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ExpressAnalyst: A unified platform for RNA-
sequencing analysis in non-model species

Peng Liu1,2, Jessica Ewald 1,2, Zhiqiang Pang1, Elena Legrand1,
Yeon Seon Jeon 1, Jonathan Sangiovanni1, Orcun Hacariz1, Guangyan Zhou1,
Jessica A. Head1, Niladri Basu1 & Jianguo Xia 1

The increasing application of RNA sequencing to study non-model species
demands easy-to-use and efficient bioinformatics tools to help researchers
quickly uncover biological and functional insights. We developed ExpressA-
nalyst (www.expressanalyst.ca), a web-based platform for processing, analyz-
ing, and interpreting RNA-sequencing data from any eukaryotic species.
ExpressAnalyst contains a series of modules that cover from processing and
annotation of FASTQ files to statistical and functional analysis of count tables
or gene lists. All modules are integrated with EcoOmicsDB, an ortholog data-
base that enables comprehensive analysis for species without a reference
transcriptome. By coupling ultra-fast read mapping algorithms with high-
resolution ortholog databases through a user-friendly web interface,
ExpressAnalyst allows researchers to obtain global expression profiles and
gene-level insights from raw RNA-sequencing reads within 24 h. Here, we
present ExpressAnalyst and demonstrate its utility with a case study of RNA-
sequencing data from multiple non-model salamander species, including two
that do not have a reference transcriptome.

The last decade has seen growing applications of RNA-seq to environ-
mental and agricultural studies involving non-model organisms1.
Reference genomes/transcriptomes are not available for many of these
species, and thus de novo-assembled transcriptomes are typically
required to quantify raw RNA-seq reads. The approach contains two
main steps: transcript assembly and gene annotation. The first step,
assembly, involves piecing together putative transcripts from the raw
RNA-seq data, which is a computationally intensive task that typically
requires weeks of runtime on high-performance computers (HPC)
equipped with 100 s of gigabytes (GB) of memory. Commonly used
software includes Trinity, SOAPdenovo-Trans, and Oases2–4. In the sec-
ond step, possible annotations are assigned to the assembled tran-
scripts in the formof gene symbols, short descriptions, and functions as
defined by several widely used pathway libraries and ontologies such as
Kyoto Encyclopedia of Genes andGenomes (KEGG) andGeneOntology
(GO)5,6. Annotation is usually performed with Basic Local Alignment
Search Tool (BLAST) like algorithms through a process called

“annotation transfer” that leverages existing genome annotations from
other species7. Despite the wide adoption of this strategy, there is no
consensus approach for choosing howmany or which genomes to use,
or for how to resolve multiple, conflicting, or missing annotations8.
Count tables obtained from those de novo-assembled transcriptomes
are difficult to analyze and interpret, as this process often results in
hundreds of thousands of transcripts, most of which have either
inconsistent or missing functional annotations (i.e., hypothetical
proteins)8,9. In summary, the current practice for RNA-seq analysis
involving non-model species is computationally intensive, requires
advanced programming skills, and produces transcript IDs (usually in-
house IDs) that are difficult to reproduce, compare across studies, and
ultimately re-use. There is an urgent demand for computationally effi-
cient, user-friendly, reproducible, and functionally coherent methods
for RNA-seq processing and analysis for non-model species10–12.

We previously developed a command-line algorithm, Seq2Fun for
mapping RNA-seq reads from eukaryotic species to KEGG ortholog
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(KO) databases with a translated search13. We demonstrated that
Seq2Fun outperforms de novo assembly in terms of accuracy, preci-
sion, computing time, and memory usage, while producing functional
profiles that are consistent with traditional methods13. Despite this
promising result, subsequent testing revealed several important lim-
itations associated with this KO-based annotation system. The first is
limited transcriptome coverage. Not all protein-coding genes are
annotated with KOs. For example, the human genome has 19,648
protein-coding genes, of which only 14,964 (76.16%) are annotated
with KOs14. Coverage is especially lower for non-mammalian species.
For example, the zebrafish genome has 26,584 protein-coding genes
and only 16,322 (61.40%) are annotated with KOs. This incomplete
transcriptome coverage is biased, particularly for non-mammalian
species for which fewer KEGG pathways are defined, and some biolo-
gical processes, such as egg yolk formation in oviparous species, are
notably absent. For example, vitellogenin, a precursor to egg yolk
protein formation and a biomarker of interest15, is not found in the KO
system. The second is limited transcript resolution as KO groups often
gather many genes from one species together. While this is inevitable
to some extent during ortholog definition, increased resolution would
be an asset to the user community. The third is limited functional
annotation beyond KEGG pathways. Finally, the command line inter-
face of Seq2Fun represents a significant barrier to researchers with
limited programming skills.

