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Persistent serum protein signatures define
an inflammatory subcategory of long COVID

Aarthi Talla1,5, Suhas V. Vasaikar1,3,5, Gregory Lee Szeto1,3, Maria P. Lemos2,
Julie L. Czartoski2, Hugh MacMillan 2, Zoe Moodie 2, Kristen W. Cohen 2,4,
Lamar B. Fleming 2, Zachary Thomson 1, Lauren Okada1, Lynne A. Becker 1,
Ernest M. Coffey1, Stephen C. De Rosa2, Evan W. Newell 2, Peter J. Skene1,
Xiaojun Li 1, Thomas F. Bumol 1 , M. Juliana McElrath2 &
Troy R. Torgerson 1

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syn-
drome featuringdiverse symptoms that can persist formonths following acute
SARS-CoV-2 infection. The aetiologies may include persistent inflammation,
unresolved tissue damage or delayed clearance of viral protein or RNA, but the
biological differences they represent are not fully understood. Here we eval-
uate the serum proteome in samples, longitudinally collected from 55 PASC
individuals with symptoms lasting ≥60 days after onset of acute infection, in
comparison to samples from symptomatically recovered SARS-CoV-2 infected
and uninfected individuals. Our analysis indicates heterogeneity in PASC and
identified subsets with distinct signatures of persistent inflammation. Type II
interferon signaling and canonical NF-κB signaling (particularly associated
with TNF), appear to be the most differentially enriched signaling pathways,
distinguishing a groupof patients characterized also by a persistent neutrophil
activation signature. These findings help to clarify biological diversity within
PASC, identify participants with molecular evidence of persistent inflamma-
tion, and highlight dominant pathways that may have diagnostic or ther-
apeutic relevance, including a protein panel that we propose as
having diagnostic utility for differentiating inflammatory and non-
inflammatory PASC.

New, recurrent, or prolonged symptoms after acute SARS-CoV-2
infection are termed post-acute sequelae of SARS-CoV-2 (PASC) or
long COVID. A systematic review of 38 papers reported that one-third
or more of surviving COVID-19 participants experienced at least one
PASC symptom during the 2–5 months after the onset of acute
infection1. PASC symptoms are numerous and varied, impacting vir-
tually every major organ system (https://www.cdc.gov/coronavirus/
2019-ncov/long-term-effects/index.html)2,3 and can last for weeks or

months. Recent Delphi consensus criteria propose that PASC be
defined as having at least 60 days of symptoms persisting for a mini-
mum of 90 days post-symptom onset (https://www.who.int/
publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-
Clinical_case_definition-2021.1). However, the published literature is
inconsistent, defining PASC as persistent symptoms for 30–120 days
post-symptom onset4–7. Despite the large number of individuals
affected, the lack of consensus diagnostic criteria or standardized
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outcome measures impede efforts to effectively group persons to
establish clinical etiologies or to evaluate outcomes of therapeutic
trials8. There are a limited number of clearly defined and validated
molecularmarkers of disease9,10 or definitive diagnostic tests. Tomake
matters more complicated, it is recognized that similar clinical symp-
toms could arise after acute infection regardless of whether they were
caused by persistent inflammatory disease initiated by the viral
immune response, unresolved organ or tissue damage, or delayed viral
clearance. Identification of molecular features capable of mechan-
istically defining the heterogeneity of PASC could be transformative,
allowing clinicians and researchers to better subset participants for
clinical trials and highlighting potential targets for therapeutic
intervention.

Here, we use the Olink proteomics platform to analyze the serum
proteome of 55 unvaccinated adults with PASCwhowere infectedwith
the ancestral strain of SARS-CoV-2. We show that a subset of PASC
patients have evidence of persistent inflammation. Among those with
persistent inflammation, individuals with PASC, cluster into two
groups: One, dominated by increased Interferon-γ, a signature of type
II IFN-driven inflammation, NF-κB activation, and increased inflam-
matory cytokines, chemokines, and cytokine receptors. The second,
dominated by a signature of persistent neutrophil activation, NF-κB
activation, and type I IFN-driven inflammation. The findings suggest
that the identified inflammatory serum protein signature could be
used to stratify patients for clinical trials of immunomodulatory drugs
to identify individuals that may benefit most from treatment. The
signature or the component proteinsmay also be useful biomarkers to
evaluate therapeutic responses.

Results
Reported symptoms are diverse and unable to differentiate
subsets of PASC in our cohort
The study cohort consisted of 55 adults (21men, 34 women; age 22–82
years) with persistent symptoms lasting ≥60 days after an acute, PCR-
confirmed SARS-CoV-2 infection (termed “PASC”), 24 (9 men, 15
women; age 20–79 years) who symptomatically recovered after a PCR-
confirmed SARS-CoV-2 infection (termed “Recovered”), and 22 (12
men, 10 women; age 29–77) who had a negative nasopharyngeal PCR
test (termed “Uninfected”). Participants were enrolled during the
ancestral strain infection of the COVID-19 pandemic. The majority of
participants hadmild COVID symptomsduring their acute SARS-CoV-2
infection (World Health Organization (WHO) ordinal scale 2 or 3)11.
Only 3 participants were hospitalized and required oxygen therapy
(WHO ordinal scale 5). Two of these received Remdesivir. One addi-
tional participant received steroids. No participants in this cohort
required mechanical ventilation or underwent chest computed
tomography (CT). All were unvaccinated when enrolled in the study.
Summary demographics for the cohort are shown in supplemental
Table S1. The uninfected individuals had blood drawn once at study
entry while the PASC and recovered participants had one or more
blood draws at timepoints ≥60 days and up to 379 days post-symptom
onset (PSO) of acute COVID (see Supplemental Fig. S1). Symptoms and
other clinical metadata for each PASC participant are provided in
supplemental Data S1. Previous studies have divided PASCparticipants
into subsets based on either type, number, or severity of clinical
features7,12–14. PASC participants in our cohort reported multiple
symptoms at ≥60 days PSO ranging from fatigue, fever, chills to more
clinically concerning symptoms like arrhythmia or brain fog. These
individual PASC symptoms were combined into organ-related symp-
tom groups like pulmonary, cardiovascular, neurologic, etc. (see
Methods) (Supplemental Data S1). For our cohort, hierarchical clus-
tering on PASC symptomatology alone at ≥60 days PSO did not clearly
drive significant participant clustering (Supplemental Table S1 & Fig.
S2A).We next attempted to cluster based on serum proteins that were
significantly associated with reported symptoms, but no single

symptom or combination of symptoms was able to clearly distinguish
participant groups (Supplemental Fig. S2B–D) suggesting that symp-
toms alone are unable to differentiate subsets of PASC and that addi-
tional biologic measures are needed to clarify the groups.

Clustering of the serum proteome using an unsupervised
learning approach identifies a subset of PASC participants that
have evidence of persistent inflammation
We analyzed the serum proteome using the Olink Explore 1536 panel
(see Methods, supplemental Data S2) to first interrogate specific pro-
teins that distinguish PASC (at their first time point available ≥60-days
post symptomonset), recovered (at their last time point available ≥60-
days post symptom onset), and uninfected participants in our cohort.
We identified 275, 25, and 14 proteins that were significantly differen-
tially expressed (p <0.05) between PASC, recovered, and uninfected
groups respectively when each group was compared to the other
groups (Supplemental Data S3). We noted that within the PASC group,
there was variation in expression of the serum proteomic signature,
suggesting that some have an inflammatory signature and others do
not (Supplemental Fig. S2E), and highlighting the heterogeneous nat-
ure of the disorder.

We hence took an alternative approach, using unbiased clustering
of the serum proteome across the entire cohort (PASC+recovered
+uninfected) to find clusters of individuals that had similar serum
proteome signatures regardless of their COVID-19 status or reported
symptomatology. For this purpose, we used the first ≥60-day sample
available for each PASC participant, the last available post ≥60-day
sample for each recovered participant (to maximize the chance that
proteome alterations had returned to baseline), and the solitary sam-
ple from uninfected individuals (see Methods for details). We used
curated canonical pathways from the Molecular Signatures Database
(MSigDB) and applied a rule-in statistical approach (see Methods) to
identify pathways that distinguished PASC from both recovered and
uninfected individuals15. This resulted in identification of 85 pathways
that have a significant rule-in performance (p < 0.01). SinceMSigDB is a
collection of annotated pathways generated from several different
experimental datasets, pathways may contain overlapping genes/gene
products. To avoid redundancy of genes and gene sets, the identified
pathways were merged into 54 modules using the enrichment map
approach with a minimum Jaccard index threshold of 25% (see Sup-
plemental Data S4 and Methods)16. Hierarchical k-means clustering
using the 54 proteomic modules identified 5 discrete clusters that
showed distinct expression patterns of the modules (Fig. 1A). Two of
the clusters (4 & 5) showed marked enrichment for inflammatory
modules including type I and type II interferon signaling, TNF signal-
ing, NFκB signaling, and several others, while clusters 1, 2, and 3 lacked
a distinct inflammatory protein signature. Inflammatory clusters 4 and
5 included predominantly PASC (91% and 80% respectively). In con-
trast, cluster 1 consisted of only uninfected or recovered participants
and clusters 2 and 3 consisted of a mixture of recovered, uninfected,
and PASCwith a lower percentage of participants being from the PASC
group (48% and 28% respectively) (Supplemental Fig. S3A). The dis-
tribution of PASC participants across inflammatory (4 & 5; 65% of
PASC) and non-inflammatory (2 & 3; 35% of PASC) proteomic clusters
underscores the heterogeneity of PASC and was our first clear indica-
tion that only a subset of PASC participants have ongoing inflamma-
tion. To assess if the differential serum proteomic signatures captured
at the initial post-60 day time point persisted over time, we extended
our analysis to include all longitudinal samples available for each
participant. We found that PASC participants exhibiting an inflamma-
tory protein signature continue to have that signature over time and
that most participants remained in the same cluster throughout the
longitudinal study period (Supplemental Fig. S3B). It is unclear whe-
ther the two clusters of inflammatory PASC (4 & 5) are unique with
distinct molecular drivers or represent a spectrum of disease.
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It is possible that a poor immune response to SARS-CoV-2 may
allow delayed clearance of viral particles that could increase the risk
for developing PASC with persistent inflammation. To address this
question, we evaluated SARS-CoV-2 receptor binding domain (RBD)-
specific IgG titers in serum samples obtained 60 days PSO from PASC
and recovered participants in each of the 5 clusters identified above.

