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Asynchronous locking in metamaterials of
fluids of light and sound

D. L. Chafatinos 1,2, A. S. Kuznetsov3, A. A. Reynoso1,2,4, G. Usaj 1,2,5, P. Sesin1,2,
I. Papuccio 1,2, A. E. Bruchhausen1,2, K. Biermann3, P. V. Santos 3 &
A. Fainstein 1,2

Lattices of exciton-polariton condensates represent an attractive platform for
the study and implementation of non-Hermitian bosonic quantum systems
with strong non-linear interactions. The possibility to actuate on them with a
timedependent drive couldprovide for example themeans to induce resonant
inter-level transitions, or to perform Floquet engineering or Landau-Zener-
Stückelberg state preparation. Here, we introduce polaromechanical meta-
materials, two-dimensional arrays of μm-sized traps confining zero-
dimensional light-matter polariton fluids and GHz phonons. A strong exciton-
mediated polariton-phonon interaction induces a time-dependent inter-site
polariton coupling J(t) with remarkable consequences for the dynamics. When
locally perturbed by continuous wave optical excitation, a mechanical self-
oscillation sets-in and polaritons respond by locking the energy detuning
between neighbor sites at integer multiples of the phonon energy, evidencing
asynchronous locking involving the polariton and phonon fields. These results
open the path for the coherent control of dissipative quantum light fluids with
hypersound in a scalable platform.

Microcavity exciton-polaritons (simply polaritons, the quantum states
formed by strongly coupled excitons and photons) constitute a hybrid
system1 that displays a plethora of striking properties. These include
Bose-Einstein condensation (BEC)2, superfluidity3, and Josephson-like
oscillations4,5, with peculiarities stemming from the involved exciton-
mediated repulsive Coulomb interactions and the driven-dissipative
nature of the fluid6. The engineering of coupled pairs of polariton
traps4,5 and arrays7–9 with controllable interactions10 has attained a
degree of maturity that enables the implementation of quantum
simulators11–14 and topological photonics15. Another emerging area is
that of optomechanical crystals (OMXs)16–19, hybrid structures that
bridge the optical domainwith acoustics (in theMHz toGHz frequency
range). OMXs exploit the Bragg co-localization of mechanical and
opticalmodes to greatly enhance their interaction. Interestingly, cavity

optomechanics has also been exploited to induce gauge fields as a
resource for effectively breaking the time-reversal symmetry in topo-
logical photonics20–22 and phononics23,24. Polariton condensates are
interesting for cavity optomechanical phenomena due to their long
coherence times and the resonantly-enhanced exciton-mediated
optomechanical coupling25–30. Both parameters, coherence time and
coupling strength, are critical to boost the optomechanical
cooperativity18. Photons and phonons follow the same wave equation
in isotropic materials, and consequently the distributed Bragg reflec-
tor (DBR) planar microcavities hosting cavity polaritons in the near
infrared also confine hypersound in the 20GHz range25. The efficient
interaction between these excitations has been shown to lead to a
mechanical self-oscillation on continuous optical excitation31. The
question then naturally arises: Can the powerful developments of
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cavity optomechanics be used in polariton systems relevant for
optoelectronics and quantum technologies? Moreover: can the beha-
vior of driven-dissipative light fluids be intertwined with coherent
vibrations in a lattice to yield a collective behavior qualitatively dif-
ferent from that of its individual components?

In this work, inspired by the idea of OMXs16–19, we go beyond the
concept of Bragg structures and propose metamaterials based on
resonant unit cells32. These consist of micrometer-size zero-dimen-
sional intra-cavity polariton traps8,33, that confine and co-localize
polaritons and acoustic vibrations (individual "polaromechanical”
resonators), arranged into periodic arrays (see the AFM image of an
actual array inFig. 1a and the scheme in Fig. 1b). In thesemetamaterials,
the on-site optomechanical interaction leads to a phonon-mediated
time-dependent inter-site coupling J(t) of the trapped polariton
condensates34. Striking signatures of the coherent polariton-phonon
coupling emerge when the structures are optically driven with a con-
tinuous non-resonant and spatially localized optical excitation close to
and above the threshold for condensation. Namely, the ground-states
of polariton condensates at neighbor traps asynchronously lock at
energies differing by integer numbers of the confined phonon energy,
as illustrated in Fig. 1c. In order to explain this notable result we begin
by describing the polariton and phonon bands of polaromechanical
arrays. The characteristics of this locking phenomenon are then pre-
sented for different polaromechanical structures, and theoretically
modeled in connection to synchronization and optomechanical phe-
nomena. Conclusions are finally drawn on the potentiality of these

results in the context of coupled non-equilibrium interacting exciton-
polariton condensates.

