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Compact optical convolution processing
unit based on multimode interference

XiangyanMeng 1,2,3,9, Guojie Zhang1,2,3,9, Nuannuan Shi 1,2,3 , Guangyi Li1,2,3,
José Azaña 4, José Capmany 5, Jianping Yao6,7, Yichen Shen8, Wei Li1,2,3,
Ninghua Zhu1,2,3 & Ming Li 1,2,3

Convolutional neural networks are an important category of deep learning,
currently facing the limitations of electrical frequency and memory access
time inmassive data processing. Optical computing has been demonstrated to
enable significant improvements in terms of processing speeds and energy
efficiency. However, most present optical computing schemes are hardly
scalable since the number of optical elements typically increases quadratically
with the computational matrix size. Here, a compact on-chip optical con-
volutional processing unit is fabricated on a low-loss silicon nitride platform to
demonstrate its capability for large-scale integration. Three 2 × 2 correlated
real-valued kernels are made of two multimode interference cells and four
phase shifters to perform parallel convolution operations. Although the con-
volution kernels are interrelated, ten-class classification of handwritten digits
from the MNIST database is experimentally demonstrated. The linear scal-
ability of the proposed design with respect to computational size translates
into a solid potential for large-scale integration.

Inspired by the working mechanisms in biological visual nervous sys-
tems, convolutional neural networks (CNNs) have become a powerful
category of artificial neural networks1. CNNs are commonly used in
image recognition to greatly reduce the network complexity and
conduct high-precision predictions, with wide applications in object
classification, computer vision, real-time translation, and other
areas2–5. As an increasing number of complex scenarios continue to
emerge, including auto-driving and artificial intelligence services on
the cloud6,7, it is strongly desired to increase the processing speed of
the underlying neuromorphic hardware while reducing its computing
energy consumption. However, in present schemes, mainly based
upon the von Neumann computing paradigm, there is an inherent

trade-off between the data exchange speed and the energy con-
sumption; this is mainly because in these schemes, the memory and
process unit are separated8–11.

Optical neural networks (ONNs) are regarded as promising can-
didates for the next generation of neuromorphic hardwareprocessors.
Photonics devices have low interconnect loss and can overcome the
bandwidth bottleneck of their electrical counterparts to achieve
ultrahigh computing bandwidth up to 10THz12–17. Additionally, the
light transmission in the ONN simultaneously implements data pro-
cessing, which effectively avoids data tidal transmission in the von
Neumann computing paradigm. In recent years, ONNs have attracted
much interest in the realization of high-speed, large-scale and high-
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parallel optical neuromorphic hardware, with demonstrations includ-
ing the use of light diffraction18–24, light interference25–30, light
scattering31,32 and time-wavelength multiplexing16,33–39. The reported
ONNs have been comparable to the state-of-the-art digital processors
in terms of efficiency but have revealed a huge leap in computing
density40,41. From the calculation results, ONN has the potential to
improve at least two orders of magnitude in terms of energy con-
sumption and computing density42. However, most of the reported
works point to a quadratic increase in the component count, chip size
and power consumption as the computational matrix size is scaled
up43, which largely limits the integration potential of the resulting
optical computing scheme while significantly increasing the com-
plexity of the manipulation. The linearly scalable compact integrated
diffractive optical network (IDNN) demonstrated in ref. 24. still
requires 2N units to implement the input dimension of N.

In this paper, we propose a compact on-chip incoherent optical
convolution processing unit (OCPU) integrated on a low-loss silicon
nitride (SiN) platform to extract various featuremaps in a fully parallel
fashion. Leveraging on the combination of wavelength division mul-
tiplexing (WDM) technology and multimode interference coupling,
the OCPU, includes two 4 × 4 multimode interference (MMI) cells and
four phase shifters (PSs) as the minimum element count, can simul-
taneously support three 2 × 2 correlated real-valued kernels. Hence,
three groups of convolution computing operations are performed in
the OCPU in a parallel manner. The proposed unit is also dynamically
reconfigurable only by tuning four PSs. Although the kernels are
interrelated, the OCPU can work as a specific convolutional layer. The
front-end SiN-based OCPU and an electrical fully connected layer
jointly form a CNN, which is utilized to perform a ten-class classifica-
tion operation from the Modified National Institute of Standards and
Technology (MNIST)44 handwritten digits with an accuracy of 92.17%.
Moreover, the components in the proposed OCPU grow linearly (N
units for input dimension of N) with the size of the calculated matrix,

providing solid potential for on-chip realization of OCPUs with
increased computation capabilities, higher processing speed and
lower power consumption toward the next generation of artificial
intelligence platforms.