There was no significant difference in RBD-specific IgG responses
between previously infected COVID participants in any of the clusters
(Fig. 1B).We also compared SARS-CoV-2-specific CD4+ and CD8+T cell
frequencies17,18 between PASC and recovered participants from all
clusters and did not identify any significant differences (Supplemental
Fig. S3C & S3D).
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More severe acute COVID symptoms correlatewith an increased
likelihood of developing persistent inflammation in the PASC
period
Previous studies have suggested that severity of the acute infection
may lead to a higher incidence of PASC19–21. We hypothesized that an
inflammatory serum protein signature may also correlate with being
more symptomatic during acute infection. However, because our
cohort primarily experienced mild acute COVID-19 symptoms (WHO
ordinal scale 2 or 3), commonly used COVID severity indices did not
capture the range of heterogeneity in symptomatology that we
observed clinically.We therefore developed a clinical activity score for
the acute phase of mild COVID. The clinical activity score for each
participant reflects the impact on Activities of Daily Living (ADLs) for
each day of illness. The score evaluates symptom activity for each day
of illness ranging from no symptoms to life threatening illness with
profound effect on ADLs and accounts for the time spent at each level
(see Methods). Inflammatory PASC participants in clusters 4 & 5 had a
significantly higher pre-PASC clinical activity scoreor higher impact on
ADLs (two-sided Wilcoxon test p =0.002) compared to non-
inflammatory PASC participants in clusters 2 & 3 (Fig. 1C).

Higher BMI and older age are associated with having persistent
inflammation in PASC
We assessed if other covariates or clinical parameters such as age,
gender, BMI, or underlying comorbidities were associated with having
an inflammatory serum proteomic signature. While there were no
overall significant differences in age or BMI at enrollment between
PASC, recovered and uninfected participants (Supplemental Figs. S4A
& S4B), BMI was significantly higher in the inflammatory PASC groups
(clusters 4 and 5) compared to participants in the other non-
inflammatory clusters (Fig. 1D). We noted that well-described BMI
associated proteins like (Leptin (LEP) and Fatty Acid Binding Protein
(FABP4)) and the Leptin signaling module were significantly increased
in participants with high BMI (clusters 4 and 5) in our cohort (Fig. 1E,
F)22–24. We also noted that interleukin-6 (IL-6), identified as part of the
inflammatory signature associated with PASC, was positively corre-
lated with BMI (Fig. 1E). These data suggest that BMI may be a risk
factor for exhibiting an inflammatory PASC phenotype but does not
account fully for the increased IL-6 observed in inflammatory PASC
because a small subset of participants whose BMI was within the
“healthy” range also had increased IL-6 as part of their inflammatory
proteomic signature.

We next evaluated the impact of age on the inflammatory serum
protein signature because we noted that PASC participants in cluster 4
were significantly older (Fig. 1G). Specifically, CXCL9, CXCL10, and
IL18BP in addition to the type II interferon signaling module that have
been associated with the process described as “inflammaging”25, were
positively correlated with higher age in cluster 4 in our cohort (Fig. 1H,
I). Inflammatory proteins present in the published proteome data

associated with obesity or age22–24,26 overlapped with some of the sig-
nature proteins we found associated with inflammatory PASC but did
not account for the breadth of the signature we identified. We have
summarized the numerical overlap of protein markers reported in
obesity, aging, and the PASC inflammatory signature in a Venndiagram
(Supplemental Fig. S4C, Data S5) to demonstrate the similarities and
differences between these states. Together, these data suggest that
increased BMI and older age may be associated with a risk for persis-
tent inflammation in participants with PASCbut do not account for the
full inflammatory signature observed in inflammatory PASC since
several identified inflammatorymarkerswere specific to PASC.We also
noted anon-significant (p =0.088) trend towardhigher bloodpressure
in the inflammatory clusters (4 & 5) of PASC participants (Supple-
mental Fig. S4D) but the known association between increased blood
pressure, high BMI, and older age confounds interpretation of this
finding. Very few participants had other comorbidities and the pre-
sence or absence of other comorbidities was not significantly asso-
ciated with the inflammatory serum proteomic signature. All p-values
tested for the presence or absence of a comorbidity between the
inflammatory and non-inflammatory groups with a Fisher Exact test
were >0.05 (Fig. S4D). While these results are interesting, additional
larger studies will be needed to confirm these observations.

Signaling modules and specific inflammatory proteins that
define the inflammatory form of PASC
Among the 54 modules that defined the 5 clusters of participants
(Fig. 1A), we identified those that significantly distinguished each
cluster by calculating the single-sample Gene Set Enrichment Analysis
(ssGSEA) score per module across samples (Supplemental Data S6)27.
Ranking modules by adjusted p-value identified those most sig-
nificantly associated with inflammatory clusters 4 and 5 (Fig. 2A and
Supplemental Data S7 & Fig. S5). Within cluster 4, multiple pathways
associated with type II interferon (IFN-γ) signaling (Type II IFN signal-
ing, IL-27, TID (aka: Chaperones modulating interferon signaling)),
were among those most highly enriched (Fig. 2B, Supplemental Data
S7). Canonical NF-κB signaling andNF-κB activating cytokine pathways
(IL-18, TNF, IL-1 were enriched in both clusters 4 and 5 (Fig. 2C). In
addition, cluster 5 was also enriched for proteins associatedwith IFN-α
signaling (Fig. 2D). The expression scores of these modules across all
samples were significantly correlated with each other, indicating,
participants with higher IFN-γ signaling have higher IL-27, IL-18, and
NF-κB signaling, and participants with higher TNF signaling have
higher IL-1, NF-κB, and IFN-α signaling, suggesting a coordinated
activation of immune cascades that drive inflammation (Supplemental
Fig. S6).

We next investigated the individual proteins differentially
expressed in the serumof participantswithin each cluster. Each cluster
(1-5) was individually compared to all other clusters. Cluster 4 had 234
differentially expressed proteins (DEPs) whereas cluster 5 had 296

Fig. 1 | Serum proteomic clustering and clinical metadata of PASC. A Single
Sample Gene Set Enrichment Analysis (ssGSEA) score heatmap of the rule-in
selected serum proteome modules (rows), across 55 PASC, 24 recovered and 22
uninfected participants (columns). B Receptor binding domain (RBD)-specific IgG
titers (y-axis) in 55 PASC and 24 recovered participants between clusters. The p-
valuewas calculated comparing, as a group, inflammatoryversus non-inflammatory
clusters using a two-sided Wilcoxon test. C Clinical activity score (y-axis) of acute
COVID symptoms in 55 PASC participants from inflammatory (4 & 5) vs. non-
inflammatory (2 & 3) clusters. The p-value was calculated by comparing inflam-
matory PASC versus non-inflammatory PASC using a two-sided Wilcoxon test.
D Body Mass Index (BMI) at enrollment (y-axis) across clusters (x-axis) in 55 PASC,
24 recovered and 22 uninfected. Healthy BMI cutoff is indicated by the dashed line.
The p-value was calculated by comparing inflammatory clusters (4,5) to the other
clusters using a two-sidedWilcoxon test. EHeatmapof proteins (rows) significantly
(p-value < 0.05) correlated with BMI across all COVID-19+ participants (columns).

The p-values were determined by a two-sided Spearman’s correlation test.
F Correlation between the ssGSEA score of the leptin signalingmodule (x-axis) and
BMI at enrollment (y-axis) across all COVID-19+ participants. The p-value was
determined by a two-sided Spearman’s correlation test.G The age at enrollment (y-
axis) across clusters (x-axis), in 55 PASC, 24 recovered and 22 uninfected. P-values
were determined by a two-sidedWilcoxon test by pairwise cluster comparison. Box
plots show the median (centerline), the first and third quartiles (the lower and
upper bound of the box) and the whiskers show the 1.5x interquartile range of the
data. H Heatmap of the proteins (as rows) significantly (p-value < 0.05) correlated
with age across all COVID-19+ participants (as columns). The p-values were deter-
mined by a two-sided Spearman’s correlation test. i Correlation between the
ssGSEA score of the type II interferon signaling module (x-axis) and age at enroll-
ment (y-axis) across all COVID-19+ participants. The p-value was determined by a
two-sided Spearman’s correlation test. The bands in all correlation scatter plots
display the 95% confidence interval.
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Fig. 2 | Key pathway modules driving inflammatory PASC signatures.
AModules that are significantly expressed more highly in clusters 4 and 5 relative
to all other clusters. Modules unique to a cluster are arranged and ranked by
increasing adjusted p-value of <0.05, whilemodules expressed in both clusters are
arranged and ranked by the average of their adjusted p-values. The color gradient
of each node represents the -log10 adjustedp-value. P-valuesweredeterminedby a
two-sided Wilcoxon test. B–D Box and jitter plots of the Single Sample Gene Set

Enrichment Analysis (ssGSEA) scores (y-axis) across all clusters (x-axis) (that con-
sist of PASC, n = 55; recovered, n = 24; uninfected, n = 22 participants) for the top-
ranked modules that were enriched in inflammatory clusters 4 and 5. P-values
determinedby a two-sidedWilcoxon test were calculated comparing inflammatory
cluster 4 and inflammatory cluster 5 independently to clusters 1,2,3. Boxplots show
themedian (centerline), the first and third quartiles (the lower and upper bound of
the box) and the whiskers show the 1.5x interquartile range of the data.
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DEPs (Supplemental Data S8; adj.p-value < 0.05, Supplemental Fig. S7).
Based on our initial findings that the dominant modules in these two
inflammatory clusters were associated with cytokines, chemokines,
their receptors and associated signaling pathways, we focused first on
these proteins since they are major drivers of inflammation and
potential targets for therapeutic intervention. Differentially expressed
cytokines, chemokines, and cytokine/chemokine receptors were

ranked by adjusted p-value. IFN-γ was the cytokine that most sig-
nificantly defines cluster 4 (Fig. 3A, B, Supplemental Fig. S8, Supple-
mental Data S8). In addition to IFN-γ, increased expression of
chemokines and cytokines known to be regulated by IFN-γ including
CXCL9, CXCL10, CXCL11 and IL-27 in cluster 4 suggests that it is
functionally active.We also observed increased expressionof IL-12 p40
(IL12B) and the IL-12 p40/p70 heterodimer (IL12A_IL12B) in cluster 4,
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which may drive expression of IFN-γ and an overall Th1 signature
(Fig. 3A, B). While not as strongly differentially expressed in cluster 5,
IFN-γ and IFN-γ induced chemokines are enriched compared to those
that recovered from COVID or were uninfected (Fig. 3B).

