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Host-diet-gut microbiome interactions influ-
ence human energy balance: a randomized
clinical trial

Karen D. Corbin 1, Elvis A. Carnero 1, Blake Dirks 2,3, Daria Igudesman 1,
Fanchao Yi1, Andrew Marcus2,4, Taylor L. Davis2,3, Richard E. Pratley1,
Bruce E. Rittmann 3,5, Rosa Krajmalnik-Brown 2,5 & Steven R. Smith1

The gutmicrobiome is emerging as a keymodulator of human energy balance.
Prior studies in humans lacked the environmental and dietary controls and
precision required to quantitatively evaluate the contributions of the gut
microbiome. Using a Microbiome Enhancer Diet (MBD) designed to deliver
more dietary substrates to the colon and therefore modulate the gut micro-
biome, we quantified microbial and host contributions to human energy bal-
ance in a controlled feeding study with a randomized crossover design in
young, healthy, weight stable males and females (NCT02939703). In a meta-
bolicwardwhere the environmentwas strictly controlled,wemeasured energy
intake, energy expenditure, and energyoutput (fecal andurinary). Theprimary
endpoint was the within-participant difference in host metabolizable energy
between experimental conditions [Control, Western Diet (WD) vs. MBD]. The
secondary endpoints were enteroendocrine hormones, hunger/satiety, and
food intake. Here we show that, compared to the WD, the MBD leads to an
additional 116 ± 56 kcals (P < 0.0001) lost in feces daily and thus, lower meta-
bolizable energy for the host (89.5 ± 0.73%; range 84.2-96.1% on the MBD vs.
95.4 ± 0.21%; range 94.1-97.0% on the WD; P < 0.0001) without changes in
energy expenditure, hunger/satiety or food intake (P >0.05). Microbial 16S
rRNA gene copy number (a surrogate of biomass) increases (P < 0.0001), beta-
diversity changes (whole genome shotgun sequencing; P = 0.02), and fer-
mentation products increase (P < 0.01) on anMBD as compared to aWD along
with significant changes in the host enteroendocrine system (P < 0.0001). The
substantial interindividual variability in metabolizable energy on the MBD is
explained in part by fecal SCFAs and biomass. Our results reveal the complex
host-diet-microbiome interplay that modulates energy balance.

Microbial communities in the colon have a profound effect on host
physiology, including immune function, inter-organ communication,
and metabolism1. The majority of studies in humans have correlated
the gut microbiota’s composition, gene expression, and metabolism

with human health endpoints such as body weight, glycemic control,
and inflammatory bowel diseases2,3. What remains to be determined is
whether the gutmicrobiome is a causal driver ormerely a reflection of
host physiology4.
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The effect of the gut microbiome onweight regulation has been a
topic of high interest5. Obesity is a major public health concern that is
at the nexus ofmetabolic diseases such as cardiovascular disease, non-
alcoholic fatty liver disease, and type 2 diabetes6. The gut microbiome
has emerged as a control center for host energy balance through its
impacts on energy harvest from food, gut hormones, and signaling
through metabolites such as short chain fatty acids (SCFAs)5. Existing
data are largely restricted to preclinical models or observational
studies7–9. Prior controlled feeding studies have demonstrated that
high-fiber diets are associated with reduced host metabolizable
energy10 and that varying dietary energy load can alter energy harvest
efficiency in a way that correlates to phyla in the gut microbiota11.
Despite these advances, studies to date lack a comprehensive quanti-
tative evaluation of the contribution of the gut microbiome to the
entire energy balance equation, including energy intake, energy
expenditure, and fecal energy losses. Prior studies were also insuffi-
ciently precise to detect potentially modest differences in the com-
position of the gut microbiome, which can vary dramatically between
individuals, particularly when appropriate environmental controls
were not implemented.

To address these critical knowledge gaps, here we describe the
results of the intersection of host-diet-gut microbiome factors on
human energy balance generated by performing a controlled feeding
study in a metabolic ward using a deep-phenotyping paradigm of
quantitative bioenergetics (NCT02939703)12 (Supplementary Fig. 1).
The primary endpoint for the protocol was the within-participant dif-
ference in 24-h fecal energy normalized to the total daily energy intake
measured during the 6-day calorimetry block within each domiciled
diet period. We hypothesized that with the MBD, there would be
higher fecal energy (and thus lower host metabolizable energy) due to
the greater availability of dietary substrates to the colonic gut
microbes13. This hypothesis also was supported by our in silico math-
ematical model14 that predicted an additional 110 kcals of additional
fecal energy loss on theMBDper 2000 kcal consumed as compared to
the WD. The principal secondary endpoints tested hypotheses about
how diet-induced changes in the gut microbiota might change enter-
oendocrine hormone secretion, hunger/satiety, and food intake. These
measures were evaluated during the final two days of each domiciled
diet period. With this paradigm, we find that delivery of more dietary
substrates to the gut microbiome leads to a net negative energy bal-
ance that is accompanied by a robust remodeling of gut microbiota
composition, diversity and function and changes in host enteroendo-
crine hormones.

Results
Validation of study paradigm
The details of participant flow from enrollment through analysis are
detailed in Supplementary Fig. 2. The intervention implemented in this
trial included a highly digestible control Western Diet (WD) and a
MicrobiomeEnhancerDiet (MBD). TheMBDmaximized the availability
of dietary substrates to the gut microbiome and included four dietary
drivers: dietary fiber, resistant starch, large food particle size, and
limited processed foods (Supplementary Fig. 1). Our design provided
equivalent dietary metabolizable energy (kcal) and total macro-
nutrients (fat, protein, carbohydrates) based on classic principles and
equations of food digestibility15. Diets were prepared in our metabolic
kitchen and validated by measuring energy content via chemical ana-
lysis. Analysis of intake during the nine domiciled days that provided
meals exactly as designed (i.e., excluding an ad libitum feedingday and
a gastric emptying test day which required a liquid meal) demon-
strated that the diets consumed by study participants delivered the
planned energy, macronutrients, and gut microbiome dietary drivers
(Supplementary Table 1).

To avoid the confounding effects ofover- or underfeedingonhost
and microbial metabolism, we evaluated energy balance by real-time

assessment of energy intake (personalized to the energy needs of each
participant12) and energy expenditure (measured via whole-room
indirect calorimetry). We found that energy balance was maintained
within our target of ±50kcals per 6-day calorimeter stay (WD
4.1 ± 5.1 kcal/day; MBD 5.4 ± 2.8 kcal/day; P = 0.8; Supplementary
Fig. 3a). Weight stability was a secondary criterion for evaluating
energy balance, and we previously reported that weight was stable
during the 6-day calorimetry assessment period whilst the primary
endpoint was measured and data were being generated without a link
to diet assignment12.

Surveillance of adverse events revealed minimal gastrointestinal
or other side effects that did not differ by diet (Supplementary Data 1).
Adherence was equivalent between diets during the metabolic ward
period (99.6 ± 0.19% on MBD vs. 99.9 ± 0.10% on WD, P = 0.27; Sup-
plementary Fig. 3b). Therefore, our validated paradigm was well tol-
erated by study participants.