Here, we describe a unified conceptual framework for reads
quantification and annotation of RNA-seq data from non-model spe-
cies and present its implementation in ExpressAnalyst, a web-based
platform to streamline the whole process (Fig. 1). By leveraging the
concept that short reads ( ~ 75 bp) canbe uniquelymapped to ortholog
groups10,11, the typical steps of transcript assembly and annotation are
replaced with the alignment of individual translated reads directly to a
comprehensive, high-resolution protein ortholog database created
from the genomes of hundreds of eukaryotic species. Downstream
analysis is performed on the resulting high-resolution ortholog count
table, similar to increasingly popular strategies to process shotgun
metagenomics data12. To demonstrate the utility of ExpressAnalyst,
we provide a case study involving RNA-seq data from three species

of salamanders. In doing so we show that researchers can use
ExpressAnalyst to obtain comprehensive functional insights from raw
RNA-seq reads from any eukaryotic species generally in less than 24 h
of runtime, themajority of which is unsupervised data upload (if using
our public server) and processing time. We have also developed a
Docker version of this module that can be run on personal computers
by individuals who have limited bandwidth or privacy concerns asso-
ciated with raw sequence data.

Results
Overview of the software ecosystem
ExpressAnalyst supports comprehensive RNA-seq analysis from raw
reads processing to statistical and functional analysis for any eukar-
yotic species. For species without a reference transcriptome, this is
achieved by using the Seq2Fun algorithm to map reads to a compre-
hensive orthologdatabase – EcoOmicsDB (describedbelow).While the
primary motivation for ExpressAnalyst is to improve RNA-seq analysis
for non-model organisms, it can also be used to analyze data from
common model organisms. The main components of ExpressAnalyst
are described in more detail below.

EcoOmicsDB: A high-resolution ortholog database
EcoOmicsDB is a custom ortholog database that was developed to
significantly improve the resolution and transcriptome coverage of the
KEGG ortholog database used by Seq2Fun version 1.013. It currently
includes ~13 million protein-coding genes from 687 species (Table 1).
Of these protein-coding sequences, 5,871,017 were annotated with
KEGG pathways and 1,567,627 were annotated with GO terms. These
687 species were organized into 29 taxonomic sub-groups, based
on the NCBI taxonomy16. Symbols, descriptions, and functional anno-
tations were harmonized across individual proteins for each ortholog
group (more details are provided in the methods section). All
details for each ortholog group in EcoOmicsDB are accessible via
ExpressAnalyst (https://expressanalyst.ca/EcoOmicsDB/), and can be
queried by either ortholog ID or Entrez ID.

EcoOmicsDB was created with the OrthoFinder software17, which
identifies rooted ortholog groups by inferring groups of sequences

Fig. 1 | Concept for and implementation of ExpressAnalyst. A Conceptual solution to bypass the computationally intensive steps of de novo assembly and annotation.
B Practical implementation of the conceptual solution in ExpressAnalyst. DEA Differential expression analysis.

Article https://doi.org/10.1038/s41467-023-38785-y

Nature Communications |         (2023) 14:2995 2

https://expressanalyst.ca/EcoOmicsDB/


that share a common ancestor. The sequence-similarity parameters for
ortholog definition were chosen to produce ortholog groups at a
higher resolution than the KO system, and species-specific functional
annotations were compiled to produce both KEGG and GO term gene
sets for Seq2Fun ortholog IDs5,14. The first round of analysis took more
than ten days to complete using a server with 54-threads and 504GB
RAM. The analysis binned 12,828,537 protein-coding sequences from
687 species into 666,067 ortholog groups. The size distribution of
these ortholog groups largely follow a power law distribution
(Fig. 2A)18,19. While most orthologs group contain fewer than ten
sequences, the largest ones were many times larger than this, with the
biggest one (s2f_0000000) containing more than 50,000 transcrip-
tion factor sequences. Aggregating at this level makes it difficult to
infer gene-level insights. For example, our collaborators in ecotox-
icology are particularly concerned by the 5th largest ortholog group
(s2f_0000004) that contained > 28,000 cytochrome P450 enzymes,
an average of 47 per species. To address this issue, we further split the
largest 10, 000 ortholog groups into 76, 066 groups with an adaptive
k-means clustering-based approach (Fig. 2B), with the largest ortholog
group being split into more groups (n = 96) than the smallest (n = 2).
An example of this is shown for the vitellogenin ortholog group

(Fig. 2C), a protein family that is important in the study of non-
mammalian vertebrate species because it is a highly sensitive bio-
marker for exposure to estrogenic compounds. It is not found in the
KEGG ortholog database. Details on the ortholog splitting approach,
parameters, and rationale are given in the Methods section.

Efficient FASTQ processing via web interface
ExpressAnalyst contains a raw data processing module to produce
count tables from raw RNA-seq reads for any eukaryotic species. For
species with no reference transcriptome, reads are aligned to EcoO-
micsDBusing Seq2Fun 2.0. For specieswith a reference transcriptome,
users can choose between using either Seq2Fun or Kallisto20. Expres-
sAnalyst has a user account system to allow users to upload, store, and
process FASTQ files on our server. Each account is limited to 30GB of
data. If users have data privacy concerns, have a dataset larger than
30GB, or want to avoid the time-consuming upload step, we provide a
Docker image for local installation. A detailed description of the
overall raw data processing workflow is given in the Supplementary
Note 1 and Supplementary Fig. 1.