To determine whether IFN-γ and IFN-γ driven cytokines and che-
mokines remained persistently elevated over time in inflammatory
PASC, we compared expression levels in all inflammatory PASC indi-
viduals (clusters 4 + 5) with those observed in non-inflammatory PASC
or in individuals that were infected with SARS-CoV-2 but recovered.
Proteins were evaluated longitudinally in all available samples begin-
ning from early acute infection to 275 days post-symptomonset (PSO).
IFN-γ, IL-12 p40, and IFN-γ-driven chemokines were consistently ele-
vated in inflammatory PASC relative to the other 2 groups (Fig. 3C and
supplemental Fig. S9). To strengthen this observation, we extended
our analysis to include all proteins that are part of IFN-γ related sig-
naling modules and show that over time, the differences between
inflammatory PASC vs. non-inflammatory PASC and the recovered
COVID groups are even more distinct (Fig. 3D and Supplemental
Fig. S10A).

In addition to the IFN-γ related signature noted above, we also
observed that TNF, TNF-driven cytokines and chemokines (including
IL-6 and CCL7 (MCP3)), and several TNF receptor superfamily mem-
bers were also increased in both inflammatory PASC clusters but most
extensively in cluster 4 (Fig. 3A, E). TNF, IL-6, and CCL7 remained
persistently elevated in all inflammatoryPASC (clusters 4 + 5)over time
when compared to non-inflammatory PASC or individuals who were
infectedbut recovered (Fig. 3F). In addition to elevated cytokine levels,
there is evidence for persistent inflammatory cytokine signaling based
on the enrichment of proteins involved in TNF signaling, the IL-18
pathway, and the NF-κB canonical signaling pathway (Fig. 3G and
Supplemental Fig. S10B).

In inflammatory PASC cluster 5, we also noted a protein signature
suggestive of persistent type I interferon signaling including elevation
of proteins that are induced by type I IFNs during acute SARS-CoV-2
infection (SAMD9L, DDX58, MNDA, and LAMP3)28,29. Interestingly,
these type I IFN associated proteins were increased at the earliest
sampling timepoint available for analysis in inflammatory PASC and
remained elevated for approximately 180 days post infection (Fig. 3H
and Supplemental Figs. S8 & S9). Similarly, ssGSEA analysis showed
enrichment for the pathway associated with regulation of IFN-α sig-
naling in inflammatory PASC that followed a similar kinetic (Fig. 3I and
supplemental Fig. S10C). We do not have a specific readout for sys-
temic type I IFN levels since these are notoriously difficult to accurately
quantify in circulation and the Olink assay only measures IFN-γ and
IFN-λ1, however the accumulated evidence points to the persistent
activity of type-I interferons in PASC individuals that exhibit signs of
persistent inflammation. This is notable considering recent studies
reporting detection of SARS-CoV-2 RNA and spike protein in gastro-
intestinal and hepatic tissue of convalescent participants up to

180 days after acute infection, diverse extrapulmonary tissues
including brain up to 230 days after acute symptom onset, and SARS-
CoV-2 spike protein in serum up to a year post-acute infection30–32.
Whether residual viral RNA and/or protein may serve as a driver of the
phenotype in inflammatory PASC remains to be investigated more
thoroughly.

To enhance our understanding of broader immune events that
may be occurring in PASC individuals with persistent inflammation, we
expanded our analysis beyond cytokines, chemokines, and their
receptors to focus on the top 50 proteins differentially expressed in
inflammatoryPASC clusters 4& 5 versus the non-inflammatory clusters
(Fig. 4A). Two important observations emerge from this analysis: First,
IFN-γ is both the most highly expressed cytokine in cluster 4 and the
most highly differentially expressed protein overall in this cluster.
Similarly, many of the top 50most differentially expressed proteins in
cluster 4 are the cytokines, chemokines, or cytokine/chemokine
receptor subunits highlighted above (Fig. 4A, upper portion). Cluster 4
participants also showed increased levels of cell surface receptors
linked to inflammation (CD74) or inflammation-associated checkpoint
molecules (CD5, TIM-3 (HAVCR2), PDCD1, and CD83). Second, we
noted that in cluster 5, cytokines, chemokines, and their receptors
were less prominent but two of the three most highly differentially
expressed proteins overall were annexin-11 (ANXA11) and annexin-3
(ANXA3) (Fig. 4A, lower portion). Among annexins, ANXA3 is most
highly restricted to neutrophils and ANXA11 is also strongly expressed
in this cell type33. ANXA11 along with ANXA3 translocate to the neu-
trophil granule membrane in a calcium-dependent manner and are
released upon degranulation34. Elevated peripheral blood ANXA3
levels have been correlated with inflammatory diseases like sepsis
where it has been associated with poor outcomes or death and sti-
mulation of whole blood with various toll-like receptor agonists, fixed
pathogens, and cytokines showed that ANXA3 was upregulated most
strongly by IFN-γ but also induced by IFN-β and poly-IC33. Pairing this
with the presence of neutrophil granule proteins including MMP8
(neutrophil collagenase) and MPO, the neutrophil serine protease
inhibitor SERPINB1, and multiple components of the membrane/vesi-
cle traffickingmachinery (SNAP23, STX8, SNAP29) among the 50most
differentially expressed proteins in cluster 5 suggests persistent neu-
trophil activation, degranulation, and possibly generation of neu-
trophil extracellular traps (NETosis). The presence of SAMD9L and
MNDA among the top differentially expressed proteins highlights the
prominence of the type-I interferon signature noted above andmay be
indicative of a role for sustained type I IFNs in driving persistent neu-
trophil activation35.

To summarize, broad-based serumproteomic screening identifies
a subset of PASC individuals that have evidence of persistent inflam-
mation that is sustained over the time course of this study. The sig-
natures group inflammatory PASC into two major clusters (identified
here as 4 & 5). One group (cluster 4) has prominent IFN-γ and evidence

Fig. 3 | Longitudinal assessment of key cytokines and chemokines driving
inflammatory PASC signatures. A Differentially expressed cytokines, chemo-
kines, and their receptors up-regulated in inflammatory clusters 4 & 5. Proteins
significantly up-regulated in clusters 4 and 5 relative to all other clusters are
reported. P-values were tested by a two-sided Wilcoxon test and adjusted for
multiple comparisons. The color gradient of nodes represents the -log10 adjusted
p-value. B Box plots of IFN-γ Normalized Protein Expression (NPX) (y-axis) and its
related cytokines and chemokines across clusters (x-axis) in 55 PASC, 24 recovered,
22 uninfected participants which were significantly upregulated exclusively in
cluster 4. P-values were calculated comparing inflammatory clusters 4 and 5 inde-
pendently to clusters 1,2,3, using a two-sidedWilcoxon test.C Longitudinal Loess fit
plots of IFN-γ NPX (y-axis) and its related cytokines and chemokines on samples
available from early acute infection through >250 days post symptom onset (PSO)
(x-axis). PASC participants from inflammatory clusters 4 and 5 are represented as
inflammatory PASC (red), PASC participants from clusters 2 and 3 as non-

inflammatory PASC (blue) while the recovered participants are in black.
D Longitudinal Loess fit plots of the Single Sample Gene Set Enrichment Analysis
(ssGSEA) scores (y-axis) of IFN-γ related modules over time (x-axis). E Box plots of
TNF, IL6 and CCL7NPX (y-axis) across clusters (x-axis) in 55 PASC, 24 recovered, 22
uninfected participants which were significantly upregulated in clusters 4 and 5. P-
values were calculated comparing clusters 4 and 5 independently to clusters 1,2,3,
using a two-sided Wilcoxon test. All box plots show the median (centerline), the
first and third quartiles (the lower and upper bound of the box) and the whiskers
show the 1.5x interquartile range of the data. F Longitudinal Loess fit plots of TNF,
IL6 and CCL7 NPX (y-axis) over time (x-axis). G Longitudinal Loess fit plots of the
ssGSEA scores (y-axis) of TNF and NF-κB related signaling modules over time (x-
axis). H, I Longitudinal Loess fit plots of NPX and ssGSEA scores (y-axes) of type-I
IFN-drivenproteins and the IFN-αmoduleover time (x-axis) respectively. Thebands
in all loess smooth fit plots display the 95% confidence interval.
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of both IFN-γ and NF-kB driven inflammation with upregulation of
several inflammation-driven cytokines, chemokines, receptors, and
immune checkpoint proteins. The second group (cluster 5) has evi-
dence of ongoing IFN-γ andNF-κBdriven inflammation aswell butwith
a more prominent signature of neutrophil activation, degranulation,
and/or NETosis pairedwith evidence for persistent type I IFN signaling.
It is unclear whether these represent distinct inflammatory states or
are part of a continuum of inflammation and resolution. To address
this, we evaluated whether participants who were initially in one
cluster at the earliest post-60 day PSO timepoint, transitioned to a
different cluster at later timepoints, suggesting a transition to a dif-
ferent inflammatory or non-inflammatory state. We found that most
individuals remain in the same cluster over the time course of obser-
vation in this study. There were a small number that transitioned
within the inflammatory clusters or from inflammatory to non-
inflammatory but there was no clear pattern (Fig. S3B). Longer
follow-up and a larger cohort may be needed to understand clearly
how the different immune states are related in PASC.