Participant characteristics
Young, healthy, weight-stable individuals were enrolled to quantify
whole-body bioenergetics without the confounding effects of age and
metabolic disease16 and to establish the comparative data needed for
future studies enrolling people with various health conditions
(Table 1). We excluded people with recent antibiotic use or chronic
health conditions that were evaluated by medical history, physical
exam and standard clinical labs. The study sample was 30.8 ± 1.9 years
of age, with a BMI within the normal weight to overweight range
(Table 1). All participants reported normal stool patterns based on the
Bristol Stool Scale17 and sleep duration of 5.95 ± 0.32 h (Table 1). The
habitual self-reported free-living intake of total dietary fiber was

Table 1 | Baseline characteristics

Total N 17

Age (years) 30.8 ± 1.9

BMI (kg/m2) 25.1 ± 0.52

Female Sex 8 (47.1)

Race

Black 11 (64.7)

White 5 (29.4)

Unknown 1 (5.9)

Hispanic/Latino Ethnicity 6 (35.3)

Weight (kg) 70.5 ± 3.0

Waist to Hip Ratio 0.83 ±0.02

Bristol Stool Scalea 3.8 ± 0.10

Type 3 3 (17.65)

Type 4 14 (82.35)

HbA1c (%) 5.0 ± 0.09

TSH (u[IU]/mL) 1.7 ± 0.19

AST (units/L) 25.3 ± 2.4

ALT (units/L) 22.3 ± 3.4

BUN (mg/dL) 11.7 ± 0.64

Creatinine (mg/dL) 0.98 ± 0.06

Sleep (hours) 5.95 ± 0.32

Free-living dietary intake

Carbohydrates (%) 51 ± 3

Fat (%) 34 ± 2

Protein (%) 16 ± 2

Fiber (g/1000kcal) 7.6 (6.6, 10.4)

Continuous variables reported as mean ± s.e.m or median (IQR). Categorical variables reported
as N (%).
aThe Bristol Stool Scale evaluates stool type based on shape and consistency, with scores of 3-4
indicating neither constipation nor loose stools17.
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generally low in our study sample (7.6 g/1000 kcal/day [IQR6.6, 10.4 g/
1000 kcal/day]) onparwith aWesterndiet and representative of adults
living in the United States18. Free-living intake of macronutrients was
similar to those in the study diets (Table 1). The total sleep period
during the 6-days in the calorimeter (when our primary endpoint was
measured) was held constant between diets (8 h; Supplementary
Table 2), which is important because sleep duration impacts hunger,
circadian rhythms and downstream host and microbial phenotypes19.
With our radar-based motion detector, we calculated motion-free
sleep, which is a surrogate of high-quality sleep that we use to mini-
mize the effects of small amounts of involuntary motion during sleep
on sleep energy expenditure20. We found that sleep was not different
between the two diet conditions during the calorimetry stay (mean ±
s.e.m.motion-free sleepdurationwas3.5 ± 0.75 honWDand3.5 ± 0.5 h
on MBD; Supplementary Fig. 3c)

Diet modulated host metabolizable energy
The overall goal of our study was tomodulate the gutmicrobiome and
employ a quantitative paradigm with enough precision to detect
within-participant responses to the diet intervention. A key contribu-
tion to understanding the role of the gut microbiome on energy bal-
ance involves fecal energy. Prior methods lack precision and often
provide results as energy per gram of feces, which does not con-
textualize fecal energy in terms of dietary intake (which we precisely
controlled) andmakes it difficult to interpret the relationships of fecal
energy to host phenotypes21. To this end, according to the method of

Pak22, we administered a low, non-laxative dose of non-absorbable
non-digestible polyethylene glycol (PEG)with eachmeal.Wemeasured
the PEG concentration in fecal samples to normalize each fecal mea-
surement to 24-h based on expected daily PEG excretion. To quantify
fecal energy loss, we used chemical oxygen demand (COD), a measure
of electron equivalents in organic carbon23 and adjusted the result to
PEG recovery. COD is typically used for microbial bioenergetics in
environmental biotechnology16. We previously reported that, for food
items, COD correlates highly to the commonly used bomb calorimetry
method (R² = 0.97)24. COD is a less expensive alternative that provides
relevant information for microbial electron balances, and more phy-
siologically relevant measurements since COD does not include the
oxidation of ammonia, which humans do not utilize as an electron
donor23,24. Additionally, COD is advantageous because it simulta-
neously measures electrons available to humans and microbes, thus
enabling electron balances to quantify energy flow23. Based on
this (fecal energy as COD adjusted to PEG recovery), the MBD
increased mean daily fecal energy losses, compared to the WD, over
the six calorimetry days of the domiciled controlled-feeding
period (73.0 ± 6.1 gCOD/day on MBD vs. 32.1 ± 2.5 gCOD/day on WD;
P = 2.96 ×10−7; Fig. 1a). When fecal energy loss was adjusted to total
energy intake to calculate host metabolizable energy (primary end-
point), we found that it was lower with the MBD (89.5 ± 0.73% on the
MBD vs. 95.4 ± 0.21% on the WD (Fig. 1b; P = 2.73 ×10−7), which equates
to an additional 116 ± 56 kcals daily channeled to feces on the MBD vs.
the WD (Fig. 1c; P = 4.95 ×10−7).
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Fig. 1 | The microbiome enhancer diet reduced host metabolizable energy.
a Daily energy lost by each participant in feces on the WD vs. MBD in grams COD/
day (gCOD/day). b Host metabolizable energy based on the proportion of fecal
COD to dietary intake. c Calculated host non-metabolizable energy (kcals). All data
reported as are mean± s.e.m. n = 17 per diet for all panels. P values are from linear

mixed effects regression models and denote a statistically significant effect of diet
on each endpoint. Source data are provided as a Source Data file. COD Chemical
Oxygen Demand, MBD Microbiome Enhancer Diet (green), WD Western Diet
(purple).
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Diet modulated the gut microbiome
Given our primary finding that the MBD produced a significant
decrease in host metabolizable energy compared to the WD, thereby
reducing energy available to the host, we next evaluated the microbial
phenotype associated with host energy balance. Mean daily fecal
weight was higher on the MBD (P = 1.24 ×10−5; Supplementary Fig. 4a),
and a proportion of this additional weight was due to a significant
increase in 16S rRNA gene copy number (P = 5.05 ×10−8; Fig. 2a), a
surrogate of fecal bacterial biomass. Supporting this result, the MBD
was predicted by our in silico mathematical model25 to produce
19.6 ± 3.5 gCOD/dayofmicrobial biomass compared to 9.4 ± 1.2 gCOD/
day on the WD, which is >25% of the total energy content of feces on
both diets.

Using whole-genome sequencing (WGS), we evaluated whether
the increase in bacterial biomass was accompanied by a change in
microbial diversity. Alpha-diversity assessed by species richness and
evenness did not differ between diets (Supplementary Fig. 4b, c). In
contrast, beta-diversity showed significant and stark separation by diet
whether evaluated by Bray–Curtis (Dis)similarity (P =0.02; Fig. 2b) or
Jaccard Similarity (P =0.02; Supplementary Fig. 4d).

To further explore the compositional changes in the microbiome
associated with our two experimental diets, we derived regression
coefficients testing differences inmicrobial species relative abundance
(WGS) by diet using MaAsLin2’s compound Poisson regression model,
which adeptly handles zero-inflated data26, and capitalizes on the

statistical power of the crossover design. Although relative abundance
did not differ between the diets at the phylum and family levels
(Supplementary Table 3), we found 53 differentially abundant taxa at
the species level (P < 0.05; Supplementary Fig. 5a, b), of which 10 had a
Q < 0.05 and differential effect size ≥2 (Fig. 2c). In accordance with
dietary substrate availability, six species had a higher relative abun-
dance on the MBD and included dietary fiber degraders (Prevotella
copri, uncharacterized Prevotella, and Lachnospira pectinoschiza27;
Q = 1.46 ×10−06, 0.0005, and 0.001, respectively) and/or butyrate pro-
ducers [(Lachnospira pectinoschiza28, Eubacterium eligans29, and likely
the uncharacterized Oscillibacter (CAG_241 and 57_20)30 (Q= 1.46
×10−06, 0.001, 7.44 ×10−07, 0.01 and 2.27 ×10−07, respectively)]. In con-
trast, the 4 species with a higher relative abundance on the WD
included Blautia hydrogenotrophica, Bifidobacterium pseudocatenula-
tum, uncharacterized Blautia CAG:257, and uncharacterized Actino-
myces ICM7 (Q = 0.006, 5.6 ×10−05, 0.001, 0.02, respectively). These
four species derive their source of fermentation from host-glycans,
simple sugars31,32, or fermentation products generated by other gut
microbes, mainly CO2

33 andH2
34. As ameans of validation, we repeated

this analysiswith ANCOM-BC35–37, and retained the significance ofmost
of the identified species in the signature (Supplementary Data 2).