ExpressAnalyst uses version 2.0 of the Seq2Fun algorithm (www.
seq2fun.ca). Version 2.0 significantly reduces memory footprint while
maintains a high efficiency compared to version 1.013. For example,
Seq2Fun 2.0 maintains ~2 million reads per minute while decreasing
memory usage from 1.49GB to0.94GB in processing our test datasets,
despite version 2.0 having a much larger (> 125 times increase) data-
base compared to version 1.0. Version 2.0 also includes a new function
called SeqTract to retrieve the mapped reads for a given list of
genes for transcript assembly. Seq2Fun generates mapped reads of all
genes into a single fastq.gz or a pair of fastq.gz files for single and pair-
end reads, respectively. To conduct a target gene assembly, SeqTract
takes a list of Seq2Fun IDs and themapped fastq.gzfiles as an input and
outputs a fastq.gz file for each ID. The file can be fed into popular de
novo assemblers21 to assemble the contigs for primer design, isoform
identification, or phylogenetic analysis.

Statistical and functional analysis of gene expression data
ExpressAnalyst supports visualization, statistics, and functional ana-
lysis of gene expression data uploaded in list or table format. There are
three modules for statistical analysis according to the data input type.
Here, we focus on the gene expression table module which contains
many new and updated features to specifically support results gener-
ated by the Seq2Fun algorithm.

The ‘Expression Profiling’module accepts microarray or RNA-seq
tables for 28model species, as well as Seq2Fun IDs and KEGG ortholog
IDs for any eukaryotic species with transcriptomics data. Addition-
ally, users can also upload their own custom annotation files or sepa-
rate metadata files containing multiple experimental factors. After
data upload, the ‘Data Quality Check’ page displays textual and visual
summaries of the transcriptomics data and metadata. Next, the ‘Data
Filtering & Normalization’ page allows users to filter by variance,
abundance, and perform several common normalization techniques.
Boxplots, density plots, and principal component analysis (PCA) plots
allow the users to examine their data before and after applying these
normalization steps. On the ‘Differential Expression Analysis’ (DEA)
page, users can select between several established DEA methods –

limma, edgeR andDESeq222–24 with their associatedparameters. Next is
the ‘Select SignificantGenes’page, whereusers candefine their p-value
and/or fold-change cut-offs and view the gene expression results
(Fig. 3A). All genes in the table are linked to their NCBI gene cards or
EcoOmicsDB ortholog profiles (Fig. 3B). Users can view violin plots of
expression values across experimental factors (Fig. 3A). Finally, the
‘Analysis Overview’ provides six visual analytics functions to help
identify important features, functions and their correlations through
interactive Volcano Plot, Enrichment Network, Ridgeline Chart, Heat-
map, etc. (Fig. 3C, D).

Table 1 | EcoOmicsDB contains 29 taxonomic sub-groups
available for RNA-seq annotation and quantification of non-
model organisms in eukaryotes

Level Group Species Proteins Ortholog Seq2Fun
(v1)

1 Eukaryotes 687 12,828,537 666,067 8041

2 Animals 370 7,150,735 270,089 -

3 Vertebrates 212 4,588,985 83,704 6723

4 Mammals 94 1,910,363 47,144 5883

4 Birds 31 482,205 22,397 4177

4 Reptiles 20 384,584 21,725 4342

4 Fishes 61 1,736,572 42,497 4308

3 Arthropods 119 1,727,651 113,673 3541

4 Insects 101 1,376,824 70,170 -

4 Crustaceans 7 154,960 37,407 -

3 Cnidarians 9 203,000 24,003 -

3 Mollusks 9 206,905 35,775 -

3 Nematodes 6 134,093 35,865 2324

2 Plants 127 3,968,027 162,988 3012

3 Eudicots 93 3,180,221 102,677 -

3 Monocots 17 560,027 43,451 -

3 Algae 14 155,495 38,334 -

2 Fungi 138 1,278,312 148,080 2423

3 Ascomycetes 100 904,642 98,151 -

4 Eurotiomycetes 20 196,228 25,710 -

4 Saccharomycetes 36 195,913 14,873 -

4 Dothideomycetes 10 123,200 28,898 -

3 Basidiomycetes 33 363,997 56,935 -

2 Protists 52 660,237 134,451 2696

3 Alveolates 21 207,674 51,205 -

4 Apicomplexans 18 93,576 14,632 -

3 Stramenopiles 8 119,746 31,581 -

3 Amoebozoa 7 81,844 22,114 -

3 Euglenozoa 9 86,483 12,363 -

The taxonomic levels are indicated by the number in the Level column and also by indentations
and font styles in the Group column (level 1 = bold, level 2 = underline, level 3 = italics, level
4 = regular). The number of orthologs in the KOdatabase used bySeq2Fun version 1.0 are shown
in the last column.
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Fig. 2 | Ortholog refinement in EcoOmicsDB. Histogram of ortholog size before
(A) and after (B) ortholog splitting. C Phylogenetic tree of sequences within
ortholog s2f_0005567 (vitellogenin), annotated with the eight clusters created
during ortholog splitting, surrounded by species hit plots for each cluster. Clusters
are annotated by both distinct colors and numerical IDs (light green = 001,