The serum protein signature identified in inflammatory PASC
can be validated in an independent cohort
To determine whether these observations could be extended to an
independent cohort of PASC participants collected across a broader
range of acute COVID severities, we used the INCOV cohort, the only
other recent publisheddataset usingOlink technology to evaluate over
442 proteins in blood samples from PASC36,37.

The INCOV cohort includes data from 204 SARS-CoV-2-infected
participants and 289 healthy controls. Of the 204 INCOV participants,
75 met the criteria used for our cohort (Olink data available from
sample obtained ≥60 days after acute infection + clinical data avail-
able). Forty-three percent (43%) of these had 1 or more PASC symp-
toms like the PASC participants in our cohort, and the remainder had
no recorded PASC symptoms, similar to the “recovered” group in our
cohort. The Olink panel employed in the INCOV study measured only
442 of the 1463 proteins measured in our study but 163 proteins
overlapped with the inflammatory signatures that significantly defined
the two inflammatory clusters (4 & 5) in our cohort (Supplemental Fig.
S11). There are two other differences worth noting: First, in our study,
the Olink assay was performed on serumwhile the INCOV cohort used
plasma. Second, while both studies utilized the Olink proximity
extension assay (PEA)® technology to detect the serum proteins, this
was quantified using a next-gen sequencing approach in our study
whereas it was quantified by multiplex quantitative polymerase chain
reaction (qPCR) in the INCOV study.

Similar to our cohort, k-means unsupervised clustering of the
Olink proteomic data from the first time point ≥60 days PSO per
INCOV participant (n = 75) was performed with k = 5 using the 163
overlapping proteins (Fig. 5A). Like our inflammatory clusters 4 and 5
that consisted primarily of PASC participants (which was 65% of all
PASC), 64.2% of the participants in INCOV cluster E were PASC (Fig. 5A
and Fig. 5B). No healthy controls clustered with cluster E. INCOV
cluster D was made up of a mixture of PASC, recovered, and healthy
controls, like our cluster 2. The remaining clusters (A, B, C) weremade
up predominantly of healthy individuals. INCOV cluster E showed
significant enrichment of 129of the 163 proteins (79%) that definedour
inflammatory PASC clusters 4 and 5. Despite the different matrices
(serum vs. plasma) and different quantification methods (NGS vs.
qPCR) used for the two cohorts, results were robust with cluster E
demonstrating elevation of cytokines and chemokines observed in our
inflammatory PASC cluster 4 (IFN-γ, IL12, CXCL10, CXCL11, TNF, CCL7,
etc.) (Fig. 5C) combined with those elevated in our inflammatory PASC
cluster 5 (DDX58, LAMP3, etc.) (Supplemental Fig. S12 & Data S9). The
broader diversity of disease severity in the INCOV cohort compared to
our mild to moderate cohort, allowed us to make an association
between the clinical measure of acute disease severity (WHO ordinal

Fig. 4 | Top 50 overall serum proteins driving the signatures observed in the
two inflammatory PASC clusters. A Heatmap of the top 50 Olink serum proteins
ranked by adjusted p-value <0.05 that are up-regulated in inflammatory clusters 4
and 5 compared to all other clusters. Rows represent individual proteins; columns
represent individual samples and the scaled Normalized Protein Expression (NPX)
expression across samples is depicted from low (purple) to high (yellow). The p-
value determined by a two-sided Wilcoxon test was calculated comparing one
cluster of participants to all other groups.
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scale score) and proteomic inflammatory signatures. Interestingly,
INCOV participants from cluster E predominantly exhibited an acute
WHO ordinal score of ≥3 reflecting the association between more
severe acute disease and persistent inflammation37 (Fig. 5D).

A predicted panel of 3 proteins exhibits performance char-
acteristics that has potential clinical utility
The full protein panel identified in PASC participants with persistent
inflammation would be impractical to deploy as a clinical test to dif-
ferentiate inflammatory and non-inflammatory PASC participants. To
design a smaller panelwith potential clinical utility, we identified the 35
most significantly differentially expressed proteins distinguishing
inflammatory from non-inflammatory PASC in our cohort that were

also present and significantly differentially expressed in the INCOV
cohort at the first available timepoint ≥60 days PSO. Among the 35
proteins, a list of 15 proteins (Supplemental Data S10) were selected as
candidates for a protein panel to distinguish inflammatory versus non-
inflammatory PASC. All these proteinsmeasured in both our study and
INCOV, were significant in distinguishing the two PASC groups
(adjusted p <0.008) in our study and had strong support in the lit-
erature as biomarkers for COVID-19 and/or PASC. We tested various
combinations of these 15 analytes in a logistic regression (LogReg)
model using our PASC cohort as the training dataset (n = 36 inflam-
matory and n = 19 non-inflammatory) and the INCOV PASC cohort as
the test dataset (n = 34 inflammatory and n = 9 non-inflammatory)
using the first time point available ≥60 days PSO.We identified a three-

Fig. 5 | Independent cohort validation of inflammatory PASC signatures.
A K-means unsupervised clustering of Olink proteomic data from Su Y et al. (2022)
showing 5 clusters, A–E of INCOV participants that consisted of PASC (sympto-
matic) and recovered (participants showingnoPASCsymptoms) alongwith healthy
controls. B Pie chart representation and table showing the percentage of PASC,
recovered and healthy participants within each cluster. The number of participants
per cluster (columns) and per group (rows) are represented within brackets. C Box
and jitter plots of cytokines/chemokines significantly upregulated in the INCOV
participants of cluster E (n = 53) vs. INCOV participants of clusters B, C, and

D (n = 22). P-values were determined by a two-sided Wilcoxon test. Box plots show
themedian (centerline), the first and third quartiles (the lower and upper bound of
the box) and the whiskers show the 1.5x interquartile range of the data.
D Distribution of different disease severities, as judged by World Health Organi-
zation (WHO) ordinal scale across INCOV participants in cluster E vs INCOV parti-
cipants in clusters B, C, and D. Y-axis and the numbers in bar graphs represent
proportion and number of participants per INCOV group in each WHO scale bin
respectively.
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protein panel (CCL7, CD40LG and S100A12) that performed well to
distinguish inflammatory versus non-inflammatory PASC in thismodel
(See Methods & Supplemental Data S10). These proteins were up
regulated in the inflammatory clusters at ≥60 days PSO and persisted
over time in the inflammatory PASC group compared to the non-
inflammatory PASC group, with the exception of CD40LG that was
significantly higher only around the 60 days PSO time point, specifi-
cally in the inflammatory cluster 5 participants (Fig. 6A and Fig. 6B).
The proposed clinical panel of 3 analytes had an area under the
receiver operating characteristic curve (AUROC) of 0.865 (95% con-
fidence interval (CI): 0.765–0.966) on the training data and 0.788 (95%
CI: 0.590–0.985) on the test data (Fig. 6C). The LogReg probability
scores of inflammatory PASC were significantly higher than those of
non-inflammatory PASC in both the training (p <0.0001) and the test
(p = 0.007) datasets (Fig. 6D). A higher LogReg score indicates a higher
probability that the participant has inflammatory PASC. Similar results
were observed when comparing LogReg scores of inflammatory PASC
with those of uninfected and recovered participants (Supplemental
Fig. S13A). The LogReg scores of the inflammatory PASC compared to
the non-inflammatory PASC remained significantly higher when com-
pared within each days PSO window (Supplemental Fig. S13B). It is
encouraging that the potential diagnostic value of this signature holds

up in an independent, orthogonal dataset that was measured using a
different matrix (plasma vs. serum). The inclusion of a wider range of
acute WHO clinical severities by evaluating performance in the INCOV
independent test cohort, suggests that this 3-marker diagnostic panel
could not only be applied to PASC participants that had mild acute
COVID-19 symptomsbut also PASCparticipants that had amore severe
acute clinical course. Moreover, a combination of multiple biomarkers
that together, are associated with disease may improve both the sen-
sitivity and specificity of a diagnostic test compared to a single bio-
marker. Although themodel suggests that this panel may have clinical
utility to identify those PASC participants that have ongoing inflam-
mation, clear choices were made in selection of these biomarkers that
may bias their performance in the clinical setting. Additional studies in
a larger cohort, over a broader rangeof timepointswouldbeneeded to
validate any panel before it could be used more broadly. We believe
that this, or a similar panel, could be used to stratify those that may
benefit most from immunomodulatory therapy.

