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A computational method for cell type-
specific expression quantitative trait loci
mapping using bulk RNA-seq data

Paul Little 1 , Si Liu1, Vasyl Zhabotynsky 2,3, Yun Li2,4, Dan-Yu Lin2,3 &
Wei Sun 1,2,5

Mapping cell type-specific gene expression quantitative trait loci (ct-eQTLs) is a
powerful way to investigate the genetic basis of complex traits. A popular
method for ct-eQTLmapping is to assess the interaction between the genotype
of a genetic locus and the abundance of a specific cell type using a linearmodel.
However, this approach requires transforming RNA-seq count data, which dis-
torts the relation between gene expression and cell type proportions and
results in reduced power and/or inflated type I error. To address this issue, we
have developed a statistical method called CSeQTL that allows for ct-eQTL
mapping using bulk RNA-seq count data while taking advantage of allele-
specific expression. We validated the results of CSeQTL through simulations
and real data analysis, comparing CSeQTL results to those obtained from pur-
ified bulk RNA-seq data or single cell RNA-seq data. Using our ct-eQTL findings,
we were able to identify cell types relevant to 21 categories of human traits.

Studying the variation of gene expression is essential for under-
standing cellular and molecular biology. Gene expression can vary
significantly across different cell types, and that the composition of
cell types can vary across tissue samples1. As a result, variation in gene
expression observed in bulk tissue samples can be due to both cell
type-specific expression and variations in cell type compositions2.
Investigating gene expression quantitative trait loci (eQTLs), or
genetic variants associated with gene expression, is a powerful
approach for studying the genetic basis of complex traits3,4. Several
recent studies found that many genetic loci implicated in human dis-
eases are associated with certain cell types5–8. By studying cell type-
specific eQTLs (ct-eQTLs), we can gain further insights into the genetic
basis of complex traits9–11.

A popular method to study ct-eQTLs using bulk tissue gene
expression data is to include an interaction between the genotype at a
genetic locus and the abundance of a cell type in a linear model3,4,11–17.
However, linear models require the residual variation in gene expres-
sion to be constant across samples. Therefore, it is often necessary to

use a log transformationornormalquantile transformationofRNA-seq
count data to stabilize variance. These transformations can result in
nonlinear relationships between transformed gene expression and cell
type proportions, leading to a mis-specified linear model. An alter-
native and more appropriate modeling approach is to use negative
binomial regression to directly model RNA-seq count data. In addition
to total read count (TReC), RNA-seq data can also provide information
about allele-specific expression (ASE). By incorporating both TReC and
ASE, it is possible to increase the power of eQTL mapping by taking
advantage of the allelic imbalance of gene expression caused by cis-
acting eQTLs. We have developed a method called TReCASE that uses
this approach18,19. Most local eQTLs are cis-eQTLs, and the terms are
often used synonymously. In this paper, we use the term “cis-eQTL” to
refer specifically to cis-acting eQTLs that lead to allelic imbalance.

We have previously developed a method called pTReCASE for
eQTL mapping using RNA-seq data from tumor samples, where we
treated tumor and non-tumor cells as two distinct cell types with
known composition20. However, this approach is limited to situations
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where there are only two cell types and where cell type proportions
vary significantly across samples. It treats bulk TReC as the sum of
TReC from the two cell types. In more general situations with an
arbitrary number of cell types, there are several challenges to ct-eQTL
mapping. For example, a cell type may have nearly constant propor-
tions across samples, which canmake it difficult to accurately estimate
the ct-eQTL effect for that cell type. Additionally, a gene’s expression
may be zero or very low in some cell types, making it difficult or
impossible to estimate eQTL effects in those cell types. In this paper,
we have designed aflexible and robust computational framework from
scratch to handle these challenges.

Although single cell RNA-seq (scRNA-seq) data have become
more widely available and can be used to study ct-eQTLs, there
are still some limitations. First, scRNA-seq is expensive for studies
with large sample sizes, and it also requires high quality samples.
Additionally, scRNA-seq may not provide a representative sam-
pling of all cell types in a tissue sample, and the inherent sparsity
of scRNA-seq data can make it difficult to accurately assign cell
types to individual cells. Our method allows for a new study
design: collecting scRNA-seq data from a subset of samples, along
with bulk RNA-seq data from all samples. The scRNA-seq data can
be used to create a cell type-specific gene expression reference,
and then the bulk RNA-seq data can be used for ct-eQTL mapping
after estimating cell type proportions using the reference.

Results
A brief introduction of CSeQTL and OLS method
Our method is called cell type-specific eQTL or CSeQTL for short.
CSeQTL jointly models total read count (TReC) and allele-specific read
count (ASReC) as a function of covariates, cell type composition, and
the genotype at a single nucleotide polymorphism (SNP). More spe-
cifically, TReC and ASReC are modeled by a negative binomial and a
beta-binomial distribution, respectively, with shared parameters for
genetic effects18. Unlike the TReCASE and pTReCASE methods,
CSeQTL is designed to handle challenging situations where cell type-
specific gene expressionmay be zero or very low, or the proportion of
one or more cell types may be close to zero or lack variation. These
challenges can make it difficult or impossible to accurately estimate
eQTL effects. We address these issues by using several computational
solutions, including trimming outliers of TReC to increase the
robustness of our estimates and iteratively detecting and removing
non-expressed cell types.

We compare CSeQTL to a linear model approach that we refer to
as the ordinary least squares (OLS) method. To implement the OLS
method, we first apply an inverse normal quantile transformation to
read-depth normalized TReC for each gene. Next, we define a refer-
ence cell type (usually the one with the highest average abundance)
and fit a linear model with transformed gene expression as the
dependent variable and the following covariates as independent vari-
ables: the proportions of all cell types except the reference cell type,
the genotype at a SNP, and the interactions between the SNP genotype
and the proportion of each non-reference cell type. Other covariates
suchas age, sex, andbatch canalsobe included.With thismodel setup,
the ct-eQTL effect for the reference cell type is the main effect of the
SNP genotype, and the ct-eQTL effect for a non-reference cell type is
the sum of the genotype’s main effect and the effect size of the cor-
responding interaction term. Thismodel is the sameas theoneusedby
Aguirre-Gamboa et al.16.

CSeQTL controls type I error and has much higher power
than OLS
We conducted simulations to evaluate type I error and power of
CSeQTL in a variety of settings. First, we varied the baseline expression
(i.e., gene expression of the reference allele) across cell types. Second,
we considered three scenarios of cell type composition variation for

three cell types, referred to as CT1, CT2, andCT3 (Fig. 1a). In scenario 1,
cell type proportions were generated independently and identically
distributed, and then normalized to sum to one. This scenario repre-
sents an ideal, but unrealistic, situation. In scenario 2, we createdmore
realistic cell type proportions by setting the average abundanceof CT3
to be lower than CT1 and CT2, and by reducing the variance in the
proportion of CT3. This scenario represents a more difficult situation
for ct-eQTL mapping of CT3. In scenario 3, we added outlier propor-
tions to the simulated proportions of scenario 2 tomimic observations
in real data. We also conducted a secondary set of simulations to
explore the performance of CSeQTL given noisy estimates of cell type
proportions (Supplementary Fig. 1).