Results
Polaromechanical metamaterials: co-localized polariton and
phonon bands in lattices of 0D resonators
The proposed system is based on μm-sized traps previously stu-
died in the context of polariton phenomena8,31,33, and created by
micro-structuring the spacer of an (Al,Ga)As microcavity in-
between growth steps by molecular beam epitaxy (MBE). Etch-
ing of the microcavity spacer prior to the growth of the top DBR
into regions of smaller and larger thickness gives rise to optical
and phonon cavity modes of higher or lower energy, respectively
(see details in the Supplementary Notes 1 and 3). These provide
the means to define traps and barriers in spatially tailored
effective potentials. The magnitude of the effective potential
modulation acting on the polaritons (typically some meV) is
determined by the spacer etching thickness (typically around
10–15 nm) and by the cavity-exciton detuning. The etching is
performed far from the quantum wells (QWs) so that the quality
of the resulting excitonic system remains conserved. Arrays of
polariton traps can also be fabricated with alternative technolo-
gies, as investigated by other groups (see e.g., ref. 6 and refer-
ences therein). We note, however, that in order to display strong
optomechanical phenomena as reported here, the embedded
QWs need to be slightly displaced from the position of the
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Fig. 1 | Polaromechanical metamaterials. a Is a 2D (top-view) atomic-force
microscope (AFM) image of an array of 1μm square intra-cavity traps separated by
1μm-wide barriers. A scheme of the microcavity patterned with square-shape
micrometer-size traps is presented in b. The three red lines in the spacer represent
the quantumwells hosting excitons. The spacer thickness is larger at the position of
the traps. Note that for clarity the scheme is not at scale: the realmodulation of the
spacer thickness is much smaller than a DBR period, for simplicity the DBR layers
are represented flat, but in the actual structure they reproduce the shape of the
microstructured spacer (the inset shows a top-surface AFM image of an individual
2μm×2μmsquare trap). The laser is focusedon one of the traps, and the neighbor
sites are excited via the Gaussian tails of the laser spot, leading to coupled

polaritons and vibrations in the individual unit cells of the array. c Shows the
spatially resolved emission spectra obtained for such focused non-resonant exci-
tation with powers above the polariton condensation threshold, for a square array
of 1.6μmsquare traps separated by 3.2μmbarriers. The central trap (x =0) and the
two closest neighbors (x ± 4.8μm) can be identified. Both s-like symmetry ground
(~1533meV) and p-like excited (~1535.9meV) states of polaritons in the traps are
observed. Note that the neighbor trap ground state energies asynchronously lock
at relative detunings corresponding to δE ~ − 2ℏΩm and δE = − 4ℏΩm, where Ωm/
2π ~ 20 GHz is the confined phonon frequency (ℏΩm ~ 80μeV). The dashed blue-
arrows represent the optomechanically-induced inter-trap coupling mediated by
virtual transitions to the excited state.
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maximum cavity optical field, which is the situation normally
found in polariton microcavities29. At these latter positions, the
strain associated with the confined phonon field is zero, and thus
the exciton-mediated polariton-phonon coupling vanishes (see
details in the Supplementary Note 1B).

Panels a andb in Fig. 2 present themeasured 2Dpolariton in-plane
energy dispersion (i.e., along the kx − ky plane) for a 7 × 7 array of
4μm×4μm square traps and a 10 × 10 array of 1μm× 1μm square
traps, respectively, in both cases separated by 1μm barriers. These
dispersions were measured by angular-resolved photoluminescence
(PL) with low optical powers (i.e., well below the BEC threshold).
The full array was illuminated with a large spot of ~ 50μm diameter.
The larger 4μm×4μm traps confine several states with energies
below the finite barriers33. When organized in arrays this results in the
formation of several bands, as displayed in Fig. 2a. The lower energy
band derives from trap states of s-like symmetry, and is comparatively
flat due to the larger degree of confinement (i.e., lower hybridization
with neighbor traps) of these states. In contrast, the smaller
1μm× 1μmtraps only confine the ground state (Fig. 2b) . Note thatdue
to the smaller size, in this latter case the ground state is closer to the
barrier edge. Consequently, the hybridization is larger resulting in a
broader band (when compared to the 4μm×4μm case). The reci-
procal space dispersion in this case resembles the one for dispersive
electron bands in a tight-binding model, where the role of the atomic
electron level is played by the discrete polariton ground state of the
0D traps.

As mentioned above, in planar microcavities vibrations are also
confined25, with a fundamental frequency around Ω0

m=2π∼ 20 GHz
corresponding to a breathing of the cavity spacer along the growth
direction, and overtones at Ωn

m = ð1 + 2nÞΩ0
m. The wavelength of the

fundamental confined mode is the same as the one for the confined
photons (which is determined by the cavity spacer thickness). The
frequency difference (from tens of GHz for the phonons to hundreds
of THz for the photons) just bears the relation between the respective
wave velocities. The local etching of the spacer thickness blue-shifts
the phonon mode energy in the same proportion as for the confined
photons (see Supplementary Note 4) and, consequently, an effective
lateral potential develops for the confined acoustic phonons as it does
for the polaritons. The calculated phonon dispersion around the Γ
point of the Brillouin zone (kx = ky = 0) for arrays of 2μm×2μm traps
with ~3.5μm and ~1μm-wide barriers are presented in Fig. 2c, d,
respectively (the model used is described in the “Methods” section).
Phonon bands arise for the 2D lattice of traps and,mimickingwhat was
observed for the polaritons, the lower energy band is flatter for the
case of more isolated ground states (Fig. 2c). Note that, as for the
polaritondispersions presented in Fig. 2a, b, thewidthof thebands can
be tuned by the size of the traps, while for the calculated phonon
bands in Fig. 2c, d the same is accomplished by changing their
separation.