brown =002, yellow =003, pink = 004, orange = 005, dark green= 006, grey =
007, purple = 008). The y-axis of species hit plots shows taxonomic groups within
the animal kingdom (orange= level 1, purple = level 2, pink = level 3); and the x-axis
shows the percentage of those species in EcoOmicsDB with a sequence in the
ortholog group.
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Benchmarking and case studies
Seq2Fun 1.0 was rigorously validated in our original publication13.
Here, to ensure that Seq2Fun 2.0 also reproduces results obtained
using traditional approaches, we carried out two cases studies using
organisms with reference transcriptomes (American lobster and zeb-
rafish), aswell aswith onenewcase study involving salamander species
with and without reference genomes. Seq2Fun 2.0 produced almost
identical PCA variance structures and relative numbers of DEGs
between treatment groups compared to analysis with reference tran-
scriptomes (Supplementary Note 2, Supplementary Figs. 2, 3, Supple-
mentary Tables 1, 2, Supplementary Data 1 and 2), following results
obtained for Seq2Fun 1.0. Here, we focus on the third case study to
demonstrate how the concepts and functions described in this paper
can be used to efficiently analyze and interpret a comparative tran-
scriptomics dataset from multiple salamander species, some without
reference transcriptomes.

The RNA-seq dataset was originally collected as part of a com-
parative study of transcriptional responses to limb regeneration in
three ambystomatid salamander species25, one with a reference gen-
ome (Ambystomatidae mexicanum, abbreviation MEX) and two with-
out (Ambystomatidae andersoni, abbreviation AND; Ambystomatidae

maculatum, abbreviation MAC). In the original experiment, an upper
arm was amputated from larvae from each of the three species, and
tissue samples were taken at the time of amputation (time0), and 24 h
after amputation (time24). Three pools of five larvae fromeach species
and time group were sequenced, resulting in 3 reps * 2 time points * 3
species = 18 RNA-seq samples. RNA-seq data was quantified using a
reference transcriptome from MEX and de novo transcriptomes from
AND and MAC. Differential expression analysis was conducted sepa-
rately for each species, and differentially expressed genes (DEGs) that
were shared across species were identified by searching for sequence
similarities using the BLAST algorithm. Details on larvae sex were not
provided by the original manuscript.

For our analysis, FASTQ files were downloaded from NCBI GEO
and were re-processed with the Seq2Fun algorithm (vertebrates
database) using ExpressAnalyst to obtain the gene count tables.
Downstream statistical and functional analysis was performed with
the ‘Expression Profiling’ module in ExpressAnalyst. PCA plots on
the “Data Normalization” page show that the primary source of
variability in the normalized count matrix is species differences, as
shown by the separation patterns according to species along PC1
(Fig. 4A). AND and MEX samples fall closer to each other than to

Fig. 3 | Differential and functional analysis with ExpressAnalyst. Key features of
the ExpressAnalyst ‘Expression Profiling’ module include an interactive table of
differentially expressed genes (A), with links to EcoOmicsDB ortholog profiles (B).
There are six interactive visual analytics tools (C), one of which is the ridgeline plot

(D). Here, the ridgeline plot shows gene set enrichment analysis results, where p-
values were calculated based on the GSEA algorithm as implemented in the fgsea R
package. In violin plots in (A) and (D), orange = time0 and blue = time24.
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MAC, which is consistent with the differences in estimated diver-
gence time − 4.27 million years between AND and MEX compared
to 21.47 million years between AND and MAC26. The second largest
source of variability was time since amputation, shown by the
separation of samples with time0 and time24 annotations along
PC2 (Fig. 4A).

Differential expression analysis was performed with the limma
option to identify genes that were significantly different between
time0 and time24 across species by analyzing all samples together and
considering species as a blocking factor. This means that a linear
mixed-effectsmodelwas fit to the expressionprofile of each gene,with
species included as a random effect and time as a fixed effect. Then,

Fig. 4 | Non-model organismcase study results. APCAof normalized count tables
for the salamander data, with samples annotated by time since amputation
(time0 = yellow, time24 = dark blue), and species (AND= orange, MAC= light blue,
MEX= green). B Volcano plot showing differentially expressed genes with log2FC
on the x-axis and unadjusted p-value on the y-axis. Genes are colored red if their

adjusted p-values < 0.05 and log2FCs > 0 and blue if their adjusted p-values <0.05
and log2FCs < 0. P-values were calculated with the limma R package, which uses a
moderated t-statistic (two-sided). Gene-specific details are displayed for PLEK2
(violin plot; time0 = orange, time24 =blue) and FBXL22 (species-hits plot). All plots
were generated by ExpressAnalyst.
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the specific contrast between time0 and time24 was computed, which
is the same thing as performing a two-sided moderated t-test. The
mixed effects model takes variability associated with species into
account when calculating the p-value for differences between time0
and time24. Using the same statistical thresholds as the original pub-
lication (adj. p-value < 0.1 (FDR), no log2FC cut-off), a total of 2780
DEGs were identified. The complete results from differential analysis
are available in Supplementary Data File 3.