Discussion
We have identified a serum proteomic signature using a broad-based
screen that identifies individuals with PASC that have signs of persis-
tent inflammatory disease. In our cohort, approximately 60% of PASC

Fig. 6 | Diagnostic panel for inflammatory vs non-inflammatory PASC. A Box
and jitter plots of CCL7, CD40LG and S100A12 Normalized Protein Expression
(NPX) (y-axis) between PASC in inflammatory clusters 4 and 5 (n = 36) and PASC in
non-inflammatory clusters 2,3 and 4 (n = 19) (x-axis). P-values determined by a two-
sided Wilcoxon test were calculated comparing inflammatory cluster 4 and
inflammatory cluster 5 independently to clusters 2 and 3. B Longitudinal Loess fit
plots of CCL7, CD40LG and S100A12 NPX on samples available from early acute
infection through >250 days post symptom onset (PSO) (x-axis). PASC participants
from inflammatory clusters 4 and 5 are represented here as inflammatory PASC
(red), PASC participants from clusters 2 and 3 are represented here as non-
inflammatory PASC (blue). The bands in the loess smooth fit plots display the 95%
confidence interval. C Receiver operating characteristic (ROC) curves of a logistic

regression (LogReg) model of three proteins (CCL7, CD40L, S100A12) for distin-
guishing inflammatoryversus non-inflammatoryPASCand the corresponding areas
under theROCcurve (AUROCs) on the trainingdata (n = 36 inflammatory andn = 19
non-inflammatory) and the test data (INCOV: n = 34 inflammatory and n = 9 non-
inflammatory). D Boxplots of the LogReg probability scores distinguishing
inflammatory (n = 36) versus non-inflammatory (n = 19) PASC, left panel in the
training dataset and inflammatory (n = 34) versus non-inflammatory (n = 9) INCOV
test data, right panel. P-values were determined by a two-sided Wilcoxon test. All
box plots show the median (centerline), the first and third quartiles (the lower and
upper bound of the box) and the whiskers show the 1.5x interquartile range of
the data.
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exhibited an inflammatory signature. Those with evidence of persis-
tent inflammation had a broad range of clinical features that did not
clearly segregate the group, suggesting the importance of overlaying
biological and clinical readouts in this diverse condition. Our findings
provide insights to potential molecular mechanisms of persistent
inflammation in PASC and suggest possible therapeutic targets that
may be efficacious including JAK inhibitors or specific cytokine
blockade in individuals that have the persistent inflammatory protein
signature (TNF, IL-6, IFN-γ, etc). Our findings extend previous obser-
vations that have variably reported increased expression of IFN-γ, IFN-
β, IFN-λ1/2/3, TNF, IL-6, IL-1β, and PTX3 in plasma from PASC partici-
pants using targeted cytokine panels18, 38,39. While these previous stu-
dies grouped all PASC participants, we provide the first evidence that
more than half of all PASC have an inflammatory protein signature
while others do not have this signature. We show that in inflammatory
PASC, the IL-12/IFN-γ axis is highly active and is combined with a NF-κB
driven protein signature, possibly activated by TNF, and leading to
excess IL-6 expression.

Furthermore, we show evidence of a persistent type I IFN driven
protein signature present in the inflammatory PASC proteomic cluster
5 that trends toward normal, approximately 6 months post-infection,
paralleling recent reports of persistent SARS-CoV-2 RNA and/or spike
protein being detected in serum or non-pulmonary tissues up to
6–12months after infection30–32. Whether persistence of viral products
is the driver for ongoing inflammation in PASC remains to be proven
but the concept is particularly intriguing. Several papers have high-
lighted a role for type I IFNs early in disease and the severe clinical
outcomes that occur in participants with signaling defects or neu-
tralizing antibodies that target type I IFNs or IFN signaling
pathways40–42. Under normal circumstances, this is accompanied by
transient expression of Type II IFN (IFN-γ) that assists in the generation
of adaptive immune responses. However, sustained expression of IFN-
γ by cytotoxic T cells or Th1 cells typically requires that these cells
recognize antigenic peptides, presented via MHC to their T cell
receptors. NK cells or tissue-resident innate lymphoid cells may also
express IFN-γ in response to residual viral components. Persistent
presence of viral products could serve as the driver of this process
leading to a persistent inflammatory protein signature in blood. Links
between persistent interferon stimulation and activation of neu-
trophils is well established in numerous inflammatory diseases and
may explain the strong signature of neutrophil degranulation and
NETosis we observed in some individuals with inflammatory PASC.

Finally, we show that the serum protein signature we identified
can be applied to another independent, orthogonal COVID dataset
with samples collected from participants with a range of acute clinical
COVID severities to identify PASC participants with persistent inflam-
matory disease. We have used these data to propose a serum diag-
nostic panel of three marker proteins (CCL7, CD40LG, S100A12) and
have proposed that with further validation, these proteins may be
helpful to differentiate inflammatory PASC from non-inflammatory
PASC. This could allow participants to be stratified for clinical trials or
for immunomodulatory therapies.

Methods
Regulatory approvals
Informed consent was obtained from all participants in the Seattle
COVID-19 Cohort Study to Evaluate Immune Responses in Persons at
Risk and with SARSCoV-2 Infection and to publish individual’s indirect
identifiers such as exact age, sex, and BMI. The Fred Hutch Cancer
Center Institutional Review Board approved this study (IR10440).

Study conduct
Serum was collected from participants enrolled in the longitudinal
study, “Seattle COVID-19 Cohort Study to Evaluate Immune Responses
in Persons at Risk and with SARS-CoV-2 Infection”43. Eligibility criteria

included adults in the greater Seattle area at risk for SARS-CoV2
infection or those diagnosed with SARS-CoV-2 by a commercially
available PCR assay. Study data were collected and managed using
REDCap electronic data capture tools hosted at Fred Hutch Cancer
Center, including detailed information on symptoms during acute
infection and longitudinal follow-up ranging from 33–379 days post
symptomonset. All but 2 persons in the “uninfected”grouphadat least
1 symptom of SARS-CoV-2 infection within the 14 days prior to study
screening but had a negative SARS-CoV-2 nasopharyngeal PCR test.
Sex of participants was determined based on self-reporting. Partici-
pants were not compensated for being in this study.

Definition of PASC
At the time of study design, the definition of PASC was evolving
including some literature that utilized a persistence of symptoms
lasting as few as 30 days from symptom onset to define Long COVID.
However, we noticed that for many participants, the loss of smell and
taste were the sole persistent symptoms in individuals that had
otherwise recovered symptomatically after their acute SARS-CoV-2
infection. In most cases, this is resolved by 60 days post symptom
onset. Toprevent any confounding fromacute recovery,we, therefore,
included study participants whose symptoms had lasted for at least
60 days from symptom onset. To assure that our cohort was also
representative of current definitions of PASC, we determined whether
or not they also met the recent WHO Delphi Consensus criteria (at
least 60 days of symptoms persisting for a minimum of 90 days
post-symptom onset) (https://www.who.int/publications/i/item/WHO-
2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1).
We confirmed that all but 1 PASC participant in our cohort continued
to experience symptoms for more than 90 days post-symptom onset.
The individual without 90-day follow-up left the study and could not
be contacted.

PASC symptom category clustering
We collected symptom information from each donor over multiple
visits. Participants reported symptoms ranging from fatigue and fever
tomore clinically concerning symptoms like arrhythmia and brain fog.
Each individual PASC symptom that was reported at ≥60 days PSO
were merged into six major categories including fatigue/malaise, pul-
monary, cardiovascular, gastrointestinal, musculoskeletal, and neuro-
logic. Other mild symptoms were combined into a single category as
“any mild symptoms” (Supplemental Data S1). We acknowledge that
these symptoms are reported and collected in snapshots of time and
may not fully capture the day-to-day variability.

The more clinically concerning symptoms were combined into
organ-related symptom groups as follows:

Fever/Chills = Fever 101 F or greater and/or Chills
Fatigue/Malaise = Fatigue or malaise
Pulmonary =Dry cough and/or SOB or DIB and/or Chest conges-

tion and/or Chest tightness and/or Oxygen supplementation
Cardiovascular = Arrhythmias and/or Palpitations but not

Tachycardia
Gastrointestinal = Diarrhea and/or Nausea or vomiting
Musculoskeletal =Muscle aches or pains and/or arthralgias and/or

arthritis
Neurologic = Brain fog and/or Memory loss
Tinnitus = Tinnitus
All other non-specific symptoms were combined into the “any

mild symptom” category, which include the following:
Sore throat
Scratchy throat
Low fever under 101 F
Runny nose
Loss of smell
Loss or change in taste
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Headache
Itchy eyes
Dry lips in corners (angular cheilitis)
Tachycardia
Dizziness
Lightheadedness
Hair loss/Alopecia
Hands or feet tingling
Diaphoresis or sweating
Symptom information was converted to binary format where

yes = 1 and no =0.Missing symptom information is denoted byNA. For
each symptom category we identified symptom-specific differential
serum proteins using a linear mixed model utilizing all longitudinal
timepoints available for each participant post ≥60 days PSO. We used
the lme4 package (v1.1) to carry out linearmixedmodel analysis where
age and sex were fixed variables and donor information was a random
variable44.

NPX∼Symptomstatus +Age+ Sex + ð1∣DonorÞ ð1Þ

The p-value is obtained from chi-square statistics. The specific
symptom category associated with differential plasma proteins selec-
ted using p <0.05. The identified differential proteins from six symp-
tom specific categories were merged together and their expression
visualized in a heatmap using package ComplexHeatmap (v2.4).

Symptom activity metrics and scoring for mild to moderate
acute COVID symptoms
Symptom activity in mild to moderate acute COVID was classified by
participant report of impact on Activities of Daily Living (ADLs) for
each day of illness. Days hospitalized were recorded as were any
treatment or therapies received. Participants were scored according to
theirmaximumsymptomactivity for eachday: 0, no symptoms; 1,mild
impact on ADLs reported; 2, moderate impact on ADLs reported; 3,
severe illness without hospitalization; 4, severe illness with hospitali-
zation; 5, hospitalized with ICU care, or 6, life threatening illness.
Durationwas assigned for days spent at each level of symptomactivity.
A clinical activity score was calculated for each participant by multi-
plying the symptom activity score by the number of days spent at each
level, then summing all values.

Sample processing
Bloodwas drawn into a serum separator tube and serum samples were
processed, aliquoted and frozen within 4 h of blood draw.

Olink serum protein measurement
Serum samples were inactivated with 1% Triton X-100 for 2 h at room
temperature according to the Olink COVID-19 inactivation protocol.
Inactivated samples were then run on the Olink Explore 1536 platform,
which uses paired antibody proximity extension assays (PEA) and a
next generation sequencing (NGS) readout to measure the relative
expression of 1472 protein analytes per sample. Analytes from the
inflammation, oncology, cardiometabolic, and neurology panels were
measured. For plate setup, samples were randomized across plates to
achieve a balanced distribution of age and gender. Longitudinal sam-
ples from the same participant were run on the same plate. To ensure
consistent results between batches, 42 previously run serum samples
from the initial batch were included on the second Olink batch as
bridging controls. Per protocol, samples were run alongside a negative
control (buffer), plate control (pooled serum), and a sample control
(pooled serum).

