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General nonlinear Hall current in magnetic
insulators beyond the quantum anomalous
Hall effect

Daniel Kaplan 1, Tobias Holder 1 & Binghai Yan 1

Can a generic magnetic insulator exhibit a Hall current? The quantum anom-
alous Hall effect (QAHE) is one example of an insulating bulk carrying a
quantized Hall conductivity while insulators with zero Chern number present
zero Hall conductance in the linear response regime. Here, we find that a
general magnetic insulator possesses a nonlinear Hall conductivity quadratic
to the electric field if the system breaks inversion symmetry, which can be
identified as a new type of multiferroic coupling. This conductivity originates
froman induced orbitalmagnetization due to virtual interband transitions.We
identify three contributions to the wavepacket motion, a velocity shift, a
positional shift, and a Berry curvature renormalization. In contrast to the
crystalline solid, we find that this nonlinear Hall conductivity vanishes for
Landau levels of a 2D electron gas, indicating a fundamental difference
between the QAHE and the integer quantum Hall effect.

Understanding electric conduction of insulators is fundamental to
condensed matter physics. For example, the quantum Hall effect is a
unique realization of a 2D topological insulating phase of matter, with
distinct experimental signatures1–4, notably a quantized Hall con-
ductance σxy which adheres to the quantized value e2

h with astonishing
precision, up to at least 10−10 5,6. It has been known since the early days
of the quantumHall effect7 that the quantization of σxy is related to the
Berry curvature in a periodic system, with the robustness of the
quantization discussed in several works8–10. As a close cousin, the
quantum anomalous Hall effect (QAHE) refers to the appearance of a
quantized Hall conductivity in 2D systems even in the absence of a
magnetic field11–13. First proposed by Haldane14, the QAHE requires the
breaking of time-reversal symmetry (TRS) in the crystal system char-
acterized by a Chern number CN for the occupied bands. Conse-
quently, a calculation at linear order yields for the Hall conductivity
σxy =CN

e2
h
15,16. The QAHE has been experimentally realized in several

systems, notably magnetically doped thin films of topological
insulators17,18, stochiometric magnetic topological insulators19, and
recently in Moiré superlattices20,21. However, in contrast to the quan-
tum Hall effect, careful experiments on the QAHE find a less precisely
quantized Hall conductivity, with precision of 0.01%18 and 0.1%20,
respectively.

While it is well established that the Hall conductivity is exactly
quantized at linear order7, we demonstrate that an intrinsic nonlinear
conductivity can appear at finite bias for generic magnetic insulators.
These nonlinear effects are due to virtual interband transitions, which
have been shown to appear beyond linear response even in
insulators22,23. The interband transitions induce changes to the magne-
tization and polarization of the material, which at nonlinear order lead
to a finite Hall conductivity. An intuitive picture of these interband
transitions is shown in Fig. 1: The quasiparticle response can bemodified
by shifts in velocity, shifts in position, and by a renormalization of the
Berry curvature. These shifts constitute a nonlinear multiferroic
response driven only by the applied electric field. Interestingly, the
nonlinear correction to the Hall conductivity can be nonzero even if
CN=0. In the following, we derive the nonlinear conductivity in quan-
tum perturbation theory, and finally express our main result as a cor-
rection to the semiclassical equations of motion. One may wonder
whether such effects lead to corrections to the integer quantum Hall
effect. To this end, we show explicitly that in the case of a 2D electron
gas, for both quadratic and linear dispersion, no corrections appear. The
reason is that the Berry phase is entirely createdby the appliedmagnetic
field and thus extrinsic and independent of the underlying band struc-
ture, which is fully renormalized and transformed into Landau levels.
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Results
Theory
As is well known, an applied perturbation does not usually commute
with the band Hamiltonian H0 and will induce interband transitions in
terms of the unperturbed eigenvalues of H0. Thus, a wavepacket
initially centered on a single Bloch periodic state ∣W i= R

dkanðkÞ∣nk
�

at t =0, will evolve to be a linear combination containing contributions
of many bands24,25. In the Kubo formalism this is reflected in the
appearance of resonant contributions which are broadened by the
finite quasiparticle lifetime τ. We consider an insulator with broken
inversion and time-reversal symmetries, i.e. it holds for the dispersion
εn(k) ≠ εn( − k). The uniform (q→0) electricfieldE = E0eiωt is introduced

via its vector potential AðtÞ= E0e
iωt

iω . By minimal coupling, the Bloch-
periodic Hamiltonian transforms as H0(k)→H0(k − eA). The current
operator is given by Jc = δH