The “Interactive Volcano Plot” tool in ExpressAnalyst was used to
perform over-representation analysis (ORA) separately on the up- and
down-regulated genes with KEGG, Gene Ontology Biological Process
(GO BP), Molecular Function (GO MF), and Cellular Component (GO
CC) gene sets (Fig. 4B). Overall, there were 27 significantly enriched
pathways in the list of up-regulated genes and 81 in the list of down-
regulated genes. The up-regulated pathways were mainly related to
immune response, cell proliferation, and programmed cell death. The
down-regulated pathways were mainly related to muscle tissue and
cellular metabolism. This is consistent with the functional analysis
results reported by the original publication which noted that up and
down-regulated genes were enriched in GO BP terms related to wound
healing and tissue development, and muscle tissue and cellular
metabolism, respectively25. ORA results are available in Supplemen-
tary Data 3.

The top five DEGs (Table 2) were queried against EcoOmicsDB to
investigate gene-level details. For convenience, the table of differential
expression results in the ‘Expression Profiling’ module contains
hyperlinks to the EcoOmicsDB profiles for all Seq2Fun ortholog IDs.
Further, graphics on the coverage of different species sub-groups
provide valuable insights into the taxonomic domain of Seq2Fun
ortholog groups.

The EcoOmicsDB profiles show that the top five DEGs are sup-
ported by lots of evidence (> 155 genes and > 142 species for each). The
top four orthologs have an Entrez ID to species ratio close to one, and
examination of the tables in EcoOmicsDB show that in cases where
there are multiple Entrez IDs from one species, the symbols and
descriptions are very similar (i.e., TNC and TNC-like isoform). The 5th

ortholog (s2f_0000105021) contains on average three Entrez ID
sequences per species. Examination of the EcoOmicsDB output shows
that these are generally matrix metalloproteinase-3 (also known as
stromelysin; K01394), matrix metalloproteinase-7 (also known
asmatrilysin; K01397), andmatrixmetalloproteinase-12 (also known as
macrophage elastase; K01413). The Entrez ID-specific GO terms show
that they have identical functional annotations in nearly all cases, for
example the details in EcoOmicsDB for Entrez IDs 109569210 (MMP12,
zebu cattle), 102388711 (MMP7, Chinese alligator), and 103089307
(MMP3, Yangtze river dolphin). Taken together, there is ample evi-
dence that these differentially expressed orthologs are robust and
represent real genes/proteins.

The original publication reported 405 transcripts that were sig-
nificantly impacted in all three species. We quantified all RNA-seq

samples with Seq2Fun, even though there was a reference tran-
scriptome for one species. This procedure greatly simplified the
downstream analysis. Since all quantified samples shared the same set
of Seq2Fun IDs, the data could be integrated across species and ana-
lyzed in a single DEA, which significantly improved the statistical
power because theoverall sample sizewas 18, insteadof three separate
analyses with six samples each. This likely explains our 2780 DEGs
versus their 405. It is possible that reads from the same gene mapped
to different ortholog IDs for different salamander species, inflating the
number of DEGs. To check for this, we analyzed how often similar
orthologs were both differentially expressed and had distinct species-
specific expression patterns. Our analysis showed that these ‘dupli-
cated’ DEGs are not common, accounting for ~ 3% of the significant
results. More details on this analysis are given in the Supplementary
Discussion.

Finally, we note that the use of salamanders makes this a parti-
cularly strong case for our proposed RNA-seq analysis framework.
Amphibians can have notoriously large genomes27, estimated to range
from 14 to 120GB across salamander species (for reference, the human
genome is 3.2 GB)28. Performing de novo assembly of two salamander
genomes is extremely computationally intensive. The full analysis for
this case study, including raw reads processing, statistical analysis, and
figurepreparation, took less than 24hwithout using the command line
or R programming, and was all done on a laptop computer. In cases
where more detailed isoform analysis is desired, targeted assembly of
reads mapping to individual ortholog groups of interest can be
performed.

Discussion
The main motivation of this work was to address the major compu-
tational bottlenecks facing researchers collecting RNA-seq data from
non-model species29,30. As the costs of acquiring these data continue to
drop, data analysis is increasingly becoming the bottleneck as many
research groups do not have the in-house expertise or resources to
process, analyze, and interpret RNA-seq data. From firsthand experi-
ence, existing point-and-click software for de novo assembly can cost
upwards of $10000USD for the assembly and annotationalone.Hiring
a contract bioinformatician is also expensive and can result in a lengthy
analysis. While the initial analysis may be conducted quickly, each
follow-up research query or visualization modification requires com-
munication, typically over email. By removing barriers related to
computing resources, programming skills, and knowledge of bioin-
formatics databases, we believe that ExpressAnalyst willmakeRNA-seq
data processing and analysis more accessible to researchers working
with non-model organisms.