We set the mean expression of the reference allele in CT1 be 500.
For example, if the reference/alternative allele is A/T, then the mean
expression in an individual with genotype AA is 1000. We set the
ASReC to be 5% of the TReC. We also set the fold change for the
reference allele gene expression of CT2 or CT3 vs. CT1 to be 0.1, 1.0, or
10. Following the TReCASE model, TReC and ASReC were simulated
conditional on phased SNP genotypes, cell type proportions, expected
expressions per allele and cell type, and other covariates. The sample
size was 300. All the eQTLs were set to be cis-eQTLs that influenced
bothTReCandASReC andwe specifiedeQTL effect size by fold change
of alternative allele B vs. reference allele A. In a global null situation, all
ct-eQTL effects were set to be 1.0 (Fig. 1b). In another mixed null/
alternative situation, we allowed CT1’s eQTL effect to vary from
expð�1Þ to expð1Þ, set the eQTL effect for CT2 to be 1 (i.e., no eQTL
effect), and set the eQTL effect for CT3 to be 1.5. This design allowedus
to assess power in CT1 and CT3 and type I error in CT2 simulta-
neously (Fig. 1c).

Under both global null and mixed null/alternative situations,
CSeQTL controls type I error but OLS has apparent type I error
inflation in several configurations (Fig. 1b, c). Focusing on the mixed
null/alternative situation, we found that under scenario 1, when the
three cell types have the same distribution of proportions, CSeQTL
generally has higher power than OLS. When the baseline expression
of CT3 is low (0.1 fold of CT1), OLS’s power in CT3 is positively cor-
related with CT1’s eQTL effect size even though CT3 has a constant
effect size throughout. This “leaking” of eQTL effect fromCT1 to CT3
is likely due to the transformation of gene expression. OLS also suf-
fers from inflated type I error (i.e., eQTL findings from CT2) in cases
where CT2 has lower baseline expression, highlighting the difficulty
in estimating eQTL effects when cell type-specific gene expression
levels are low.

In scenario 2, where CT1 has the highest proportion and CT3 has
the lowest proportion, power to detect ct-eQTLs is reduced across
models and cell typeswhen comparedwith scenario 1. CSeQTL’s power
to detect CT1 eQTLs is much higher than OLS. CT3 eQTLs are detect-
able by either method if its baseline expression is high and in that case
(2nd row and 2nd column of Fig. 1c) CSeQTL has much higher power
than OLS, e.g., >80% power by CSeQTL vs. <20% power by OLS. OLS
still has type I error inflation for CT2, to a smaller degree than in
scenario 1. Finally in scenario 3, the introduction of outliers in cell type
proportions substantially increases the type I error inflation of OLS for
CT2 when baseline expression of CT2 is low. Additional simulation
results, including results using a noisy version of cell type proportions,
are presented in Supplementary Figs. 2–5.

Our implementation allows for the trimming of outliers whose
Cook’s distance is larger than a threshold, following the approachused
byDESeq221. The Cooks’ distance is calculated based on the nullmodel
(no eQTL), and the value of outliers are imputed with the null model’s
predicted outcome (see “Methods” section “Trimming influential
counts” for more details). This trimming procedure may slightly
reduce power, but helps to guard against type I error. The impact of
trimming is more apparent in one dataset (GTEx brain samples) in our
real data analysis, which we discuss in the next section.
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In summary, power to detect ct-eQTLs is driven by the model
and positively correlated with eQTL effect size, absolute and rela-
tive reference allele expression, and variability in cell type
proportions.

CSeQTL identifiesmanymore ct-eQTLs thanOLS in humanbrain
and blood
We analyzed bulk RNA-seq data from three sources: 670 whole blood
samples from the Genotype Tissue Expression (GTEx) project3,
254 schizophrenia patients and 283 controls from the CommonMind
Consortium (CMC)22,23, and 175 brain samples fromGTEx. Additionally,
we studied cell type-purified bulk RNA-seq data from the BLUEPRINT
cohort, including purified CD4+ T cells (n = 212), monocytes (n = 197),
and neutrophils (n = 205). For the purified bulk RNA-seq data, CSeQTL
was equivalent to TReCASE, and the results were used to validate ct-
eQTL results from GTEx whole blood samples.

We obtained phased genotypes, TReC, ASReC, observed covari-
ates, and latent batch covariates for each of the four cohorts (GTEx
whole blood, CMC brain, GTEx brain, and BLUEPRINT). See Supple-
mentaryNote 4 formore information. Using ICeDT24, we estimated cell
type proportions based on TReC and cell type-specific reference data
for 5 brain cell types25 and 22 blood cell types26. See Supplementary
Note 2 for more details.

We found that the distributions of cell type proportions were
similar between schizophrenia patients and healthy controls in CMC
and GTEx brain samples (Fig. 2a). Excitatory neurons (Exc) had the
highest proportions, followed by astrocytes (Astro), inhibitory neu-
rons (Inh), oligodendrocytes (Oligo), and oligodendrocyte precursor
cells (OPC). Microglia had the lowest proportions and the smallest
variation,making it difficult to detect ct-eQTLs in this cell type. For the
22 blood cell types26, we collapsed them into seven cell types due to
limited prevalence and variability in some cell types (Supplementary
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Fig. 1 | Summary of the results from simulation studies. a Simulated cell type
(CT) proportions for three scenarios. Scenario 1: equally abundant and highly
variable cell typeproportions. Scenario 2: variable abundance and smaller variance.
Scenario 3: modification of scenario 2 by adding outliers of cell type proportions.
Box plots and violin plots were derived from n = 300 simulated cell type propor-
tions. For each boxplot, the box ranges from Q1 (the first quartile) to Q3 (the third
quartile). The median is indicated by a line across the box. The whiskers extend
from Q1 and Q3 to the most extreme data points within the 1.5 IQR of the box and

IQR=Q3−Q1. b Simulation results under the global null (i.e., no eQTL for any cell
type) for different scenarios and methods (columns of the plots) and reference
allele expression configurations (rows of the plots). Each reference allele config-
uration is denoted by fold change of reference allele expression. For example,
“10_0.1” indicates fold changes of 10 in CT2 over CT1 and 0.1 in CT3 over CT1.
c Simulation under the mixture of null and alternative hypothesis by models, sce-
narios, and reference allele expression configurations. Results of (b) and (c) are
obtained after trimming outliers.
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Fig. 8 and “Methods” section “Grouping 22 blood cell types to seven
cell types”). In GTEx whole blood samples, neutrophils were the
dominant cell type with the highest proportions and the largest var-
iance (Fig. 2b).

We conducted both ct-eQTL mapping and traditional bulk eQTL
mapping, which assesses aggregated eQTL effects in bulk tissue sam-
ples. For both ct-eQTL and bulk eQTL mapping, we included a set of
covariates: library size, observed covariates (such as age, sex, and
known batch effects), and genotype principal components (PCs). We
also added latent factors estimated from gene expression data, which
were calculated by PCs of residualized gene expression data after
accounting for all the aforementioned covariates. We obtained two
sets of residualized TReC PCs: the first set was generated by residuals
that did not account for cell type proportions and the second set did.
The first set was used for bulk eQTL mapping, to mimic the common
practice of eQTL mapping. The second set was used in ct-eQTL map-
ping. When using OLS for ct-eQTL mapping, we included cell type
proportions and interaction terms between genotype and cell type
proportions. We excluded genes with low expression in most samples
(75th percentile of TReC <50) and SNPs with minor allele frequencies
below 5% from our analysis. We considered SNPs located between 50
kilobases before the transcription start site and 50 kilobases after the
transcription end site, including those within the gene body.