δA. Up to A2 this yields

Jc = � evc + e2
X
a

Aawac � e3

2

X
a,b

AaAbuabc, ð1Þ

where va = ∂aH0,wab = ∂a∂bH0, uabc = ∂a∂b∂cH0 and ∂a =
∂

∂ka
. The evalua-

tion of the total current is then carried out using a Green’s function
approach26,27,

hjci= � i
Z

ddk

ð2πÞd
Z

dΩ
2π

Tr JcAðk,ΩÞ� �
: ð2Þ

Here A is A(k,Ω) = i(GR −GA) and GR and GA are the retarded and
advanced Green’s functions, respectively27. The the spectral function
A(k,Ω) is found through a solution to the Dyson equation, giving
A(k,Ω) = (1 +GrΣr)A0(1 +GaΣa), and Gr =Gr

0ð1 + ΣrGrÞ,Ga =Ga
0ð1 +ΣaGaÞ.

In the usual manner26, Dyson’s equations are solved perturbatively.
Since the electromagnetic coupling is Hermitian, Σr = Σa = −∑JcAc(ω),

and Gr=a =Gr=a
0

P1
n=0 ðΣr=aGr=a

0 Þn, and correspondingly Aðk,ΩÞ=P1
n =0 ðΣrGr

0Þ
nG0

P1
m=0 ðΣaGa

0Þ
m. The diagrammatic expansion of

A(k,Ω) has recently been developed yielding the complete response at
2nd order in A28,29. In the Bloch basis ∣nk

�
the unperturbed Green’s

functions are Gr
0,nmðΩÞ= δnm

Ω�εn + iτ�1 ,G
a
0,nmðΩÞ= δnm

Ω�εn�iτ�1 ,A0,nmðΩÞ=
2πiδnmf nδðΩ� εnÞ. Here fn is the Fermi occupation factor.Webegin by
considering A(ω) at finite frequency, and then taking the limit ω→0
(note that bold-face A(ω) denotes the external, classical gauge field).
Crucially, the ω→0 pole is avoided by retardation in the form of

ω ! ω+ i
τ. The expansion of A(k,Ω) will contain a pole in the sum of

frequencies, which is shifted by ω+ ð�ωÞ ! ω+ ð�ωÞ+ 2i
τ . The result is

then evaluated in the τ→∞ limit. The expansion for the lifetime-free
(τ0) contribution is detailed in the Supplementary Information. The full
expansion for all orders of τ and the general expressions are presented
in ref. 30. For concreteness, we present the case E0 = (Ex, 0, 0) and
focus on two-dimensional systems.We stress that herewe calculate the
dc-component (ω→0) of the nonlinear response tensor. At order τ0,

and up to order OðA2Þ the transverse conductivity σxy reads,

σxy =
e2

_

X
n2occ:

Z
d2k

ð2πÞ2
Ωxy

nn + eExðI1 + I2 + I3Þxynn
� � ð3Þ

ðI1Þxynn = ε�2Ax ,ΔyAx� �
nn � ε�2Ay,ΔxAx� �

nn ð4Þ

ðI2Þxynn =2 ε�1Ax , Sxy
� �

nn � 2 ε�1Ay, Sxx
� �

nn ð5Þ

ðI3Þxynn = i ε�1Ax , ½Ax ,Ay�� �
nn: ð6Þ

Here, we introduced compact notation: [A,B]nm =∑l≠n,mAnlBlm−

(B↔A), and Δx,y
nm = vx,ynn � vx,ymm, which is resolved using the Hadamard

product, i.e., ðAΔx,yÞnm =AnmΔ
x,y
nm. εn(k) is the energy of the n-th Bloch

band, at momentum k, and is also inserted in the expression in the
Hadamard form.Ax,y is the non-Abelian Berry connection, defined as
usual n∣r̂∣m

