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A village in a dish model system for
population-scale hiPSC studies
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The mechanisms by which DNA alleles contribute to disease risk, drug
response, and other human phenotypes are highly context-specific, varying
across cell types and different conditions. Human induced pluripotent stem
cells are uniquely suited to study these context-dependent effects but cell lines
from hundreds or thousands of individuals are required. Village cultures,
where multiple induced pluripotent stem lines are cultured and differentiated
in a single dish, provide an elegant solution for scaling induced pluripotent
stem experiments to the necessary sample sizes required for population-scale
studies. Here, we show the utility of village models, demonstrating how cells
can be assigned to an induced pluripotent stem line using single-cell sequen-
cing and illustrating that the genetic, epigenetic or induced pluripotent stem
line-specific effects explain a large percentage of gene expression variation for
many genes. We demonstrate that village methods can effectively detect
induced pluripotent stem line-specific effects, including sensitive dynamics of
cell states.

Using human induced pluripotent stem cells (hiPSCs) and their deri-
vatives to study complex human traits such as diseases and drug
responses is becoming a new research frontier through the intersec-
tion with population genetic approaches1–4. hiPSCs are karyotypically
normal, self-renewable cells that are generated by reprogramming
human somatic cells. They can differentiate into virtually any cell type

in the human body5, providing a model system to study human cell
types in vitro. Recent work has demonstrated that hiPSCs are a pow-
erful system for investigating large-scale inter-individual variation and
context-dependent effects that would be challenging to recreate
in vivo. Here, we consider context-dependent effects genetic rela-
tionships with phenotypes only detectable under specific conditions.
For example, some expression quantitative trait loci (eQTLs) are only
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detected in specific tissues6, cell types2,3,7, cell states8, or following
drug9 or chemokine10 exposure. While hiPSCs are a powerful model
system to interrogate these context-specific effects, large-scale hiPSC
culture is expensive and time-consuming, creating challenges for stu-
dies that require hundreds to thousands of donor lines. Previous stu-
dies have relied on bulk RNA sequencing (RNA-seq) to assess gene
expression, which has two major limitations. First, it effectively
averages the heterogeneous expression of different cell types into a
single measure. Secondly, the types of experimental design used in
bulk RNA-seq require each hiPSC line to be cultured, extracted and
processed independently—creating inherent correlations between line
and batch effects.

Tomitigate these limitations, recent studies have applied a village
approach to culture hiPSCs—where multiple unrelated lines are cul-
tured anddifferentiated in a single dish2,8,11. One of these studies paired
flow sorting of survival motor neuron protein levels with whole gen-
ome sequencing. The proportion of each hiPSC line in each survival
motor neuron flow-sorted group of cells were estimated with com-
putational methods. The study design provided statistical power to
detect survival motor neuron protein quantitative trait loci—genetic
variants associated with protein expression levels of cell lines. While
this approach is effective, it is not easily scalable for high-throughput
assays of molecular phenotypes. Other studies have applied village
culture methods with single-cell RNA-sequencing (scRNA-seq). Each
cell is assigned to a line in the pool in tusing demultiplexing
methods12–15. However, the impact on molecular phenotypes due to
multiple cell lines in a single village culture has not been assessed.

This is a challenge, as it needs to be clarifiedwhether cell signaling
in villages will influence the transcriptional profiles of each indepen-
dent hiPSC line. If such effects were to exist, they would likely lead to
biases in the identification of both eQTLs and context-dependent
effects due to the creation of ‘artificial’ correlations in the phenotypes
between donor lines. Here, we develop village culture systems and
demonstrate their efficacy for population-scale stem cell studies. We
investigate howgrowth rates impact theproportions of cells fromeach
line in the village and whether cell signaling alters the transcriptional
profiles of individual cells in village culture conditions. We evaluated
these properties across multiple independent laboratories.

We show that the inter-line gene expression is unaffected by
culturing lines in a village or between sites. In otherwords, the genetic,
epigenetic or line-dependent effects that underlie gene expression
variation between different lines are consistent when the cells are
cultured separately or in a village. Furthermore, we demonstrate that
line-specific effects that change across a cell-state pseudotime
(dynamic effects) can be reproducibly detected, further supporting
the use of village culture systems for large-scale studies with hiPSCs.
Our results demonstrate that the village model can be effectively used
to detect eQTLs and other cell line-specific effects, and we provide
important details that will allow these approaches to be easily imple-
mented in different laboratories.

Results
Experimental and analytical framework
We implemented amulti-phased experimental design that enabled the
interrogation of village culture conditions while also comparing inter-
laboratory and cryopreservation effects using scRNA-seq (Fig. 1a).

To compare the effects of village culture conditions in different
laboratories, Phase I involved the generation of data from three inde-
pendent sites—theUniversity ofQueensland (Brisbane, Australia; Site 1),
the University of Melbourne (Melbourne, Australia; Site 2) and the
Garvan Institute of Medical Research (Sydney, Australia; Site 3). The
same lines from the same passage (FSA0006, MBE1006 and TOB0421),
the same protocols and the same reagents (from the identical batches)
were used at each site with one exception—lines were plated at a lower
density at Site 3 (~1/10 the plating density used at Sites 1 and 2). Villages

were generated using equal proportions of each uni-cultured line (cul-
tured in separate dishes) andmaintained for four days before single cell
capture. For the scRNA-seq capture of uni- and village cultures in Phase
I, cells were detached and dissociated simultaneously at each site and
placed on ice. Samples from Sites 1 and 2 were transported to Site 3,
where the samples were processed and captured together (Fig. 1a; see
“Methods” for additional details), mitigating capture batch effects.
Phase II investigated the potential impact of cryopreservation on inter-
line effects in the village culture system (maintained for seven days),
which was performed at Site 3 (Fig. 1a). Finally, Phase III used data from
all cells to investigate dynamic hiPSC line effects across cell-state
pseudotime (inter-line effects that change over pseudotime; Fig. 1a).

In the analysis of the scRNA-seq data, we estimated the variance
explained by hiPSC line, replicate, site, cryopreservation and village
status and the interaction of each of those covariates using a linear
mixed model (Fig. 1b). Finally, for Phase III, the gene expression var-
iance explained by the lines was tested for dynamic effects across
pseudotimewith a linearmixedmodel to identify inter-line effects that
change over pseudotime (Fig. 1c).