Results
Principle
The structure diagram of the designedOCPU is shown in Fig. 1a, which
contains two 4 × 4MMI cells and four PSs. The input data are encoded
into four incoherent light waves and then sent into the OCPU to per-
form multiply accumulated (MAC) operations. The OCPU, as parallel
multiple kernels, can simultaneously implement several groups of
convolution operations. Each output port is regarded as an indepen-
dent kernel, and the number of elements for each kernel is equal to
that of the input ports, which indicates that the computing capability
increases with the number of input ports. In addition, the kernel is
dynamically reconfigurable by changing the current of the PSs via the
thermo-optic effect.

As shown in Fig. 1a, the input vector I is simultaneouslymodulated
on the amplitude of four incoherent light waves with the same initial
amplitudes via electro-optical modulation. The complex-valued
transfer matrices M and Φ for an MMI cell and PS array, respectively,
are written as:
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where the element muv u= 1∼4,v= 1∼4ð Þ in M means the response of
theMMI linking the output portu and the input port v, and each rowof
Φ is the additional phase of a PS. After transmission in the OCPU and
square-law detection at the photodetectors (PDs), the full transfer

Fig. 1 | Convolution operation based on a compact optical convolutional pro-
cessing unit (OCPU). a Structure diagram of OCPU. b The OCPU simultaneously
performs threedifferentgroups of convolutional operations using incoherent light.

The unit includes three functional parts: (1) input image slices to 27 sub-images; (2)
flatten 27 sub-images into one-dimensional (1D) vectors; and (3) implement the
convolutional operation with the OCPU.
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matrix of OCPU can be expressed as:

R = M × ðΦ�MÞð Þ � M × ðΦ�MÞð Þ=
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where the symbol� is the Hadamard product45 (e.g., multiplication of
the elements in the corresponding positions between matrix M and
matrix Φ) and the symbol × represents the multiplication of two
matrices.

When a 4 × 1 vector I is input to the OCPU, vector-matrix multi-
plication (VMM) is conducted in the OCPU, and the operation result is
inferred as O=R× I, where each output of the OCPU is the weighted
summation of input vector I, which can be regarded as a convolutional
result. Therefore, each row of R can be used as a convolution kernel
without negative values. Negative values are also achieved by setting
any one vector as a ground line and subtracting it from the remaining
three vectors. Taking the last vector as a ground line, for example,
three kernels Ad ∼Cd with negative values are rewritten as:
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From Eqs. (1) and (3), the dynamically reconfigurable kernelmatrix
is implemented by tuning the PSs using the thermo-optic effect. This is
based on the change that is induced on the refractive index of the
waveguides with the driving current employed in the microheaters of
the PSs, allowing light waves to acquire a desired extra phase. In Eq. (2),
ruv changes with the phase of the optical waveform; therefore, Ad , Bd ,
and Cd are subsequently changed with the phase to reconstruct three
new kernels (more details can be seen in Supplementary Note 1).

The convolution process for feature map extraction is shown in
Fig. 1b, which includes a serial data one-dimensional (1D) flattening
operation, the optical kernel core representation and the convolution
operation with the OCPU. First, the procedure of how to compress a
two-dimensional (2D) imagematrix into a 1D vector is shown in Fig. 1b.
Taking a “7” digital imagewith 28× 28 pixels as an example, the 28 × 28
matrix is totally divided into 27 sub-matrix slices along the longitudinal
axis, with 2 × 28 elements for each sub-image. Then, the 27 sub-images
are flattened by column into sub-vectors and form a 1 × 1512 vector
X = ½ x1 x29 x2 x30 � � � x756 x784 � by means of connecting the
sub-vectors head-to-tail.

