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Human orbitofrontal cortex signals decision
outcomes to sensory cortex during
behavioral adaptations

Bin A. Wang 1,2, Maike Veismann 1,2, Abhishek Banerjee 3 &
Burkhard Pleger 1,2

The ability to respond flexibly to an ever-changing environment relies on the
orbitofrontal cortex (OFC). However, how the OFC associates sensory infor-
mationwith predicted outcomes to enable flexible sensory learning in humans
remains elusive. Here, we combine a probabilistic tactile reversal learning task
with functional magnetic resonance imaging (fMRI) to investigate how lateral
OFC (lOFC) interacts with the primary somatosensory cortex (S1) to guide
flexible tactile learning in humans. fMRI results reveal that lOFC and S1 exhibit
distinct task-dependent engagement: while the lOFC responds transiently to
unexpected outcomes immediately following reversals, S1 is persistently
engaged during re-learning. Unlike the contralateral stimulus-selective S1,
activity in ipsilateral S1 mirrors the outcomes of behavior during re-learning,
closely related to top-down signals from lOFC. These findings suggest that
lOFC contributes to teaching signals to dynamically update representations in
sensory areas, which implement computations critical for adaptive behavior.

Humans and animals learn to rapidly adapt their behavior to new
environmental challenges, which is critical for survival1. The flexibility
in adjusting the decision strategy, based on the prediction and eva-
luation of behavioral outcomes, is a prerequisite for adaptive behavior
and is severely compromised in many psychiatric disorders2. Among
the elaborate frontal cortical areas involved in flexible decision-mak-
ing, the orbitofrontal cortex (OFC) has been one of the most inten-
sively studied structures and is known tohavewidespread connectivity
to sensory areas, as well as to cortical and subcortical areas related to
memory, learning and attention3,4. OFC is specifically implicated in
choosing objects or an action based on the expected outcome value
and updating the value of different stimulus-outcome associations5,6.
Compared to medial OFC, which encodes the reward value to support
choices, lateral OFC (lOFC) is relatively more specialized for assigning
credit for both positive and negative outcomes to specific stimulus
choices, emphasizing the lOFC’s role in learning the values of options7.
We recently identified the lOFC inhumans as an important brain region
related to updating the decision strategy based on newly accumulated

evidence8. In this context, lOFC is encoding the prediction error (PE) in
the face of environmental changes, thereby updating associative
representations in other brain areas and, ultimately, guiding adaptive
behavior9.

Associating sensory stimuli with predicted outcomes is essential
for successful learning and adaptive behavior. One way in which the
brain might perform this operation is by conveying a ‘teaching’ signal,
based on choice outcomes, to sensory areas involved in stimulus
processing10–12. Several studies have provided evidence consistentwith
this assumption, showing responses in primary sensory cortices rela-
ted to the expectation of a stimulus or reward13–16, which top-down
signals fromOFCmaymediate. Studies in rodents have uncovered the
distinct rules of howOFC exerts ‘teaching’ signals tomodulate sensory
processing17,18. Recently, using a tactile reversal learning task in
rodents, Banerjee et al. revealed that the top-down signal from lOFC
updated sensory representations in the primary somatosensory cortex
(S1) by remapping responses of a subpopulation of value neurons
sensitive to reward history19. In humans, it remains unclear whether
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comparable top-down signals from the lOFC instruct sensory areas to
remap stimulus-outcome associations essential for behavioral adap-
tation. If validated, these observations may crucially reveal common
cross-species circuit motifs underlying learning and flexibility within
the same sensory domain.

In the current study, we implement a probabilistic Go/NoGo
reversal learning task and deploy functional magnetic resonance
imaging (fMRI) to record human brain activity. To decipher human
behavior in a probabilistic environment, we combine computational
models of behavior and fMRI data analyses, including univariate and
multivariate analyses, to synergize insights about task-dependent
neural computations of behavioral adaptation in humans. We show
that human participants learn the task-relevant conditional prob-
abilities of stimuli and dynamically update their learning rate accord-
ingly. Additionally, fMRI analysis reveals that the prediction error-
related activity in lOFC responds transiently to unexpected reward and
non-reward outcomes after reversals and decreases as participants re-
learned the task. In contrast, S1 neural activity reflects initial learningof
stimulus-response associations and later engagement upon re-learning
phase. By leveraging multivariate representational similarity analysis
(RSA) on fMRI data, we reveal that activity in lOFC represents the
choice outcomes after the reversal and during RE. In contrast, activity
in the contralateral S1 represents the sensory stimulus. Ipsilateral S1, in
turn, reflects the choice outcomes during RE, which is related to top-
down signals from lOFC. These findings show that flexible decision-
making in humans relies on comparable computational foundations in
lOFC and S1, as reported in mice19.