We trimmed expression outliers of each gene using Cook’s dis-
tance. To determine the appropriate threshold of Cook’s distance for
each dataset, we ran TReC-only eQTL mapping using permuted data
for all the genes on chromosome 1 with thresholds of 10, 15, 20, or no
trimming. We selected the threshold for each dataset to ensure that
type I error was controlled per cell type. The selected thresholds were
10 for GTEx brain data and 20 for the other three cohorts. A more
aggressive trimming threshold was needed for GTEx brain data, likely
due to its smaller sample size.

For eQTL mapping, we need to account for two layers of multiple
testing: (1) testing across multiple local SNPs per gene and (2) testing
across genes. For each gene, we assessed the significance of its mini-
mum p value across all local SNPs by calculating the corresponding
permutation p value. A brute-force implementation, which involves
permuting the data many times and running CSeQTL on each per-
muted dataset, is computationally prohibitive. Instead, we used a
computationally efficient method called geoP19,27 to calculate a per-
mutation p value by estimating the effective number of independent
tests. After this step, each gene has one permutation p value. To
account formultiple testing across genes, we selected a permutation p
value cutoff to control false discovery rate (FDR) quantified by q-value
(Supplementary Note 3). We calculated a q-value28 for each permuta-
tion p value cutoff and chose a q-value cutoff 0.005 by default. This
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Fig. 2 | Summary of cell type compositions and the number of eGenes. a Cell
type proportion estimates of six cell types astrocytes (Astro), excitatory neuron
(Exc), inhibitory neuron (Inh), microglia (Micro), oligodendrocytes (Oligo), and
oligodendrocyte precursor cells (OPC) from the brain samples of schizophrenia
patients and controls from theCommonMindConsortium (CMC) aswell as samples
from GTEx Brain. Box plots are derived from n = 283 CMC-Control, n = 250 CMC-
SCZ, and n = 175 GTEx Brain samples. bCell type proportion estimates of seven cell
types from whole blood samples of GTEx. Cell type proportions were first esti-
mated for 22 cell types (Supplementary Fig. 8) and then collapsed to seven cell
types to avoid individual cell types with very low proportions and variances. Box

plots are derived from n = 670 GTEx whole blood samples. In both (a) and (b), for
each boxplot, the box ranges from Q1 (the first quartile) to Q3 (the third quartile).
The median is indicated by a line across the box. The whiskers extend fromQ1 and
Q3 to themost extreme data points within the 1.5 IQR of the box and IQR=Q3 −Q1.
c A summary of the number of detected eGenes per stratum by method and case/
control status for CMC. d A summary of detected eGenes by method for GTEx
whole blood. For (c) and (d), the X-axis is the (number of cell type-specific
eGenes + 1) in log (base 10) scale. The Y-axis denotes the percentage of cell type-
specific eGenes that overlap with eGenes from bulk eQTL mapping.
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cutoff was smaller than typical FDR cutoff (e.g., 0.05) because the
calculation of q-value accounted for the proportion of nulls, which
could lead to a liberal permutation p value cutoff when the proportion
of nulls was small. For bulk eQTL results, a q-value of 0.005 corre-
sponds topermutationp value around0.02while aq-valueof0.05may
correspond to a permutation p value larger than 0.1 (Supplementary
Tables 7–10). We applied this two-step multiple testing correction
procedure to both bulk eQTL mapping and ct-eQTL mapping for each
cell type. A similar procedure has been used in GTEx studies3.

When performing bulk eQTL mapping or ct-eQTL mapping using
cell type-purified samples from BLUEPRINT, CSeQTL is equivalent to
the TReCASE method29. Consistent with our previous results19,29,
CSeQTL has much higher power than OLS. For example, considering
the results for CMC schizophrenia samples (n = 250), for bulk eQTL
mapping after trimming outliers, CSeQTL and OLS identified around
6900 and 2900 eGenes (genes with at least one significant eQTL)
respectively (Supplementary Table 2). Similar results were observed
for BLUEPRINT data from purified blood cell types (Supplementary
Table 4 and Supplementary Figs. 17 and 18).

CSeQTL identified many more ct-eQTLs than OLS for different
brain cell types. After trimming, CSeQTL identified hundreds to
thousands of ct-eQTLs per cell type in CMC schizophrenia data and
OLS only identified two eQTLs in oligodendrocytes (Fig. 2c and Sup-
plementary Table 2). The results were similar for CMC control samples
(n = 275) and trimming outliers did not have a large impact (Supple-
mentary Table 2). In contrast, trimming outliers had a large effect for
GTEx brain data, which had a relatively small sample size of 174. In
particular, for microglia, the cell type with the lowest abundance,
CSeQTL and OLS identified 885 and 184 eGenes before trimming, but
only 96 and 0 eGenes after trimming (Supplementary Fig. 14 and
Supplementary Table 3). The results fromGTEx brain data suggest that
CSeQTL still has much higher power than OLS when sample size is
small, but should be used with caution.

For blood ct-eQTLs estimated by GTEx whole blood data, OLS
identified 1014 eGenes in neutrophil, and two or zero eGenes in other
cell types. In contrast, CSeQTL identified >4000 eGenes in neutrophil,
including most findings by OLS (Supplementary Fig. 21) and hundreds
of eGenes in other cell types (Fig. 2d and Supplementary Table 5).

CSeQTL results demonstrated limited eGene overlaps across cell
types (Supplementary Figs. 12, 15 and 20), though the majority of ct-
eQTLs overlap with the eQTLs detected by bulk eQTL mapping. These
results suggest ct-eQTL signals may be detectable from bulk tissue
samples, though without knowing the relevant cell types. Very low
consistency between ct-eQTLs and bulk eQTLs may indicate false dis-
coveries in ct-eQTLs. For example, for the GTEx brain study, before
trimming, OLS identified 1332 eQTLs inmicroglia for 184 eGenes, while
only <0.01% overlap with bulk eQTLs, and none of these 1332 eQTLs
remained significant after trimming outliers (Supplementary Table 3).
In all comparisons hereafter, we focused on the eQTL results after
trimming outliers since earlier results demonstrated it could reduce
the number of false positives.

CSeQTL findings have significant overlaps with ct-eQTLs
identified by purified bulk RNA-seq data or scRNA-seq data
We validated the CSeQTL findings from GTEx whole blood using the
eQTLs identified from purified bulk RNA-seq data of three cell types
—CD4T,monocyte, and neutrophils—from the BLUEPRINT project30.
A large number of eGenes were identified from BLUEPRINT data and
the number was imbalanced across cell types (Supplementary
Table 6). In order to make a meaningful comparison, we compared
the CSeQTL findings to the top 500 eGenes (<5% of all genes con-
sidered by BLUEPRINT) for each of the three BLUEPRINT cell types.
At a q-value cutoff of 0.005 for any fold changes, around 35%, 17%,
and 12% of CSeQTL eGenes from neutrophil, CD4T, and monocytes
overlapped with the top 500 BLUEPRINT eGenes, respectively.

These proportions increased to 40%, 30%, and 20% for q-value <
0.001 and fold change ≥1.5 (Fig. 3a, b). The numbers of overlaps
were 5.7–8.8 times of the numbers expected by chance (Fig. 3c).
Higher overlapping proportion in neutrophil was expected because
it was themost abundant cell type and CSeQTL had higher power for
the more abundant cell type.