Experimental study of phonon confinement in traps
Figure 3 expands on an experimental study of the phonons confined in
individual square traps, molecule-like double-traps, and in arrays of
traps. Panels a and b in Fig. 3 present a comparative study of the
polaritonandphononground-state energy for isolated traps of varying
square size. The polariton energies in panel a were obtained from PL
data recorded at 5Kunder lowexcitationpower (i.e., well belowBEC)33.
The trap spectra correspond to discrete levels, the number of confined
states depending on the size of the traps (only data for the ground
state are presented in Fig. 3a). The limits of the induced potential,

Fig. 2 | Polariton andphononbands in lattices of0D resonators. a,b Present the
spectrally and wavevector-resolved polariton energies obtained by photo-
luminescence at low excitation powers in lattices of 4μm×4 μm and 1μm× 1μm
square traps, respectively, both with 1μm-wide barriers. The larger 4μm×4 μm

traps display several confined modes, while only the ground state is confined for
the smaller 1μm× 1μmstructures. c,dDisplay the calculated in-plane dispersionof
the acousticmodes of lattices of 2μm×2μm square traps separated by 3.5μmand
1μm-wide barriers, respectively.
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corresponding tomeasurements performedonplanar etched (barrier)
and non-etched (well) regions are indicated by the dashed horizontal
lines. The expected size-dependence for a trapping potential with
finite barrier height is observed. The experimental data are compared
in Fig. 3a with a theoretical calculation based on an effective potential
model with a realistic description of the trap potential33 (black solid
curve, see Supplementary Note 4D for details).

To experimentally study thehigh frequency vibrations in the same
traps, we used a picosecond coherent phonon pump and probe
technique35–37. A ps-laser pulse is used to resonantly excite the optical
cavitymode, generating coherent phononsby adisplacivemechanism.
Thesemechanical oscillations in turnmodulate the cavity energy, thus
allowing their detection using a delayed probe pulse. Traps were
individually addressed using a microscope set-up with a ~3μm-wide
Gaussian spot (more details are provided in Supplementary Note 2).
The dashed horizontal lines in Fig. 3b represent the measurements in
extended planar non-etched and etched regions, respectively. These
define, as for the polariton case discussed above, the limits of the
induced lateral phonon effective potential (traps and barriers,
respectively). Within these limits the phonon trap energies increase
with decreasing size, as expected for confined states in a trap with
finite barriers (examples of experimental spectra are provided in the
Supplementary Note 3). The observed shift is very well described by a
phonon effective potential model (black solid curve) based precisely
on the same parameters for the traps as used to describe the polariton
energies (see the “Methods” section). The similarity with the behavior

of polaritons in Fig. 3a emphasizes the concept of polaromechanical
traps in which both polaritons and phonons are confined in 0D reso-
nators. We have detected confined polaritons and phonons in traps
with dimensions down to 1μm× 1μm, exhibiting record coherence
times for polariton condensates (ns-long) and for confined phonons
(100’s ns) with no observable reduction with decreasing trap size. We
note, in contrast, that a study of cavity confined phonon dynamics in
etched micropillars38 showed a significant decrease of the mechanical
mode lifetime for pillar diameters below 7μm.

We now turn to architectures of coupled 0D resonators. Experi-
ments demonstrating the formation of polariton bandsweredescribed
in Fig. 2a, b, we concentrate here on the phonon properties. The case
of a molecule-like structure made of two 2μm×2μm traps separated
by 0.5μm is presented in Fig. 3c. The symbols correspond to the
experimental values, and the horizontal lines are the calculated ener-
gies. To selectively excite each statewepositioned the laser spot either
symmetrically between the traps, or on topof oneof them (as shown in
the scheme of Fig. 3c). Two states of anti-bonding and bonding char-
acter arise, split relative to the individual trap by the interaction
energy ± J. The modeled effective phonon potential corresponding to
the double-trap structure is also shown, together with the calculated
spatial shape of the resulting bonding and anti-bonding states. The
measured splitting of the modes, and their ordering (bonding state at
lower energy), are well described by the theory.

Figure 3d summarizes experiments on a series of arrays of square
traps of 2μm and 4μm lateral size, and different inter-trap distance.

Fig. 3 | Experimental study of confined phonons in traps and lattices of traps.
a Presents the measured size dependence of the energy of the polariton ground
confined mode in isolated square traps. b Similar to a but for the phonon ground
state. In both panels the limits of the induced potential, corresponding to planar
etched (ER, barrier) and non-etched (nER,well) regions, are indicatedby thedashed
horizontal lines. The continuous black curve is the effective potential model. The
case for a molecular-like phonon double-trap made of two 2μm×2μm traps
separated by 0.5μm, is illustrated in c. The phonon potential, and the calculated
bonding and anti-bonding-like levels are shown, together with a scheme of the
respective excitation condition at different sites. Symbols correspond to the