Using our current framework, RNA-seq data can be easily com-
pared across a large number of species without increasing the com-
plexity of finding ortholog matches because reads from all species are
mapped to the same ID space. This contrasts with typical BLAST-based
approaches where pairwise sequence-similarity searches must be
conducted between transcriptomes of different species, greatly
increasing the complexity of the analysis with each additional species.
One limitation of this approach is that it’s possible for reads from the
same gene to be mapped to similar but different orthologs for differ-
ent species, and care must be taken while interpreting the results,
especially when comparing more taxonomically diverse species (Sup-
plementary Note 3). Resolving conflicting ortholog annotations is
unavoidable in RNA-seq analysis of non-model organisms: even when
researchers choose to analyze their datawith a de novo transcriptome,
they still must annotate this de novo transcriptome by drawing on
functional information from other species7,31.

EcoOmicsDB comprehensively addresses ortholog grouping and
annotation across many species. When used as the database for
Seq2Fun, it produces count tables that always use the same set of IDs,
suitable for cross-species comparisons of transcriptomics data. Such

Table 2 | Top five DEGs from the salamander case study

Seq2Fun ID Symbol Adj.
p-value

log2FC #
Entrez
ID

# Species

s2f_0005954003 PLEK2 4.72E -8 4.22 222 207

s2f_0000105017 MMP8 1.06E −7 6.22 156 143

s2f_0000040013 TNC 1.06E −7 4.34 309 218

s2f_0000131002 LAMB3 1.06E −7 4.60 234 211

s2f_0000105021 MMP12 2.25E -7 5.99 463 153

The p-value and log2FC statistics are from the ExpressAnalyst differential expression analysis
results which uses a moderated t-statistic to calculate a two-sided p-value; the # Entrez ID and #
Species are from EcoOmicsDB ortholog profiles.
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comparisons are of great interest as demonstrated by the recent
efforts to use ‘omics data for cross-species extrapolation of toxicity
mechanisms and regulatory applications in the field of environmental
toxicology32. ExpressAnalyst enables fast hypothesis-analysis-
conclusion cycles through its interactive visual analytics tools such
as the heatmap, ridgeline, and upset plots. By connecting dense sta-
tistical results to powerful bioinformatics databases containing func-
tional information in a flexible and visual format, users are guided to
move from overall trends and patterns to investigate prominent
results in great depth.

The genomes of non-model organisms have been much less stu-
died compared to mammalian model organisms and there are still
many uncharacterized IDs in published reference genomes. With
continued development and engagement with researchers working
with non-model organisms, particularly on expanding Seq2Fun to
quantify non-coding genes and further improving ortholog annota-
tion, EcoOmicsDB can serve as the reference resource for transcript
identification and functional annotation in non-model organisms. In
future versions, we envision a system in which functional information
learned from individual transcriptomics studies is added to the
ortholog profiles in EcoOmicsDB. Over time, knowledge from such
studies can be pooled across species to gain insights into unchar-
acterized proteins. This will not only improve the annotation and
functional analysis of the current studies but would also benefit the
whole research community that works on orthologs and non-model
organism transcriptomics.

Methods
Overview of the Seq2Fun algorithm
Seq2Fun is designed to efficiently perform translated search of RNA-
seq reads against a protein database13. The core algorithm is based on
Burrows-Wheeler Transform (BWT) and Full-text Minute-space Index
(FMI). BWT compresses millions of protein sequences to significantly
reduce the size of the database while maintaining a small memory
footprint. FMI creates a searchable data structure based on the com-
pressed sequences that can quickly find matches to short amino acid
sequences.

The first step in the Seq2Fun algorithm is to conduct reads quality
control and join paired-end reads.Next, each cleaned read is translated
into dozens of peptide sequences using all possible reading frames. In
addition to finding the true peptide among these, Seq2Fun must also
consider many other sequences that capture amino acid substitutions
and deletions because the reference database contains many species
that cover a wide taxonomic range10,11. Considering all possible amino
acid substitutions for all possible reading frames is not computation-
ally feasible, and so Seq2Fun employs two filters to greatly reduce the
search space: peptide length and BLOSUM62 score, a widely used
scoring matrix that summarizes the frequency of specific amino acids
sequences inknownpeptides. First, translated sequences generatedby
different reading frames are filtered based on length based on the
theory that the ‘true’ translation will result in a long amino acid
sequence. If there are multiple amino acid sequences tied for the
longest length, the most promising one is selected based on
BLOSUM62 scores.

Next, the search starts with a seed of seven amino acids and
considers the C terminal of the fragment to find potential start posi-
tions of matches to sequences in the reference database. A backwards
searching strategy is used to extend potential matches from the C
terminal to the N terminal. Allowing mismatches helps overcome
evolutionary distances between the query and target sequences,
however considering all amino acid substitutions would significantly
slow down the search. Seq2Fun reduces the search space by again
using BLOSUM62 scores to prioritize the most likely substitutions.
Searches for sequences matching the query fragment continue until
the N terminal is reached, or the maximum number of substitutions is

exceeded. The searching regime for this read will stop if the potential
match meets certain thresholds, including minimum matching scores
and maximum number of substitutions. Otherwise, the search will
continue based on the next most likely peptide according to the pre-
viously outlined criteria. Finally, after each read has been searched,
Seq2Fun summarizes the number of best matches to each ortholog
group into a count table.