The observed diet-induced changes in microbial composition
were paralleled by an increase in fermentation, evidenced by higher
SCFAs on the MBD vs. WD in feces (total, acetate, propionate, and
butyrate; P =0.001, 0.002, 0.007, and 0.0005, respectively; Fig. 3a)

Fig. 2 | Dietmodulated the gutmicrobiome. a Fecal bacterial 16S rRNAgene copy
number (a surrogate of biomass); P value is from linear mixed effects regression
model and denotes a statistically significant effect of diet on 16S rRNA gene copy
number. b Beta-diversity (Bray–Curtis Dissimilarity). P value is from PERMANOVA
test and denotes a statistically significant effect of diet on Bray–Curtis Dissimilarity
metric. c Heatmap showing the natural-log-transformed mean relative abundance
of species whose relative abundance was significantly different by diet (based on

MaAsLin2); bar plot shows the effect size of the regression coefficient from com-
pound Poisson regression models comparing the relative abundance of each spe-
ciesbydiet. Species shown in thisfigurewere significantlydifferent bydiet (P values
were corrected to produce Q values using the Benjamini–Hochberg method;
Q <0.05), and the diet difference had an effect size ≥2. n = 17 per diet for all panels.
Source data are provided as a Source Data file. CAP Canonical Analysis of Principal
Coordinates, MBD Microbiome Enhancer Diet (green), WD Western Diet (purple).
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and serum (total, acetate, and butyrate; P =0.004, 0.004, and 0.008,
respectively; Fig. 3b). Thus, the microbiota signature that defined the
response to the MBD i) channeled more energy to the microbes
(instead of the host), ii) increased microbial fermentation, iii)
increased fecal and serum SFCAs, and iv) increased biomass. In con-
trast, the WD led to conditions in which the gut microbes were
“starved” because a higher proportion of metabolizable energy had
been digested and absorbed by the host in the upper gastro-
intestinal tract.

Host response to diet-gut microbiome interactions
We explored whether the differential host metabolizable energy was
associated with changes in weight/body composition, gut motility,
appetite, and/or hormonal secretion from the gut, adipose and pan-
creas. Although we previously showed that weight was stable within
individuals during each domiciled calorimetry period when the diets
were consumed in random order12, we uncovered a small, clinically
insignificant bodyweight reductiononbothdiets during themetabolic
ward periods, and the loss was greater on the MBD than on the WD
(−625.6 ± 196.5 g MBD; −134.4 ± 156.1 g WD; P =0.04; Fig. 4a). This
change in weight was accompanied by a trend towards greater loss of
fat mass on the MBD than on the WD (−289.9 ± 97.30 g MBD;
−64.7 ± 84.6 g WD; P = 0.06) without a change in lean mass
(−365.9 ± 251.2 g MBD; −99.14 ± 201.7 g WD; P = 0.45; Fig. 4b, c). This
suggests that the additional fecal energy loss on the MBD was suffi-
cient to promote a modest change in body composition despite
equivalent metabolizable energy intake based strictly on existing food
digestibility paradigms. These paradigms do not account specifically
for the microbial biomass or microbial energy harvest15.

One of the gaps in prior human studies was the lack of a precise
quantitation of the entire energy balance equation. In addition to our
evaluation of energy intake (Supplementary Table 1, Supplementary
Fig. 3b) and fecal energy loss to derive host metabolizable energy
(Fig. 1a–c), wemeasured energy expenditurewith whole room indirect
calorimetry over 6 days and found no diet difference in sleep meta-
bolic rate (in kcal/day) by diet (P = 0.16; Fig. 4d), despite being able to
detect an a posteriori 26.5 kcal/day difference12. This suggests that,
under conditions of fixed energy intake, the main quantitative con-
tributionof the gutmicrobiome tohost energy balancewas through its
effect on energy harvested from the diet, particularly when

sufficient substrates were available for microbial fermentation, as with
the MBD.

The relationships among diet composition, gut microbes, and
colonic transit time (CTT) are complex, multi-directional, and vary
within individuals over time and between individuals38. Given the
potential importance of CTT on themicrobiota-driven host response to
dietary manipulations, we evaluated whole-gut transit using a pH-
sensing radiotransmitter device. This device has advantages to other
methods (such as the use of scintigraphy or radio-opaque markers)
including that it is noninvasive, generatespH, temperature andpressure
data, provides whole gut and regional data, and importantly, the test is
standardized to improve reliability of interindividual and longitudinal
assessments39. In addition, the assessment was done under conditions
of energy balance and with controlled diets that were customized to
meet exactly the needs of each participant. This differs from other
approaches that have evaluatedgutmicrobiome-CTT interactions40 and
is an important advancement given the critical role of diet composition
and quantity on both the gut microbiome and CTT. We did not find a
statistically significant difference in CTTbydiet (29.7 ± 4.4 h onMBDvs.
39.2 ± 6.2 h on WD; P=0.14; Fig. 4e). Gastric emptying evaluated by
acetaminophen appearance in the blood after a fixed liquid meal also
was not different by diet (Supplementary Fig. 6a). The pH of the colon
can be an indicator of microbial fermentation activity. Neither the
medianpHof the entire colon (which reflects both fermentation and the
impact of food mixing in the colon) nor the median pH within a 1-h
window of the ileocecal passage (which is impacted primarily by
microbial fermentation products)41 differed by diet (P=0.11 and 0.23,
respectively; Fig. 4f; Supplementary Fig. 6b). The lack of statistically
significant effects was likely due to the substantial amount of inter-
individual variability in CTT, gastric emptying and colonic pH in
response to each diet, confirming the complex and individualized
relationships between diet and each of these parameters, whichmay be
critical to understanding the host-microbiota axis within individuals38.

We hypothesized that the MBD might decrease appetite relative
to the WD via the inclusion of high-fiber foods and production of
metabolites through gut microbial fermentation42. We evaluated this
via subjective appetite scores (visual analog scale) and ad libitum food
intake (secondary endpoints). This hypothesis was not substantiated
by our data (Supplementary Fig. 6c–h). Thus, the observed negative
energy balance and minor changes in body composition on the MBD
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did not trigger a compensatory change in appetitive behaviors or food
intake compared to the WD.

The mammalian gut senses nutrients and microbial fermentation
products and is part of the larger enteroendocrine system that plays a
key role in maintenance of energy homeostasis43. Cumulative negative
energy balances can result in body weight reductions. However, the
regulation of body energy stores involves neural circuits in the hind-
brain and hypothalamus, proximal and distal gut hormone secretions
and adipose tissue neural and endocrine signals to the brain44. We
explored several potential mechanisms by which the gut microbiome

might regulate body weight beyond the observed negative energy
balance. On the second-to-last day of each domiciled period, we
measured fasting and postprandial levels of several circulating hor-
mones known to regulate appetite at 18 timepoints over 12-h (sec-
ondary endpoints). Consistent with the slight, but measurable
decrease in body fat stores on theMBD, secretion of the adipose tissue
hormone leptin had a significantly lower incremental area under the
curve (iAUC) on the MBD (P = 2.39 ×10−5; Fig. 5a). A reduction in cir-
culating leptin is known to increase food intake45. GLP-1 is a satiety-
promoting gut incretin hormone46 secreted by L-cells in the proximal
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gut in response to meals and from the distal colon in response to gut
microbiome metabolites including SCFA42. The increase in fecal and
serum SCFA on the MBD was accompanied by a trend of increased
GLP-1 iAUC (P =0.1; Fig. 5b), with a significantly higher AUC at lunch
but not at breakfast or dinner (P =0.009, 0.22 and 0.73, respectively)

on the MBD compared with the WD. Pancreatic Polypeptide (PP),
another satiety-promoting hormone released from the pancreas46, had
a 1.4-fold increase in iAUC on the MBD (P = 6.09 ×10−5; Fig. 5c).
Therefore, the short-term negative energy balance within our experi-
mental paradigm did not trigger the compensatory food-intake
responses expected from the change in body fat and leptin. Further
experiments should pursue this hypothesis.

Microbial contribution to human energy balance
Given the robust response to our diet intervention by the gut micro-
biome and host, we sought to determine the quantitative contribu-
tions of the gut microbiome to energy balance versus the impact
driven solely by food digestibility10. Host metabolizable energy on the
WD showed little interindividual variability (94.1–97.0%; Fig. 1b) since
most nutrients were absorbed in the small intestine and were inac-
cessible to the gut microbiome. However, the range of host metabo-
lizable energy in response to the MBD wasmuch broader (84.2–96.1%;
Fig. 1b). The range translates to 73–390non-metabolized kcals/day (vs.
59–185 kcals/day on the WD), a clinically meaningful quantitative dif-
ference that could tip the scale towards a greater negative energy
balance.