� �
=Anm, where rnm is the position operator. ε−1 appears in

the commutators of Eqs. (4)–(6) should be read as energy
differences. A complete expansion of the commutators is found in
the SI. It is important to note that past theoretical treatments of the
nonlinear Hall effect were often carried out in the Boltzmann
approach. In this method, the electric field perturbs the Fermi-Dirac
density of each band, individually. Operator corrections, diagonal in
the band basis (such as the anomalous velocity), have to be
introduced manually. In contrast, the quantum perturbative formal-
ism used in the present work captures corrections to the current
vertex, electron density, and dispersion simultaneously. We stress
that the nonlinear Hall effect we derive here is distinct from the usual
mechanisms discussed previously in the literature: it survives in the
limit of the electric field frequency ω→0, and does not require a
Fermi surface, unlike known sources of nonlinear Hall signals (as
predicted in refs. 31–33).

Fig. 1 | Illustration of corrections to the AHE conductivity in the presence of an
electric field (Ex). a Velocity shift of the wave packet due to the transition between
the occupied (n) and unoccupied (m) bands. b Positional shift of a wavepacket due
to interband transitions. c Berry curvature renormalization by the third bands. All

three contributions (see Eqs. (4), (5), and (6)), which are linear in Ex, arenon-zero for
a generic multiband dispersion which breaks both inversion and time-reversal
symmetries.
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In writing Eq. (3), we split the nonlinear conductivity into three
physically distinguishable response types. Namely, I1 is associatedwith
a velocity shift, Δα

nm, while I3 describes a renormalization of the Berry
curvature. Each of these is individually gauge invariant (see SI), and is
the result of residual processes from the optical, high-frequency limit.
The velocity shift I1 has a form similar to the injection current seen in
TRS-broken systems at high frequencies29,34. I3 is a purely multi-band
object seen athigher-order response. In the caseof a coupling between
magnetic and electric fields, it is related to the non-topological part of
the magneto-electric polarizability35. Finally, I2 involves a tensor Sxy

which is related to the shift vector found in optical response36. This
quantity is defined as,

Sαβnm = ð1� δnmÞ λαβnm � i
2

Aα
nmδ

β
nm +Aβ

nmδ
α
nm

� 	
 �
, ð7Þ

λαβnm =
i
2

n∣∂α∂βm
D E

� ∂α∂βn∣m
D E� 	

: ð8Þ

λαβpresents a higher derivative on thewavefunction, which results
from the resolution of ∂αAβ

nm. δ
α
nm =Aα

nn �Aα
mm which encodes a real-

space shift of the wave-function center37 also appears, with the latter
entering via a Hadamard product, thus rendering Sαβ manifestly gauge
covariant: Sαβnm ! eiθnmðkÞSαβnm, under the U(1)N gauge transformation,
with theBlochwavefunctions transforming as ∣ψnk

� ! eiθnðkÞ∣ψnk

�
. The

commutator structure ensures the gauge invariance of the entire
expression for σxy. A detailed proof of the gauge invariance under a
U(1)N transformation for each of the terms is presented in the SI. The
appearance ofΔx,y aswell asδx,y in Eq. (6) shows the connection of these
objects to expressions at finite frequency such as injection and shift
currents29,38–40. The second-order correction in Eq. (6) has several
noteworthy properties:

Absence of longitudinal components
The correction may be nonzero only in the direction perpendicular to
the applied field and only enters the transverse components of σαβ (in
any dimension). This is of course due to the fact that the correction is
related to the Berry curvature, which ensures that the resultant current
is always perpendicular to the perturbation. Consequently, the cor-
rection does not violate charge conservation nor does it produce a
longitudinal response which would require a finite Fermi surface41.