We also compared the CSeQTL results from GTEx whole blood
with the ct-eQTLs identified from a large scRNA-seq dataset31 from
peripheral blood mononuclear cells (PBMCs) of 982 donors, with an
average of 1291 cells per donor. Yazar et al.31 studied ct-eQTLs in 14
types of immune cells. We removed two cell types with very low pro-
portions and very small number of eGenes. The remaining 12 cell types
were collapsed to five categories: B, CD4T, CD8T, Monocyte, and NK
(Natural Killer), matching the cell types studied in GTEx whole blood
data. Thiswas a challenging comparison because thefive cell types had
small proportions in whole blood samples, where the most abundant
cell type was neutrophil (Fig. 2a, b). Nevertheless, we found highly
significant overlaps between CSeQTL eGenes and Yazar et al. eGenes,
with fold change enrichments ranging from 4.1 to 6.7 (Fig. 3d–f). The
fact that more stringent criteria to select ct-eQTLs lead to larger
overlap proportions (Fig. 3a, d) suggests that our quantification of ct-
eQTL effect sizes and significance levels is useful to select stronger ct-
eQTLs. CD4T is the most abundant cell type studied by Yazar et al.31,
though the replication percentage is lower than most other cell types,
likely due to two reasons. First, its proportion is low in whole blood
samples (Fig. 2b). Second, similarity between CD4T cells and other cell
types, such as CD8T cells, may lead to reduced accuracy of cell type
deconvolution in bulk RNA-seq data aswell as cell type classification in
scRNA-seq data. Another important criterion to evaluate eQTL findings
is the consistency of eQTLeffectdirections.We examined the ct-eQTLs
that were identified by both CSeQTL (using a q-value cutoff 0.1 or
0.005) and scRNA-seq data (p value < 0.01), and found the eQTL
directions were consistent for more than 90% of ct-eQTL findings
across most cell types (Fig. 3g). In contrast, without applying any
q-value/p value filtering the consistency proportion is 51% (Supple-
mentary Table 11).

For the ct-eQTLs identified from brain samples (GTEx brain, CMC
schizophrenia patients or controls), we compared with ct-eQTLs
reported by a single nucleus RNA-seq (snRNA-seq) study32. Bryois
et al.32 collected snRNA-seq data for 6940 to 14,595 genes in 144 to 192
individuals for eight major brain cell types: excitatory neurons, inhi-
bitory neurons, astrocytes, microglia, oligodendrocytes, oligoden-
drocyte precursor cells (OPCs), Endothelial, and Pericytes. Both
Pericytes and Endothelial had very small number of cells and ct-eQTLs,
and thus we skipped them in our comparison. The remaining six cell
typeswere exactly the sameas the cell types considered inourCSeQTL
analysis. Overall the results were consistent with the findings for
immune cell types. The CSeQTL eGenes had significant overlap with
the top eGenes reported by Bryois et al. (Supplementary Fig. 22).
Though the overlap was low for two cell types: inhibitory neurons and
microglia, likely due to low proportions of these two cell types. In
addition, cell type-specific expression were similar between excitatory
neurons and inhibitory neurons (Supplementary Fig. 9), which could
further increase the difficulty to map ct-eQTLs for inhibitory neurons.
The eQTL effect direction estimates by CSeQTL and snRNA-seq were
highly consistent for most cell types except for inhibitory neurons,
again suggesting that ct-eQTL mapping was challenging for this cell
type (Fig. 3h and Supplementary Tables 12–14).

We further compared the ct-eQTLs identified only by scRNA-seq/
snRNA-seq data or only by CSeQTL on bulk RNA-seq data. The scRNA-
seq-only ct-eQTLs tended to have smaller effect sizes and larger
p values. Therefore CSeQTL may have missed those scRNA-seq-only
ct-eQTLs because of their weaker effects (Supplementary Fig. 23).
CSeQTL combines deconvolution of gene expression and eQTL
mapping into one step which accounts for the uncertainty of
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deconvolution. Therefore, the power of CSeQTL is impacted by both
the uncertainty of gene expression deconvolution and the magnitude
of the ct-eQTLs. The ct-eQTLs identified solely by CSeQTL tended to
have smaller effect sizes and higher expression levels in bulk samples
(Supplementary Fig. 24). This makes sense because genes with higher
expression have smaller uncertainty in gene expression deconvolu-
tion. Higher gene expression level should also increase the power of
eQTLmapping using scRNA-seq data, though its effect could be more
pronounced for CSeQTL as it also improves the accuracy of cell type
deconvolution.

Characterization of ct-eQTLs
We have analyzed two blood RNA-seq datasets (BLUEPRINT and GTEx
whole blood) and three brain RNA-seq datasets (CMC schizophrenia
(SCZ), CMC control, and GTEx brain). It is interesting to study the
consistency of eQTL results across datasets. Overall, CSeQTL results
showed a higher level of consistency than OLS results (Supplementary
Fig. 25 and Supplementary Table 6). For whole blood, a higher con-
sistency was observed for neutrophil, likely due to its higher abun-
dance. For brain datasets, CMC-SCZ and CMC-Control showed higher
levels of consistency than between CMC dataset and GTEx brain, likely
due to batch effects between the two studies.

We summarized the locations of the minimum p value SNPs
(minP-SNPs) relative to the corresponding eGenes (Supplementary
Figs. 11, 13, 16 and 19). In the brain datasets, The locations ofminP-SNPs
frombulk eQTLmapping showed enrichment around the transcription
start site (TSS) or transcription end site (TES), though such patterns
were not as clear in ct-eQTLs. A potential reason was that the eQTLs
around TSS and TES were more likely to be shared across cell types. In
GTEx brain results, more ct-eQTLs tended to be located further away
from the corresponding eGenes, which might be due to the limited
sample size hencehigher uncertainty to locate the eQTLs. For the three
purified cell types from BLUEPRINT (Supplementary Fig. 16), the
enrichment of eQTLs around TSS was stronger than TES. Similar pat-
terns of eQTL locations were observed for the same three cell types in
GTEx whole blood samples (Supplementary Fig. 19).

Nextwe focusedonCSeQTL results and evaluated thedistribution
of ct-eQTLs with respect to functional annotations of genomic regions
(e.g., enhancers, promoters, 3’ UTR, 5’ UTR, etc.) by Torus33 (Supple-
mentary Figs. 26 and 27). For brain tissues, the functional enrichment
of eQTLs for excitatory neuron, which was the most abundant cell
type, was similar to the functional enrichment of bulk eQTLs. The lack
of significant functional enrichment in other cell types could be par-
tially due to smaller number of ct-eQTLs. Comparing brain samples of

Fig. 3 | Validation of CSeQTL results. We compare the results by CSeQTL vs. the
results from cell type purified bulk RNA-seq data (BLUEPRINT)30 or scRNA-seq data
from blood31 or brain32. a, d The proportion of CSeQTL eGenes recovered from the
top 500 (<5%) eGenes of other studies, using three configurations: (1) q-value <
0.005; (2) q-value < 0.005 and fold change ≥1.5; and (3) q-value < 0.001 and fold
change ≥1.5. b, e Illustration of the recovered eGene proportions at configuration 3
for all cell type pairs. c, f For each pair of cell types studied by CSeQTL vs.