Impact of village culture system
To investigate the potential impacts of village culture conditions on
individual lines, we collected samples of the lines cultured separately
and, after four days, cultured in a village at the three independent sites
as previously described (Figs. 1a and 2a; see “Methods” for additional
details). In addition, since some experimental designs require cryo-
preserving cells at different time points, we also investigated village
effects by comparing fresh and cryopreserved uni-culture and village
samples (Figs. 1a, 2a and Supplementary Fig. 1a; see “Methods” for
additional details).

Proportions of hiPSC lines following village culturing
Village culture systems provide advantages over uni-culture systems,
provisional that the majority of the hiPSC lines can be maintained in
culture. Therefore, we first compared the proportionof each linewhen
they were first pooled (uni-culture) to the proportions following cul-
ture in a village. After demultiplexing the samples (see Methods), we
found that all lines were present in all samples, albeit at different
proportions in the village than the uni-culture samples at Sites 1 and 2
but not 3. At Sites 1 and2, the village samples hada larger proportionof
FSA0006 and a smaller proportion of MBE1006 and TOB0421 (Fig. 2b
and Supplementary Fig. 2a–b). These results are consistent consider-
ing the reduced plating density at Site 3. Furthermore, the cryopre-
served samples from Site 3 demonstrated consistency with the fresh
samples from Sites 1 and 2—differences in the line proportions
between the cryopreserved uni- and village samples—especially
FSA0006 as indicated by scCODA (Supplementary Fig. 1b–d).

We tested whether variation in hiPSC line growth rates could
contribute to variation in the proportion of each line in the village and
demonstrated that FSA0006 had almost double the growth rate of the
other two lines (Supplementary Fig. 3). The different proportions of
each line in the village suggest that growth rate is important when
designing village experiments for long-term cell culture.

Transcriptional profiles are unaffected by village culturing
To evaluate whether cell signaling of companion lines in a village alters
the transcriptional profiles of other lines, we calculated the pairwise
correlation of the transcriptomeprofiles of each sample and compared
the distributions for each covariate. The highest correlations were
observed between replicates (median rho =0.99) followed by Village
(median rho =0.98), line (median rho = 0.98) and Site (median rho =
0.97; Supplementary Fig. 2c). A similar pattern of correlations was
observed for the cryopreserved samples with the most similar
expression profiles between replicates (median rho = 0.99), followed
by Cryopreservation (median rho =0.98), line (median rho =0.97) and
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Village (median rho =0.97; Supplementary Fig. 1e). This demonstrates
that the transcriptional profiles of each line are more different than
those between uni-culture and village samples for the same line
(Supplementary Fig. 2c).

To evaluate the effect of culturing hiPSC lines in a village on each
gene, we utilised a linear mixed model framework to estimate the

percentage of the variance of gene expression that was explained by
the line, replicate, village, site, cryopreservation or interaction of each
variable in the Fresh (Fig. 2c and Supplementary Data 1) and Cryo-
preserved samples (Supplementary Figs. 1f and 2; see “Methods” for
details). High estimates of the variance explained by the interaction of
two covariates indicate that they impact gene expression variation

Fig. 1 | Experimental design and analytical approaches. a The experimental
design to test for the impact of village culture conditions on individual hiPSC lines
using scRNA-seq. Phase I compares the impact of the village culture system using
fresh samples collected at each site. Phase II investigates whether cryopreservation
of village samples impacts individual hiPSC lines. Phase III utilizes all samples to
investigate dynamic effects of the hiPSC lines across pseudotime. Each phase uti-
lizes expression matrices that are separated by condition (site for phase I, cryo-
preservation status for phase II and pseudotime for phase III) as well as covariate

matrices for each condition that contain the hiPSC line, replicate and village status.
bA linearmixedmodel is used to estimate the variance of expression for each gene
that is explained by each covariate. Those estimates are calculated for each con-
dition in each Phase of the experimental design and used for downstreamanalyses.
c The pseudotime is estimated for the cells from all samples and used in a linear
mixed model to identify genetic effects that are dynamic across pseudotime. ×3:
samples in triplicate; 10x Genomics: 10x Genomics scRNA-seq capture. All figure
parts are representative.
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more than the addition of the two variables alone. For example, if the
interaction between the line and the village status is significant for a
given gene, it would suggest that the village status is altering the var-
iance of the hiPSC alone or vice versa—presumably by having a greater
impact on a specific line.

Weobserved that, on average, thehiPSC line explains0.71%of gene
expression variance (inter-line variation), the village status explains
0.22%, and the interaction of line and Village covariates (Line:Village)
only explains 0.32% of the variation in the fresh samples (Fig. 2c and
Supplementary Data 1). However, in the cryopreserved samples, the
average variance explained was similar between the line (1.13%), the
Village (2.19%) and the interaction of the Line and Village (1.13%). When
considering just variance that explained at least 1% of gene expression
variation, more genes were influenced by the Line (Fresh: 1,824; Cryo-
preserved: 2,401) than the interaction of the Line and the Village (Fresh:
113; Cryopreserved: 980, Fig. 2c, Supplementary Fig. 1f and Supple-
mentary Data 1 and 2). This indicates that while the village impacts the
expression of some genes, the differences in gene expression between
lines are detectable and, on average, have a larger effect.

Cryopreservation followed a similar pattern, with the interaction
between the line and Cryopreservation explaining 0.63% of the gene
expression variance on average, while the line alone explained 1.13%.
Further, only 113 genes had >1% of their variance explained by the
interaction of the line andCryopreservation asopposed to2,401 by the
line alone (Supplementary Fig. 1f and Supplementary Data 2). This
further indicates that cryopreservation has a limited impact on the
gene expression variation conferred by the hiPSC lines.

Since twoof thehiPSC linesweregenerated frommaledonors and
one froma female donor, the Y chromosomegene expression variance
can be used as a positive control for line effects. Indeed, we observed
that lines are the largest contributor to Y chromosome gene variance
(Supplementary Figs. 2d, 4a, and Supplementary Data 3). These results
suggest that culturing lines in a village systemdo not significantly alter
the transcriptome of each hiPSC line.

hiPSC line effects of pluripotency genes are not impacted by
villages
It is important to understand the impact (if any) that the village culture
system could have on gene expression denoting a pluripotent state.