Multiband nature. Inspection of Eqs. (4)–(6) reveals that the in-gap
conductivity is generated by interband processes, which are due to
virtual transitions between occupied and unoccupied bands. This is a
direct result of the commutator structure because ∑nfn[A, B]nn =
∑n≠mfnmAnmBmn where fnm = fn − fm (See SI for further details). The lat-
ter vanishes if both states are occupied or empty. Since Ωz

nn can be
projected into a single-band, it appears at linear order. But corrections
to this aremanifestlymulti-bandobjects, involving direct probes of the

states through Δα
nm, εnm, S

αβ
nm. The presence of the shift tensor Sαβnm

suggests a property which is encoded in at least two bands, as the
commutator in which it appears restricts n ≠m. Furthermore, we note
thepresenceof a higher-ordermulti-band term, Axε�1,Ωz� �

nn, which is

ðI3Þnn in Eq. (6). To parse this object, one evaluates Ωz
nm, where n ≠m.

Using the definition of the commutator, however, [A, B]nm =
∑l≠n,mAnlBlm − (A↔ B). From this, it follows that this termonly exists for
three bands or more. In the two-band limit, the commutator can be
directly evaluated to be [A,B]12 =∑l≠1,2A1lBl2 − (A↔ B) = 0, as the sum
cannot extend over any intermediate state. This term represents,
therefore, a unique signature of a quantum process which involves
interband transitions between two principle bands – occupied and
empty – with an assisting interim third band.

Symmetries
The correction to the anomalous Hall conductivity strongly depends
on the underlying symmetry of the crystal lattice. Firstly, a general
requirement for the appearance of intrinsic in-gap responses is the
breaking of TRS. Since this effect is quadratic in the electric field,
inversion symmetry (P) must be broken as well. The symmetry dis-
cussion is simplified by considering the correction as a second-order

Hall conductivity. We define σxx;y =
δ2 jy

δExδEx
. Eqs. (4)–(6) show that the

Hall part of the tensor σab;c takes the form σaa;c. Applying the von
Neumann principle42, we find that for all rotational symmetries Cn,z, n
≥ 2, σaa;c vanishes identically. In 3D (or higher), other components of
the response tensor are permitted, e.g., of the form σxx;z. The emer-
gence of a longitudinal in-gap current is restricted by the presence of
point-group symmetries. In the case of C3z, for example, σxx;y = − σyy;y,
but since the correction vanishes for σyy;y, the Hall response is null
as well.

Twisted bilayer graphene
As a candidate system to test our results, we suggest using strained
twisted bilayer graphene (TBG)43–46. As previously seen in the case of
resonant optical conductivity36, in TBG second-order electrical
responses can become exceptionally large due to the large phase
space for transitions between flat bands. We model a time-reversal
breaking state of TBG by considering the Bistrizer-MacDonald43

continuum model for a single valley and spin of TBG at a twist angle
of θ = 1.05o. This corresponds to experimental measurements of TBG
in the ferromagnetic, 3/4 filled state20,47, in a series of cascading
symmetry-broken states in this system48,49. This phase is topological
with a Chern number CN = 1. In a sample, the TBG is usually placed on
top of a layer of hBN50,51, which breaks inversion symmetry. This can
be modeled by introducing a staggered potential Δ = 17meV46. Since
TBG on top of hBN still retains a C3z-symmetry, the correction con-
sidered here remains zero. This is shown in Fig. 2b. Figure 2c also
reveals that the momentum distribution of the correction is anti-
symmetric within the mini Brillouin zone (mBZ) and thus vanishes
after integration. However, introducing strain breaks C3z, rendering
the correction in Eq. (3) nonzero, as seen in Fig. 2d, with the mBZ
modified as well. The deviation from σxy

0 = e2
h increases with increas-

ing strain. Using a typical strain amplitude of ϵ ~ 0.65%52, and electric
field strengths of E = 300Vm−1, it reaches a value of 0.1%, which is
comparable to the deviation from perfect quantization in recent
experiments20.