Results
Experimental design
We designed a probabilistic Go/NoGo reversal learning task for
humans in which the associations between two tactile stimuli and
responses are initially learned over a series of trials and then reversed
(Fig. 1a–c). Participants had to ascertain which response (‘Go’ or
‘NoGo’) to each tactile stimulus was the best to obtain a reward by trial
and error. In each block, two new tactile patterns were randomly
selected from the eight alternative patterns shown in Fig. 1b.Oneof the
two responses for each tactile cue hada higher rewardprobability than
the other (p =0.7 versus p =0.3, Fig. 1c). Within each block, we swit-
ched the associations between stimuli and responses at a random trial
dividing the block into two phases: (1) the initial learning phase, in
which the participants learned the stimulus-response association for
each stimulus, and (2) the reversal phase, in which they had to reverse
their choice preference to maximize the received reward (Fig. 1c).

Humans learned the probability distribution and dynamically
updated their learning rate
First, we analyzed the performance during both the initial learning and
re-learning phases after the reversal of stimulus-response associations.
We aligned the reversal phase of each block using the reversal point
and averaged the proportionof correct responses acrossblocks. At the
beginning of the block, participants quickly learned the stimulus-
response association. After the stimulus-response association was
switched, the performance dramatically dropped and gradually
increased again while participants reversed their choice behavior
(Fig. 1d). To investigate the dynamic changes along the learning pro-
cess, we subdivided task performance into ‘learning naïve’ (LN) and
‘learning expert’ (LE) in the initial learning phase, and ‘reversal naïve’
(RN), ‘reversal expert’ (RE) in the reversal phase. Based on the group
performance, we selected the first ten trials in both training periods,
pre- andpost-reversal, as LNandRN, respectively, and the last ten trials
immediately before the reversal or task completion as LE and RE,
respectively. For fMRI analyses, we only considered these respective
trials. We compared the fraction of correct responses between the
expert and naïve periods and found a significantly higher proportion

of correct responses in the expert period for both the initial learning
and the reversal learning phase (initial learning, t(31) = 9.04,
p = 7.54× 10−9; reversal learning, t(31) = 20.43, p = 6.98 × 10−19, Fig. 1e).

To test howparticipants switched their decision strategy basedon
the previous decision outcome, we applied four different computa-
tional models (M1: Random Responding; M2: Win-Stay-Lose-Switch
(WSLS); M3: Rescorla–Wagner (RW) and M4: Hierarchical Gaussian
Filter (HGF). For more details about these four models please refer to
the ‘Methods’ section). First, we simulated the responses of the four
models given a set of particular parameterswhichwere independent of
the participant’s actual behavioral responses. We then tested one
measure that captured fundamental aspects of the flexible decision-
making process based on prior experience: the probability of repeat-
ing a decision, p(staying). Based on the model simulations across a
range of parameter settings (Supplementary Fig. 1), we chose a parti-
cular set of parameters for the response module of the four models
(M1: b =0.5; M2: ε =0.05; M3: β = 5; M4: ζ =0.5). For the free para-
meters of the additional perceptual module in RW (α) and HGF (ω), we
utilized the ‘Bayes optimal’ values forour experimental input sequence
based on a free energy minimization approach (Supplementary
Table 1). These ‘Bayes optimal’ values are independent of the partici-
pant’s actualbehavioral responses. Formoredetails about thesemodel
simulations, please refer to the ‘Methods’ section. Based on these
parameters, we finally simulated the responses and calculated p(stay-
ing) for the fourmodels. To compare the simulated responses with the
observed responses, we also plotted p(staying) of participants’ actual
behavioral data. The WSLS model exhibited a significant dependence
on past decision outcomes, whereas the Random Responding model
showed no such dependence (Fig. 1f). Compared to these twomodels,
participants’ actual performance was better captured by both the RW
and the HGF models (Fig. 1f), suggesting that participants’ decisions
weremore likely determinedby the updated choicevalue than random
responding or past outcomes.