We identified that, on average, only a small percentage of the total
variance of pluripotency gene expression was explained by the village
status for common stem cell markers such asMYC, NANOG, SOX2 and
POU5F15 (Fig. 2d, e, Supplementary Figs. 2e and 4b–d). Furthermore,
while some of the pluripotent markers demonstrated significant dif-
ferences in expression between the village and uni-culture samples,
most effect sizes are small (Fig. 2e and Supplementary Fig. 2f).

These results suggest that culturing hiPSCs in a village and cryo-
preservation of villages do not significantly alter the proportions of
each line or their unique transcriptional profiles and suggest that vil-
lage systems are appropriate for population genomic studies.

eQTL allelic effects are not altered by village culture
We next investigated whether we could detect previously reported
eQTLs16 with our data. Indeed, the majority of eQTLs previously identi-
fied by DeBoever et al. that had at least two genotypes in this dataset
demonstrated consistent effects in both the uni-culture (Fresh: 69.7%,
Cryopreserved: 63.9%) and village samples (Fresh: 70.6%, Cryopre-
served: 66.8%; Fig. 3a and Supplementary Fig. 5a). Furthermore, 88.6%
of loci had a consistent direction of allelic effects between the village
and uni-culture samples (Figs. 3b and S5b). An example, the single
nucleotide polymorphism (SNP) rs10043 was consistently associated
with CHCHD2 expression in both uni-culture and village samples for
fresh (−4.3 <β< −8.2; Fig. 3c) and cryopreserved (−4.3 <β<−11.7; Sup-
plementary Fig. 5c). As reported previously, the reference C allele was
associated with higher expression than the alternate A allele. These data
demonstrate that line-specific effects such as eQTLs can be consistently
detected using village culture systems. These results support the con-
clusion that culturing lines in a village model is unlikely to impact the
ability to identify line-dependent transcriptional effects such as eQTLs.

Dynamic effects of hiPSC line across cell state pseudotime
Our results conclude that culturing cells in village conditions does not
significantly alter inter-line variation in gene expression across cells.
However, our results until this point only consider the potential
variation in cell states. Therefore, we next sought to determine the
variance in gene expression explained in different cell states—for
example, differences in pluripotent potential or cells spontaneously
differentiating.

Fig. 2 | Impact of village culturing system. a Experimental design to test the
impact of village culturing systems on hiPSC transcriptional profiles. The same
experiment was carried out at each of the three different sites in triplicate. b The
proportions of each of the three hiPSC lines at each of the three different sites from
uni- and village cultures. Error bars show the standard error of the triplicates
around themean. cHistograms of the variance of gene expression that is explained
by the covariates and the interaction of the covariates measured. The lines below

the histogram each represent a gene for that covariate.dThe variance of important
stem cell markers explained by the covariates. e Important stem cell marker
expression for each hiPSC line at each Site. Differential expression was calculated
with logistic regression and significance was corrected for multiple comparisons.
hiPSC: human induced pluripotent stem cell; *adjusted P-value < 0.05 for differ-
ential expression.
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Using RNA velocity, we first positioned cells based on their esti-
mated pseudotime trajectory (Fig. 1d and Supplementary Fig. 6a). As
expected, we observed that the pseudotime landscape was strongly
defined by the cells’ pluripotency (Fig. 4a, b and Supplementary
Fig. 6b), with lower pseudotime corresponding to pluripotentmarkers
and higher pseudotime coinciding with markers of spontaneous dif-
ferentiation into the ectoderm lineages (Fig. 4a–e). Next, we inter-
rogated the contributions of pseudotime to gene expression variation
using a linear mixed model approach similar to that used in Phases I
and II. Again, as expected, pseudotime explains a large percentage of
gene expression variation for many genes (on average 3.8%), with
many genes where >1% of the variance is explained by Pseudotime
(1924; Fig. S6b).

hiPSC line effect is dynamic across pseudotime
We identified 1965 significant dynamic line effects—inter-line variation
that consistently decreases or increases across pseudotime (FDR <
0.05, Supplementary Fig. 6c and Supplementary Data 4). Using
CHCHD2 as an example again, we observe a strong dynamic effect
across pseudotime with larger differences in expression between the
lines in more pluripotent cells (Fig. 4c).

Large hiPSC villages demonstrate consistent results
Next, we examined the effects of a village containing 18 iPSC lines,
which were differentiated into cardiomyocytes and cultured for mul-
tiple passages and in two separate experiments (Fig. 5a). The village of
18 lines was generated when initiating the cardiomyocyte differentia-
tion, and the proportion of cells was assessed at eight-time points
during cardiomyocyte differentiation. The village of 18 iPSC lines was
also cryopreserved at Day 0 and thawed later to evaluate the effect of
culturing villages over multiple passages—assayed at passages one,
four and eight (Fig. 5a and Supplementary Data 6–7).

Five lines were lost in the village over the 15-day cardiomyocyte
differentiation, with the largest loss of lines occurring in the first two
days. Ten lines were lost by passage eight of the village—most of which
had already been lost by passage four. Consistent with previous results,
the growth rates of the lineswere correlatedwith the proportion of each
iPSC line in the village during cardiomyocyte differentiation (Supple-
mentary Fig. 7a) and following multiple passages (Supplementary
Fig. 7b). anticipated, the correlation was insignificant at Day 0 of car-
diomyocyte differentiation as the growth rates are unlikely to contribute
to human variation in cell counting and pooling, resulting in each line
representing 3–9% of the village. These results support the conclusion
that growth rates are important to village sustainability and must be
carefully assessed for long-term village cultures.

The variation of proportions of cells in each single-cell capture is
similar to previous pooled single-cell experiments (Supplementary
Fig. 8), and the village experiments are similar or smaller thanprevious

village experiments (Supplementary Fig. 8). Further, the variation in
cell numbers observed for the cardiomyocyte differentiation village
was smaller than that for the pooled cardiomyocyte differentiation.

We next interrogated the impact of the covariates on the variation
in gene expression. Importantly, the iPSC line explains a significant
percentage of the variation in gene expression formore genes than the
passage or the interaction of the line and the passage (Fig. 5d and
Supplementary Data 5). Finally, wewere able to replicate 83% of eQTLs
that could be measured in the 18-line village, demonstrating that the
village impact does not alter the ability to estimate unique gene
expression identities.