Olink’s standard data normalization was performed on this data-
set. Protein expression values were first normalized across wells using
an internal extension control (IgG antibodies conjugated with a
matching oligo pair). Plates were then standardized by normalizing to

the inter-plate pooled serum controls run in triplicate on each plate.
Data were then intensity normalized across all cohort samples. Final
normalized relative protein quantities were reported as log2 normal-
ized protein expression (NPX) values.

Olink data preprocessing
Olink results and QC flags were reviewed for overall quality. Internal
controls added at the incubation (non-human antigen+antibody pair)
and detection (double-stranded DNA) steps were used to ensure
consistency in the assay procedure among samples. There were no
sample or assay failures flagged in the dataset. Warned samples were
observed on somemarker subsets (internal controls differ +/- 0.3 NPX
from plate sample median) but were retained in the analysis. Results
for TNF, IL-6 and CXCL8, which were measured on all 4 Olink panels,
were reviewed prior to averaging to a single NPX value for analysis.
Two samples had discrepant cross-panel measurements on these
proteins. The results that trended most consistently with the partici-
pant’s longitudinal measurements were kept and averaged. Serum
samples were analyzed in two batches. Following the method recom-
mended by Olink, results of the later batch were bridged to those of
the earlier batch using a set of 42 cohort samples that were tested in
both batches. A batch offset for each analyte was calculated as the
median batch-to-batch difference on the 42 serum samples, excluding
samples with QC warning flags. The analyte-specific offsets were then
added to the raw NPX values of the later batch.

Antibody ELISAs for RBD
Half-well area plates (Greiner)were coatedwith purifiedRBDprotein at
16.25 ng/well (kind gift from Dr.Leo Stamatatos45) in PBS (Gibco) for
14–24 hr at room temperature. After 4 x 150ul washes with 1X PBS,
0.02% Tween-20 (Sigma) using the BioTek ELx405 plate washer, the
IgA and IgG plateswere blocked at 37 °C for 1-2 hwith 1X PBS, 10% non-
fat milk (Lab Scientific), 0.02% Tween-20 (Sigma); IgM plates were
blocked with 1X PBS, 10% non-fat milk, 0.05% Tween-20. Serum sam-
ples were heat inactivated by incubating at 56 °C for 30minutes, then
centrifuged at 10,000 x g for 5min, and stored at 4 °C before use in the
assay. For IgG ELISAs, serum was diluted into a blocking buffer in 7–12
1:4 serial dilutions starting at 1:50. For IgM and IgA ELISAs, serum was
diluted into 7 1:4 serial dilutions starting at 1:12.5 to account for their
lower concentration. A qualified pre-pandemic sample (negative con-
trol) and a standardized mix of seropositive sera (positive control)
were run in each plate and used to define passing criteria for each
plate. All controls and test sera at multiple dilutions were plated in
duplicate and incubated at 37 °C for 1 h, followed by 4 washes in the
automated washer. 8 wells in each plate did not receive any serum and
served as blocking controls. Plates then were plated with secondary
antibodies (all from Jackson ImmunoResearch) diluted in blocking
buffer for 1 h at 37 °C. IgG plates used donkey anti-human IgG HRP
diluted at 1:7500 (cat # 109-035-098); IgMplates used goat anti-human
IgM HRP diluted at 1:10,000 (cat # 109-035-043); IgA plates used goat
anti-human IgA HRP at 1:5000 (cat # 109-035-011). After 4 washes,
plates were developed with 25 ul of SureBlock Reserve TMBMicrowell
Peroxide Substrate (Seracare) for 4min, and the reaction stopped by
the addition of 50ml 1 N sulfuric acid (Fisher) to all wells. Plates were
read at OD450nm on a SpectraMax i3X ELISA plate reader within 20min
of adding the stop solution.

OD450nm measurements for each dilution of each sample were
used to extrapolate RBD endpoint titers when CVs were less than 20%.
Using Excel, endpoint titers were determined by calculating the point
in the curve at which the dilution of the sample surpassed that of 5
times the average OD450nm of blocking controls + 1 standard deviation
of blocking controls.

RBD titers at day 60 PSO were estimated by a linearmixed effects
model of titers over time from day 30 PSO with random effects for the
intercept and slope, using lme from the nlme R package.
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Intracellular cytokine staining (ICS) assay
Flow cytometry was used to examine SARS-CoV-2-specific CD4+ and
CD8 + T-cell responses using a validated ICS assay. The assay was
similar to a published report43,46,47. Peptide pools covering the struc-
tural proteins of SARS-CoV-2 were used for the six-hour stimulation.
Peptides matching the SARS-CoV-2 spike sequence (316 peptides, plus
4 peptides covering the G614 variant) were synthesized as 15 amino
acids longwith 11 amino acidoverlaps andpooled in 2pools (S1 andS2)
for testing (BioSynthesis). All other peptides were 13 amino acids long,
overlapping by 11 amino acids and were synthesized byGenScript. The
peptides covering the envelope (E), membrane (M) and nucleocapsid
(N) were initially combined into one peptide pool, but most of the
assays were performed using a separate pool for N and one that
combined only E and M. Several of the open reading frame (ORF)
peptides were combined into two pools, ORF 3a and 6, and ORF 7a, 7b
and 8. All peptide pools were used at a final concentration of 1
microgram/ml for each peptide. As a negative control, cells were not
stimulated, only the peptide diluent (DMSO) was included. As a posi-
tive control, cells were stimulated with a polyclonal stimulant, sta-
phylococcal enterotoxinB (SEB).Cells expressing IFNγ and/or IL-2 and/
or CD154 were the primary immunogenicity endpoint for CD4 +T cells
and cells expressing IFNγ were the primary immunogenicity endpoint
for CD8 + T cells. The overall response to SARS-CoV-2 was defined as
the sum of the background-subtracted responses to each of the indi-
vidual pools. A sample was considered positive for CD4+ or CD8 +T
cell responses to SARS-CoV-2 if any of the CD4+ or CD8 +T cell
responses to the individual peptide pool stimulations was positive.
Positive responses to a given peptide pool stimulation were deter-
mined using the MIMOSA (Mixture Models for Single-Cell Assays)
method 48. The MIMOSA method uses Bayesian hierarchical mixture
models that incorporate information on cell count and cell proportion
to define a positive response by comparing peptide-stimulated cells
and unstimulated negative controls. MIMOSA estimates the prob-
abilities that peptide-stimulated responses are responders and applies
a false-discovery rate multiplicity adjustment procedure49. Responses
with false-discovery rate q-values < 0.05 were considered positive. The
total number of CD4 +T cellsmust have exceeded 10,000and the total
number of CD8+ T cells must have exceeded 5000 for the assay data
to be included in the analysis (supplemental Data S11 and Fig. S14).

Identification of pathways with high rule-in performance
Partial area under the receiver operating characteristic curve (pAUC)50,51

was used to evaluate the rule-in performance15 of individual pathways in
identifying PASCparticipants with respect to recovered and uninfected
participants. The pAUCboundedby a specificity between 90–100% and
the corresponding 99% confidence interval (two-sided) of each path-
way were calculated using the “ci.auc” function in the R package pROC
with the following parameters: partial.auc = c(0.9, 1), conf.level = 0.99,
boot.n = 1000. A pathwaywas identified as significant with p <0.01 if its
pAUC lower confidence boundwas above the corresponding pAUCof a
random, non-performing classifier, i.e. 0.005.

We collected the canonical pathway “c2.cp.v7.2.symbols” genesets
collection and associated gene information from MsigDB (v7.2). The
2871 canonical pathways were used to perform single sample GSEA
(ssGSEA)52 using GSVA (v1.40) R package. Among 2871 pathways, 1960
pathwayswithoverlapping serumproteinswere used as input forGSVA
with min.size 2 and max.size 2000 genes as parameters. The ssGSEA
resulted in a normalized enrichment score (NES) for eachpathway.One
sample for each PASC donor was selected as follows: The first time
point ≥60 days PSO for infected PASC donors (n = 55) and the last time
point ≥60 days PSO for individuals that were infected but recovered
(n = 24). Including the uninfected individuals (n = 22), a single sample
from each of 101 donors was included in the biomarker analysis.

The rule-in approach implemented to identify pathways sig-
nificantly associated with PASC donors was performed as follows:

Parameters including confidence interval (CI), pAUC and bootstrap
(boot.n) were used. Bootstrap analysis was performed using random
seed over multiple processors using the R function mcapply (v3.4.1).
Range of CI 0.8–0.99 and pAUC 0.8–0.95 was used to identify path-
ways associated with the PASC group. These pathways were used to
differentiate the uninfected and PASC donors into separate clusters
incorporating >50% of cluster size. The clustering was performed by
the k-means approach implemented in ComplexHeatmap (v2.4) and
visualized. The bootstrap analysis resulted in CI of 0.99 and pAUC of
0.95 which can differentiate uninfected and PASC donors in clusters.
These parameters were used to identify pathways associated with
PASCwith a bootstrap of 1000 as noted above. The analysis resulted in
85 pathways. These 85 pathways were then collapsed into 54modules.

A module is defined if pairwise genests had an overlap of at least
25% (jaccard index 0.25) of the genes/proteins between themusing the
Enrichment Map approach16. The 54 modules were then used to per-
form module enrichment at a single sample level using GSVA. The
normalized enrichment score for each module was scaled and clus-
tered using k-means clustering implemented in ComplexHeatmap
(v2.4) with parameter row_km and column_km. The identified clusters
are then visualized in a heatmap.