Semiclassical interpretation
The structure of the correction permits the following semiclassical
form. We define the electric field-induced shift tensors,

vaE = e
AaΔb

ε
Eb, Sa

E = eS
abEb, ΩE = eΩ

abEb, ð9Þ

Where all terms enter as Hadamard products. In-band basis, these
objects are translated as vaE =

P
b

e
εnm

Aa
nmΔ

b
nmEb. This can be carried out

analogously for all terms. The semi-classical anomalous current at
second order can then be written as

j=
e2

_

X
n2occ:

E×
Z

d2k

ð2πÞ2
Ωnn +

A
ε
×V

� 

nn


 �
: ð10Þ

Here, Va
E = v

a
E +S

a
E +Ω

a
E . The cross product is to be interpreted as

usual15,53, such that A
ε ×V

� �
nn =

P
m2unocc:ϵ

abc Ab
nm

εnm
Vc
mn,E � ðn $ mÞ. Here

ϵabc is the Levi-Civita symbol. This partition into three pieces is identical

in content to the previous decomposition into I1, I2, I3 in Eq. (3). Va

_

carries units of velocity, meaning that it is the velocity of the
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(instantaneous) charge displacement upon application of the external
electric field E. At first order, this displacement modifies the position
operator through a change in the charge dipole. At second order in the
applied field, this deformation couples back to the position operator,
resulting in a correction to the anomalous velocity, now effectively
quadratic in the applied field. The weight ε�1

nm attached to the position
operator reflects the quantum-perturbative expansion, since the Va is
now explicitly inter-band, and the transitions to the neighboring bands
are suppressed by the energy gap. The nonlinear correction to the Hall
conductivity thus vanishes when all unoccupied bands are infinitely
separated from the top of the valence band such that εnm→∞. A
visualization of the momentum-space structure of Re(V) using a
simplified two band model can be found in the SI.

Robustness of the integer quantum Hall effect
Theprecisequantizationof the conductivity σxyof the integerquantum
hall effect for a 2D electron gas can be understood in the absence of
any higher-order corrections at finite bias. To show that our correction
vanishes identically for Landau levels, consider the Hamiltonian of an
electron gas in the Landau gauge, A = (0, −Bx, 0),

H =
p2
x0

2M
+
Mω2

cx
02

2
: ð11Þ

Here as usual ωc =
eB
M , and x0 = x + _ky

eB . In the presence of the gauge
field A the kinetic momenta become p→ p + eA =π. We shall show that

the quantization of the Hall conductivity is guaranteed by the ladder
operator structure. The velocity matrix elements in the Landau level
basis are,

vx =
∂H
∂πx0

=
px0

M
= i

ffiffiffiffiffiffiffiffi
_ωc

2M

r
ðay � aÞ, ð12Þ

vy =
∂H
∂πy

=ωcx
0 =

ωclBffiffiffi
2

p ða+ayÞ: ð13Þ

We define the ladder operators a= 1ffiffiffiffiffiffiffiffiffiffiffi
2m_ωc

p ipx0 +Mωcx
0� �

and

lB =
ffiffiffiffi
_
eB

q
. For Landau levels, εn = _ωcðn+ 1=2Þ,ay∣ni=

ffiffiffiffiffiffiffiffiffiffi
n + 1

p
∣n+ 1i, and

a∣ni= ffiffiffi
n

p
∣n� 1i. The expectation values become hn∣vx ∣mi=

i _ffiffi
2

p
MlB

ffiffiffiffiffiffiffiffiffiffiffi
m+ 1

p
δn,m+ 1 � ffiffiffiffiffi

m
p

δn,m�1

� 	
, hn∣vy∣mi = ωclbffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffi
m+ 1

p
δn,m+ 1 +

�
ffiffiffiffiffi
m

p
δn,m�1Þ. The quantization of the linear conductivity is directly

related to the ladder structure of operator algebra in the integer
quantum Hall fluid. A demonstration of this property is relegated to
the SM. However, the fact that the ladder operators only connect
Landau levels with energy differences Δε = ± ℏωc can be used to show
that all higher-order corrections vanish for the 2D electron gas at high
magnetic field. At 2nd order, the relevant diagrams of the quantum
perturbative calculation give two contributions at order τ0 (all other
terms vanish in the gapped phase identically)30. For the Hall response

Fig. 2 | Nonlinear correction to the anomalous Hall in TBG. a Band structure of
twisted bilayer graphene for θ ~ 1.05o. Remote dispersive bands contribute to the
interband correction, which vanishes in the single-band limit. b Magnitude of the

correction to the AHC σxy,0 = e2
h as a function of applied uniaxial strain ϵ in TBG.