Our results demonstrate that village culture methods can be
effectively used for population genomic studies with lines. However,
care must be taken with the lines selected for a village to ensure that a
single line does not dominate the village. We have also demonstrated
that cryopreservation does not alter the transcriptional profiles or line
proportions, and even sensitive dynamic effects can be reproduced
with village systems.

Discussion
Advances in human genetics, stem cell biology, and single-cell tech-
nologies have led to the convergence of these research domains that
allow better evaluation of the complexity of human genetic regulation.
Population genomic studies using hiPSCs and hiPSC-derived cells have
steadily increased in sample size and frequency as more lines have
become available and methods for culturing hiPSC-derived cells have
developed. However, maintaining hiPSCs and hiPSC-derived cells is
still expensive and time-consuming, compromising the ability to con-
sistently apply large-scale population genomic studies.

To date, the majority of population genetics hiPSC studies have
been conducted using bulk sequencing methods—which means that
the transcriptomes of all the cells in a sample are combined and
assayed together as one. These studies have led to significant new
knowledge of the role of genetic variation on gene regulation. Still,
bulk sequencing approaches effectively remove sample heterogeneity,
which is important for cell type-specific and context-specific effects. In
contrast, single-cell technologies provide a powerful solution for this
challenge, as individual cells are assayed separately, and context-
specific effects can be interrogated. Indeed, a few recent studies have
demonstrated that single-cell and deconvolution methods applied to
hiPSCs and hiPSC-derived cells can be used to detect pQTLs11, eQTLs
and context-specific effects2–4,8.

Studies that have used village culture systems coupled with
scRNA-seq have employed computational demultiplexing approaches
to obtain RNAmeasures for each cell from each line effectivly2,8. These
village culture systems address an additional limitation of bulk RNA-
seq methods—batch effects are wholly confounded with line effects
since each line has historically been cultured in a separate cell culture

Fig. 3 | eQTL detection consistent in Uni-culture and Village samples.
a Replication of eQTLs previously described by DeBoever et al. Significance
detectedwith a two-sidedChi squared test.bTwo-sidedSpearman rank correlation
between the effect sizes of previously reported eQTLs in the Uni-culture (x-axis)

and Village (y-axis) samples. c The previously reported eQTL for CHCHD2 demon-
strates a strong and consistent effect across different Sites and the Village status.
The gray band around the line indicates the standard error.
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dish. Previous village hiPSC-derived studies have identified context-
dependent eQTLs but have not assessed the potential impact of cell
signaling in the village culture system and whether it alters the tran-
scriptional profiles of companion lines. They detected fewer eQTLs per
cell type than anticipated for the sample sizes. This could have been
partially due to the introduction of non-genetic variance resulting
from the village model2,8. Therefore, to confidently use village models

for future population-scale experiments, there was a critical need to
thoroughly assess whether using a village culture system would alter
the transcriptional profiles of the cells from each line. Our experi-
mental procedure addressed that question and provided a roadmap
for village culture experimental design.

Our results demonstrate that, while it is important to consider line
growth rates, village experimental culture systems do not alter the

Fig. 4 | Dynamic variance explained across stem cell pseudotime. a Pseudotime
appeared to define cell pluripotency as evidenced by pluripotency markers and
ectodermal markers expressed higher pseudotime corresponding to sponta-
neously differentiated cells.bThepseudotimeprojected onto theUMAPof all cells.
c–e Markers representative of pseudotime progression: pluripotency (POU5F1; c),

Neural Ectoderm (LIX1, d) and Epidermal Ectoderm (PTN; e). f The dynamic inter-
action of pseudotime with the CHCHD2 gene—hiPSC line effects are larger at
smaller pseudotime values (pluripotent cells) and smaller at larger pseudotime
values (spontaneously differentiated cells). The band around the lines represents
the standard error. hiPSC: human induced pluripotent stem cell.
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unique transcriptional profiles of each line and are, therefore, an
applicable system for population-scale experiments. Importantly, we
could detectmultiple lines in all samples and consistently identify line-
dependent variation. Transcriptional profiles were consistent in vil-
lages and at different sites, demonstrating that village experiments
could theoretically be conducted across multiple sites. In addition,
cryopreservation had a minimal detectable effect on transcriptional
profiles that altered the line effects. Therefore, line-dependent studies
like QTL studies can effectively be carried out using village culture
designs.

Importantly,we replicatedprevious eQTLs identifiedbyDeBoever
et al. with bulk RNA-seq, including the important neuralectordermal
stem cell priming gene CHCHD217. Intriguingly, CHCHD2 showed
dynamic effects across pseudotime, with the largest difference in line
expression observed in the most pluripotent cells where CHCHD2 has
the most important priming role—possibly identifying a genetic and
expression marker that can be used to classify lines more primed for
neuroectoderm differentiations.

Further, the use of the 18-line village for cardiomyocyte differ-
entiation andmaintenance for eight passages confirmed that lineswith
higher growth rates are likely to compose a larger proportion of the
village than lines with lower growth rates. This was especially notice-
able followingmultiple passages and is consistent with the village that
contained three lines and previous findings11. Regardless, village cul-
ture systemsprovide key advantages by increasing the number of lines
that can be concurrently cultured and assayed—significantly
increasing scale.

It is important to note that, like any model system, hiPSCs have
limitations to consider including that hiPSC-derived cells are forced
differentiations that, historically, reach a plateau at fetal maturity. In
addition, hiPSC differentiations are removed from the whole-organ or
whole-body context. There is ongoing research in these spaces to help
diminish these limitations. However, hiPSC-derived models provide

unfettered access to cell types that canbedifficult toobtain from living
human donors and allow specific modulation of the cellular environ-
ments—enabling the identification of context-specific effects.

While hiPSCdifferentiationswere not themain focus of this study,
we showed that multiple lines could be maintained in a village during
cardiomyocyte differentiation. Some previous village studies have
been carried out for NPCs18 and dopaminergic neuron2 differentia-
tions. Naturally, post-mitotic differentiations, such as neuronal differ-
entiations are likely to be the most successful for early village studies
since cells stop expanding, and it may be easier to manage line pro-
portions. Nevertheless, our results demonstrate that pooling lineswith
similar growth rates will significantly help maintain multiple lines in a
single village.