experiments, while the solid lines are the theoretical predictions.d Summarizes the
phonon experiments on arrays of traps of 4 and 2μm lateral size, with different
inter-trap separation, and their comparison with the effective potential model.
Again, the energies are given with respect to that of the corresponding single trap
(identified as “2/isolated” and “4/isolated” in this panel). The arrays are labeled as
a/b, with a the trap size, and b the inter-trap separation. The case of an inverted
array of 2μm etched regions separated by 2μm non-etched regions (labeled as
(2/2)−1 is also included. Circular full (square empty) symbols are the experimental
(theoretical) values. Error bars in c and d indicate the standard deviation of ten
spectral measurements.
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These are labeled as a/b, wherea(b) identifies the trap size(separation)
in μm. An “inverted” array is also included, corresponding to etched
squares of 2μm×2μm size, separated by 2μm-wide non-etched
channels [labeled as (2/2)−1]. All frequencies are given with respect to
that of the respective isolated single trap. The measured frequencies
are also compared to those calculated for the Γpoint “s”-like vibrations
(i.e., the lower energy mode at ky =0 in Fig. 2c, d), shown with open
squares in Fig. 3d. Due to the experimental geometry with light inci-
dent within a small cone around the normal direction, the probe pulse
couples with k ~ 0 vibrations. Since, in addition, the spatial distribution
of the Gaussian pulse is uniform at the scale of an individual trap, it is
sensitive to the more symmetric “s”-like ground state. Note that the
observed red-shift of the detected modes with decreasing inter-trap
separation (e.g, from2/2 to 2/0.5) is ameasure of the array phononhalf
band-width (J). For inter-trap separations ≳2μm the Γ point mode is
almost coincident in frequency with that of the individual trap, sig-
naling the flat-band limit. Note also the weaker red-shift of the Γ point
mode of the 4μm×4μm trap lattices, when compared to those con-
structed from 2μm×2μm traps, reflecting the relatively flatter-band
nature of the former. Indeed, as for the polariton bands in Fig. 2a, for
larger traps the on-site energies are smaller and thus red-shifted far-
ther down from thebarrier edge. Consequently, the states become less
delocalized when traps are coupled in an array.

Driven polaromechanical crystals: asynchronous energy locking
Having established the properties of phonon and polariton excitations
in the proposed polaromechanical metamaterials, we turn now to the
main result of our work, i.e., the observation of a locking of the inter-
trap polariton energy detuning at fixed differences that correspond to
integer numbers of the phonon energy. This occurs when the in-plane
polariton dynamics in these polaromechanical metamaterials is
induced by optically driving the traps with micro-focused non-reso-
nant continuous-wave optical excitation, with powers close to and
above the threshold for BEC. A Gaussian shape exciton reservoir is
formed, with a size somewhat larger but of the order of the spot size
(typically ~3−5μm in our experiments). As this problem is presently
understood in the context of synchronization phenomena in polariton
condensates39–43, the related Coulomb repulsion, together with resi-
dual disorder, and the inter-trap coupling J, are expected to determine
the local energies (and thus the dynamics) of polaritons in the traps.
When polariton traps are coupled (large J), the Josephson flow is
responsible for the phase locking between the condensates
(synchronization)39–41. If the potential difference between the traps
(determined by local disorder42,43 and eventually by an inhomoge-
neous Coulomb interaction44, as is the case for our Gaussian shape
excitation) exceeds a certain critical value (limit of small J), the
Josephson flow cannot reach a steady state and the condensates can-
not synchronize. Quite notably, however, as shown in Fig. 1c for an
array of 1.6μm× 1.6μm traps separated by 3.2μm barriers, the
neighbor site polariton condensate ground state energies in our
experiments neither follow a simpleGaussian distribution (aswouldbe
expected for uncoupled polariton condensates) nor share the same
frequency (as would happen if they synchronize), but seem to lock at
detunings that correspond to integer multiples of the mechanical
phonon energy ℏΩm - the asynchronous locking.

Figure 4a–d present two examples from an extensive study per-
formed in an array of 1.6 μm× 1.6μm traps separated by 3.2μm bar-
riers. In these experiments careful micro-positioning and a tight focus
of about 3μm was used to locally excite different traps of the array,
and at different positions between neighbor traps of the array. Two
representative cases are shown: in Fig. 4a, b the excitation is strongly
unbalancedwith the spot positioned almost on top of one of the traps,
while for Fig. 4c, d the excitation is also unbalanced but the spot is
closer to the midpoint between the traps (the complete series of
experiments for varying position between these two traps can be

found in Supplementary Note 7D). In Fig. 4a, c the emission intensity is
presented as a function of energy and excitation power P (the latter in
terms of the condensation threshold power Pth). At low powers, the
ground states of the two traps are observed close to 1.529 eV, while the
first excited states appear at ~1.531 eV (the corresponding spatial ima-
ges are very similar to the one in Fig. 1c). Condensation is signaled by
the narrowing of the modes (note that also the excited states become
macroscopically occupied at higher powers). Figure 4b, d detail the
power dependence of the ground states, referencing the energy to the
one of the pumped trap, and by measuring the inter-trap detuning in
units of the fundamental confined phonon frequency ν0m ∼ 20 GHz. As
expected, for P < Pth the pumped trap blue-shifts due to interaction
between polaritons and with the reservoir. The neighboring trap, not
being directly pumped, shifts less, thus explaining the initial steep
increase indetuning (themagnitude of the latter is directly determined
by theunbalance of the laser spot position). Then forP/Pth > 1, owing to
gain saturation of the pumped trap, the neighbor trap catches up, thus
reducing the detuning. The asynchronous locking shows up in this
figure as a staircase plot with flat sections at integer numbers of nν0m.