Next, we questioned whether participants’ learning behavior
could be rather explained by hierarchical learning (i.e., Bayesian HGF
model), which includes dynamic updates of the learning rate based on
individual learning trajectories, or by a fixed ‘ideal’ learning rate as
assumed by the reinforcement learning algorithm (RW). By fitting the
models to the participants’ actual behavioral responses, themaximum
a posteriori estimates of the free parameters (Supplementary Table 2)
and the log-model evidence (LME) as the negative variational free
energy under the Laplace assumption for both the RWandHGFmodel
were assessed. To identify the model that best explained participants’
behavior, we applied the random-effect Bayesian model selection
(BMS), which assesses the relative plausibility of competing models
based on LME. At the group level, BMS revealed posterior model
probabilities of 95% for the winning HGF model (posterior prob-
abilities: 0.95; exceedance probability = 1.00, Fig. 1g). Furthermore, we
compared relative LME between the HGF and RW models at the indi-
vidual level and showed that HGF was superior in 28 out of 32 parti-
cipants (Fig. 1h). In addition to the LME, we calculated the Bayesian
information criterion (BIC), which confirmed that the HGF was
superior to the RW model (Supplementary Fig. 2). To validate the
winning HGF model, we additionally performed cross-validations by
predicting the responses in held-out data (Supplementary Fig. 3) and
ensured that the HGFmodel successfully captured the real behavior of
the whole experiment using the optimized parameters from model
fitting (Supplementary Fig. 4). These results provide evidence that the
participants learned the task-relevant conditional probabilities of sti-
muli and dynamically updated their learning rate.

Representation of outcome prediction errors in the lOFC
Next, we investigated whether violations of outcome expectation
evoked prediction error (PE) signals in the lOFC. We used the win-
ning HGF model to drive the subject-specific estimates of outcome
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PE (δðtÞ
1 ) at the second level. The HGF model contains subject-

specific parameters optimized using the participants’ actual beha-
vioral responses and therefore allows for individual expression of
(approximate) Bayes-optimal learning. The outcome PE is the dif-
ference between the actual outcome and its a priori probability (i.e.,
before response outcome observation) according to themodel. The
unsigned outcome PE (i.e., absolute value) was included in the GLM
as a parametric modulator of finite impulse response function (FIR),
time-locked to the onset of outcomes and regressed against the
fMRI responses in each voxel. In line with previous studies in

humans20,21, the responses in lOFCwere significantly correlated with
outcome PE (x = 40, y = 48, z = −2, t(31) = 4.99, p = 0.036, family-wise
error (FWE) peak-level corrected for multiple comparisons using
small-volume correction (SVC), Fig. 2). Additionally, we found a
widely distributed set of cortical areas, including the middle frontal
gyrus (MFG), the supplementarymotor cortex (SMA), insular cortex
(Ins) and posterior parietal cortex (PPC), that also correlated posi-
tively with the outcome PE, but only at an uncorrected threshold of
p < 0.001 for the whole brain volume (Fig. 2, Supplementary
Table 3).
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Fig. 1 | Probabilistic Go/NoGo reversal learning task and behavioral perfor-
mance inhumans. a Timeline of a single trial.b Eight tactile patterns were used for
the task. c The illustration of the learning blocks. In each block, 70% of trials in
which one of the two tactile patterns was presented were assigned to ‘Go’, whereas
70%of trials in which the alternative tactile patternwas presentedwere assigned to
‘NoGo’. Within each block, the stimulus-response association was switched at a
random trial (20–25). The trials were categorized into four different learning pha-
ses: ‘learning naïve’ (LN), ‘learning expert’ (LE), ‘reversal naïve’ (RN), and ‘reversal
expert’ (RE). d The group averaged proportion of correct responses along with the
learning process across blocks. The dashed line indicates the rule-switch. The red
shaded area indicates the standard error of the mean (SEM, n = 32 participants).
e The proportion of correct responses in each phase. The expert phase exhibited a
significantlyhigher proportion of correct responses comparedwith the naïve phase

(Learning: p = 7.54 × 10−9; Reversal: p = 6.98 × 10−19; paired two-sample t-tests with
two tails, n = 32participants). Box plots indicate themedian (middle line), 25th, and
75th percentile (box), and the maximum and minimum (whiskers) as well as the
outlier (red cross). The asterisks indicate p <0.001. f The probability of repeating a
decision, p(staying), as a function of the outcomes of the previous trial for the
simulated responses of four models (Random Responding, Win-Stay-Lose-Switch
(WSLS), Rescorla–Wagner (RW) and Hierarchical Gaussian Filter (HGF)) and
observed responses. gDirichlet density describes the probability of the HGFmodel
given the observed data across the group. The shaded area represents the excee-
dance probability. r1, r2 = conditional expectations of the probabilities of the HGF
and RW model, respectively. h The individual difference of log-model evidence
between the HGF and the RWmodel with positive values indexing participants who
preferred the HGF model. Source data are provided as a Source Data file.
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Engagement of lOFC immediately following reversals, but S1
during re-learning
We next studied the involvement of two a priori hypothesized brain
areas engaged in the task: S1, which is important for tactile dis-
crimination and sensory-outcome association learning, and the lOFC,
which is engaged in the assignment of outcome value. Our hypothesis
for the lOFC was based on a series of lesion studies in humans22 and
pharmacogenetic silencing and lesion experiments in rodents19, 23,24