We have updated Seq2Fun to version 2.0 to reduce its memory
footprint (e.g., from 1.49GB to 0.94GB) by converting all sequences
and annotations from ‘string’ to ‘integer’ data types and improving the
database indexing method so that the whole process can be run in a
personal computer. We notice the main bottleneck is related to input/
output (I/O) speed. Adding more threads (higher than 16) may not
improve performance due to this I/O constraint. Using a high-speed
drive could relieve the constraint. Version 2.0 also contains a new
function called SeqTract to retrieve themapped reads for a given list of
genes for transcript assembly. It takes a list of Seq2Fun IDs and the
mapped fastq.gz files as an input and outputs a fastq.gz file for each ID
which can be fed into popular de novo assemblers21. SeqTract is highly
efficient supportingmulti-threadingwith a consistent and lowmemory
footprint.

Creation of a high-resolution ortholog database - EcoOmicsDB
All protein-coding genes (n = 12,828,537) from687organisms covering
all major phyla of eukaryotes were downloaded from KEGG using
KEGGREST (version 1.34.0)14. Protein FASTA files for each species were
submitted to OrthoFinder (version 2.5.4) for classification of genes
into ortholog groups (parameters: t = 56, a = 25)17. OrthoFinder is a
highly accurate and scalable pipeline for ortholog inference. It takes
protein sequences as input and identifies all homologs by exploring
both heuristic analysis of similarity scores from pairwise sequence
comparison and phylogenetic trees of genes to clarify the relationship
of ortholog and paralog.

The number of sequences in each ortholog group follows a power
law (Fig. 2A), with the largest groups combining tens of thousands of
sequences. This level of summary does not approximate gene-level
count tables because tens of distinct functional groups are collapsed
intoone, and therefore is difficult to interpret. To solve this, weapplied
an additional algorithm to the top 10,000 largest ortholog groups and
split them into multiple sub-groups to increase the resolution. First,
MAFFT (version 7.471) was used to conduct protein alignment for each
ortholog group33. Subsequently, the FastTree was used to generate a
phylogenetic tree of all sequences in the ortholog group34. Next, the
phylogenetic tree, or dendrogram, was converted into a distance
matrix based on the pairwise cophenetic distance, which is the height
of the dendrogram at the first point where two branches containing
both sequences merge. Next, k-means clustering was used to split the
sequences into groups based on the distance matrix. Choosing an
appropriate value for k for each ortholog group was challenging
becausewewere trying tominimize the grouping of distinct functional
proteins, while simultaneously maximizing the grouping of the same
functional proteins across species. There is an inherent tradeoff
between these two objectives because the higher the resolution
(increased value of k), the easier to minimize grouping of functional
proteinsbut theharder to group across species. After several iterations
of clustering and evaluating the results, we defined k as two times the
ratio of the number of sequences to the number of species. For each
ortholog group, gene-specific information was collapsed to a single
gene symbol with associated text description, KEGG pathway, and GO
annotation by tabulating the frequency of symbols and descriptions
and choosing the most frequent ones after removing generic terms
such as “uncharacterized” based on manual inspection.

EcoOmicsDB currently consists of 29 taxonomic sub-group data-
bases based on the NCBI taxonomy system (Table 1). Selecting an
appropriate sub-group database can improve performance in terms of
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speed and specificity for reads annotation and quantification. How-
ever, if the protein database is not selected properly (e.g., reads from a
protist sample are mapped to the “fishes” database), key functional
groupsmaybemissed. As anempirical guideline for quality control,we
provide summary statistics on the set of “core” orthologs for each sub-
group (defined as orthologs that are present in the genomes of > 90%
of sub-group species) and advise that > 80% of core genes should be
typically quantified when a taxonomically appropriate database is
selected.

Implementation of the web-based platforms
ExpressAnalyst is implemented based on PrimeFaces and PrimeNG
(www.primefaces.org) libraries (version 12 and 13, respectively) and R
(version 4.1.3). The rawdata processingmodule performs reads quality
check based on fastp (version 0.21.1), and quantification based on
Kallisto (version 0.46.1) or Seq2Fun (version 2.0.2). For the public
server, FASTQ file upload is handled with FileBrowser (version 1.3.6),
and jobs are managed by Slurm (version 20.11.2). Users frequently
reported that data uploading is the most time-consuming and chal-
lenging part, due to limited bandwidth or data security concerns. To
address this, we have created a Docker image of the raw data pro-
cessing module to enable quantification on a local computer through
our user-friendly web interface. Many features of ExpressAnalyst were
previously published as part of the NetworkAnalyst platform35. Here,
we split the general gene expression profiling features from the net-
work building and visualization features. Significant efforts weremade
to develop high-performance interactive volcano plot, heatmaps and
ridgeline plot to facilitate exploratory data analysis, with built-in
annotation and functional analysis options to support count tables
produced by Kallisto or Seq2Fun. ExpressAnalyst is available at www.
expressanalyst.ca.