This led us to postulate that the quantitatively important varia-
bility in host energy balance could be associated with the repertoire of
gutmicrobes in the colon. To test this,we askedwhether the variability
in hostmetabolizable energy on theMBD could be related to a unique
microbial signature. To identify thosemicrobial signatures, we derived
regression coefficients describing each microbe’s association with the
independent variable of host metabolizable energy using MaAsLin2’s
compound Poisson regression model26. In total, host metabolizable
energy was associated with the relative abundance of 16 species
(Supplementary Fig. 7a, b). Four of those species had Q<0.05 and
effect size ≥2 and have been identified as differentially abundant after
weight loss (due to bariatric surgery47 or caloric restriction48) and in
bile acid metabolism49, suggesting a potential role in weight regula-
tion. Our results were not reproducible with an alternative nonpara-
metric method (Kendall’s tau-b correlation50; Supplementary Data 3)
and should be considered hypothesis-generating. Future studies that
are designed and powered to explore the microbial species that
explain the variability in host ME on the MBD are needed to confirm
these results.

We next embarked on a series ofmathematicalmodeling runs25 to
estimate the gut microbial contribution to host energy balance. We
previously reported that our in silico model estimates the dual impact
of host digestion andmicrobial fermentation onmacronutrient uptake
in the small and large intestine and ultimately, on host metabolizable
energy. The model also estimates the amount of SCFAs absorbed by
the host due tomicrobial fermentation in the colon and the associated
biomass14.We applied an updated version of thismodel25 to predict the
host metabolizable energy we measured in our study by inputting
actual energy intake components and fecal energy in grams COD/day.
Our previously published model used a fixed CTT of 48 h, which is a
reasonable population-level estimate for healthy adults51. With a fixed
CTT, themeanmodeled hostmetabolizable energy for participants on
the MBD was 92.4 ± 0.001% and for WD was 95.2 ± 0.001% (Fig. 6a).
This is similar to the mean host metabolizable energy wemeasured on
the MBD and the WD (89.5 ± 0.73% and 95.4 ± 0.21%, respectively;
Fig. 1b). However, the model was biased as evidenced by the linear
distribution of the points which estimated essentially the same meta-
bolizable energy for each person in contrast to the variability in the
measured metabolizable energy (Fig. 6a) and Bland–Altman plot
(Supplementary Fig. 7c). We hypothesized that we could reduce the
model’s bias by incorporating measured CTT since it is a key mod-
ulator of microbial composition, fermentation, and host energy
balance38. Incorporating the measured CTT values reduced bias based
on greater reproducibility (concordance correlation coefficient: 0.514
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selection procedure which estimated that 6-day fecal propionate and 16S rRNA
gene copy number (a surrogate of biomass) jointly explained 58% of the variance in
host ME. Thus, the R-squared for the simple linear regression of predicted and
measured host ME is 0.58. N = 17 per diet for all panels. For panels c and d, data
reported as meanwith error bars showing the s.e.m. A paired samples t-test by diet
was used to generate the P values in panels c and d. Source data are provided as a
Source Data file. ρc concordance correlation coefficient (reproducibility), Cb bias
correction factor (accuracy), COD Chemical Oxygen Demand, CTT Colonic Transit
Time, Host ME Host Metabolizable Energy, IQR Interquartile Range, MBD Micro-
biome Enhancer Diet (green), SCFA short-chain fatty acids, r Pearson’s correlation
coefficient (precision), RA Relative Abundance, WD Western Diet (purple).
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with fixed CTT and 0.789 with measured CTT) and accuracy (bias
correction factor: 0.645 with fixed CTT and 0.983 withmeasured CTT;
Fig. 6a, b). Furthermore, systematic and proportional biases were
minimized, as shown by a Bland–Altman plot (Supplementary Fig. 7d).
Collectively, these data suggest that CTT is an important factor for
estimating host metabolizable energy.

High-fiber diets should increase absorption of SCFAs due to
colonic microbial fermentation of fiber and resistant starch52. Our
model predicted that more total energy (g COD) as SCFAs was absor-
bedby thehost on theMBD, compared to theWD (72.3 ± 3.2 gCOD/day
of microbially-derived SCFAs on the MBD vs. 36.4 ± 1.02 gCOD/day on
theWD; P = 7.25 ×10−9; Fig. 6c).Whenwe adjusted the SCFA absorption
for energy intake and calculated a percentage, we found a nearly 2-fold
greater absorption of energy as SCFAs on theMBD as compared to the
WD (P = 2.60 ×10−10; Fig. 6d). Therefore, despite less total energy being
absorbed by the host on the MBD, a larger proportion was derived
from SCFAs. Consistent with our experimental data, our model
strongly supports a significant microbial contribution to host meta-
bolizable energy and, therefore, the overall energy balance.

The wide interindividual variability in host metabolizable energy
in response to the MBD is likely related to a combination of host and
microbial factors. We postulated that we would be able to identify key
parameters within our study sample that explain a portion of this
variability. Thus, we undertook an exploratory, multi-step statistical
process to identify potential host and microbial determinants of host
metabolizable energy using data from theMBDonly.Wedid sowith an
aim to consider a limited number of factors given our sample size.
Following consideration of 15 potential factors as described in Meth-
ods, the final step in this process was a multivariate selection proce-
dure into which one host factor (CTT) and twomicrobial factors (fecal
propionate and biomass)were entered. The selection procedure chose
fecal propionate and biomass—both microbial factors—for the final
optimized model and revealed that these two variables jointly explain
58% of the variance in host metabolizable energy. According to the
final model, each standard deviation (SD) increment in 6-day fecal
propionate (858.6mg) was associated with a 2.1% lower host metabo-
lizable energy (95% CI 0.95, 3.2), while each SD increase in biomass
(0.49 log of 16S rRNA gene copy number) was associated with a 1.6%
lower host metabolizable energy (95% CI 0.44, 2.7) (Fig. 6e).

Discussion
Microbial communities in the gut have a profound impact on mam-
malian host endocrinology, physiology, and energy balance, withmost
causal inferences historically restricted to preclinical animal
models5,7,8. Prior human studies exploring the relationships among the
gut microbiome, obesity and energy balance lacked the deep pheno-
typing, precise methodologies, and rigorous controls that are instru-
mental for drawing causal inferences with respect to human health.
Our central finding was that a diet designed to feed and modulate the
colonic gut microbiome, under conditions of fixed energy intake and
physical activity, led to reduced metabolizable energy to the host due
to increased fecal energy output consisting of undigested food, 16S
rRNA gene copy number (a surrogate of fecal bacterial biomass), and
microbialmetabolites but not to changes in energy expenditure. Thus,
the greater fecal energy loss on the MBD was not just due to undi-
gested food, but also to an in increase in fermenting gut microbes and
their metabolites. Although higher energy harvest by microbes is
believed to lead to more energy being absorbed by the host based
primarily on preclinical models8, our results show the opposite: host
metabolizable energy was lower due to higher fecal energy loss on
the MBD.

The greater fecal energy loss translated to an additional 116 kcal/
day lost in feces when participants were fed the MBD as compared to
theWD. The clinical significance of this difference can be inferred from
the reduction in food intake needed to maintain a weight-reduced

state with obesity pharmacotherapy which has been modeled to be
approximately 200 kcal/day53. In addition, the cumulative impact over
time of a 116 kcal/day energy deficit is in alignment with the
population-level impact of “small changes” in energy balance to pro-
mote weight loss54.

The direction of change in energy absorbed from the diet by the
host (lower on the MBD) was consistent in 16 out of 17 study partici-
pants. This means that the gutmicrobiome ofmost of our participants
had the capacity to utilize available dietary substrates as evidenced by
changes in relative abundance of species capable of utilizing those
substrates. This observation is contrary to the “extinction” hypothesis
proposed in mice55 and suggests that, with rigorously controlled
dietary conditions that vary markedly in the amount of substrate
delivered to the colon with a comparable kcal and total macronutrient
profile, healthy humans harbormicrobiomes which are adaptable and/
or have sufficient functional redundancy to overcome certain extinc-
tions that might be imposed by diet or other factors.