that together accumulated compelling evidence for a specific causal
role of the lOFC in reversal learning. To examine whether activity in
these two regions related to outcomes following reversals and RE, we
applied two independent general linear models (GLM) analyses, time-
locked to the onset of the outcome. First, by comparing LE and RN
trials, we observed significantly enhanced BOLD signals in the right
lOFC immediately after switching the stimulus-response association
(x = 44, y = 40, z = −14, t(31) = 4.95, pFWE-SVC = 0.035, Fig. 3a and Sup-
plementary Fig. 5). Second, by comparing LE and RE trials, we identi-
fied bilateral S1, which showed a significantly higher BOLD signal in the
RE trials (left, x = −50, y = −20, z = 48, t(31) = 5.85, pFWE-SVC = 0.002; right,
x = 30, y = −32, z = 60, t(31) = 5.54, pFWE-SVC = 0.005). We did not find a
comparable effect in lOFC (pFWE-SVC > 0.05, Fig. 3b). Notably, the
bilateral S1 regions identifiedherewere assigned to theBrodmannarea
3b (S1_3b), based on the SPM Anatomy Toolbox25,26. These results
suggest the existence of distinct neural engagement during reversal
learning: while lOFC responds robustly and transiently to the reversal,
S1 is engaged in the RE after reversal.

The BOLD activity relative to baseline across all behavioral phases
revealed that the lOFC presented modest activity during LN but
diminished responses in LE (Fig. 3c). During RN, we again found tran-
sient but large lOFC responses to unexpected outcomes, which
decreased as participants re-learned the task during RE (Fig. 3c). To
test the potentially differential influence of appetitive and aversive
outcomes, we separately analyzed lOFC activity in rewarded (HIT, CR)
and unrewarded (FA, MISS) trials for each of the four learning phases
separately (Supplementary Fig. 6). LOFC responded to both, unex-
pected reward and non-reward trials immediately after the reversal
(RN, within-subject repeated measures ANOVA: no significant inter-
action between phases and types of trials (F(1,31) = 0.95, p =0.42) and
the main effect of types of trials (F(1,31) = 0.74, p = 0.53); only a sig-
nificant main effect of phases (F(1,31) = 17.87, p =0.00019)), suggesting
that lOFC encodes deviations from expected outcomevalues after rule
reversals to assign credit to specific stimulus-response associations,
irrespective of whether they have been rewarded or not7. In the initial
learning phase (LN > LE), lOFC also encoded deviations from expected
outcomes, suggesting a supportive role of lOFC in the initial learningof
probabilistic cue-outcome associations. Notably, responses in lOFC
during LNwere observed only in humans, not in mice. This finding can
be interpreted in the context of the task design, which was

probabilistic for humans but deterministic formice (see Discussion for
further details). Further mechanistic investigations in mice under
probabilistic demands are required. S1, on the other hand, was
engaged in initial stimulus-response association learning (LE), and this
engagement persisted after the reversals and during RE (RN and RE)
(Fig. 3c). Please note that we applied two different tactile pin inden-
tations over the learning phase in each block and participants had to
steadily direct their attention towards these stimulus changes for
correct discriminations and decisions. That is why we did not observe
any adaptation processes in the form of gradually decreasing S1
responses, which are well known to occur if the same stimulus is
repetitively applied to the same skin location over a longer time
period27.