The advantages gained fromusing single-cell data to obtain purer
cell subtypes and leveraging village culture systems to increase
throughput are extensive. In our opinion, these advantages sig-
nificantly outweigh the limitations of hiPSCs. Village systems—paired
with single-cell technologies—promise to revolutionise the field of
population genomics of gene regulation.

Methods
Ethics
The research carried out in this study was conducted in accordance
with the Declaration of Helsinki and approved by the Human Research
Ethics committees of the University of Melbourne (1545394), the Gar-
van Institute of Medical Research (ETH01307) and the University of
Queensland (2015001434). All patients gave written informed consent
to collect and use their biological data for this research.

Three-line village
hiPSC cell culture. 1 mL aliquots of each of the hiPSC lines FSA0006,
MBE1006 and TOB042119 (passage 18; Supplementary Data 3) were
thawed at each site on the same day and plated in StemFlexTM media

Fig. 5 | Large hiPSC village differentiation and maintenance. a Experimental
design for testing a large village of 18 unrelated hiPSC lines including the cell
numbers and transcriptional profiles during cardiomyocyte differentiation and
hiPSC village maintenance. b Proportion of cells from each hiPSC line during car-
diomyocyte differentiation (15-day protocol). c Proportion of cells from each hiPSC
line during hiPSC village culture maintenance. d Proportion of gene expression

varianceduring hiPSC villagemaintenance explainedby the covariatesmeasured in
this dataset—Line and Passage. Each line in the rug plot below the histogram shows
the observation of a gene for that covariate. e Replication of eQTLs previously
described by DeBoever et al. with the 18-line iPSC village with 83% of eQTLs in
concordant directions. Significance identified with two-sided Chi-squared test.
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(Life Technologies; Catalog Number: A3349401; Lot Number:
2093181) complete with StemFlexTM Supplement (Life Technologies,
Catalog Number: A33492-01; Lot Number: 2090179) with Rock inhi-
bitor Y-27632 (10 µM final concentration; Stem Cell Technologies;
Catalog Number: 72304) on Costar non-treated six well polystyrene
plates (Catalog Number: 3736; Lot Number: 30417038) coated with
Vitronectin XF (Stem Cell Technologies; Catalog Number: 07180; Lot
Number: 18B87584) diluted in CellAdhere Buffer (Stem Cell Tech-
nologies, Catalog Number: 07183; Lot Number: 18M979058). Cells
were subcultured once a week with ReLeSR for two weeks (Stem Cell
Technologies; Catalog Number: 05872) before equal numbers of the
hiPSC lines were combined and plated together. The same lot num-
ber of all reagents were used between the three locations (the Uni-
versity of Queensland in Brisbane, the University of Melbourne in
Melbourne and the Garvan Institute of Medical Research in Sydney).
hiPSC villages were cryopreserved in 1mL with CryoStor® CS10
(STEMCELL Technologies; Catalog Number: 100–1061) per manu-
facturer instructions.

scRNA-seq capture. Totalseq-A antibodies (Biolegend; Catalog
Numbers: 394607, 394613, 394601, 394609, 394615, 394603,
394605, 394611) were used to hashtag hiPSC pools from each dif-
ferent location (the University of Queensland, Garvan Institute of
Medical Research and University of Melbourne) before combining
and super-loading onto the 10x Genomics Chromium Controller (10x
Genomics) to capture single cells. Briefly, 1 × 106 cells from each
replicate at each site were centrifuged at 300 × g for three minutes
and the supernatant was discarded. The cell pellets were resus-
pended in 100 µL cold Fluorescence-Activated Cell Sorting (FACS)
buffer (phosphate buffered saline [PBS] with two percent fetal
bovine serum [FBS]). Then, 2 µL of Totalseq-A hashing antibody was
added and the cells were gently pipetted tomix before incubating for
20min on ice. Cells were then washed twice with FACS buffer by
centrifuging at 300 × g for 5min, discarding the supernatant and
resuspending the cell pellet in 100 µL cold FACS buffer. Cells were
briefly stained with 4′,6-diamidino-2-phenylindole (DAPI) before
using flow cytometry (BD FACS Aria, 100 µm nozzle, four-way purity
mode, temperature controlled) to sort and capture live single cells.
Cell pools contained one sample from each site (Supplementary
Fig. 9). Trypan blue was then used to assess the pool viability (>75%
viable). Approximately 32,000 cells were loaded onto the Chromium
Single Cell Chip B (10x Genomics; Catalog Number: PN-1000073) to
capture 20,000 single cells with the Gel Bead Kit V3.0 (10x Geno-
mics; Catalog Number: PN-1000076).

GEM generation, barcoding, cDNA amplification, and library
construction were performed according to the 10x Genomics Chro-
miumUser Guide (CG000183). Libraries were preparedwith the Single
Cell 3’ V3.0 Library and Gel Bead Kit (10x Genomics; Catalog Number:
PN-1000077 and PN-1000078).

Growth Rate Estimation. hiPSC lines FSA0006, MBE1006 and
TOB0421wereeachplated in two six-well plates onday0 in StemFlexTM

media complete with StemFlexTM Supplement with Rock inhibitor
Y-27632 on Costar non-treated six-well polystyrene plates coated with
Vitronectin XF. Media was changed on day 2 and then cells from three
wells were detached and counted on days 4, 5, 6, and 7 each. The
resulting cell counts were used to estimate growth rates with ratrack20.