The sequential data X simultaneously modulate the amplitude of
incoherent light waves with wavelengths of λ1 ∼ λ4 via the
Mach–Zehnder modulator (MZM) and generate four replicas of
encoded data X . Then, the optical waveforms are routed into four
parallel channels with one wavelength in each and undergo a time
delay of Δτ between adjacent channels, equal to the reciprocal of the
baud rate of the modulation signal f b (i.e., Δτ = 1

f b
). Four temporal

waveforms are reallocated and recombined at the output port of the
OCPU. The orthogonality between each channel is guaranteed by the
incoherent beam, such that different input waveforms propagate
individually in theOCPU. Subsequently, the PD implements square-law
detection and sums the power of the four incoherent wavelengths (the
relationship between the bandwidth of the PD and the wavelength
interval of incoherent wavelengths is further discussed in

Supplementary Note 6). The computing result at each time slot of each
output port is the convolution between the adjacent four elements in
vector X and the 2 × 2 kernel matrix Ad , Bd , or Cd .

Some insignificant values are contained in the output of OCPU,
which need to be eliminated to achieve feature extraction following
the principle of convolution operation. The rule to retain the effective
elements in the convolution results is that the even-numbered values
except the first one are significant for each sub-vector. Hence, for
thefirst sub-vector, the 27 effective values in thefirst rowof the feature
matrix are y4 y6 � � � y56

� �
. Finally, 27 rows of effective values are

rearranged in a column format to form the 27 × 27 featurematrixwith a
kernel sliding window of 1 (more details can be seen in Supplemen-
tary Note 2).

The OCPU is able to simultaneously perform a multi-kernel par-
allel convolution operation. From Fig. 1b, each output port works as a
1 × 4 weight vector or a 2 × 2 kernel, and 4 MAC operations are per-
formed at each time slot. Therefore, the computing speed is equal to
4f b MAC operations per second for each output port. The total com-
puting speed of the OCPU with three parallel kernels is thereby
3 ×4f b = 12f b MACoperations per second. In general, for anOCPUwith
n input/output ports, the total computing speed reaches n n� 1ð Þf b
MAC operations per second. In summary, the computing speed of
MAC operations for one port is linearly proportional to the number of
elements in a kernel, and the overall computing capability of OCPU
increases quadratically with the parallel scale. It is worth noting that
there is a certain correlation of the formed n� 1 kernels in the OCPU.
The reconfiguration of one kernel inevitably results in linkage to other
kernels (this is discussed in more detail in Supplementary Note 11).

The OCPU chip
TheSiN-basedOCPU, as the parallel convolution kernel, is fabricated at
a CMOS compatible platform using the low-pressure chemical vapor
deposition and Damascus process to realize the low-loss and high-
confinement SiNwaveguides46. Themicrographs of the chip are shown
in Fig. 2a–c, where Fig. 2a is themicroscope image of the whole OCPU,
Fig. 2b shows the microscope image of the 4 × 4 MMI cell, which fea-
tures a footprint of 275 µm× 15 µm and an insertion loss of ~1 dB, and
Fig. 2c shows the phase shift region based on the thermo-optic effect.
The transition waveguides between the multimode regions and the
straight waveguide are tapers with a linearly varying width from 2 to
1 µm to reduce the scattering loss from the sharp edges. The PSs
between the two MMI cells are covered with aluminum microheaters
400 µm in length, 1.5 µm in width and 0.4 µm in height. Spot size
converters at input/output facets are coupled with standard single
mode fibers with an edge coupling loss of ~1.5 dB per port. Figure 2d
shows the packaged OCPU.

Experiment
Here, we experimentally demonstrate the optical convolution opera-
tion to extract the feature maps of handwritten digits with the pro-
posed layout shown in Fig. 3. Four wavelength-dependent light waves
are generated from the laser array with wavelengths of 1549.32,
1550.12, 1550.92, and 1551.72 nm and then multiplexed in an arrayed
waveguide grating (AWG) to simultaneously achieve electro-optical
conversion in a Mach–Zehnder modulator (MZM). Here, the data rate
from the waveform generator is set to 16.60 Gbaud/s (each data point
is sampled 3 times with a sampling rate of 49.8 GSa/s), corresponding
to a fixed delay of 1� 16:60G≈60:24 ps. Afterward, the temporal
waveforms underwent wavelength-division demultiplexing and time
delay with three optical tunable delay lines (OTDLs) to reach a one-bit
time delay between adjacent channels. Four semiconductor optical
amplifiers (SOAs) are used to compensate for the loss along each
channel. After summing the replicas from theoutput port of theOCPU,
thepowersof the incoherent beamare converted into electrical signals
by PDs and recorded by an oscilloscope (OSC).