The reduction in host metabolizable energy on the MBD relative
to theWDwas not accompanied by a change in energy expenditure or
an increase in hunger or ad libitum energy intake. However, the sig-
nificant diet-induced modulation of the gut microbiome was accom-
panied by a modest change in weight/body composition and robust
enteroendocrine signals from the adipose-pancreas-gut axis. Our
results support the hypothesis that an intentional remodeling of the
gut microbiome through provision of adequate dietary fiber, resistant
starch, and a focus on whole, minimally processed foods resets the
integrated sensing mechanisms known to affect food intake and body
energy stores. One or more of these mechanisms or other unknown
mechanisms might be responsible for the associations between a
diverse human gut microbiome and lower body mass index in free-
living humans5. Future host-diet-gut microbiome research should
delve into the complex and interrelated systems that control body
weight.

The quantitative contributions of gut microbes to host energy
balance were addressed in two ways. First, the microbial biomass was
modeled to contribute to >25% of the total fecal energy on both diets.
Second, fermentation increased as evidenced by increased fecal and
serum SCFAs on the MBD as compared to the WD. Thus, host energy
absorption shifted towards microbially produced SCFAs and away
from proximally digested and absorbed nutrients. While the quanti-
tative contribution of microbially generated SCFAs as inputs to host
energy balance was negated by the additional loss of microbial bio-
mass in the feces, the uptake ofmoremicrobially produced SCFAs was
associatedwith increased total GLP-1 andPP concentrationswhichmay
trigger important energy homeostasis signaling cascades to promote
satiety and suppress hunger56,57.

We also found a taxonomic signature that was in alignment with
the expected impacts of the substrates available to the gut microbes
on the two diets.Many of the species detected at higher abundance on
the MBD were fiber degraders and/or butyrate producers. We posit
that the higher relative abundance of microbes that produce SCFAs
could modulate several components of the energy balance equation.
For example, Lachnospira pectinoschiza, Eubacterium eligans, and
likely the uncharacterized Oscillibacter are butyrate producers28–30.
Butyrate plays important roles in host energy balance by stimulating
the release of satiety hormones such as GLP-158 and accelerating CTT59.
In addition, acetate stimulates the release of satiety hormones60 and
acts as a satiety signal61.

Host metabolizable energy was highly variable on theMBD. Given
our tight control of energy intake and energy expenditure, this sug-
gests that the microbial contribution to this variability was greater in
some hosts than others. Indeed, with a proportionally equivalent input
of substrates for microbes, fecal energy losses varied over an ~5-fold
range. Next steps should include investigating the mechanisms by
which themicrobial communities in thehumancolonmodulate energy
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balance and their interaction with host factors such as CTT, which will
provide valuable quantitative data to drive personalized strategies to
optimize host-microbiota-diet interactions and prevent or treat
obesity.

Our in silico mathematical model, which accurately estimated
host metabolizable energy measured in our study, allowed us to pre-
dict the quantitative contribution of biomass to fecal energy harvest
and the 2-fold greater uptake of microbial derived SCFAs on the
MBDthanon theWD. In addition,we found thatmicrobial biomass and
fecal propionate (a surrogate of colonic fermentation) explained over
half of the variance in hostmetabolizable energy. This further supports
our hypothesis that the gutmicrobiome is an important component of
dietmodulation of host energy balance. We believe that by optimizing
CTT, biomass, and SCFAproduction throughdiet, amongother factors
that may be revealed in future studies, the highly adaptable gut
microbiome can serve as a target for personalized medicine62.

Our results collectively indicate that when dietary substrates are
less available to the gut microbes (as with the WD), the microbes are
“starved” of host diet-derived substrates. This is in agreement with the
findings from Sonnenberg et al.13. The lower 16S rRNA gene copy
number on the WD suggests a decrease in microbial biomass due in
part to lower fermentable substrate availability to the microbes from
the diet. Lower fecal and serum SCFAs on the WD point to lower
microbial fermentation, which is an indicator of reduced microbial
energy harvest8. In addition, the increased relative abundance of
mucindegraders on theWDsuggests that themicrobiotawas “starved”
of diet-derived substrates and turned to the host-derived energy
sources such as mucin. Mouse models have shown that B. thetaiotao-
micron, which normally degrades glycans from plant-based foods,
consumes host-derived mucin when diet-derived glycans are not
available in sufficient quantitites63. Similarly,mucin-degrading bacteria
are more abundant in humans on calorie restricted diets or suffering
from anorexia nervosa64.

Our study had several limitations that should be considered when
interpreting our results. Although our data revealed key gut micro-
biome contributions to human energy balance, we were unable to
deconvolute the complex human host-diet-gut microbiome interac-
tions and therefore, cannot establish whether the changes in energy
balanceweobserved are causally attributable to thediet, themicrobes,
or some combination. Future directions to address these gaps include
implementing bioinformatic pipelines that allow for absolute quanti-
fication of microbial species65 and the proportion of fecal energy
contributed by the gut microbes (vs. undigested food). Additional
mechanistic experiments are needed in preclinical models and bior-
eactors to establish the specific physiological pathways driven by
communities of microbes66, identify systemic lipids, metabolites or
proteins that mediate diet-host-microbe interactions, and understand
how microbes utilize dietary components67. Given the small sample
size of our precisely controlled study, selection bias may limit gen-
eralizability to other populations. Future studies should confirm and
expand our findings in larger study samples. Nonetheless, the rando-
mized crossover design vastly reduces the likelihood of confounder
bias and yields outstanding internal validity. Larger studies could
enable subgroup analyses to informwhether effect sizes vary by sex or
other participant characteristics.

A key open question to advance this field is whether and how
obesity or caloric restriction impact diet-gut microbiome effects on
human energy balance. Given the size and scope of the global obesity
epidemic and its continued increase, new solutions are needed. The
scientific community has recently reoriented itself towards population
interventions that promote small changes in energy intake and
expenditure as a means of preventing weight gain54. This study
demonstrates the potential to enact the “small changes”54 principle
through the consumption of whole foods to modulate the gut micro-
biome. Such a simple principle could be a useful population-level tool

to fight the global obesity epidemic. Future experiments should focus
on the microbial or host mechanisms that underly the observed large
inter-individual variability in the response to delivery of greater dietary
substrates to the gut microbes. These mechanisms can then be tar-
geted with precision nutrition approaches.

Methods
The details of the design of this trial (NCT02939703) have been pre-
viously reported12. We summarize key elements below and include
details on elements not reported elsewhere. The full study protocol is
provided in Supplementary Data 4.

Study participants
The results presented are from a clinical trial conducted in compliance
with all applicable ethical and institutional research requirements. The
study was approved by the AdventHealth Institutional Review board
(Orlando, FL, USA). All participants provided informed consent.
Remuneration was done in accordance with local norms and with the
approval of our Association for the Accreditation of Human Research
Protection Programs, Inc. (AAHRPP) Accredited IRB to ensure we
provided fair compensationwithout inducement. Therewere nomajor
changes to the methods after the trial commenced. We made two
minor changes: 1) clarified the depression exclusion to provide a clear
timeline fordiagnosis and severity parameterswarranting exclusion; 2)
added an anemia exclusionary criterion out of an abundance of cau-
tion due to the multiple blood draws at the end each diet period. We
recruited approximately equal numbers of males and females 18–45
years of age with a BMI≤ 30 kg/m2 who were weight stable, otherwise
healthy, and had not used antibiotics for the 3 months prior to
screening between June of 2017 and August of 201912. The last parti-
cipant visit occurred in October of 2019. Adverse events were mon-
itored at each contact with the participant and reported according to
Institutional Review Board guidelines.

Design overview
This was a randomized crossover study with a control Western Diet
(WD) compared to a Microbiome Enhancer Diet (MBD) where each
participant served as their own control, therebyminimizing the impact
of confounders68. We applied block randomization stratified by sex.
The randomization code was generated by the study statistician who
worked directly with the study dietitian in charge of assigning menus
to participants. Participants were enrolled by the study coordinator. In
order to balance sex, we randomly assigned 3 blocks to each sex.
Within each block (n = 6), participants were randomly assigned using
simple randomization tooneof twodiet sequenceswith a 1:1 allocation
ratio using SAS PROC PLAN. Eight participants were randomized to
sequence 1 (WD followedbyMBD) and9participantswere randomized
to sequence 2 (MBD followed by WD).