Eighteen-line village
hiPSC cell culture. 1mL aliquots of each of the hiPSC lines (Supple-
mentary Data 3)19 were thawed and plated in mTeSRTM Plus media
complete with mTeSRTM Plus Supplement (Life Technologies, Catalog
Number: 100–0276) with Rock inhibitor Y-27632 (10 µM final con-
centration; Stem Cell Technologies; Catalog Number: 72304) on
Costar TC-treated six-well plates (Corning; Catalog Number: 3516)

coated with Matrigel® hESC-Qualified Matrix (Corning; Catalog Num-
ber: 354277) diluted in Dulbecco’s Modified Eagle Medium/F-12
(ThermoFisher Scientific, Catalog Number: 11320082). Each hiPSC was
maintained for two passages before pooling into a village using equal
numbers of each line. Aliquots of the village were cryopreserved using
CryoStor® CS10 (STEMCELL Technologies; Catalog Number:
100–1061) per manufacturer instructions. The village was plated for
>90% confluency to start cardiomyocyte differentiations and differ-
entiated over 15 days using the STEMdiffTM Cardiomyocyte Differ-
entiation Kit (STEMCELL Technologies; Catalog Number: 05010) per
manufacturer instructions. Cells were collected at Days 0 (hiPSCs at
time of village construction), 1, 2, 3, 4, 5, 7, and 15. For hiPSC main-
tenance interrogations, the cryopreserved village was thawed and
plated with mTeSRTM Plus media complete with mTeSRTM Plus Sup-
plement (Life Technologies, Catalog Number: 100–0276) with Rock
inhibitor Y-27632 (10 µM final concentration; Stem Cell Technologies;
CatalogNumber: 72304) onCostarTC-treated six-well plates (Corning;
Catalog Number: 3516) coated with Matrigel® hESC-Qualified Matrix
(Corning; Catalog Number: 354277) diluted in Dulbecco’s Modified
Eagle Medium/F-12 (ThermoFisher Scientific, Catalog Number:
11320082). The villages were maintained for eight passages.

scRNA-seq capture. The cardiac differentiated village samples were
prepared for the 10x Genomics Single Cell Multiome (ATAC+GEX) kit
per manufacturer instructions. Briefly, cells were detached from the
plate using TrypleE and washed twice using 0.04% BSA in PBS. Cells
were treated with DNAse solution for 5min on ice and washed using
0.04% BSA in PBS. Cells were counted and 1.5 × 106 cells were used for
nuclei extraction. Isolation of nuclei suspensions was performed
according to the Demonstrated Protocol: Nuclei Isolation for Single
Cell ATAC Sequencing (10x Genomics, CG000365 Rev B) using 0.1×
lysis buffer and lysed for 2.5min to obtain intact nuclei. Single cell
ATAC and RNA-seq libraries were prepared using the Chromium single
cell multiome ATAC + gene expression platform (10x Genomics).
Nuclei were prepared and counted to ensure quality and concentra-
tion. Nuclei were then transposed according to the manufacturer’s
protocol. Transposed nuclei suspension was loaded onto Next GEM
Chip J targeting 20,000 nuclei and then ran on a ChromiumController
instrument to generate GEM emulsion (10x Genomics). Single-cell
gene expression libraries, aswell as single cell ATAC-seq libraries, were
generated according to the manufacturer’s protocol using the Chro-
miumNextGEMSingle CellmultiomeATAC+gene expression kit. Final
libraries were quantified using high sensitivity D1000 TapeStation
(Agilent). Each library was sequenced separately on a NovaSeq 6000
instrument using an SP 100 cycles reagent kit (Illumina), targeting
25,000 reads/nuclei for ATAC-seq and a minimum of 20,000 reads/
nuclei for gene expression

Samples from the hiPSCs villages that were maintained for eight
passages—passage one, four and eight—were superloadedonto the 10x
Genomics Chromium Controller (10x Genomics) to capture single
cells. Briefly, cryopreserved samples were thawed at 37 °C before
adding to 4mL mTeSRTM Plus media complete with mTeSRTM Plus
Supplement (Life Technologies, Catalog Number: 100–0276) and
centrifuging at 300 × g for fourminutes topellet cells. The supernatant
was discarded before washing with phosphate-buffered saline (PBS)
and incubated in GibcoTM TrypLETM Express Enzyme (Thermo Fisher
Scientific; Catalog Number: 12604-013) for eight minutes. Cold
Fluorescence-Activated Cell Sorting (FACS) buffer (PBS with two per-
cent fetal bovine serum [FBS]) was added to the cells before cen-
trifuging at 300 × g for four minutes and aspirating the supernatant.
The cell pellets were resuspended in 500 µL cold Fluorescence-
Activated Cell Sorting (FACS) buffer (PBS with two percent fetal
bovine serum [FBS]). Trypan blue was then used to assess the pool
viability (>70% viable). Approximately 32,000 cells of each sample
were loaded onto a separate well of the Chromium Single Cell Chip B
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(10x Genomics; Catalog Number: PN-1000073) to capture 20,000 sin-
gle cells with the Gel Bead Kit V3.0 (10x Genomics; Catalog Number:
PN-1000076).

GEM generation, barcoding, cDNA amplification, and library
construction were performed according to the 10x Genomics Chro-
miumUser Guide (CG000183). Libraries were preparedwith the Single
Cell 3’ V3.0 Library and Gel Bead Kit (10x Genomics; Catalog Number:
PN-1000077 and PN-1000078).

Growth rate estimation. The 18 hiPSC lines were each plated in three
wells of a 6-well plate on day 0 in mTeSRTM Plus media complete with
mTeSRTM Plus Supplement on Costar TC-treated six-well plates coated
with Matrigel® hESC-Qualified Matrix diluted in Dulbecco’s Modified
Eagle Medium/F-12. Cells were imaged every business day for up to
eight days on a Celigo Imaging Cytometer. themedia was changed per
the manufacturer’s recommendations. The resulting cell confluencies
were used to estimate growth rates with ratrack20.

scRNA-seq read alignment
The 10xGenomicsCell Ranger SingleCell Software Suite (version3.1.0)
was used to process the 3’ single-cell RNA-seq libraries (chemistry v3).
Raw base calls were used to demultiplex the multiplexed pools, which
were then mapped to the GRCh38-1.2.0 genome (Ensembl release 84)
using STAR (version 2.5.1b) for each pool independently.

scRNA-seq demultiplexing and doublet detection
The single cell village pools were demultiplexed with Demuxafy21 to
combine droplet calls between different methods. These methods
demultiplex the different hiPSC lines in the pools and identify doublets
between two lines. The village containing three hiPSC lines used SNP
genotype demultiplexing Popscle Demuxlet v0.1-beta13, Popscle Free-
muxlet v0.1-beta22, scSplit v1.0.114, Souporcell v1.015, and Vireo v0.4.212

with additional doublets classified by Scrublet23 andDoubletDetection v
3.024. Droplets classified as singlets by at least four of the SNP-based
demultiplexing or transcription-based doublet detecting softwares, as
well as the hashtag demultiplexing and were classified as the same
hiPSC line by at least three of the SNP-based demultiplexing softwares,
were retained for downstream analysis. All other droplets were
excluded.