We have observed a similar locking behavior also in an array of
smaller 1.3μm× 1.3μm traps separated by 2.6μm barriers, and in
another one of very small and closely packed 1.0μm× 1.0μm traps
separated by 2.0μmbarriers (the corresponding data are presented in
Supplementary Notes 7E, F, respectively). Flat (locked) regions appear
more or less pronounced in different experiments. An alternative way
to evidence the locking is through a histogram counting the frequency
of occurrence of a certain detuning, where flat sections should appear
as peaks. Suchplot is presented in Fig. 4e, for the collection of some 10
different experimental runs performed at different laser positions and
in the three studied trap arrays (details on how this histogram is
obtained can be found in Supplementary Note 7G). Evenly spaced
peaks appear at integer numbers of nν0m (up to n = 7), providing
compelling evidence for the emergence of the asynchronous locking.

A qualitatively different situation can be investigated if now the
laser excitation is more uniform, and this is presented in Fig. 5 again
for the square array of 1.3 μm× 1.3 μm square traps separated by
2.6 μm barriers. In this case the pupil of the microscope objective
(of numerical aperture NA=0.3) was under-filled to obtain a larger
spot size of ~ 5 μm, leading to a still unbalanced but more uniform
excitation of pairs of traps. Figure 5a–d present energy-resolved
spatial images for increasing non-resonant excitation power,
obtained from one row of traps aligned along the crystal direction Y
[-1 -1 0]. At very small powers, three traps characterized by relatively
broad lines are observed approximately at the same ground state
energy (the central trap is at x = 0 μm, the closest neighbors appear
at ~± 4 μm). As the power increases three of the traps blue-shift
(panels a–c), as expected from the Coulomb repulsion with the
exciton reservoir, the left-most remaining farther away in energy.
This asymmetry between left and right traps arises from a slight shift
of the laser spot towards one of the neighbors. As the modes shift
with increasing pump power, a clear line-narrowing and non-linear
increase of intensity signals the transition to the condensation of the
light fluid above Pth. At the highest powers, again the blue-shift
saturates. Note that the energy of the neighbor trap that also blue-
shifts gets rapidly locked with increasing power at a detuning that
corresponds to three times the phonon frequency (see the high-
power spectra displayed in Fig. 5e). Figure 5f–i display the corre-
sponding spatial images from the same array, but now for a row of
traps aligned along the orthogonal crystal direction X [−1 1 0]
(square traps grow with a slight rectangular asymmetry, so that the
coupling J of the ground states along Y is somewhat smaller than
along X33). As evidenced by the high-power spectrum in Fig. 5j, the
neighbor trap detuning locks again at an integer number of the
phonon energy quanta (two in this experiment). The full power
dependence of the detuning between the most intense neighbor
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trap and the central one for the two reported cases is shown in
Fig. 5e (along Y) and f (along X). Quite clearly again an asynchronous
locking is observed. In contrast to the experiments in Fig. 4, how-
ever, with the more uniform excitation the initial overshoot of the
inter-trap detuning is avoided thus facilitating the locking.

The model
The studied arrays span the parameter space from a situation in which
the direct Josephson coupling J between ground states is negligibly
small (the 1.6μm-trap arrays), to another in which the opposite is true
(the 1.0μm-trap array), implying the universality of the observed
locking phenomenon. A realistic description of the 1.6μm× 1.6μm
traps separated by 3.2μm barriers (data displayed in Fig. 1c and 4)
using the Gross-Pitaevskii model shows that the overlap integral
between ground states of neighbor traps is negligible (~10−4), repre-
senting the flat-band limit described above (see the analysis in Sup-
plementaryNote 6A). On the other extreme, the samemodeling for the
1.0μm× 1.0μm traps separated by 2.0μm barriers, shows that the
ground states are close to the top of the barriers with large inter-site
overlap, thus representing the highly connected limit. The 1.3μm×
1.3μm traps separated by 2.6μm barriers fall somewhere in between,
with a finite J that is a fraction of the confined phonon frequency.
Interestingly, even for the case in which the direct J ~ 0, it can be
shown34 via second-order perturbation theory that a phonon-induced
inter-site quadratic optomechanical coupling g2 arises, involving

virtual transitions between the isolated polariton ground states and an
extended p-like excited level at energy ℏΔ above the ground state (see
the scheme in Fig. 1c and the Supplementary Note 6). For small traps,
such as those leading to the locking behavior shown in Figs. 1c and 4,
the involved p-like state at ℏΔ ~ 2.8 meV is indeed shared by both sites.
For this case it follows that g2 = g

2
0=Δ (here g0 is the on-site linear

optomechanical coupling)34,45. The concept of a polaromechanical
metamaterial is, thus, also relevant in this regime, because the polar-
iton inter-trap coupling is fully determined by the on-site opto-
mechanical interactions of the hybrid metamaterial resonant unit-cell.

Our observations are related to the physics of synchroniza-
tion, which is intrinsic to non-linear dissipative dynamical sys-
tems such as the coupled polariton condensates39–43. We extend
the above to the case of a mechanically-modulated time-depen-
dent inter-trap coupling. To model the observed physics we fol-
low Wouters39, and describe two coupled polariton modes and
the corresponding reservoir as:

i_ _ψj = εj +Uj ∣ψj ∣
2 +UR

j nj

� �
ψj � Jψ3�j +

i_
2
ðRnj � γÞψj,

_nj =Pj � γRnj � R∣ψj ∣
2nj:

ð1Þ

Here εj is the bare energy of the j-mode (j = 1, 2), Uj and UR
j are the

polariton-polariton and polariton-reservoir interaction couplings, J
describes a hopping term between modes, γ the polariton decay rate

a

c d

e
b

f g

Fig. 4 | Polaromechanics: asynchronous locking of weakly coupled traps.
a, cDisplay the excitation power dependence of the polariton emission for an array
of square traps of 1.6μm lateral size separated by 3.2μm-etched regions, and for
two different spot positions (indicated at the bottom-right of each figure). The
detuning between the ground states of the twoneighbor traps is presented inb and
d. In these panels the more pumped trap defines the zero of energy, and the
detuning is given in units of ν0m ∼ 20 GHz, the fundamental cavity phononmode. A
histogram on the frequency of occurrence of the different detunings, obtained
from an extensive series of experiments in arrays of 1, 1.3, and 1.6μm square traps
separated by 2, 2.6, and 3.2μmbarriers, respectively, is presented in e. f Shows the

dressed detuning Δeω, obtained numerically using the model described in the
Supplementary Note 8B, with two phonons of frequencies Ω0

m=2π = 20GHz and
Ω1

m=2π =60GHz, as a function of the bare detuning Δω and the reservoir-polariton
interaction URn0. Regions where frequency locking occurs (at nΩ0

m) are shown in
red (for even values of n) and in green (odd values ofn). The blue line highlights the
behavior of the detuning for a given value of the interaction URn0 =0:8_Ω

0
m (to be

comparedwithb andd).gPresents a histogramofdresseddetuningobtainedusing
a self-consistentmodel for the phonons (see text and the Supplementary Note 8C).
Note the emergence of peaks at integer values of n, as in the experimental histo-
gram in e.
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and R the stimulated loading from the reservoir. The dynamic of the
latter is controlled by the pump power Pj, the excitonic decay rate γR
and the stimulated decay to the condensate.

While in ref. 39 J was considered a constant, in our systems all
cavity parameters are intertwined with well-defined phononmodes so
we expect J to be modulated by the phonon field, that is, J(xn) with xn
the generalized coordinate of the corresponding phonon mode. This

naturally leads to a time-dependent coupling when phonon oscilla-
tions are present. When the traps are relatively close, single phonon
process might occur and hence a linear coupling is expected. On the
contrary, when the traps are far apart, the second order process dis-
cussed above enters into play and a quadratic coupling is obtained.
Before considering the time dependence, let us first revisit the static
case.We then seek for a solution of the form39:ψj =

ffiffiffiffiffi
ρj

p
e�iωte± iθ=2, that

a b c d

i j k l

e

f

g

h

a

b c d

i

j k l

Fig. 5 | Polaromechanics: asynchronous locking in the finite J limit. Excitation
power dependence of the polariton emission spectra for an array of square traps of
1.3μm lateral size separated by 2.6μm- etched regions. Examples of energy-
resolved spatial images for some selected pump powers are shown in a–d for a row
of traps along the crystal direction Y [-1 -1 0] (see the AFM image in Fig. 1a). The
spectrum corresponding to high-powers is displayed in g (the vertical dashed line
indicates an integer number of phonon quanta). A similar sequence of spatial

images and high-power spectrum corresponding to a row of traps along the
orthogonal direction X [−1 1 0], are shown in i–l. The spectrum corresponding to
high-powers (l) is displayed in h. e, f summarize the frequency detuning between
the pumped and a neighbor trap as a function of pumppower (given in terms of Pth,
the condensation threshold power), for the two studied cases. The symbols cor-
responding to the shown spatial images are differentiated with orange color. The
error bars indicate the standard deviation of ten spectral measurements.
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is, two states with a synchronized identical frequency ω (here the +
sign corresponds to j = 1) and _nj =0. After some algebra, and taking
R∣ψj∣2 > > γR, one finds that synchronization occur whenever there
is a solution for θ that satisfies Δ�εðθÞ= J cosθðαðθÞ�1 � αðθÞÞ
with: Δ�εðθÞ= �ε2ðθÞ � �ε1ðθÞ,�εjðθÞ= εj +UR

j n0 ξ
0
j =ξ jðθÞ+Ujρ0 ξ jðθÞ,αðθÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2ðθÞ=ξ1ðθÞ
p

, and we have introduced the dimensionless parameters
so that ξj = ρj/ρ0, ρ0 = γR/R, and n0 = γ/R—the equations for ξj(θ) are
given in the SupplementaryNote 8A.While a solution exists even in the
absence of interactions (when ε2 − ε1 ≤ 2J2/γ), it turns out that the pre-
sence of Uj and UR

j strongly favors the appearance of a synchronized
phase (see e.g., Fig. 1 of ref. 39).

We now consider a coupling that is quadratic in the phonon dis-
placement. Hence JðtÞ= Jmðei2Ωmt + e�i2Ωmt +2Þ with Jm = g2nb. This fol-
lows from assuming the presence of a coherent population of nb
phonons, i.e., bðtÞ+bðtÞ* = 2 ffiffiffiffiffiffi

nb
p

cosðΩmtÞ, and an optomechanical
interaction having a hopping term between the two polariton modes
with a prefactor containing the second-order power of the phonon

displacement, namely, �_g2ðb̂+ b̂
yÞ

2
(see Supplementary Note 8). In

the rotating wave approximation (RWA), assuming ε1 ~ ε2 + 2ℏΩm,
keeping only the resonant terms, we have