After an initial assessment period to establish outpatient dietary
intake requirements (Days 1–9), all food was provided to participants,
and they consumed the meals outpatient for 11 days (Days 10–20 and
39–49) and inpatient for 12 days (Days 21–32 and 50–61). Included was
a minimum 14-day washout between diet periods. During the 14-day
washout, participants returned home and were instructed to resume
their usual diet and physical activity. The following additional restric-
tions were implemented prior to each study period: avoidance of
alcohol during outpatient feeding periods, no caffeine up to 72 h
before admission, no artificial sweeteners, and no strenuous physical
activity 48 h prior to admission. All endpoint assessments were con-
ducted while participants were housed in our metabolic ward12.

Armband accelerometry
An armband accelerometer was placed to measure activity and esti-
mate free-living energy expenditure (SenseWear Pro 3 Armband,
BodyMedia Inc.) as well as free-living sleep duration, as previously
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described12. These data were used to estimate outpatient calorie
requirements.

Clinical assessments
Health status was determined by medical history, physical examina-
tion, standard blood chemistries (AdventHealth Laboratory, Orlando,
FL, USA), and the Bristol Stool Scale to evaluate stool type based on
shape and consistency, with scores of 3-4 indicating neither con-
stipation nor loose stools17.

Whole-room indirect calorimetry
Energy expenditure and all its subcomponents was evaluated every 24-
hours with whole room calorimetry in two 6-day blocks per diet (days
24–29 and 53–5812) following published standards of operation69. We
present the results of sleep metabolic rate (kcal/24-h) because it has
the lowest interindividual variability. Activity was tightly controlled
during the day to maintain spontaneous physical activity consistent
within and between participants and to ensure consistent times of
meals, exercise, type of activity, rest and sleep12. Motion-free sleepwas
calculated from the radar motion detector in the calorimeter by
removing all minutes with ≥6 counts of movement. This is a surrogate
of high-quality sleep that we use to minimize the effects of small
amounts of involuntary motion during sleep on sleep energy
expenditure20. Supplementary Table 2 demonstrates the calorimetry
schedule.

Energy balance
Energy balance was estimated by subtracting estimatedmetabolizable
energy intake (calculated by menu design software based on actual
food intake) from energy expenditure measured by whole room
calorimetry70.

Host metabolizable energy
To calculate host metabolizable energy (primary endpoint), we con-
verted energy intake in kcals to grams COD using our published
model24. That allowed us to compute the percent of energy metabo-
lized by the host after accounting for fecal energy loss which was also
measured in COD. To relate this percentage back to kcals and deter-
mine the number of daily kcals that were not absorbed by the host, we
multiplied host metabolizable energy percentage by energy intake
in kcals.

Dietary intervention
Our study diets were designed to maximize the differences of dietary
substrate availability to gutmicrobeswith theMBDwhileminimizing it
with theWD. To achieve this, theMBDwas higher in fiber and resistant
starch, which are known substrates for microbial fermentation13. We
also provided larger food particles (whole nuts vs. nut butter, for
example) because fine grinding of foods makes nutrients more bioa-
vailable to the human host and thus, less available to the gut
microbes71,72. One final element of our diets was minimizing processed
foods on theMBD, in contrast to the known excess of processed foods
in the WD. Accumulating evidence indicates that processed foods, in
addition to lacking fiber and having smaller particle sizes, negatively
impact host health in part via the gut microbiome73. Details of the diet
design, including sample menus can be found in our trial design
publication12.

Diets were prepared in our metabolic kitchen based on kcals
needed to maintain energy balance as determined by whole-room
indirect calorimetry. Diets were designed with menu software (Pro-
Nutra Version 3.5, Viocare, Inc, Princeton, NJ) that proportionately
calculated diets based on each participant’s energy needs. Duplicate
meals were prepared during all calorimetry days and evaluated for
energy content as a quality-control step (Eurofins, Madison, WI).
Nutritional composition of the diets was based on the menu software

database (USDA Database Standard ref. 23), with the exception of
resistant starch, because it is absent from all currently available
nutritional databases. We limited foods containing resistant starch on
the WD and then estimated the content on both diets based on pub-
lished estimates of resistant starch content of common foods74. Diets
were equivalent in metabolizable energy and proportions of macro-
nutrients. As much as possible, we used similar types of foods on both
diets to minimize differences in micronutrients. Supplementary
Table 1 shows the energy, macronutrient, and drivers in each diet.
Consumption of 100% of provided foods was required. Diet adherence
wasmonitored during the 11-day outpatient phase at clinic visits 2 or 3
times per week where at least one meal was consumed on site. During
the domiciled metabolic ward phases, all meals were monitored.
Adherence was calculated by weighing back uneaten food (if any) and
recalculating dietary intake as a percentage of provided diet vs.
unconsumed diet12. Sample menus are available as supplementary
material in our trial design publication12.

Free-living dietary intake
Outpatient dietary intake was evaluated using the validated food fre-
quency questionnaire, the Diet History Questionnaire II (Diet History
Questionnaire, Version 2.0. National Institutes ofHealth, Epidemiology
and Genomics Research Program, National Cancer Institute, 2010), on
which patients self-reported the frequency and portion sizes of food
items consumed over the past 12 months. Diet Calc software was used
to estimate nutrients consumed based upon the United States
Department of Agriculture food database (Diet*Calc Analysis Program,
Version 1.5. National Cancer Institute, Applied Research Program).

Sample collection, processing and shipment
Blood, urine, and fecal samples were collected in our metabolic unit
using standard protocols (Translational Research Institute, Orlando,
FL, USA). Fecal samples were collected each time they were produced
during the 6-daymeasurement periods in thewhole room calorimeter.
Sample weights were tracked upon collection and as aliquots were
prepared. Fecal samples were processed within an hour of production
under an anaerobic hood and were maintained on ice during proces-
sing. Aftermixingwith a sterile spatula, sampleswere sub-aliquoted for
various downstream applications. Samples for metagenomic sequen-
cing and SCFAs were snap frozen without additives and stored at
−80 °C. They were shipped overnight on dry ice. Any fecal sample not
needed for method-specific aliquots were stored (sealed) in the ori-
ginal collection container at −20 °C within 60min of collection. At the
end of each 6-day calorimetry period, all collection containers were
opened, and all frozen samples were transferred into a single, large,
homogenization container to create a composite sample (without
additives) that was used to measure fecal energy and biomass. The
compositewas partially thawedon icewhile remaining sealed and then
homogenized, on ice, using a sterile paddle homogenizer. The com-
posite sample was stored at −80 °C until used or shipped overnight on
dry ice12.

Weight and body composition
Weight (fasting and in a gown) was measured daily during the 12-day
metabolic ward stay on a calibrated scale. Body composition was
assessed with dual energy x-ray absorptiometry the day prior to
entering the calorimeter (Days 23 and 52) and after exiting the
calorimeter (Days 31 and 60) with a two-day window allowed for the
pre or post measurement.

Fecal energy
Fecal energy was measured with chemical oxygen demand (COD) at
the AdventHealth Translational Research Institute (Orlando, FL, USA)
as per our previous publication24. Briefly, COD was measured per
manufacturer’s protocol using a reactor digestion method with high-
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range digestion vials followed by a colorimetric assay (HACH, Love-
land, CO; Product # 2125925). To ensure that fecal energy was accu-
rately reflective of 24-hour fecal production, we utilized the non-
absorbable, non-digestible fecal marker polyethylene glycol (PEG).
Participants consumed 1.5 g/day (0.5 g/meal) of PEG of molecular
weight 3350g/mol (PEG3350). The PEG3350 was procured by a com-
pounding pharmacy that prepared 0.5 g capsules (percent error =
2.8%) (Pharmacy Specialists, Altamonte Springs, FL). The details of the
PEG assay are below. Fecal energy was measured in 6-day composites
of feces collected in our calorimeters. We normalized fecal energy
produced to the weight of all feces produced in those 6-days and then
to PEG recovery. Fecal energy loss was converted to host metaboliz-
able energy by calculating the percentage of energy that was lost in
feces (in g COD) relative to total energy intake (in g COD). The con-
version from energy in COD to kcals lost in feces per day (non-meta-
bolizable kcals) was calculated by multiplying total EI in kcals by the
percent host metabolizable energy.