The cardiomyocyte differentiation of the 18 hiSPC line village was
SNP genotype demultiplexed with Souporcell v1.015 and additional
doublets identifiedwith scds v1.12.025 andDoubletDetection v 3.024. The
village containing 18 hiPSC lines maintained over eight passages was
demultiplexed using Popscle Demuxlet v0.1-beta13, Popscle Freemuxlet
v0.1-beta22, Souporcell v1.015, andVireo v0.4.212 with additional doublets
classified by Scrublet v1.023. The recommended guidelines were fol-
lowed for each of the softwares as briefly described.

Popscle demuxlet. Popscle pileup was used to identify the single
nucleotide variants (SNVs) in the pool. Then, Demuxlet was run with
reference genotypes for each hiPSC line in the pool using a genotype
error coefficient of 1 and genotype error offset rate of 0.05 and default
options for all other parameters.

Popscle Freemuxlet. Popscle pileup was used to identify the single
nucleotide variants (SNVs) in the pool followed by Freeuxlet executed
with default parameters.

scSplit. Low quality and duplicated reads were removed before using
freebayes to classify high quality SNVs in the dataset. The resulting
bam and vcf were used for scSplit using default options and the -n 3
option to provide the number of hiPSC lines in the pool.

Souporcell. Souporcell was run using the souporcell_pipeline.py script
with known variant locations from the reference imputed SNP

genotypes that overlapped gene exons using the–common_variants
parameter and all other default parameter options.

Vireo. Model 1 of cellSNP v0.3.2 was used to identify allele frequencies
at the locations of the common variants (MAF =0.1) in the genotyped
reference genotype file for the three hiPSC lines. The resulting pileup
was filtered for SNP locations covered by at least 20 UMIs and had at
least 10%minor allele frequency across all droplets. Vireo version 0.4.2
was then used to demultiplex the droplets in the pool using reference
SNP genotypes and indicating the number of individuals in the pools.

Scrublet. Scrublet was used to identify transcription-based doublets
that included two cells from different cell types. Scrublet was imple-
mented in python v3.6.3 per developer recommendations with at least
three counts per droplet, three cells expressing a given gene, 30 PCs
and a doublet rate based on the following equation:

R=
N2 � 0:008

1000
ð1Þ

where N is the number of droplets captured and R is the expected
doublet rate. Scrublet was assessed at four different minimum num-
bers of variable gene percentiles: 80, 85, 90, and 95. Then, the best
variable gene percentile was selected based on the distribution of the
simulated doublet scores and the location of the doublet threshold
selection. If the chosen threshold does not fall between a bimodal
distribution, those pools were rerun with a manual threshold set.

Scds. Scds25 is a transcription-based doublet detecting method. Scds
was implemented with the cxds function and bcds functions with
default options followed by the cxds_bcds_hybrid with estNdbl set to
TRUE so that doublets were estimated based on the values from the
cxds and bcds functions.

DoubletDetection.DoubletDetection24 is a transcription-basedmethod
for identifying doublets. Droplets without any UMIs were removed
before analysis with DoubletDetection. Then the dou-
bletdetection.BoostClassifier function was run with 50 iterations with
use_phenograph set to False and standard_scaling set to True. The
predicted number of doublets per iteration was visualized across all
iterations. Any pool that did not converge after 50 iterations were
rerun with increasing numbers of iterations until they reached
convergence.

Hashtag demultiplexing. Hashtag demultiplexing26 was used to
identify cells from each location and doublets that included cells from
two locations.

Quality control
Three-line village. 144,988 droplets were captured for analysis. Dro-
plets were considered outliers and excluded from further analysis if
they were more than four median average deviations (MAD) from the
mitochondrial percentagemedian or contained <1750 total genes. This
resulted in 88,927 high-quality single cells being used for downstream
analysis. Cyclone from the scran package v1.4.527 was used to detect
the cell cycle state of each cell. The quality control metrics for these
high-quality single cells for the fresh samples (Fig. 2a) are presented in
Supplementary Fig. 4, and the cryopreserved experiment samples
(Fig. 3a) are presented in Supplementary Fig. 5.

Data were normalized with a regularized negative binomial
regression, and variance stabilized with Pearson residuals using
SCTransform as previously described28. Expression data were also
corrected by cell cycle status, mitochondrial percentage, and riboso-
mal percentage.
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Eighteen-line village. 57,451 droplets were captured, and 29,055 cells
remained after removing the droplets that were classified as a doublet
byDemuxafyusing the ‘AtLeastHalfSinglet’ integrationmethod (28,081
droplets removed) and those with >25% mitochondrial content (315
additional droplets removed).

Correlation of transcriptional profiles
The mean expression of each gene for each line was compared
between samples with a two-sided Spearman Rank correlation, and the
distributions of the correlations between samples of different covari-
ates were plotted.

hiSPC line proportional changes between samples
The proportional changes of lines between samples were estimated
using scCODA29 v0.1.8. An FDR of 0.05 was used for all scCODA ana-
lyses. scCODA was sequentially run once using each cell line as the
reference for each analysis and the majority vote was used to identify
cell lines whose proportion was credibly changed more than half the
time. The specific metrics are provided in Supplementary Data 8).

Correlationof growth rateswithhiPSC lineproportions− 18-line
hiPSC Village
The growth rates of the hiPSC lines in the 18-line village that were
estimatedwith ratrack20were correlatedwithproportions of hiPSC line
estimated using Demuxafy at each time single cells were captured.
Two-sided Spearman rank correlation was used to measure the
strength of the correlation and statistical significance.

Covariate contribution to gene variance
The proportion of the variance explained by the hiPSC line, the repli-
cate and the village status for each gene was determined by fitting a
linear mixedmodel for normalized and regularized expression of each
gene. Briefly, normalized UMI counts were fit as the dependent vari-
able of a linearmixedmodel with the independent variables as random
effects. The intra-class correlation (ICC) was used to estimate the
variance explained by each variable where var is the estimated vari-
able, i:n is all the variables, including residual and σ2 represents the
estimated variance.

ICC=
σ2
varPn
i σ

2
i

� 100 ð2Þ

The variables included for the fresh samples across the three sites
were: line, village, site, and replicate. For the cryopreserved samples,
the variables were line, village, cryopreservation and replicate. For the
village containing 18 lines, the covariates modeled were line and pas-
sage number. The significance of a given variable was tested using an
ANOVAbetween themodelwith andwithout that covariate. Significant
covariates were then tested for significant interaction as well.

