs001368, Framingham Heart Study (FHS)
phs000974, Multi-Ethnic Study of Atherosclerosis (MESA) phs001416,
and Hispanic Community Health Study - Study of Latinos (HCHS-SOL)
phs001395. Data in dbGaP can be downloaded by controlled access
with anapproved application submitted through theirwebsite [https://
www.ncbi.nlm.nih.gov/gap]. Individual metabolite data are available
via request per each study policy. Summary statistics for single variant
analysis of 1666 metabolites generated in this study are available at
dbGAP Cohorts for Heart and Aging Research in Genomic Epidemiol-
ogy (CHARGE) Consortium Summary Results from Genomic Studies,
accession number phs000930.v10.p1 [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000930.v10.p1] and
dbGaP NHLBI TOPMed: Genomic Summary Results for the Trans-
Omics for PrecisionMedicine Program, accession number phs001974.
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