i_ _ψ1 = �ε1ψ1 � Jme
�i2Ωmtψ2 +

i_
2
ðRn1 � γÞψ1,

i_ _ψ2 = �ε2ψ2 � Jme
i2Ωmtψ1 +

i_
2
ðRn2 � γÞψ2,

ð2Þ

with �εj = εj +Uj ∣ψj ∣
2 +UR

j nj . By comparison with Eq. (1) above it follows
that now solutions can be found proposing ψ1 =

ffiffiffiffiffi
ρ1

p
e�iωteiθ=2 and

ψ2 =
ffiffiffiffiffi
ρ2

p
e�iðω�2ΩmÞte�iθ=2, i.e. two condensates with frequencies locked

at a fixed detuning given by 2Ωm
46. The resulting synchronization

conditions are the same as in the static case except that now
ε2→ ε2 + 2ℏΩm. Consequently, all the conclusions derived for syn-
chronized polariton condensates also apply here, except that syn-
chronization is now represented by the mechanically induced
asynchronous locking of the polariton condensate energies. This
simple analysis in the RWA captures the essence of the full solution.
This is shown in Fig. 4f where we plot, for the complete model beyond
the RWA, the frequency detuning between the two polariton modes
Δeω [obtained by looking at themaximumpeak ofψ1ðeωÞ andψ2ðeωÞ] as a
function of the bare detuning, Δω = (ε2 − ε1)/ℏ, and the interaction
parameter URn0. Here, we included two phonon modes of frequencies
Ωmm0 and 3Ω0

m (see SupplementaryNote 8B for details). In the absence
of interactions with the exciton reservoir (i.e., for UR

n0=0), clear
locking regions (shown in red) appear at even integer multiples ofΩ0

m,
as expected from the RWA. For increasing values of URn0 odd integer
multiples, as well as smaller fractional locking regions, also appear due
to non-linear interaction effects (green regions).

So far, we have assumed that the traps are exposed to an exter-
nally generated phonon field. In reality, however, the phonon field is
excited as part of the coherent locking process. Thus, a full self-
consistent treatment requires to also solve, simultaneously to the
polariton Eq. (1), the equation of motion for the mechanical displace-
ment xm (see Supplementary Note 8C). In ref. 34 it was shown that this
model, even without interactions, leads upon continuous optical
excitation to a parametric instability (similar to mechanical self-oscil-
lation) that originates a large amplitude of the phonon field for certain
(narrow) regions of detunings near 2Ω0

m and 4Ω0
m. However, ourmodel

is an oversimplification of a very complex system, where different
mechanism could in principle lead to some large fluctuation of the
phonon field. In fact, the experimental results of ref. 31 suggest that
this is the case as one observed intense phonon-induced PL satellite
peaks. The latter is an indication of the presence of a large number of
phonons in the system. Taking this into account, we solve the full
equation self-consistently but introducing a large initial condition for
xm (specifically, xm ~Ωm/gm). This, together with the inclusion of the

polariton non-linearities, leads to a much wider instabilities with
asynchronous locking at all multiples ofΩ0

m, as shown in Fig. 4g, where
we present a histogram of Δeω as done with the experimental data.

Discussion
The polariton trap arrays studied here are of the same kind as the one
investigated in ref. 31 in which polariton-driven phonon lasing was
reported. The condition for the observation of such mechanical self-
oscillation is that two polariton states have to satisfy the proper
resonance condition, i.e., to be detuned by an integer number of
phonon quanta, n > 1. The evidence for such phonon lasing was the
observation of clear and intense sidebands separated by ℏΩm from the
emission of both ground and excited states of the traps. It follows from
the extensive experiments reported here (see Supplementary Note 7)
that phonon self-excitation does not necessarily lead to the appear-
ance of sidebands. Sometimes we do indeed observe very clear and
strong optomechanically-induced sidebands, in other cases we find
that the levels asynchronously lock as reported here but there are no
clear sidebands, and sometimes the two effects happen together
(asynchronous locking plus weaker but discernible sidebands). Nota-
bly, from our systematical studies we find that the locking without
intense sidebands is more frequent than the case of large amplitude
sidebands. It seems also to be the case that a larger excitonic com-
ponent favors the appearance of the sidebands. For the model in
Eq. (2), inclusion in the rotating wave approximation of only the
resonant terms leads to locking without sidebands. Consideration of
the counter-rotating term is accompanied in the simulated spectra by
sidebands. Moreover, it turns out that mechanical coherent oscilla-
tions of amplitude of just a few percent of the phonon energy are
enough to establish the asynchronous locking, but would lead to very
weak and, thus, hardly observable sidebands (see the Supplementary
Note 8). It is our understanding that both, the emergence of sidebands
and the asynchronous locking, are signatures of the existence of a
mechanical coherent oscillation.

In summary, we have demonstrated a concept for polar-
omechanicalmetamaterials based onplanar arrays of intra-cavity traps
that confine, co-localize, and efficiently couple vibrations and polar-
iton light fluids. The building blocks aremicron-size high-Q resonators
for polaritons and sound, that canbe arranged andcoupled in arbitrary
tailored architectures. Polariton condensates ensure very long coher-
ence times, exceeding the mechanical oscillation period, and lead
through an exciton-mediated resonant interaction to hugely enhanced
optomechanical couplings. Non-resonant continuous wave optical
excitation results in mechanical self-oscillation and, through it, in the
harmonic time modulation of the metamaterial parameters, with
remarkable consequences for the coupled polariton and phonon
dynamics. Non-linear interactions in this optomechanics setting con-
tribute both to enhancing the optomechanical coupling,29,47 and to
stabilize the locking. These results open the path for ultrafast GHz
coherent mechanical control of light fluids in quantum technologies.
Some examples are the use of phonon driving to induce coherent
resonant inter-state transitions, for Floquet state engineering and
Landau-Zener-Stückelberg state preparation48, and for the opto-
mechanical induction of non-Hermitian chiral polaritonics49.