Pluripotent gene differential expression
All genes expressed in at least 10% of cells in a given line at a given site
were tested for differential expression with a logistic regression
between the uni-culture and village samples. For comparison across
the samples, all groups were down-sampled to the smallest number of
cells at one condition (n = 572). Differential expression was detected
using logistic regression implemented in Seurat. Replicates were fit as
a covariate in the model, and significance was corrected for all tests
across all groups with the Bonferroni correction method.

hiPSC eQTL replication
eQTLs previously identified by DeBoever et al. with bulk RNA-seq in
hiPSCs were filtered for SNPs with at least two alleles across the three
lines used in the village and genes with a significant portion of their
variance explained lines. Those SNPs were then filtered for SNPs with

non-identical alleles in the three lines and tested for effects with a
linear model fitting the gene expression. The average expression for
each hiPSC line at each site were fit for the uni-culture and village
samples separately with the covariates previously identified to con-
tribute to the gene expression variance (see “Covariate contribution to
gene variance” section). The effects (β) were tested for significant
agreement with DeBoever et al. eQTLs with a χ2 test. The correlation
and significance between uni-culture and village effect sizes was cal-
culated using a two-sided Spearman rank correlation.

RNA velocity pseudotime
Pseudotime was estimated using RNA velocity implemented with the
scvelo30 package (v0.2.3) to estimate the latent time of all single cells.
First, sequence reads overlapping spliced and unspliced read count
matrices were prepared using velocyto31 (v0.17.17). Cells that had
<1000 unspliced counts and genes that were expressed in <20 cells
and had <10 unspliced counts were filtered and removed. The batch
effects were normalized using pycombat32 (Combat v0.3.0) using a
proposed approach33. Briefly, the spliced (S) and unspliced (U) counts
were combined to create the total count matrix (M;Eq. 3). An addi-
tional matrix (R) was also constructed to aid in deriving the corrected
spliced (Sb) and unspliced (Ub) matrices following batch correction of
M (Eq. 4). Then M was corrected for site, hiPSC line and village status
batch effects using pycombat. Following batch correction, batch-
corrected splicted (Sb) and unspliced (Ub)matrices were derived using
the R matrix (Eqs. 5 and 6).

M = S+U ð3Þ

R =
S

S+U
ð4Þ

Sb =Mb � R ð5Þ

Ub =Mb � 1� Rð Þ ð6Þ

Those matrices were then used to calculate the dynamical RNA
velocity latent time with the scvelo package.

Gene expression variance explained by pseudotime
The gene expression variance explained by pseudotime was modeled
with a linearmixedmodel described in “Covariate contribution to gene
variance” with pseudotime as a continuous covariate. The interaction
of pseudotime and line effect was tested if both the line and pseudo-
time were significant contributors to gene expression variance.

Integrating conditions for visualization
Cells from each cell line in each village status and at each site were
integrated for visualization (Fig. 4b and Supplementary Fig. 6b) using
the reciprocal principal component analysis (RPCA) method imple-
mented with the Seurat package (v4.0.0-4.0.5)34. Thirty PCs, cell cycle,
and mitochondrial percentage were fit as covariates.

Statistics and reproducibility
3-line hiPSC village. Three hiPSC lines that were previously estab-
lished, well-characterized and used in previous studies were selected
for use in the three-line hiPSC village experiments described. Three
hiPSC lines, three sites and three replicates at each sitewere selectedas
the minimum required number to effectively identify variation
between the different covariates. Four days of culture in the hiPSC
villages were selected since this is typical for seeding stem cells in
preparation for differentiation experiments. One week was used for
the cryopreservation experiments since at least one week is required
for stem cells to recover from thawing before beginning experiments.
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Single cell capture pools were generated with one sample from each
site to prevent possible technical variation during capture, library
preparation and sequencing that could confound site effects. Only
droplets classified to contain cells from the cellranger pipeline were
used in subsequent analyses. The resulting data were demultiplexed
with genetic data (for each hiPSC line) and antibody hashtags (for each
site). Droplets identified as doublets (containing two or more cells) or
those could not be assigned to either a site or a hiPSC line were
removed from the analysis. Data were then filtered for cells that were
less than four median average deviations (MAD) from the mitochon-
drial percentage median or contained more than 1750 total genes
(Supplementary Figs. 10, 11). Statistical analyses were conducted in R
and python using established tools or methods with scripts for all
analyses provided on Github (https://github.com/powellgenomicslab/
iPSC_Village_Publication) andZenodo35. Data have beenmade available
to support the reproduction of these results on Gene Expression
Omnibus (GSE225282) and Zenodo35. Growth rate experiments were
blinded to the experimenter. Experiments were not randomized.

18-line hiPSC village
Cardiomyocyte 18-line village. No statistical method was used to
predetermine the sample size. The hiPSC villageswere captured onDays
0, 1, 2, 3, 4, 5, 7, and 15 to capture the transcriptional changes that occur
early during differentiation. Droplets that contained cells based on
cellranger estimation were maintained for analysis. Further, droplets
that were annotated as doublets or could not be assigned to a hiPSC line
with genetics by demultiplexing and/or doublet detecting methods
were removed from downstream analyses. Growth rate experiments
were blinded to the experimenter. Experiments were not randomized.

Multi-passage 18-line village. No statistical method was used to
predetermine sample size. The hiPSC villageswere cryopreserved after
one, four or eight passages and then thawed and captured at the same
time to prevent possible capture, library preparation or sequencing
confounding effects. Droplets that were not identified to contain cells
by cellranger were removed from downstream analyses. Further,
droplets that could not be assigned to a single hiPSC line with genetic
demultiplexing were also removed. The growth rate experiments were
blinded to the experimenter. The experiments were not randomized.

All analyses were executed in R version 4.2.1 or python ver-
sions > 3.6.8

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and semi-processed single-cell and genetic data are available
on Gene Expression Omnibus under accession code “GSE225282”.
Completely processed Seurat objects and other data are available on
Zenodo35. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Informa-
tion files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
Analysis code is available on Github (https://github.com/
powellgenomicslab/iPSC_Village_Publication) and Zenodo35.
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