BLUEPRINT or Yazar et al., we evaluated the ratio of the observed number of
overlapping eGenes vs. its expected value. The ratios and corresponding p values
by two-sided Fisher’s exact test are labeled for each pair of matched cell types.
g,hTheproportion of eQTLs thathave consistent directions bycomparingCSeQTL
results (top eQTL per gene with q-value cutoff of 0.1 or 0.005) vs. two scRNA eQTL
studies with p value cutoff of 0.01.
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schizophrenia patients vs. controls (either CMC controls and GTEx
controls), enrichment of eQTLs at 5’ UTR and non-coding (NC) tran-
script were observed in both control groups but were absent in schi-
zophrenia patients. Since neutrophil was the dominant cell type in
whole blood, as expected, functional enrichment in neutrophil and
whole blood was highly consistent. Despite the small proportions of
CD4+ T and monocyte in whole blood, CSeQTL results recovered
similar functional enrichment as those observed in purified cell types
from BLUEPRINT data.

CSeQTL helps interpret GWAS findings
EQTLs are often used to study the genetic basis of complex traits by
examining their overlapwith genetic loci identified fromgenome-wide
association studies (GWAS). Here we systematically evaluated the
overlap between ct-eQTLs and GWAS hits of either all the traits inclu-
ded in the GWAS catalog34 on 21 categories of traits (Fig. 4 and Sup-
plementary Fig. 5). We calculated the enrichment of eQTLs among
GWAS hits by a log fold change (the proportion of GWAS hits that
overlapwith eQTLs vs. the proportion of genetic loci being eQTLs). See
section C.3.3 of Vasyl et al.19 for details on the computation of point
estimates and their confidence intervals.

GWAS hits of several categories (e.g., education/wealth) were
enriched in the bulk eQTLs of all three brain datasets, though
the degree of enrichment (measured by log fold change in Fig. 4)
was small. When considering ct-eQTLs by CSeQTL, due to the
smaller number of eQTLs, the confidence to estimate enrichment
was often low, which led to wider confidence intervals. Despite
such limitation, we observed several interesting findings. For
example, the GWAS hits of immune traits were enriched in the
ct-eQTLs for microglia in CMC controls and GTEx brain samples,
but not in CMC SCZ samples, suggesting potential SCZ-specific and
ct-eQTL signals.

Blood is arguably the most accessible tissue and thus molecular
biomarkers (e.g., cell type-specific gene expression) in blood can be
very valuable to understand the mechanism that connects genetic
variants and complex traits. Our ct-eQTL results provided a useful
resource for such studies (Fig. 5). For example, enrichment of
respiratory and skindiseaseGWAS signals amongB cell specific eQTLs,
and the association between liver disease GWAS hits and the eQTLs in
CD8+ T cells. Earlier studies have reported that CD8+ T cells were
associated with liver damage, hepatitis, immunopathology, and liver
cancer35–39.

Bulk Astro Exc Inh Micro Oligo OPC
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Fig. 4 | GWAS enrichment for CMC and GTEx brain. Black diamonds correspond
to point estimates of log enrichment of eQTLs among GWAS hits, while open and
filled circles (the centers of error bars) correspond to jackknife estimates of log
enrichment. The block jackknife-based 95% confidence intervals are derived from

sorting and grouping genes and loci into n = 200 blocks. Intervals are converted to
nominal p values that are then Bonferroni corrected. Filled circles correspond to
the ones with lower bound of confidence intervals larger than zero and adjusted
p values < 0.05.
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Discussion
CSeQTL’s framework allows mapping ct-eQTLs using bulk RNA-seq
data, by jointly modeling the effects of cell type composition and ct-
eQTLs. We have shown by simulations and real data analyses that
CSeQTL can have substantially higher power than a linear regression
approach, while still maintaining type I error control. This is due to the
underlying statistical model of CSeQTL. Deconvolution of gene
expression to individual cell types should be performed using
untransformed count data40, while eQTL mapping is often done using
transformed gene expression data (e.g., normal quantile transforma-
tion) to avoid the impact of outliers in count data. Such outliers are
often due to a strong positive associations between mean value and
variance of count data. Our CSeQTL method satisfies these two
restrictions by directly modeling count data using a negative binomial
distribution that accounts for the strong mean-variance dependence.
In contrast, the linear regression approach uses transformed gene
expression data and models ct-eQTLs by adding interactions between
cell type compositions and genotypes. The transformation of gene
expression data distorts their associations with cell type compositions
and thus can reduce power and inflate type I error. In addition, we also
include allele-specific expression in our model to boost the power to
detect ct-eQTLs.

Model optimization of CSeQTL is very challenging because the
modelmaynot be identifiable, for example, due to a lackof variationof
one cell type’s abundance across individuals or very low expression of
one gene in one ormore cell types. A naive implementationmay result
in sub-optimal solutions due to non-invertible observed information
matrices, negative variances, or extreme parameter estimates, which
can have a profound impact on hypothesis testing.We have developed
a comprehensive set of assessments to ensure a robust and optimal
solution is obtained. In addition, both linear regression and CSeQTL
can be sensitive to outliers, and we addressed this issue by trimming
those outliers based on the nullmodel without eQTL effects. As shown
in our real data analyses, such trimming can be particularly helpful for
studies with smaller sample sizes.

Our applications toward human brain and blood bulk RNA-seq
data demonstrate that the linear regression method often identifies
none or a few ct-eGenes (with the exception of neutrophil in whole
blood) while CSeQTL can identify hundreds to thousands of cell type-
specific eGenes. When examining the overlap between these ct-eQTLs
and GWAS findings, we have identified several interesting results but
with high uncertainty in many cases. Future independent studies and
comparisons with larger sample sizes may be needed to reach more
definite conclusions.

Fig. 5 | GWAS enrichment for BLUEPRINT and GTEx whole blood. Black dia-
monds correspond to point estimates of log enrichment of eQTLs among GWAS
hits, while open and filled circles (the centers of error bars) correspond to jackknife
estimates of log enrichment. The block jackknife-based 95% confidence intervals

are derived from sorting and grouping genes and loci into n = 200 blocks. Intervals
are converted to nominal p values that are then Bonferroni corrected. Filled circles
correspond to the ones with lower bound of confidence intervals larger than zero
and adjusted p values < 0.05.

Article https://doi.org/10.1038/s41467-023-38795-w

Nature Communications |         (2023) 14:3030 8



A limitation when applying our method or any ct-eQTL mapping
method on bulk RNA-seq data is accurate estimation of cell type
composition, which in turn requires accurate cell type-specific gene
expression reference. Here we have applied our method on the bulk
RNA-seq data from brain and blood because these two tissues have
readily available cell type-specific gene expression reference. We
expect that in the near future, with the advance of the human cell atlas1

or other similar projects, such resources will become available inmore
tissue types.

Our work also enables a new type of study design to jointlymodel
scRNA-seq and bulk RNA-seq data to study ct-eQTLs. For example,
scRNA-seq data can be collected in a small number of individuals, to be
used as reference for cell type-specific expression. In addition, scRNA-
seq data can also be used for eQTL mapping. After clustering and
identification of cell types, scRNA-seq data can be converted to
pseudo-bulk data of individual cell types and be used for eQTL map-
ping, e.g., by applying our TReCASEmethod29. The likelihood function
of the TReCASE model can be combined with CSeQTL model in order
to combine bulk RNA-seq and scRNA-seq data for ct-eQTL mapping.
Adding scRNA-seq data to bulk RNA-seq data can alleviate some
challenges when using bulk RNA data, e.g., limited variability in cell
type abundance for one cell type. Adding bulk RNA-seq data to scRNA-
seqdata can reduce the cost, increase sample size, andavoiddistortion
of gene expression in the process of isolating single cells.