Methods
Photoluminescence spectroscopy
For the polariton PL experiments in the traps at 5-10 K, an external
cavity-stabilized cw Spectra Physics Ti-SapphireMatisse laser was used
for the non-resonant excitation at ~ 760 nm. The wavevector-
dependent energy dispersions in Fig. 2 were obtained by exciting the
trap-arrays with a large ~ 50μm laser spot, using small optical powers
well below the condensation threshold. The wavevector dependence
of the spectra was determined with standardmethods based on angle-
resolved light collection. The optical driving of the condensates to
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observe the reported asynchronous locking phenomena (Fig. 1c and 4)
was performed through focused excitation purposely positioned in
one of the central traps of the array using microcope optics to reduce
the spot size down to ~ 3μm. The same microscope objective
(NA =0.3) was used to collect the emitted light. In this latter case a
triple additive Jobin-Yvon T64000 spectrometer was used to obtain
the required high spectral resolution (~5 GHz−1–20μeV).

Pump and probe phonon spectroscopy
A ps-laser pulse is used to resonantly excite the optical cavity mode. A
rapid change of index of refraction is induced by the pump through
carrier excitation. In addition to this electronic response, the pumppulse
launches coherent phonons by a displacive mechanism50,51. These
mechanical oscillations modulate the cavity energy through two
mechanisms, interface displacement and photoelastic interaction, which
are detected using a delayed probe pulse that samples the cavity’s
reflectivity. A typical spectrumdisplays characteristic lines corresponding
to the ~ 20GHz fundamental confined breathing mode of the structures,
and weaker contributions at the higher energy overtones at ~60GHz
and ~100GHz. More details are provided in Supplementary Note 2.

Effective potential phonon modeling
We assume the non-etched effective quadratic dispersion relation aris-
ing when kz is quantized, i.e., Eðkx ,kyÞ= Ecav,ne + _

2ðk2
x + k

2
yÞ=ð2meff Þ, with

homogenous in-plane speed of sound vs defining an effective mass
meff = Ecav,ne=v

2
s . This is incorporated in a 2DSchroedinger-like equation,

� _2

2meff
∇2 + Ecav,ne +Veðx,yÞ

" #
Ψðx,yÞ= EΨðx,yÞ, ð3Þ

that adds the potential Ve(x, y) to effectively describe the trapping
induced by the etching. The full height of the potential in an etched
region is Vmax = ðEcav,e � Ecav,neÞ, with Ecav,e the energy of the phonon
mode in a large etched region. Each square trap i, centered in (xi, yi)
contributes to Ve(x, y) the potential Viðx,yÞ=Vmax½1� viðx � xiÞviðy�
yiÞ� where the trap profile along each direction is given by

viðαÞ= 1
2 erfc α�wi

2
0:55δi

� �
� erfc α +

wi
2

0:55δi

� �� �
with wi the trap width and δi the

10% to 90% transition length. The eigenvalue problem is solved using
finite differences by the customary approach of imposing periodic
conditions fulfilling the Bloch theorem. For the width of the nER to ER
transition regions, we take 0.35 μm, consistent with both themodeling
of the polariton properties and STMstudies in similar structures.More
details and examples of the calculated phonon dispersion in trap
arrays can be found in Supplementary Note 4.

Estimation of the optomechanical coupling g0
Electrically generated mechanical waves have been used in indi-
vidual similar traps to obtain gom/2π = ΔEp/Δu ~ 50 THz/nm28

(change of polariton energy ΔEp per unit displacement Δu). This
parameter is related to the on-site linear optomechanical cou-
pling by g0 = gomxzpf (xzpf is the displacement due to zero point
fluctuations)18. The effective mass associated to the oscillator can
be estimated as meff ~ 0.5 pg for a structure of 2 μm lateral size
(see the Supplementary Note 5) and from this we obtain
xzpf ~ 1 fm. It follows that g0/2π ~ 50MHz, quite a huge value when
compared with other reported optomechanical systems18. By
involving the deformation potential interaction associated to the
exciton component of polaritons, g0/2π is thus amplified by three
orders of magnitude from the ~ 50kHz calculated for purely
optical radiation pressure interaction52. To enhance cavity opto-
mechanical phenomena materials with electronic resonances are
usually avoided due to the related absorption that reduces the
optical Q-factor18. Counter intuitively, the opposite occurs in our

polaromechanical crystals. Indeed, the measured BEC coherence
time is ~1 − 2 ns, implying Q ~ 7 × 105, while the bare cavity photon
lifetime is only ~10 ps. This means that, by involving the exciton-
mediated optomechanical interaction, g0 is amplified by three
orders of magnitude, while at the same time because the system
is in the (polariton) strong coupling regime the Q-factor is
enhanced by a factor ~100.

Data availability
The source data that support the findings of this study are available
from the corresponding author upon request. All these data are
directly shown in the corresponding figures without further
processing.
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