Momentum space distribution of δσxy for ϵ =0 (c) and ϵ =0.8% in (d).
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tensor σxx;y,

σxx;y =
e3

_2
X
n

f n �2 ε�3wxx , vy
h i

nn
� ε�3vx ,wxy� �

nn

h i
+
e3

_2
X
n,m

�4
f nm

εnmε
3
nl

vxnmv
x
mlv

y
ln

"

�2
f nm

ε2nmε
2
nl

vxnmv
x
mlv

y
ln �

f nm
ε3nmεnl

vxnmv
x
mlv

y
ln

#
:

ð14Þ
The elimination of the first two commutators in Eq. (14) is due to

the free fermion dispersion of the Landau levels giving

wab
nm = hn∣ ∂2H

∂πa∂πb
∣mi / δnm since the underlying dispersion is quadratic

in Eq. (11). The commutator [A, B]nn contains only off-diagonal

components of Anm, Bnm. Consequently, since wab
nm =0 for any a, b, n ≠

m this contribution vanishes. We are left with the triple product
vxnmv

x
mlv

y
ln. By applying the ladder structure for vx,ynm the following

combinations appears: δn,m±1δm,l±1δl,n±1 (The two-band part of this
formula trivially vanishes, because neither vx nor vy have any diagonal
terms in the incompressible phase.). By applying, e.g., the middle
Kronecker delta, we have the condition that n = l ± 1 ± 1, and n = l ∓ 1.
Clearly, there exists no l, n that satisfies this constraint. This results in
σxx;y =0 regardless of the exact structure of the Hamiltonian, provided
the algebra of the ladder operators is preserved. To further stress this
point,wecan carryout ananalogous calculation on a systemwithDirac
dispersion, containing a non-trivial Berry phase. In this case the
Hamiltonian is H = _vf ððkx + eAxÞσx + ðky + eAyÞσy +Δσz Þ, where we
included Δσz for band inversion and a finite Berry curvature. σx, y, z
are Pauli matrices. For this dispersion, the operator wab =0 generally,

since ∂2H
∂πa∂πb

=0 by construction. FollowingHunt et al.54, the eigenstates

are spinors of the form ψn = ψn�1,ψn

� �
. The velocity operators are

constants and are given by vx/y = ℏvfσx,y. Once again, vx/y,nm∝ δn,m±1,
due to the fact that the Pauli matrices σx, σy pair spinor components
with the quantum number n differing by± 1. Importantly, the diagonal
component vx/y,nn= 0, as long as Δ is momentum independent. The
generalization of the above canbemadeby considering thatn-th order
response will contain an n + 1 product of velocity operators
vxm1m2

vxm2m3
vxm3m4

. . . vymnm1
, which produces the condition that

δn1n2 ± 1
δn2n3 ± 1

δn3n4 ± 1
. . . which yields zero for the real part of the

current at any order. The only nonzero combination for which band
indices can be selected appears at order n = 1 corresponding to linear
response, which gives the quantized integer Hall conductivity.

Multiferroic response
The electricfield dependentmagnetization changewehave derived, as
shown in Eq. (10) should be viewed as a magnetization induced by the
electric field. This is evidenced by the fact that the term e

_
A
ε ×V

� �
d2k

carries precisely the units of magnetization density and its additive
naturewith respect to the Berry curvature. The coupling of this termat