Article https://doi.org/10.1038/s41467-023-38786-x

Nature Communications |         (2023) 14:3000 3



The computing performance of the OCPU is first verified by
extracting the feature map of handwritten digits with 28 × 28 pixels
and 8-bit resolution from the MNIST handwritten digits database.
Figure 4 shows the convolution process of digit “7” with the kernel

of
1 0
0 1

� �
. The image is first flattened into a 1 × 1512 (i.e.,

1512 = ð2× 28Þ×27) vector, where (2 × 28) represents the number of
elements for each sub-matrix and 27 is the number of submatrices.
Then, the 1 × 1512 vector is encoded into a serial electrical waveform
from the waveform generator and fed into the MZM to modulate the
intensity of the light wave at a data rate of 16.60Gbaud/s. Therefore,
the convolution timewith a non-negative kernel is 1512� 16:60≈91:08
ns for one image, that is, 1� 91:08ns≈ 10:98million imagesper second
(multiple acquisitions are needed to reduce noise when kernels con-
tain negative values). Figure 4a is the input image of digit “7” from the
MNIST database, and Fig. 4b shows the ideal waveformof the flattened
digit “7” (orange line) and the experimental one (blue line) from the
waveform generator. Figure 4d shows the ideal and experimental
convolution results, and the feature image in Fig. 4f is recovered from
significant values in Fig. 4d. Figure 4c, e shows magnified images of
Fig. 4b, d at 23.43–26.95 ns, respectively.

The kernel of the OCPU is dynamically reconfigured by tuning the
driving current of the PSs. In the experiment, kernels without negative
values are acquired in a single output port for a single acquisition, and
kernels involving both non-negative and negative values are achieved
by subtracting the reference port from other ports and averaging 13
acquisitions to reduce noise. Figure 5 shows the original images
(Fig. 5a) of five randomly selectedMNIST digit images (“9”, “6”, “0”, “5”
and “4”) as well as feature maps obtained with the digital computer
(Fig. 5b) and the OCPU (Fig. 5c). Comparing the simulation results in
the computer with the experimental results of the OCPU, the feature
images extracted with the proposed OCPU fit well with the simulated
results, with an average root mean square error (RMSE) of only 0.0617

among the 25 feature images shown in Fig. 5. The bit precision of MAC
operations with the OCPU is also calibrated, and the standard devia-
tion is −0.0298, resulting in a bit precision of 5-bit (more details about
RMSE and bit precision can be seen in Supplementary Note 4).

Here, the sliding speed of the convolution window is equal to the
encoded band rate of 16.60Gbaud/s. Each output symbol is the result of
4 (the length of each kernel) MAC, and the computing speed is
4 × 16:60G=66:40 giga-MACoperations per second for each kernel. For
3 real-value correlated kernels parallel accelerated computation in the
OCPU, the total computing speed is up to 66:40×3= 199:20 giga-MAC
operations per second. In the case of using four non-negative-value
correlated kernels, the computing speed amounts to 66:40×4= 265:60
giga-MAC operations per second. In this work, the 28× 28 pixel image is
convolved with a 2 × 2 kernel to achieve a 27 × 27 pixel feature map, so
theeffective computing speed is 729� 1512 × 265:60= 128:06 giga-MAC
operations per second, where the convolution results of each image are
comprised of 1512 sample points and 729 significant values.

In Fig. 6a, we use the OCPU incorporating an electronic fully
connected layer and a ReLU nonlinear activation function47 in a digital
computer to form a CNN for the ten-class classification of “0 ~ 9”
handwritten digit images. Two kernels are utilized in the optical con-
volution layer, generating two 1 × 729 feature maps. After being acti-
vated using the ReLU nonlinear function, two 1 × 729 feature maps are
reshaped into a 1 × 1458 vector and then fed to the fully connected
layer to implement the recognition task. Here, for the ten-class clas-
sification, the weight matrix of the fully connected layer with a size of
1458× 10 is trained offline to converge on the minimum cross entropy
loss using the backpropagation algorithm48 (stochastic gradient des-
cent algorithm49,50). Therefore, ten output neurons are the result of
matrix multiplication between the 1 × 1458 vector and weight matrix
1458× 10, where the largest value of the 1 × 10 output represents the
predicted category.

We experimentally demonstrate ten-class classification of 70,000
images from the MNIST dataset with 60,000 for training and 10,000
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Fig. 3 | Experimental setupof convolution computingwith theOCPU. LD laser diode, AWGarrayedwaveguide grating, PCpolarization controller, OTDLoptical tunable
delay line, SOA semiconductor optical amplifier, PD photodetector, OSC oscilloscope.