Polyethylene glycol assay
Weutilized amethod that is slightlymodified from the initial published
method by Sadilek et al.75. Key modifications include quantitation
based on the +2 charged PEG3350 polymers instead of the +4 charged
polymers and the inclusion of an internal standard. Sample prepara-
tion was also slightly modified. Briefly, samples were prepared by a 1:1
dilution with Nanopurewater and homogenized. Twogramsof sample
was diluted in 14ml Nanopure water that included a final concentra-
tion of 1.5 uM internal standard (monodispersed PEG,MW2160 g/mol;
Quanta Biodesign, Plain City, OH; Product # 10897). An HPLC-MS
method was used for the separation and detection of PEG3350 in
human fecal samples75. The modfied assay was transferred to ARL
Biopharma for subsequent PEG quantification on study samples
(Oklahoma City, OK). The assay is linear as evidenced by the R2 of the
calibration curve (0.9987). The linear range of the assay was from
0.1 uM to 20 uM with PEG3350 recovery ranging from 96.2 to 104.5%.
The relative standard deviation of the assaywas 1.8%. Therewas no co-
elution of analyte with expected excipients or related compounds in
chromatograms demonstrating the assay is specific for PEG3350.

Quantification of bacterial 16S rRNA genes
Quantitative PCR (qPCR) was performed (Arizona State University,
Tempe, AZ, USA) with triplicate PCR reactions as previously
described76 in a Thermofisher Applied Biosystems Quant Studio 3.
Universal primers 926F (5′ – AAACTCAAAKGAATTGACGG − 3′) and
1062R (5′ - CTCACRRCACGAGCTGAC − 3′) were used. Calibration
curves using 7 data points were generated on each run using plasmids
with 16S rRNA genes, and adding a plasmid concentration to achieve
copy numbers in the range from 101 to 109 per reaction. Reaction
mixtures with a final volume of 20 µL, comprised of 10 µL 2× Fast-Start
SYBR green, 0.6 µL each forward and reverse primer (final concentra-
tion, 0.3 µM), 2 µL DNA template (equilibrated to 10 ng), and deionized
H2O to 20 µL. Themocycler conditions were 95 °C for 5min, followed
by 30 cycles of 95 °C for 15 s, 61.5 °C for 15 s, and 72 °C for 20 s, and a
final elongation step at 72 °C for 5min. Standards were made by
cloning the E. coli 16S rRNA gene using the ThermoFisher TOPO TA
Cloning Kit. Plasmids were purified using the Qiagen QIAprep Spin
Miniprep Kit. Purified plasmidswere quantified byQubit. Plasmid copy
number was then calculated using the following formula:

CopyNumber =
DNA ng

μL

� �h i
*6:022*1023

Plasmid length bpð Þ*109*660
ð1Þ

16S rRNA gene copy numbers per gram of feces were used to
calculate daily copy numbers by multiplying by fecal weight and
adjusting to PEG recovery.

DNA sequencing
Fecal sample processing, nucleic acid extraction, library preparation,
and whole genome shotgun sequencing were performed at the Uni-
versity of North Carolina at Chapel Hill Microbiome Core (Chapel Hill,
NC, USA), which is supported by the following grants: Gastrointestinal
Biology and Disease (CGIBD P30 DK034987) and the UNC Nutrition
Obesity Research Center (NORC P30 DK056350). DNA was extracted
using the QIAamp Fast DNA Stool Mini Kit and library was prepared
using the Swift 2S Turbo DNA library kit. DNA was sequenced on the
Illumina HiSeq 4000 PE 150 platform. Positive controls included
ZymoBIOMICS Microbial Community Standard (Cat. No. D6300),
Microbial Community DNA standard (Cat. No. D6305), and Gut
Microbiome Standard (Cat. No. D6331). DNA-free deionized water was
used as a negative control and to detect possible contamination. To
avoid batch effects, fecal samples were randomized prior to nucleic
acid extraction and all sampleswere sequenced at the same time.Mean
total reads were 18,339,758, with similar read depth on each diet
(19,475,004 for the WD and 17,204,513 for the MBD).

DNA sequence processing
DNA sequencing output was quality controlled with FastQC (Version
0.12.0)77. Adapters were trimmed using TrimGalore (Version 0.6.5)78.
DNA sequences were aligned to Hg38 (GRCh38.p14) using bowtie2
(Version 2.4.5)79. Sequences were filtered in the alignment step of
sequence processing. Readswere paired. Count data was used as input
into software packages for analysis. Software packages then used total
sum scaling (TSS) to calculate relative abundance. DNA sequences
were then analyzed for taxonomic composition with MetaPhlAn3
(Version 3.0.14)80, using standard parameters.

Species alpha- and beta-diversity
All calculations and analyses were conducted in R (Version 4.2.2)81.
Taxonomic composition output fromMetaPhlAn3 (Version 3.0.14) was
processed for beta-diversity analysis using the “phyloseq” R package
(Version 1.42.0)82. A rarefaction curve was created using the “vegan” R
package (Version 2.6-40)83 to determine the optimal count-depth for
rarefaction. Once the optimal count-depth was determined, rarefac-
tion was performed using phyloseq (Version 1.42.0). Alpha-diversity
metrics were calculated using the “microbiome” R package (Version
1.20.0)84. After samples were rarified, each sample had
3,578,445 sequences. Bray–Curtis and Jaccard distance matrices were
calculated on the rarefied count data using vegan (Version 2.6-40). The
distance matrices were tested for significance by PERMANOVA using
vegan (Version 2.6-40). Diet was the only significant term for both
metrics (Bray–Curtis: P =0.017, Jaccard: P =0.016). Beta-dispersion
was calculated, and the results tested for significance with the ANOVA-
like permutation test and Tukey’s HSD in vegan (Version 2.6-40).
Constrained Analysis of Principal Coordinates (CAP) ordination was
performed with vegan (Version 2.6-40). CAP is a multivariate linear
method85 that we used to assess howmuch of the variation in the beta-
diversity could be explained by diet. Consistent with the linear mixed
model approach used for analyzing the clinical data, diet, sequence,
and period were fixed, and participant was a random factor. Statistical
significance testing was performed with PERMANOVA in base R. Beta-
diversity ordination figures were created using the “ggplot2” R pack-
age (Version 3.4.1)86. Differential abundance heatmap figures were
created using the “ComplexHeatmap” R package (Version 2.14.0)87.

Differential abundance
Differential abundance testing by diet and associations of species
relative abundance with host metabolizable energy were carried out
using the output of MetaPhlAn3 in the “MaAsLin2” R package (Version
1.12.0)26. Taxonomic countswere filteredwith a 25%prevalence cut-off.
Compound Poisson multivariate linear models were used to account
for zero-inflated data26. For differential abundance testing, diet,
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sequence, and period were fixed, with participant as the random fac-
tor. For analyzing associations of species relative abundance with host
metabolizable energy, metabolizable energy was the fixed indepen-
dent factor, because the analysis was restricted to samples in the
MBD only.

For rigor and reproducibility, we repeated the differential abun-
dance analyses with a different method using the same parameters as
the original analyses. We validated our results related to differential
abundancebydietwithANCOM-BC, an approachoften used to evaluate
differential abundance that has been found to produce results that
frequently overlap with other approaches37. For validating correlations
between relative abundance and metabolizable energy on the MBD
only, we employed Kendall’s tau-b correlation coefficient50 because it is
a non-parametric test that is often used to explore the relationship
between relative abundance and continuous or ordinal variables88.

Short-chain fatty acids
A targeted SCFA panel including acetate, propionate and butyrate was
conducted for both fecal and serum SCFA (Metabolon, Inc., Moores-
ville, NC). For fecal SCFAs, the concentrations were adjusted for total
feces produced and PEG recovery to calculate the total fecal SCFAs
over the 6 inpatient calorimetry days. Acetate, butyrate, and propio-
nate were summed to calculate total fecal SCFA and total serum SCFA.

Appetite
Subjective ratings of appetite (secondary endpoint) were determined
using visual analog scales (VAS) administered at −30, −15, +30, +60,
+120, and +180min pre/post each meal. Breakfast was fixed at
500 kcals and lunch and dinner provided 1.5 X the energy content of
each participant’s energy balanced diet consumed while in the whole
room calorimeter, which is equivalent to 1.3X the energy needed in
free-living conditions on our metabolic ward. Ad libitum intake (sec-
ondary endpoint) was allowed at lunch and dinner for assessment of
changes in food intake12. The trapezoidal rulewas used to calculate the
iAUC per meal and diet for each appetite scale89.