Analysis of Su Y et al. (2022) INCOV Olink data
The INCOV proteomics data was generated using plasma samples and
our proteomics data was generated using serum samples. Both used the
PEA® technologybutwerequantifiedusing twodifferent assays, (NGS for
our cohort and multiplex qPCR for the INCOV cohort). Olink advises
against combining suchdatasets for analysis, so theywerenot combined.
However, since both platforms measure relative protein abundance, the
analysis was performed independently within each cohort to determine
whether the samepatternsand trendsofprotein abundanceandasimilar
proteomic signature can be observed across groups. The Olink pro-
teomic data from Su Y et al. consisted of 204 SARS-CoV-2 (INCOV) par-
ticipants and 289 healthy controls. The INCOV participants were studied
at clinical diagnosis (T1), acute disease (acute, T2), and 2–3 months post
onset of initial symptoms (convalescent, T3). Olink plasma proteomic
data was available for a total of 443 proteins. Among these, 163 proteins
overlapped with the differentially expressed proteins found in inflam-
matory signatures that significantly defined clusters 4 & 5 in our cohort.
K-meansunsupervised clusteringof the INCOVOlinkproteomicdatawas
performed on the 163 protein overlap. To remain consistent with our
cohort, we used only those samples available for timepoints ≥60 days
PSO per INCOV participant (74 INCOV participants met these criteria). If
more than one sample was available ≥60 days PSO, we used the sample
closest to the ≥60 day timepoint. The k-means function of the stats R
package was used with k = 5, allowing 100 iterations.

Generation of a proposed protein panel to distinguish inflam-
matory versus non-inflammatory PASC
A list of fifteen proteins (Supplemental Data S10) were selected as
candidates for a protein panel to distinguish inflammatory versus non-
inflammatory PASC. Several criteria had to be met for inclusion of
proteins in this group: All proteins had to be measured in both our
study and INCOV, were significant in distinguishing the two PASC
groups (adjusted p <0.008) in our study cohort and had strong sup-
port in the literature as biomarkers for COVID-19 and/or PASC. Logistic
regression (LogReg) models53 were used to combine protein mea-
surements into LogReg probability scores as follows:

W = c0 +
Xn

i= 1

ci*NPXi, ð2Þ

score=
1

1 + exp�W
ð3Þ
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where c0 is the intercept,n is theproteinnumber, ci is the coefficient of
protein i, and NPXi is the NPX value of protein i. The models were
assessed on our PASC data and evaluated in a stepwise backward
elimination procedure: In each step, the approach of 10-fold cross
validation was repeated 10,000 times to train LogReg models and
evaluate the corresponding p values of individual proteins having a
non-zero coefficient. The protein having the highest p-value in the step
was eliminated. This procedure was repeated until all proteins had
p <0.05. Coefficients of the final LogReg model were then set to the
corresponding median coefficients of the remaining proteins.

Statistics and reproducibility
Challenges associatedwith sample collection, supply-chain difficulties,
and a shifting research environment during the global COVID-19 pan-
demic required that the Olink analysis be performed in two batches
that impacted batch design. The first batch was collected early in the
pandemic (April 2020)with the aimof studying thedifferencebetween
SARS-CoV-2 infected (n = 15) versus uninfected donors (n = 22). We
later found out two of the fifteen infected donors had PASC and had
persistent inflammatory signatures over time, which motivated us to
expand our study by including a larger cohort of PASC. By the time the
second batch was collected for analysis, PASC had become a major
concern in COVID-19 patients, so we added an additional 53 PASC
donors and 11 recovered COVID-19 donors in the second batch based
on sample availability. Based on this, the two batches have a bias
related to disease status (PASC, recovered, and uninfected; p < 0.05)
but no biases on biological sex or age (p > 0.05). Longitudinal samples
were collected from participants based on their availability, but no
replicate samples were collected at any single timepoint. Hence, no
statistical method was used to predetermine sample size. We were not
blinded to allocation and outcome assessment. To minimize possible
batch effects, we used 42 cohort samples as bridging controls for
batch correction between the two batches as described in the ‘Olink
data preprocessing’ section of the methods. No data were excluded
from the analyses.

All statistical analyses were performed using the corresponding
functions in RStudio (version 4.1). Comparisons of single proteinOlink
NPX or module ssGSEA scores between groups were tested using a
two-sided Wilcoxon rank sum test and when appropriate, the
Benjamini-Hochberg method was applied to adjust p-values in
multiple-testing correction. Unless specified, an adjusted p-value of
0.05 was considered significant and p-values less than 0.0001 were
reported as p-value < 0.0001. All figure panels were assembled using
Adobe Illustrator (version 27.2; https://www.adobe.com/products/
illustrator.html).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed Olink data generated in this study, the processed Su Y
et al. (2022) INCOV Olink data, the sample metadata for both studies,
the input canonical genesets database, “c2.cp.v7.2.symbols”, from
MsigDB (v7.2) and source data files for figures have been deposited in
Zenodo54 [https://doi.org/10.5281/zenodo.7872791]. The processed
Olink data generated in this study is also provided in the supplemen-
tary data files, supplemental Data S2 and S6. Source data are provided
with this paper.

Code availability
RCode used to perform analysis and generate figures for this study are
made available in Zenodo54 [https://doi.org/10.5281/zenodo.7872791]
and the GitHub repository https://github.com/aifimmunology/PASC-
proteomics-talla-vasaikar-et-al.

References
1. Groff, D. et al. Short-term and Long-term Rates of Postacute

Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA
Netw. Open. 4, e2128568 (2021).

2. Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27,
601–615 (2021).

3. Wang, L. et al. PASCLex: A comprehensive post-acute sequelae of
COVID-19 (PASC) symptom lexicon derived from electronic health
record clinical notes. J. Biomed. Inform. 125, 103951 (2022).

4. Chevinsky, J. R. et al. Late Conditions Diagnosed 1-4 Months Fol-
lowing an Initial Coronavirus Disease 2019 (COVID-19) Encounter: A
Matched-Cohort Study Using Inpatient and Outpatient Adminis-
trative Data-United States, 1 March-30 June 2020. Clin. Infect. Dis.
73, S5–S16 (2021).

5. Bell, M. L. et al. Post-acute sequelae of COVID-19 in a non-
hospitalized cohort: Results from the Arizona CoVHORT. PLoSOne.
16, e0254347 (2021).

6. Vehar, S., Boushra, M., Ntiamoah, P. & Biehl, M. Update to post-
acute sequelae of SARS-CoV-2 infection: Caring for the “long-
haulers.” CCJM https://doi.org/10.3949/ccjm.88a.21010-up (2021).

7. Horberg, M. A. et al. Post-acute sequelae of SARS-CoV-2 with clin-
ical condition definitions and comparison in amatched cohort.Nat.
Commun. 13, 1–13 (2022).

8. Munblit, D. et al. Studying the post-COVID-19 condition: research
challenges, strategies, and importance of Core Outcome Set
development. BMC Med. 20, 50 (2022).

9. Klein, J. et al. Distinguishing features of Long COVID identified
through immune profiling. bioRxiv https://doi.org/10.1101/2022.08.
09.22278592 (2022).

10. Fernández-Castañeda, A. et al. Mild respiratory SARS-CoV-2 infec-
tion can cause multi-lineage cellular dysregulation and myelin loss
in the brain. bioRxiv https://doi.org/10.1101/2022.01.07.
475453 (2022).

11. Working, W. H. O. Group on the Clinical Characterisation and
Management of COVID-19 infection. A minimal common outcome
measure set for COVID-19 clinical research. Lancet Infect. Dis. 20,
e192–e197 (2020).

12. Davis, H. E. et al. Characterizing long COVID in an international
cohort: 7 months of symptoms and their impact. EClinicalMedicine
38, 101019 (2021).

13. Evans, R. A. et al. Physical, cognitive, and mental health impacts of
COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre,
prospective cohort study. Lancet Respir. Med. 9, 1275–1287 (2021).

14. Zhang,H. et al. Data-driven identification of post-acute SARS-CoV-2
infection subphenotypes.NatureMedicine https://doi.org/10.1038/
s41591-022-02116-3 (2022).

15. Lee, W. C. Selecting diagnostic tests for ruling out or ruling in dis-
ease: the use of the Kullback-Leibler distance. Int. J. Epidemiol. 28,
521–525 (1999).

16. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrich-
ment map: a network-based method for gene-set enrichment
visualization and interpretation. PLoS One. 5, e13984 (2010).

17. Littlefield, K. M. et al. SARS-CoV-2-specific T cells associate with
inflammation and reduced lung function in pulmonary post-acute
sequalae of SARS-CoV-2. PLoS Pathog. 18, e1010359 (2022).

18. Peluso, M. J. et al. Markers of Immune Activation and Inflammation
in IndividualsWith Postacute Sequelae of Severe Acute Respiratory
Syndrome Coronavirus 2 Infection. J. Infect. Dis. 224,
1839–1848 (2021).

19. Menezes, A. S. Jr, Botelho, S.M., Santos, L. R. & Rezende, A. L. Acute
COVID-19 Syndrome Predicts Severe Long COVID-19: An Observa-
tional Study. Cureus 14, e29826 (2022).

20. Xie, Y., Bowe, B. & Al-Aly, Z. Burdens of post-acute sequelae of
COVID-19 by severity of acute infection, demographics and health
status. Nat. Commun. 12, 6571 (2021).

Article https://doi.org/10.1038/s41467-023-38682-4

Nature Communications |         (2023) 14:3417 14

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://doi.org/10.5281/zenodo.7872791
https://doi.org/10.5281/zenodo.7872791
https://github.com/aifimmunology/PASC-proteomics-talla-vasaikar-et-al
https://github.com/aifimmunology/PASC-proteomics-talla-vasaikar-et-al
https://doi.org/10.3949/ccjm.88a.21010-up
https://doi.org/10.1101/2022.08.09.22278592
https://doi.org/10.1101/2022.08.09.22278592
https://doi.org/10.1101/2022.01.07.475453
https://doi.org/10.1101/2022.01.07.475453
https://doi.org/10.1038/s41591-022-02116-3
https://doi.org/10.1038/s41591-022-02116-3


21. European Cenre for Disease Prevention and Control. Prevalence of
post COVID-19 condition symptoms: a systematic review andmeta-
analysis of cohort study data, stratified by recruitment setting.
ECDC (2022).