Methods
Statistical models
Notations and the joint model of TReC and ASReC. Since our model
is the same for any gene-SNP pair, we omit gene and SNP indices to
simplify notations. We use i and q as indices for sample and cell type,
respectively, where i = 1,…, n, q = 1,…,Q, and n and Q denotes sample
size and the number of cell types, respectively. LetTi andNibe the total
read count (TReC) and the allele-specific read count (ASReC) mapped
in the ith sample. Each SNP of interest has two alleles, A and B. Each
gene has two haplotypes that are arbitrarily defined as haplotype 1 and
2. LetNi −Ni2 andNi2 denote the ASReCmapped to the first and second
haplotypes of sample i, respectively.

Let Zi denote the phased genotype for the SNP in sample i, which
takes values AA, AB, BA, or BB. Let Xi = ðXi1, . . . ,XipÞT be a p-vector of
baseline covariates (excluding the intercept), where T denotes vector
or matrix transpose. Among the baseline covariates in our model, we
adjust for log-transformed read depth, defined as the log of the 75th
percentile of a sample’s gene-level TReCs, amore robustmeasurement
of read-depth than summing over all TReC values. Let ρiq denote the
cell type proportion in the ith sample and qth cell type such thatPQ

q= 1ρiq = 1 and ρi = ðρi1, . . . ,ρiQÞT. The cell type corresponding to q = 1
is referred to as the reference cell type. Our model is based on the
following factorization:

P Ti,Ni,Ni2∣Zi,Xi,ρi

� �
= P Ti∣Zi,Xi,ρi

� �
P Ni∣Ti,Zi,Xi,ρi

� �
P Ni2∣Ti,Ni,Zi,Xi,ρi

� �

Each factor is defined as follows:
• P Ti∣Zi,Xi,ρi

� �
: given (Zi, Xi, ρi), Ti is assumed to follow a negative

binomial distribution with mean μi = E Ti∣Zi,Xi,ρi

� �
and disper-

sion parameter ϕ such that V Ti∣Zi,Xi,ρi

� �
=μi +ϕμ

2
i . This like-

lihood term corresponds to the TReC model.
• P Ni∣Ti,Zi,Xi,ρi

� �
: this term describes the total number of allele-

specific reads as a function of TReC. It is determined by the
number of heterozygous SNPs within the gene and is a constant
with respect to the parameters of eQTLs. Thus it is factored out
from the likelihood.

• P Ni2∣Ti,Ni,Zi,Xi,ρi

� �
: given (Ni, Zi, ρi), the read count Ni2 is

assumed to be independent of (Ti, Xi) and follows a beta-
binomial distribution with parameter πi, which is the expected
proportion of ASReC from the haplotype harboring the B allele

for heterozygous samples among Ni allele-specific reads, and a
dispersion parameterψ. This likelihood term corresponds to the
ASReC model.

The above likelihood framework is the same as our TReCASE
method that combine TReC and ASE to map cis-eQTLs20,29,41. Similar to
TReCASE, we reduce the negative binomial and beta-binomial dis-
tribution to Poisson and binomial distribution, respectively, when the
data does not support a non-zero overdispersion parameter. Next we
describe how to extend each component of the likelihood function for
cell type-specific eQTL mapping.

Let μi,z,q be the expected TReC for the ith sample, zth phased
genotype, and qth cell type. We assume a multiplicative model
μi,z,q =μz,q expfXT

i βg and that the effect of baseline covariates β are the
same for all cell types. We assume that the gene expression for each
genotype is the summation of allelic expressions such that μAA,q =
μA,q + μA,q = 2μA,q, μAB,q = μA,q + μB,q = μBA,q, and μBB,q = μB,q + μB,q = 2μB,q
where μA,q and μB,q denote the expected TReC for A and B alleles of the
qth cell type, respectively. Define κq = μA,q/μA,1 and ηq = μB,q/μA,q where
κ = ðκ1, . . . ,κQÞT and η= ðη1, . . . ,ηQÞT. κq, which is a nuisance parameter,
is the fold change of the A allele’s expression in the qth cell type vs. the
first cell type. ηq is the eQTL effect size: the expression fold change of
the B allele vs. A allele for the qth cell type.

Linear model. To establish a baseline for comparison and mimicking
published analyses, we propose fitting a linearmodel by ordinary least
squares (OLS). LetGi denote the number of B alleles for a given phased
SNP for the ith sample (i.e.,. Gi =0, 1, 1, and 2 for Zi =AA, AB, BA, and
Zi = BB, respectively). For a gene-SNP pair, the cell type-specific linear
model is:

E �Ti

� �
= ζ0 +

Xp

j = 1

Xijζ j +Giζ g +
XQ

q= 2

ρiqγq +Gi

XQ

q= 2

ρiqδq

where �Ti is the inverse normal quantile transformation of read-depth
adjusted Ti. The benefit of the transformation is guarding against
outliers on the count scale, and it is a popular choice in eQTL
studies3,42. From the above model, we can test H0 : ζg + δq = 0 to assess
the strength of cell type-specific eQTL for the qth cell type, where
q = 2,…,Q, and test H0 : ζg =0 for the reference cell type’s eQTL.

TReC model. Let ηðTÞ
q be the eQTL effect size for the TReC model,

where the superscript (T) indicates TReC model. Given the above
notations and parameters, let μi,AA be the expected TReC for the ith
sample with AA genotype and it is defined such that:

log μi,AA

� �
= log

XQ

q= 1

ρiqμi,AA,q

 !
=XT

i β + log
XQ

q= 1

ρiqμAA,q

 !

= log 2μA,1

� �
+XT

i β+ log
XQ

q= 1

ρiqκq

 ! ð1Þ

With similar derivations for genotypes AB, BA, and BB, we have:

log μi

� �
=

log μi,AA

� �
Zi =AA

log μi,AA

� �
+ log 1 + ξ ðTÞi

� �
� logð2Þ Zi =AB,BA

log μi,AA

� �
+ log ξ ðTÞi

� �
Zi =BB

8
>>><
>>>:

where ξ ðTÞi =

PQ
q= 1ρiqη

ðTÞ
q κqPQ

q= 1ρiqκq

:

It is crucial to notice that ξ ðTÞi represents the bulk eQTL effect size for
the ith sample. If eQTL effect is the same across cell types
(ηðTÞ

1 = � � � =ηðTÞ
Q = ηðTÞ), ξ ðTÞi =ηðTÞ simplifying CSeQTL’s TReC model to
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the bulk TReC model presented by Sun29. For Q = 2, CSeQTL’s TReC
model would correspond to pTReCASE’s TReC model20. After center-
ing continuous covariates among Xi and setting categorical covariates
among Xi to their reference level, the intercept term of the above
model represents the log-transformed expected TReC of the reference
cell type with genotype AA. This straightforward interpretation of
CSeQTL is a crucial feature for model optimization and parameter
estimate interpretation.