Gut transit time
A radiotransmitter motility capsule was used to determine transit time
and pH in the colon (SmartPill™; Medtronic,Minneapolis, MN)12,90. The
SmartPill™ was administered while participants were in the whole-
room calorimeter under a standardized protocol. It was consumed
immediately after breakfast.

Gastric emptying
Gastric emptying was assessed via acetaminophen appearance in
serum after a test meal. Acetaminophen (1,500mg) was administered
at nominal timepoint zero12. Themeasurement assaywas performed at
the Pennington Biomedical Research Center (Baton Rouge, LA, USA).

Enteroendocrine hormones
Enteroendocrine hormones (secondary endpoint) in plasma were
evaluated after a test meal (Boost Plus or equivalent, 500 kcal) and
lunch/dinner from their assigneddiet atnominal timepoints−30,−15, +
30, +60, + 120, and +180min pre/post each meal12 (Translational
Research Institute; Orlando, FL, USA). GLP-1 (active), Leptin, and Pan-
creatic Polypeptide were measured with V-PLEX Metabolic Panel 1
Human Kit (MesoScale Diagnostics, Rockville, MD; Product #
K15325D). For enteroendocrine hormones, the iAUC for the total time
ofmeasurement (~11 h)was calculatedbydiet. The trapezoidal rulewas
used to calculate the iAUC91.

Mathematical modeling
Previously, we developed an in silico multicompartment transit, reac-
tion, and absorption model with these 3 compartments: upper

gastrointestinal tract, lower gastrointestinal tract, and the remaining
human body14. The model estimates human dietary absorption for the
general population and humans who had sections of small intestines
and large intestines surgically removed. Specifically, the model calcu-
lates the host absorption of carbohydrates, protein, and fat in the
upper gastrointestinal tract and microbe-derived SCFAs in the lower
gastrointestinal tract14. For each participant, we had daily and cumu-
lative values for grams of carbohydrates, proteins, fat, total fiber, and
resistant starch consumed based on our designed menus. To use this
information in our mathematical model, we systematically converted
the measurements into gCOD/day of a) Available Sugar and Starch;
CHO (g) - Resistant Starch (g) – fibers (g), b) Resistant Starch (RS), c)
Non-Starch Polysaccharides (NSP), d) Proteins, and e) Fat. These data
were input into the model to estimate host metabolizable energy and
compare it to our measured data. We then improved the model by
using the measured CTT and evaluated the impact of this change by
comparing actual versusmodeled data. The performance of themodel
for estimating host metabolizable energy was evaluated by analyzing
concordance correlation coefficient components: bias correction fac-
tor (Cb)- accuracy; Pearson’s correlation coefficient (r) between mea-
sured and modeled metabolizable energy- precision; concordance
coefficient correlation (ρc)- precision92. We evaluated systematic and
proportional bias with a Bland–Altman plot93. We compared the
absolute and proportional SCFA absorption with a paired two-tailed t-
test. The model code with revisions specific to this manuscript can be
found here: https://zenodo.org/badge/latestdoi/63492514525.

Statistics and reproducibility
Details of the sample size determination have been previously
published12. Briefly, our prior modeling experiments predicted a dif-
ference of 110 kcal of fecal energy loss (CODg/day) on theMBD vs.WD
for a person consuming 2000 kcal/day. Our power analysis was based
on prior data on repeated measures of 24-h and sleeping energy
expenditure94 andprior CODmeasurementswhere replicate variability
was known. Our sample size was adequate to detect a 120 kcal/day
difference in energy expenditure and an 80 kcal/day difference in fecal
COD. This small sample size was made possible by the repeated mea-
sures, precision of our measurements, crossover design, and tight
control of diet and environment.

Descriptive statistics for continuous variables are presented as
mean± standarderror of themean if normally distributedor asmedian
(interquartile range) if non-normally distributed; categorical variables
are shown as counts and percentages.

Appropriate to our randomized crossover design, we used a linear
mixed model (SAS PROC MIXED) with diet, period, and sequence as
fixed effects andparticipant as a randomeffect to comparedifferences
by diet in our primary endpoint (host metabolizable energy: fecal
energy loss adjusted to energy intake) and most other secondary and
exploratory endpoints. When the distribution of the model residuals
was found to deviate considerably from normality, a logarithmic
transformation was applied. For each endpoint, we included only
participants with complete data for both diet interventions when the
data were considered to bemissing not at random. Otherwise, no data
were excluded from the analyses. Three values thatwere considered to
bemissing at random for the enteroendocrine hormone data (one out
of 18 serial timepoints over the day was missing for each of three
participants due to temporary issues with blood draw or laboratory
analysis, but not because the entire sample wasmissing) were imputed
using the interpolation method (i.e., averaging the previous and sub-
sequent values)95. We imputed the last (+180) timepoint of 6 serial
timepoints for one participant for the gastric emptying assay using the
last observation carried forward approach, given the relative stability
of the +120min and +180min timepoints (median difference 0.55 ng/
mL; IQR −0.55, 1.55)95.
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To identify host and microbial determinants of host metaboliz-
able energy, we first constructed a correlation matrix with
hypothesis-driven host andmicrobial factors thatmight influence the
efficiency of dietary energy harvest. We evaluated a total of 15 factors
in the following domains: biomass, gut transit time (small intestinal
and colonic), ileocecal passage pH, SCFAs (circulating and fecal
acetate, propionate, butyrate, total, and acetate to propionate ratio),
and total GLP-1. We elected not to include relative microbial abun-
dance data given the inability of a general linear model to appro-
priately handle zero-inflated data. We eliminated independent
variables that were highly correlated to each other and selected only
variables with reasonable correlations with host metabolizable
energy (P value < 0.2 for Pearson or Spearman correlation coeffi-
cients) for inclusion in a general linear regression variable selection
procedure. For variables from same “family” (e.g., SCFA and micro-
bial species), we selected the variable most highly correlated
with host ME. Relevant to our results, fecal acetate and butyrate
were highly intercorrelated with propionate. Since propionate
had the strongest correlation with host metabolizable energy, it
was selected as the representative SCFA. For variables not from the
same family (e.g., colonic transit, SCFA), we retained variables
unless correlations prohibitively high (i.e., Pearson or Spearman’s
rho ≥0.75). Based on these criteria, from our original list of 15
variables, three variables (CTT, fecal propionate, and biomass) were
included in a stepwise linear regression selection procedure
(PROC GLMSELECT in SAS). The selection procedure primarily
used P values to determine which variables should be included
or excluded from stepwise models, and the model with the
lowest Bayesian Information Criterion (BIC)96 was chosen as the
final model.

Statistical analyses were performed using SAS 9.4 and R 4.2.2. A
P value less than 0.05 was considered statistically significant. When
using the false discovery rate (FDR)97 to correct for multiple compar-
isons for differential abundance analysis of gut microbial composition
and associations of gut microbes with host metabolizable energy, an
FDR Q value < 0.05 was considered statistically significant. Since
inadvertent visualization of the diets could unblind investigators, the
study could not be conducted in a blinded manner. However, the
treatment assignment was not revealed to investigators and all data
were collected and maintained blinded to treatment assignment until
the database was locked upon study enrollment completion and sta-
tistical analyses were completed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The raw and processed
metagenomic sequence data generated in this study have been
deposited in the BioProject database under accession code
PRJNA913183 PRJNA947193. The following analytical tools (with
respective version numbers) were used in this manuscript: Complex-
Heatmap 2.14.0; FastQC 0.12.0; GGplot2 3.4.1; HG28 GRCh38.p14;
MaAsLin2 1.12.0; MetaPhlAn3 3.0.14; Microbiome 1.20.0; Phyloseq
1.42.0; R 4.2.2; SAS 9.4; TrimGalore 0.6.5; Vegan 2.6-4. Source data are
provided with this paper.

Code availability
The SAS code for the linearmixedmodel used to analyze all the clinical
data is publicly available here: https://zenodo.org/badge/latestdoi/
63492514525. The code for themulticompartment transit, reaction, and
absorption mathematical model used in this manuscript is publicly
available here: https://zenodo.org/badge/latestdoi/63492514525.
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