2nd order in the electric field to the Hall current also generates a
polarization density p ≈ jτ, where τ is the characteristic relaxation time
in the system. Similarly, the requirement of low symmetry in the sys-
tem (and inversion symmetry breaking) points to a generalization of
multiferroics55,56 to the case of an electric field inducing changes both
to the magnetization and the polarization, albeit at higher order. This
is to be contrasted with the traditional multiferroic picture, in which
changes to eithermagnetization or polarization occur linearlywith the
applied electric or magnetic fields, respectively. Eq. (10) is the first
demonstration of a new type of multiferroic response, which occurs
uniquely at nonlinear order. We further note that the induced effects
here are dissipationless as the power j ⋅ E = 0. An illustration of this
process is presented in Fig. 3. The instantaneous currentVa produces a
magnetization similar to the classical mechanism via r × j. Here r is
represented by the Berry connection A and due to the effect being
driven by inter-band transitions, the position operator is weighted by
the interband coherence factor ðεn � εmÞ�1. In a system with physical
edges (Fig. 3(a)), the effect will be manifested in an accumulated
polarization. If the planar sample is folded on itself, creating a hollow
cylinder (Fig. 3b), no polarization will accumulate and a net magneti-
zationwill be generated. In both cases, the total change is proportional
to∝ E2, introducing a nonlinear multiferroic response.

Discussion
We have shown that in general magnetic insulators which break
inversion, time reversal as well as rotational symmetries, a quadratic
correction to the in-gap Hall conductivity appears. In a topological
phase, this indicates thatmeasurements at finite bias will deviate from
thequantized valuedue to thepresenceof nonlinear corrections. As an
example, we calculated the correction for strained twisted bilayer
graphene, finding for the magnitude of the nonlinearity values which
are comparable with the observed precision of the quantization in the
recent experiment of ref. 20. Another experimental signature may
appear in the non-reciprocal nature of the conductivity. Namely, in
systems where the correction is observable, we find that σxy ≠ − σyx, and
the sum σxy + σyx can thus be treated as a proxy for the correction.
Thirdly, the quantities derived here might be visible as non-linear
powers in the I−V curve.

We note that the nonlinear Hall conductivity is finite even when
the Chern number vanishes in a magnetic insulator. This raises inter-
esting questions about the possible boundary states in such a system,
which is subject to future studies. As a way to understand this result in
a bulk picture, one can imagine a Corbino geometry in which edge
states are absent. In such a scenario without physical edges, charge
transport has been predicted to occur through bulk spectral flow57.
The QAHE in a Corbino disk has recently been observed
experimentally58.

Recent progress on nonlinearities in graphene superlattices59

suggests that experiments at moderate finite bias on graphene-based
systems are possible. By tuning the graphene superlattices to the QAH
state and sweeping the bias, the nonlinear corrections, as well as the
non-reciprocity they produce might be accessible. In addition, the
sensitivity of the effect to strain suggests an electro-mechanical setup
in which a controlled application of tensile stress is employed in order
to modify the Hall conductivity (at finite bias). We note that systems
with C3z symmetry, such as doped Bi2Se3

17 do not exhibit this correc-
tion due to the symmetry restriction. However, new material plat-
forms, such as transition-metal dichalcogenide superlattices21 are
promising avenues for the investigation of the nonlinear QAHE, with
tunability by external knobs such as a displacement field. Indeed,
ref. 21 observed deviations from exact quantization in σxy. Our results
might be relevant in understanding why experiments on systems with
rotational symmetries observe a much more precisely quantized
QAHE18,60. Related to that, the reasoning presented here raises the
question whether third or even higher-order corrections are non-

Fig. 3 | Multiferroic character of the nonlinear response. a In a sample with
physical edges, a net polarization perpendicular to the applied field accumulates at
the edge. b When the geometry is cylindrical, the application of an electric field
produces a perpendicular current, thereby inducing a magnetization. Since there
are no edges, no polarization can accumulate. In both scenarios, Py,M∝ E2.
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vanishing even if a QAH system has inversion and C3 symmetry. The
nonlinear QAHE establishes a concrete difference in the quantization
of the QAHE compared to the IQHE, which suggests that using QAHE
systems for metrology depends on subtleties related to the crystal
systems, symmetries, and the magnitude of the applied bias. Our
results predict a striking phenomenon that a generic insulator can
present a nonlinear current response in the dc limit.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Information. Additional data
related to this paper may be requested from the authors.
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