80 um

60 um

150 um

(b)

(c)

(d)

(a)

Fig. 2 | Image of the convolution processor. aMicroscope image of the OCPU chip with two 4 × 4MMI cells and four PSs. bMicroscope image of theMMI. cMicroscope
image of the phase shift region. d The packaged chip.
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Fig. 5 | Feature imageswith reconfigurable kernels. aThe input handwrittendigit images of “9”, “6”, “0”, “5”, and “4”.b Featuremapswith the digital computer. c Feature
mapswith theOCPU chip. The numbersmarked on each picture are the rootmean square error (RMSE) between featuremaps obtainedwith the computer and theOCPU.
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Fig. 4 | Experimental demonstration of digital “7”. a The input image of digit “7”
from the MNIST database. b Sequential ideal (orange line) and experimental (blue
line) electronicwaveforms.d Ideal and experimental convolution outputwaveform

with the kernel of
1 0
0 1

� �
. c, e are magnifications of (b) and (d) at 23.43–26.95 ns,

respectively. f The recovered feature image.
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for testing. The confusion matrix for 10,000 test images (Fig. 6b) and
the variation in classification accuracy (Fig. 6c) show an accuracy of
92.17% for the experiment versus 94.51% for the theory after 350
epochs. The deviation from the theoretical accuracy of 2.34% is mainly
caused by the limited bit precision (the relationship between the bit
precision and the recognition accuracy can be seen in Supplementary
Note 9), which is caused by numerous factors, including the electrical
and optical noise and instability of some optical devices (polarization
state jitter, temperature drift). In addition, to work in the linear
amplification region, low optical power is input to the low gain and
high noise figure SOA, which makes it difficult to avoid introducing
noise and leads to a low signal noise ratio at the PD. Moreover, digital
domain processes such as analog-to-digital conversion and subtrac-
tion further raise the noise and degrade the signal-to-noise ratio. The
average operation used in the experiment reduces the noise to a cer-
tain extent but at the cost of prolonging the calculation time. Balanced
detection is an alternative scheme to dispel noise and improve bit
precision without electrical average processing (an analysis of the
further improvement in accuracy can be seen in Supplementary
Note 10).

Table 1 presents a performance comparison of the representative
computing framework, including the optical solutions (such as the

Mach‒Zehnder interferometer (MZI)25, microring resonator (MRR)33,51,
integrated diffractive optical network (IDNN)24, phase changed mate-
rial (PCM)16 and others35,52–54) and analog electrical solution55. The
programmable units in refs. 16,24,25,33,51,53,54. show quadratic rela-
tionship with the computational matrix size scaling, whereas the
optical scheme has a linear relationship24 with a slope of 2. The pro-
grammable units in the OCPU grow linearly with the kernel size, and
half of the components are purely needed to perform the equivalent
computational scale in comparison to the linear relationship optical
scheme24. Owing to the large reduction in the basic unit, the energy
efficiency is calculated as 4.84 pJ/MAC, and the computational density
is calculated as 12.74 TMACs/s/mm2 (more details can be seen in
Supplementary Note 8). The OCPU offers a solution of high compu-
tational density at the slight cost of recognition accuracy. The strength
of linear scalability will be greatly demonstrated with the figure of
merit of computational density to a larger scale. Drawing the 4 × 4 chip
design thought, the Si-based 9 × 9 chip size is estimated to be
0.0166mm2, and the energy efficiency is expected to be 0.95 pJ/MAC.
Consequently, the computed density is calculated to be 1.19 PMACs/s/
mm2, which is a two-order-of-magnitude improvement over other
optical solutions. (More designed details about the Si-based 9 × 9
OCPU can be seen in Supplementary Notes 7, 8 and 12).