Case study methods
Zebrafish RNA-seq data were obtained from NCBI’s Sequence Read
Archive (SRA) with sample accessions SRR13332314 – SRR13332325
(https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP299836).
Files were downloaded and converted to FASTQ format using the NCBI
SRA ToolKit (version 2.11.3) before being uploaded to ExpressAnalyst.
Details on sex were not included in the original manuscript. Briefly,
stage I lobster larvae were exposed for 24h to four doses of WAF (10%,
19%, 37%, and 72%) a positive control (1-methylnaphthalene, at 0.3mg/L
corresponding to the estimated concentration of EC20) or a negative
control (0.22 µm filtered seawater). Due to the lack of effects reported
on survival, molting and respiration after WAF exposures, only the
highest dose of WAF (72% WAF) was considered for transcriptomics
analysis. RNA extraction of whole larvae exposed to 72% WAF (n = 7),
methylnaphthalene (n =6) and filtered seawater (n =6) was performed
using Trizol. The transcriptomes were sequenced using Novaseq Illu-
mina at 28M reads per library. FASTQ files were downloaded from the
Genome Quebec portal and uploaded to ExpressAnalyst. Sex was not
considered as part of the experimental design due to the logistical
difficulty of sexing invertebrate larvae. Ethical approval was not
required since invertebrates other than cephalopods are not regulated
under the Canadian Council on Animal Care guidelines.

For the Kallisto workflow, zebrafish samples were aligned to the
GRCz11 Danio rerio genome assembly (accession: GCA_000002035.4,
https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_000002035.6/)
and lobster samples were uploaded to the GMGI_Hamer_2.0
Homarus americanus genome assembly (accession: GCA_018991925.1,
https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_018991925.1/).
The minimum quality score parameter was set to 25. For the Seq2Fun
workflow, zebrafish samples were aligned to a customized version of
the “Fishes” database that had zebrafish sequences removed,
and lobster samples were aligned to the ‘Crustaceans’ database.
The Seq2Fun parameters were set as “maximum number of

mismatches” = 2, “minimum matching length” = 19, and “minimum
matching BLOSUM62 score” = 80. The zebrafish sequences were
removed to better demonstrate how mapping to pooled sequences
from many other species compares to mapping to a reference tran-
scriptome. This customized database is available for download in the
Seq2Fun website (www.seq2fun.ca) under the “Database” tab.

Both count tables (Kallisto and Seq2Fun) were analyzed with
ExpressAnalyst. The appropriate organisms and IDs were selected,
and data type was set to RNA-seq. Data were filtered to remove those
with low abundance and low variation by setting the variance filter to
15 and the abundance filter to 4. Data were normalized using the “Log2
counts per million” option followed by differential analysis with the
limmaRpackage (version 3.52.4). Each treatment groupwascompared
to the control group using the “specific comparison” option. Genes
were defined as differentially expressed if their false discovery rate
(FDR) adjusted p-values were less than 0.05 and the absolute log fold
changes greater than 1.5. For each contrast, the list of DEGs was ana-
lyzed for enriched KEGG pathways using the “ORA Networks” tool. A
pathway was defined as significantly enriched if the FDR-adjusted p-
value was less than 0.05 and there were at least five DEGs in the
gene set.

Salamander RNA-seq data were obtained from NCBI’s SRA at
sample accessions SRR7499348 - SRR7499365, excluding sample
SRR7499350 which was identified as an outlier by QA/QC performed
by the original publication25. All RNA-seq profiles were measured from
distinct tissue samples. Files were downloaded and converted from
SRA to FASTQ format using the NCBI SRA ToolKit (version 2.11.3)
before being uploaded to ExpressAnalyst. Samples were aligned to the
“Vertebrates” database using Seq2Fun 2.0. In the ‘Expression Profiling’
module, the count table was normalized with the “Log2 counts per
million” option using the limma voom R package followed by differ-
ential analysiswith limma23. For differential analysis, timewas set as the
primary factor, and species as the secondary factor with the secondary
factor defined as a “blocking factor”. Then, a “specific comparison”was
performed between ‘time0’ and ‘time24’. Following the original
publication25, genes were considered differentially expressed if their
FDR-adjusted p-values were less than 0.1. The DEGs were split into lists
of up and down-regulated genes, and each list was analyzed for enri-
ched KEGG pathways using the “Interactive Volcano Plot” tool, which
uses hypergeometric tests to perform over-representation analysis. A
pathway was defined as significantly enriched if the FDR-adjusted p-
value was less than 0.05 and there were at least five DEGs in the
gene set.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The salamander RNA-sequencing data re-analyzed in this study were
deposited by the original authors in the NCBI Sequence Read
Archive under accession code SRP152819. The lobster RNA-
sequencing data generated in this study have been deposited in
the NCBI Gene Expression Omnibus database under accession code
GSE225876. The zebrafish RNA-sequencing dataset re-analyzed in
this study were deposited by the original authors in the NCBI
Sequence Read Archive under accession code SRP299836. EcoO-
micsDB is freely available for bulk download at www.ecoomicsdb.
ca/#/download. All findings in the manuscript can be reproduced
using these data.

Code availability
Source code for the Seq2Fun algorithm are available at https://github.
com/xia-lab/Seq2Fun36. R code for the ExpressAnalyst statistical
modules are available at https://github.com/xia-lab/ExpressAnalystR37.
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