ASReC model. Let ηðAÞ
q be the eQTL effect size associated with the

ASReC model. Let PBB N1∣N;π;ψ
� �

be the beta-binomial density for
observing N1 successes among N trials with success probability π and
overdispersion parameterψ. For a gene-SNPpair, theASReC likelihood
is defined as:

P Ni2∣Ni,Zi

� �

=

1 if Ni =0

PBB Ni2∣Ni;πi = ξ
ðAÞ
i = 1 + ξ ðAÞi

� �
;ψ

� �
if Ni >0,Zi =AB

PBB Ni � Ni2∣Ni;πi = ξ
ðAÞ
i = 1 + ξ ðAÞi

� �
;ψ

� �
if Ni >0,Zi =BA

PBB Ni2∣Ni;πi =0:5;ψ
� �

if Ni >0,Zi =AA,BB:

8
>>>>>><
>>>>>>:

Similar to the TReC model:

ξ ðAÞi =

P
qρiqη

ðAÞ
q κqP

qρiqκq
,

which is the bulk eQTL effect size estimated from ASReC. If Ni =0, the
ASReC likelihood factors out of the joint model. Furthermore, while
samples with genotypes AA and BB do not add information when
estimating ηðAÞ

q and κq, they contribute toward estimating ψ.

cis/trans eQTL testing and eQTL testing. Following Sun29, themodel-
specific eQTL parameters ηðTÞ

q and ηðAÞ
q are used to formally char-

acterize cis and trans eQTLs. By defining ηðAÞ
q =ηðTÞ

q αq, the qth cell type-
specific eQTL being cis corresponds to αq = 1 and trans otherwise. For
cis-eQTLs, we use the joint model that combines TReC and ASReC/ASE
models with shared cell type-specific parameter ηq =η

ðAÞ
q =ηðTÞ

q . We
conduct cis/trans testing per gene-SNP pair and per cell type with
H0 : αq = 1 vs. HA : αq ≠ 1. Let α = α1, . . . ,αQ

� �T.
EQTL significance testing is conducted for each gene, SNP, and

cell type using either the TReC model for trans-eQTL with H0 : ηðTÞ
q = 1

vs. HA : ηðTÞ
q ≠1 or the joint model for cis-eQTL with H0 : ηq = 1 vs.

HA : ηq ≠ 1. Thus our model formulation is flexible enough to allow
subsets of cell type-specific eQTLs to be cis- or trans-eQTLs.

Optimization scheme and parameter assessment
Given cell type proportions, our optimization scheme for TReC and
ASReC model fitting and hypothesis testing is based on the following
procedure for a gene-SNP pair. This scheme helps to avoid local
optima since parameter estimation can be sensitive to initialization

and influential counts. Let θ= ðμA,1,β
T,ϕ,κT,ηT,ψ,αTÞT denote the pre-

established set of unconstrainedparameters to optimizeover. First, we

condition Ti on Xi to obtain bθ1 = ðbμA,1,
bβTÞ

T

by fitting a Poisson model
with Newton-Raphson. Second, we can fit a negative binomial

model with initialization bϕ= 1 to obtain bθ2 = ðbμA,1,
bβT

,bϕÞ
T

, also

with Newton-Raphson. Third, we incorporate ρi, initialize bκq = 1,
and use Broyden–Fletcher–Goldfarb–Shanno (BFGS) to obtain

bθ3 = ðbμA,1,
bβT

,bϕ,bκTÞ
T

. Fourth, we incorporate Zi, initialize bηq = 1, and use

BFGS to obtain bθ4 = ðbμA,1,
bβT

,bϕ,bκT,bηTÞ
T

. Fifth, we incorporate (Ni,Ni2),

initialize bψ= 1, fix bαq = 1, and run BFGS to obtain

bθ5 = ðbμA,1,
bβT

,bϕ,bκT,bηT,bψÞ
T

. Lastly, we optimize over the full parameter

set to obtain bθ= ðbμA,1,
bβT

,bϕ,bκT,bηT,bψ,bαTÞ
T

, also with BFGS.

This optimization scheme does have inherent challenges to
achieve stable convergence. One key regularity condition is that the
estimatedparameters arenot on the boundary of the parameter space,
in our case, μA,q >0 and μB,q > 0 corresponding to non-zero expression
for each allele and cell type. A second requirement is sufficient varia-
bility inρiq across samples to estimate κq,ηq, andαq. This is comparable
to an identifiability condition for a linear regression where each cov-
ariate has non-zero variance. It is likely that these two requirements are
not satisfied for some genes or cell types. Therefore the full model or
set of estimable parameters needs to be adjusted. Let ln(θ), _lnðθÞ, and
€lnðθÞ denote the log-likelihood, score, and (negative) observed infor-
mation, respectively. Let ∣�∣2 denote the L2 norm. Convergence is

defined when ∣_lnðbθÞ∣2 < ϵ1,€lnðθÞ is invertible, no negative variances, and

∣€lnðbθÞ
�1 _lnðbθÞ∣2 < ϵ2 for predefined thresholds ϵ1 and ϵ2. By default,

ϵ1 = 10−3 and ϵ2 = 10−6. To determinewhich cell type-specific parameters
to constrain to their null values (κq = 0, ηq = 1, αq = 1), we run the above
optimization procedure and set the unidentifiable parameters to their
null values and re-run the optimization procedure, and iterate this
procedure until all the remaining parameters are estimable. More
specifically, we initialize our parameters with bθ2 and perform the fol-
lowing operations:

• First, we estimate bθ2 = ðbμA,1,
bβT

,bϕÞ
T

by maximum likelihood esti-
mate (MLE), while ignoring eQTL and cell type composition.

• Next we estimate bθ3 = ðbμA,1,
bβT

,bϕ,bκTÞ
T

. The κq parameters are
estimated relative to the reference cell type (q = 1) and therefore
we must ensure the reference cell type has non-zero TReC
(bμA,1 > 0). By default we set the reference cell type to be the
one with highest average proportion across samples. After
estimating bκ, we can determine which cell type has highest
TReC and swap that cell type to be the reference cell type. This
choice of reference cell type can vary from gene to gene. It is an
internal choice for the computation purpose and in the final
output, all the parameters are transformed using the cell type
with highest average proportion as reference. If θ3 cannot be
reliably estimated, it indicates that some κq’s are close to 0. We
calculate bμAA,q � 2bμA,1bκq. If minqðbμAA,qÞ< 2 (each haplotype
expresses at least one TReC), set bκq =0 and bηq = bαq = 1, and then
re-optimize.

• Next we estimate eQTL effects η in θ4 and θ5. If convergence is
achieved, move on to the next step. Otherwise, the ASReCs of
one or more cell types are near zero. Then we calculate
bμAq � bμA,1bκq, bμBq � bμAqbηq, and bμzq � minðbμAq,bμBqÞ, and variance
estimate for logðbηqÞ (optimizing over unconstrained para-
meters). If 0 < bμzq < 1 or ηq variance estimate is negative, set bηq = 1
and re-optimize and repeat until convergence. For each cell type
where bηq = 1, set bαq = 1 for subsequent steps.

• Next we estimate α in θ6. If convergence is achieved, we have
established the full model. Otherwise, check for variance esti-
mates for logðbαqÞ that are negative and set bαq = 1 and re-
optimize. If none of the cell types αq variances are negative and
convergence is not achieved, identify the cell typewith largestαq
variance and set bαq = 1.