96.22 0.00 0.51 0.31 0.10 1.12 1.02 0.10 0.61 0.00 

0.00 97.36 0.35 0.26 0.09 0.18 0.53 0.09 1.15 0.00 

0.68 0.78 91.28 1.55 1.26 0.10 1.07 0.97 1.84 0.48 

0.50 0.00 2.28 89.31 0.20 3.96 0.20 1.49 1.39 0.69 

0.31 0.20 0.51 0.31 92.16 0.20 0.81 0.41 1.12 3.97 

1.01 0.78 0.45 3.36 0.67 88.90 1.57 0.56 2.02 0.67 

1.25 0.42 0.94 0.21 0.94 1.36 94.57 0.00 0.31 0.00 

0.10 0.88 2.72 0.88 0.29 0.00 0.00 91.15 0.19 3.79 

1.03 0.51 0.92 1.44 1.33 1.23 1.23 0.92 89.94 1.44 

0.59 0.59 0.10 1.19 3.47 0.59 0.10 1.88 1.49 89.99 

2

1

8

9

0

Electrical Fully 
Connected Layer

Optical Convolution Layer

Flatten

(a)

Input Image
(28×28 pixel)

1457

1458

1456

1455

0 1 2 3 4 5 6 7 8 9

0 

1 

2 

3 

4 

5 

6

7

8

9

True label

P
re

d
ic

t 
la

b
el

(b) (c)

2

1

3

4

Fig. 6 | MNIST handwritten digital image classification demonstration. a The
network structure of the CNN, which contains an optical convolution layer and an
electrically fully connected layer. b The confusion matrix of recognizing 10,000
digits in the MNIST test database, where the abscissa indicates the true labels and

the ordinate indicates the recognition results. c The variation in simulation accu-
racy, experimental accuracy, and experimental cross entropy loss during 350
epochs of training.
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Although the OCPU-based architecture offers some advantages in
computational density and so on, the correlation between kernels will
limit the performance of the OCPU-based convolutional layer to some
extent. Even so, the OCPU can still serve as a specific convolutional
layer and significantly improve the recognition accuracy (more details
can be seen in Supplementary Note 12). In scenarios such as edge
computing, it may be sufficient to achieve reasonable performance
given the strict restrictions on footprint or energy. In the future,
exploring special application scenarioswhere this correlation does not
affect performance will be an important research direction.

Discussion
In summary, we have designed and demonstrated a SiN-based com-
pact OCPU to extract various feature images. The demonstrated
OCPU, includes two 4 × 4 multimode interference cells and four PSs
and simultaneously performs a convolutional operation with three
correlated, user-defined 2 × 2 real-valued kernels. Dynamic reconfi-
guration to extract the desired feature images is easily realized by
tuning the PSs. The front-end SiN-based OCPU as well as an electrical
fully connected layer form a CNN that enables efficient ten-class clas-
sification of MNIST handwritten digits. Owing to the phase regulatory
mechanism, the proposed scheme offers numerous important
advantages over previous designs, such as a compact size, easier
manipulation and higher robustness. In addition, benefitting from the
linear relationshipbetween thenumber of elements and thedimension
of thematrix, the proposedOCPUhas solid potential for on-chip large-
scale integration by simply increasing the number of ports aswell as by
utilizing a wavelength multiplexing strategy in each port toward the
next generation of high-performance, ultrahigh-speed artificial intel-
ligence platforms.

Methods
Configuration
Optical convolution computing with the proposed OCPU was imple-
mentedusing commercially available optoelectronic components. The
laser array is an IDPHOTONICS CoBrite-DX laser source with four
tunable polarization-maintaining output ports to generate four wave-
lengths of 1549.32, 1550.12, 1550.92, and 1551.72 nm. Two AWGs are
standard AWGs for communication from SHIJIA PHOTONS with a
wavelength interval of 100GHz (AAWG-F20-100) to couple four
wavelengths into one beam and then wavelength-division demulti-
plexing into four beams aftermodulation in theMZM. Thepolarization
controller (PC) is a Thorlabs FPC032 to adjust the polarization of the
light beam. The MZM is an iXblue intensity modulator with a band-
width of 40GHz. The waveform generator is Tektronix AWG70001A
with a maximum sample rate of 50 GSa/s to generate the input wave-
form.ThreeOTDLs areAdvancedFiber Resources VDL-1550-500with a
maximumdelay of 500ps to realize a 1-bit timedelay between adjacent
channels. The SOAs that are utilized to compensate for the loss of each
channel are Thorlabs SOA10103S with a linear amplification area of
~22 dB. The PDs are Finisar XPDV2150R with a bandwidth of 50GHz to
convert optical waveforms into electrical waveforms. The temporal
waveforms are sampled with a real-time oscilloscope (Tektronix
DPO73304D).

Data availability
The data that support the findings of this study are available from the
corresponding authors upon request. Source data are provided with
this paper.
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