22. Klevebro, S. et al. Inflammation-related plasma protein levels and
association with adiposity measurements in young adults. Sci. Rep.
11, 11391 (2021).

23. Figarska, S. M. et al. Proteomic profiles before and during weight
loss: Results from randomized trial of dietary intervention. Sci. Rep.
10, 7913 (2020).

24. TenCate, V. et al. A targetedproteomics investigationof the obesity
paradox in venous thromboembolism. Blood Adv. 5,
2909–2918 (2021).

25. Fulop, T. et al. Immunology of Aging: the Birth of Inflammaging.
Clin. Rev. Allergy Immunol. https://doi.org/10.1007/s12016-021-
08899-6 (2021) .

26. Moaddel, R. et al. Proteomics in aging research: A roadmap to
clinical, translational research. Aging Cell. 20, e13325 (2021).

27. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. 102, 15545–15550 (2005).

28. Filbin, M. R. et al. Longitudinal proteomic analysis of severe COVID-
19 reveals survival-associated signatures, tissue-specific cell death,
and cell-cell interactions. Cell Rep. Med. 2, 100287 (2021).

29. Rodriguez, L. et al. Systems-Level Immunomonitoring from Acute
to Recovery Phase of Severe COVID-19. Cell Rep. Med. 1,
100078 (2020).

30. Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected
in GI and hepatic tissues from five recovered patients with COVID-
19. Gut 71, 226–229 (2022).

31. Stein, S. R. et al. SARS-CoV-2 infection and persistence in the
human body and brain at autopsy. Nature 612, 758–763 (2022).

32. Swank, Z., Senussi, Y., Alter, G. & Walt, D. R. Persistent circulating
SARS-CoV-2 spike is associated with post-acute COVID-19 seque-
lae. https://doi.org/10.1101/2022.06.14.22276401 (2022).

33. Toufiq, M. et al. Annexin A3 in sepsis: novel perspectives from an
exploration of public transcriptome data. Immunology 161,
291–302 (2020).

34. Sjölin, C., Movitz, C., Lundqvist, H. & Dahlgren, C. Translocation of
annexin XI to neutrophil subcellular organelles. Biochim. Biophys.
Acta 1326, 149–156 (1997).

35. Lebratti, T. et al. A sustained type I IFN-neutrophil-IL-18 axis drives
pathology during mucosal viral infection. Elife 10, e65762 (2021).

36. Su, Y. et al. Multi-Omics Resolves a Sharp Disease-State Shift
between Mild and Moderate COVID-19. Cell 183,
1479–1495.e20 (2020).

37. Su, Y. et al. Multiple early factors anticipate post-acute COVID-
19 sequelae. Cell 185, 881–895.e20 (2022).

38. Phetsouphanh, C. et al. Immunological dysfunction persists for
8 months following initial mild-to-moderate SARS-CoV-2 infection.
Nat. Immunol. 23, 210–216 (2022).

39. Schultheiß, C. et al. From online data collection to identification of
disease mechanisms: The IL-1ß, IL-6 and TNF-α cytokine triad is
associated with post-acute sequelae of COVID-19 in a digital
research cohort. bioRxiv https://doi.org/10.1101/2021.11.16.
21266391 (2021).

40. Asano, T. et al. X-linked recessive TLR7 deficiency in ~1% of men
under 60 years old with life-threatening COVID-19. Sci. Immunol. 6,
eabl4348 (2021).

41. Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present
in ~4% of uninfected individuals over 70 years old and account for
~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021).

42. Zhang, Q. et al. Recessive inborn errors of type I IFN immunity in
children with COVID-19 pneumonia. J. Exp. Med. 219,
e20220131 (2022).

43. Cohen, K. W. et al. Longitudinal analysis shows durable and broad
immune memory after SARS-CoV-2 infection with persisting anti-
body responses and memory B and T cells. Cell Rep. Med. 2,
100354 (2021).

44. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-
Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).

45. Stamatatos L. et al. mRNA vaccination boosts cross-variant
neutralizing antibodies elicited by SARS-CoV-2 infection.
Science. 2021 Mar 25;372:1413-1418. https://doi.org/10.1126/
science.abg9175.

46. Horton, H. et al. Optimization and validation of an 8-color intracel-
lular cytokine staining (ICS) assay to quantify antigen-specific
T cells induced by vaccination. J. Immunol. Methods. 323,
39–54 (2007).

47. Dintwe, O. et al. Corrigendum: OMIP-056: Evaluation of Human
Conventional T Cells, Donor-Unrestricted T Cells, and NK Cells
Including Memory Phenotype by Intracellular Cytokine Staining.
Cytom. A. 97, 199–201 (2020).

48. Finak, G. et al. Mixture models for single-cell assays with applica-
tions to vaccine studies. Biostatistics 15, 87–101 (2014).

49. Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R. &
Tsui, K. W. On differential variability of expression ratios: improving
statistical inference about gene expression changes from micro-
array data. J. Comput. Biol. 8, 37–52 (2001).

50. McClish, D. K. Analyzing a Portion of the ROC Curve. Med. Decis.
Mak. 9, 190–195 (1989).

51. Dodd, L. E. & Pepe, M. S. Partial AUC estimation and regression.
Biometrics 59, 614–623 (2003).

52. Reimand, J. et al. Pathway enrichment analysis and visualization of
omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap.
Nat. Protoc. 14, 482–517 (2019).

53. Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical
Learning. (Springer New York).

54. Talla A. et al. Persistent serum protein signatures define an
inflammatory subset of long COVID. Zenodo, https://doi.org/10.
5281/zenodo.7872791.

Acknowledgements
We thank the study participants for their dedication to this project; the
Allen Institute founder, Paul G. Allen, and the Paul G. Allen Family
Foundation for their vision, encouragement, and support; Adam Savage
and Tao Peng for review and helpful discussions of the final manuscript
draft; Leila Shiraiwa and Nina Kondza for laboratory operations support,
theHuman Immune SystemExplorer (HISE) softwaredevelopment team
at the Allen Institute for Immunology for their support and dedication.
This paper and the research behind it would not have been possible
without the collaborative computational data analysis environment
provided by HISE. The research reported in this publication was sup-
ported in part by COVID supplements from the National Institute of
Allergy and Infectious Diseases and the Office of the Director of the
National Institutes of Health under award numbers UM1AI068618-14S1
and UM1AI069481-14S1 (MJM). This work was also supported by Paul G.
Allen Family Foundation Award #12931 (MJM); Seattle COVID-19 Cohort
Study (Fred Hutchinson Cancer Center, MJM); and the Joel D. Meyers
Endowed Chair (MJM). The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
funders.

Author contributions
T.R.T., X.L., G.L.S., P.J.S., T.F.B., M.J.M. conceptualized the study.
A.T., S.V.V., G.L.S., P.J.S., X.L., T.R.T., J.L.C., M.P.L., Z.M., K.W.C.,
H.M., E.W.N., L.B.F., S.C.D.R. were involved in the study design and
methodology. Data analysis was performed by A.T., S.V.V., X.L.,
Z.T., and L.O. Data visualizations were generated by A.T. and S.V.V.,
T.F.B., M.J.M., L.A.B., E.M.C. were in charge of project

Article https://doi.org/10.1038/s41467-023-38682-4

Nature Communications |         (2023) 14:3417 15

https://doi.org/10.1007/s12016-021-08899-6
https://doi.org/10.1007/s12016-021-08899-6
https://doi.org/10.1101/2022.06.14.22276401
https://doi.org/10.1101/2021.11.16.21266391
https://doi.org/10.1101/2021.11.16.21266391
https://doi.org/10.1126/science.abg9175
https://doi.org/10.1126/science.abg9175
https://doi.org/10.5281/zenodo.7872791
https://doi.org/10.5281/zenodo.7872791


administration. T.R.T., X.L., P.J.S., E.M.C., T.F.B., M.J.M. supervised
the study. T.R.T. and A.T. wrote the manuscript and all other
authors edited, provided comments and feedback to the manu-
script. Funding for the study was acquired by T.F.B., M.J.M.

Competing interests
A.T., S.V.V., G.L.S., T.R.T., P.J.S., X.L., and T.F.B. have a provisional patent
on protein signatures in LongCOVID (Application PCT/US2022/026841).
The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38682-4.

Correspondence and requests for materials should be addressed to
Thomas F. Bumol, M. Juliana McElrath or Troy R. Torgerson.

Peer review information Nature Communications thanks Cezmi Akdis,
TiannanGuo and LudvigMunthe for their contribution to the peer review
of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-38682-4

Nature Communications |         (2023) 14:3417 16

https://doi.org/10.1038/s41467-023-38682-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Persistent serum protein signatures define an inflammatory subcategory of long COVID
	Results
	Reported symptoms are diverse and unable to differentiate subsets of PASC in our cohort
	Clustering of the serum proteome using an unsupervised learning approach identifies a subset of PASC participants that have evidence of persistent inflammation
	More severe acute COVID symptoms correlate with an increased likelihood of developing persistent inflammation in the PASC period
	Higher BMI and older age are associated with having persistent inflammation in PASC
	Signaling modules and specific inflammatory proteins that define the inflammatory form of PASC
	The serum protein signature identified in inflammatory PASC can be validated in an independent cohort
	A predicted panel of 3 proteins exhibits performance characteristics that has potential clinical utility

	Discussion
	Methods
	Regulatory approvals
	Study conduct
	Definition of PASC
	PASC symptom category clustering
	Symptom activity metrics and scoring for mild to moderate acute COVID symptoms
	Sample processing
	Olink serum protein measurement
	Olink data preprocessing
	Antibody ELISAs for RBD
	Intracellular cytokine staining (ICS) assay
	Identification of pathways with high rule-in performance
	Analysis of Su Y et�al. (2022) INCOV Olink data
	Generation of a proposed protein panel to distinguish inflammatory versus non-inflammatory PASC
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