In general, wheneverweneed to re-optimize, we simply start off at
the step prior to the current step, there is no need to return to bθ2 since
the procedure has established the “submodel” or nested set of esti-
mated parameters that achieved convergence. In addition, our pro-
cedure is strictly designed to assess convergence first at each step
before attempting to constrain parameter estimates or looking to the
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variance estimates to avoid unnecessary matrix inversions until all
other criteria are met.

Trimming influential counts
Data trimming and quality control are a crucial issue associated with
regression analyses43. Modeling observed outcomes directly risks
highly influential or potential outlier data points that contribute to
biasedparameter estimates and inflated type I error. For eQTL analysis,
if the same subset of sampleswere consistently identified as outlier,we
could exclude them. But among post quality control samples, an
analysis could involve potentially excluding different subsets of sam-
ples per gene, risking a power loss and difficulty to interpret the
results. In the case of differential expression, DESeq221 systematically
trims outlier observations whose Cook’s distance is beyond a pre-
defined cutoff based on the F-distribution. We have adopted a similar
trimming approach in our eQTL analyses.

For a given gene, we characterize the influence of a sample
through our definition of Cook’s distance for the ith sample with:

Ci =
1
m

Xn

j = 1

ðbμjðiÞ � bμjÞ
2

bvj

wherem = p +Q − 1, bμj is the estimated mean TReC for the jth sample,
bμjðiÞ is the estimated mean TReC for the jth sample after excluding the
ith sample, and bvj = bμj + bϕbμ2

j , the estimated TReC variance for the jth
sample. Since our TReC model is not the traditional GLM due to the
sample-specific offset term ðlogðPQ

q= 1ρiqκqÞÞ, we cannot directly
characterize leverage. We then calculate normalized Cook’s distance
toputCook’s distances on the same scale across genes, denoted ~Ci and
characterized as:

~Ci =
Ci �medðC1, . . . ,CnÞ

madðC1, . . . ,CnÞ
,

where med(…) and mad(…) denote median and median absolute
deviation, respectively. We propose trimming the original TReC (Ti) if
~Ci > c where c is some predefined threshold. To calculate Cook’s dis-
tance, we fit CSeQTL’s TReC model without adjusting for SNP since a
gene can have multiple SNPs and a gene’s TReC can be influential
regardless of genotype. We explored the possibility of using Ci > 4/n
and Ci > F(q =0.99,m, n −m) as a trimming criteria however it failed to
detect clear visual outliers.Wedecidedon an appropriate thresholdon
~Ci by running CSeQTL on chr1 genes with permuted SNP genotypes.
We tried cutoff thresholds 40, 20, 10, and 5. The largest threshold that
controls the type I error was selected. Unlike the trimmedmeans used
by DESeq2 to impute the TReC value, we impute the TReC value with
the estimated TReC for a sample from CSeQTL’s TReC model without
SNP adjustment.

Simulation setup
We describe how the cell type proportions are simulated. In the first
scenario, let X ~U(a, b) denote a random variable X sampled from a
continuous uniform distribution ranging from a to b. Specifically
ρiq = expfUiqg=

PQ
s = 1 expfUisg and Uiq ~U(−4, 4). In the second sce-

nario, to allow cell types to reflect observed proportions with wide and
narrow ranges of proportions, we simulated ρi1 fromabeta distribution
with shape parameters 10 and 24 (values derived based on maximum
likelihood estimates from fitting a beta distribution to CMC’s astrocyte
cell type proportions), ρi2 = ∣0:85� 0:76ρi1 � 0:03ρ2

i1 + ϵi∣, where ϵiwas
sampled from a centered normal distribution with standard deviation
0.02, and ρi3 = 1 − ρi1 − ρi2. If ρi3 < 0, we set it to zero and normalize the
proportions across cell types. For the third scenario, proportions are
first simulated under the second scenario. Next, for each cell type, the
initial proportions greater than the 99% quantile were replaced by

values sampled from U(0.7, 0.9) while initial proportions less than the
1% quantile were replaced by values sampled fromU(0, 0.1). These final
values are re-normalized across cell types to sum to one.

For n = 300, we simulate p = 4 baseline covariates. The first cov-
ariate is Xi1, which represents read-depth, is simulated by a gamma
distributionwith shape parameter set to 600 and rate parameter set to
100, based on empirical MLE estimates from CMC samples. Xi2, which
represent sex, is generated by a Bernoulli distribution with success
probability of 0.5. Xi3 is generated by a continuous uniform distribu-
tion ranging from −1 to 1. Xi4 is simulated by a standard normal dis-
tribution. These latter two variables represent arbitrarily distributed
continuous covariates. Continuous covariates Xi1, Xi3, and Xi4 are cen-
tered and scaled with zero mean and unit variance. Assuming Hardy
Weinberg equilibrium, genotypes were generated using a categorical
distributionwith probabilities ð1�mAÞ2,mA(1 −mA),mA(1 −mA),m2

A for
AA, AB, BA, BB, respectively, where mA denotes the minor allele fre-
quency. We set mA = 0.2.

Grouping 22 blood cell types to seven cell types
The “CD4T” cell type is defined by pooling CD4 naive, CD4 memory
resting, CD4 memory activated, follicular helper, regulatory T cells
(Tregs) and gamma delta cells. The gamma delta T cells is indeed a
different type of T cells while all other type of T cells are alpha beta
T cells. However, its proportion is very low (Supplementary Fig. 8) and
thus adding it to any other cell type does not lead to any noticeable
change of cell type composition. Here we combine it into the CD4T
category just for the convenience of implementation. The “B_Cell” cell
type is the result of combining B cell naive, B cell memory and Plasma
cells. CD8 T cells were not collapsed with other cell types and simply
denoted “CD8T”. The “Mast_Eosinophil” cell type is composed of mast
cells resting,mast cells activated, dendritic cells resting, dendritic cells
activated and eosinophils. The “NK” cell type comprises of natural
killer cells resting and natural killer cells activated. The “Monocytes”
cell type ismade upofmonocytes,macrophagesM0,macrophagesM1
andmacrophagesM2. Theproportion ofmicrophage cells are very low
(Supplementary Fig. 8) and thus adding them to monocytes does not
make substantial changes to monocyte proportions. We further dis-
cuss the algebraic interpretation and implications of combining cell
types in Supplementary Note 2.5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Our work did not generate any new data. We have used publicly
available datasets. BLUEPRINT from European Genome Archive with
phased SNPs derived from whole genome sequencing
(EGAD00001002663) and three purified cell types of RNA-seq bam
files (EGAD00001002671, EGAD00001002674, EGAD00001002675).
CommonMind data were downloaded from https://www.
nimhgenetics.org/resources/commonmind. GTEx data were down-
loaded from NHGRI AnVIL (Genomic Data Science Analysis, Visualiza-
tion, and Informatics Lab-space). Brain MTG data were downloaded
from Allen Brain Institute Website https://portal.brain-map.org/
atlases-and-data/rnaseq/human-mtg-smart-seq. SEA-AD snRNA-seq
data were downloaded from cellxgene: https://cellxgene.cziscience.
com/collections/1ca90a2d-2943-483d-b678-b809bf464c30.

Code availability
The source codes for R package CSeQTL and analysis pipeline are
made publicly available at the Github repositories https://github.com/
pllittle/CSeQTL(https://doi.org/10.5281/zenodo.7901725), and https://
github.com/pllittle/CSeQTLworkflow (https://doi.org/10.5281/zenodo.
7901800), respectively.
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