Representation of the stimulus and outcome in lOFC and S1
following reversals
Univariate analysis of the fMRI data revealed that reversals elicited PE-
related signals in the lOFC. In theory, PE signals are used to update
stimulus-outcomeassociations. To further explore how the associative
information is represented in lOFC and S1, we considered whether the
response patterns in lOFC and S1 retained the learned association or
updated to the new stimulus-outcome association following reversals:
i.e., whether they were more selective for the stimulus or the outcome
(Fig. 4a). To this end, we leveraged a multivariate pattern analysis (i.e.,
RSA) on the fMRI data at the time of outcome presentation. The
rationale behind choosing the presentation of the outcome and not of
the stimulus as the onset is that at the time point of outcome pre-
sentation, the lOFC should assign credit for unexpected outcomes to
specific stimuli by signaling the outcome values to the sensory cortex.
The sensory cortex, in turn, should remain stimulus-selective in the
moment of outcome presentation butmay become outcome-selective
later in the task due to the ongoing feedback from lOFC. Please note
that the stimulus-selectivity includes the associated Go/NoGo
response (i.e., stimulus–response selectivity). For RSA, the repre-
sentational dissimilarity matrices (RDMs) were constructed based on
the predicted correlation distance for trials before and after reversal.
The representation of stimulus-selectivity is reflected by the similarity
of outcomes for the same tactile stimulus in the initial learning and
reversal phase (i.e., Go-tactilelearning =NoGo-tactilereversal, or
HITlearning = CRreversal in terms of outcomes). In contrast, the repre-
sentation of outcome-selectivity is reflected by the similarity of the
same outcomes in the initial learning and reversal phase (i.e.,
HITlearning =HITreversal). We asked whether lOFC and S1 displayed these
properties during the outcome presentation.

Figure 4a schematically presents the two RDM models and the
similarity of response patterns before versus after the reversal. To
assess both, the immediate effect of the reversal and the response
adaptation after RE, we applied each brain region (lOFC, S1_3b) to each

T-value

SMA
MFG

Ins.
y=22

PPC
MFG

lOFC

x=44

lOFC

z=-2 y=48

Fig. 2 | fMRI activity related to the outcome PE. Whole-brain analysis of corre-
lations with outcome PE revealed responses in bilateralmiddle frontal gyrus (MFG),
supplementary motor cortex (SMA), bilateral insular cortex (Ins.), right posterior
parietal cortex (PPC), and right lateral orbitofrontal cortex (lOFC). The activations
(one-sided t-test, p <0.001, uncorrected, for display purpose only) were

superimposed on sagittal, coronal, and axial slices of a standardT1-weighted image
from the Colin27 brain template implemented inMRIcron. Chris Rorden’sMRIcron,
all rights reserved. Coordinates next to each slice indicate their location in MNI
space. Red-yellow coding indicates the t-scores of activation intensities.
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model twice: one analysis described the similarity of response pattern
between LE and RN (LE→RN) and the other one between LE and RE
(LE→→RE) (Fig. 4b). We found significant outcome-selective response
pattern in lOFC after reversal (LE→RN, signed-rank test, Z(31) = 3.974,

p <0.001; permutation test, effect size = 0.52,p = 0.021), andduringRE
(LE→→RE, signed-rank test, Z(31) = 4.628, p < 0.001; permutation test,
effect size = 0.87, p =0.0003, Fig. 4c). By contrast, response patterns
in lOFC did not represent stimulus-selectivity, neither immediately
after a reversal nor during RE (Supplementary Fig. 7). However, the
response pattern in S1 was selective for the same tactile pattern (Go-
tactile pattern or NoGo-tactile pattern) after RE as during initial
learning (LE→→RE, signed-rank test, Z(31) = 1.861, p =0.031), also when
comparing the group mean against a null distribution generated by
permuting the identity of trials in the RDM (permutation test, effect
size = 0.59, p =0.011, Fig. 4d). Interestingly, the response pattern in S1
during RE was outcome-selective (LE→→RE, signed-rank test,
Z(31) = 4.217, p <0.001; permutation test, effect size = 0.47, p =0.027,
Fig. 4d), suggesting the translation of response pattern to the same
outcomes from initial learning to RE after the reversal. These results
suggest that lOFC activity represented outcomes of value-guided
responses immediately after a reversal which persisted over RE. By
contrast, the S1 response pattern represented both the sensory sti-
mulus and the outcome value only after RE. An analogous stimulus-
selective RSA analysis for S1, with the onset placed at the time of
stimulus presentation, revealed no evidence for different representa-
tions of the two alternative stimuli. This suggests that both tactile
stimuli shared the same S1 representation due to common sensory
features, such as the same stimulation intensity and the same number
of stimulating pins (Supplementary Fig. 8).

To identify the distinct topography of stimulus- or outcome-
selective response pattern in bilateral S1 and lOFC, we used an RSA
searchlight to sweep through the activity in the entire S1_3b and lOFC
mask (see ‘Methods’). For S1_3b, we specifically asked whether the
representationof stimulus- andoutcome-selectivity duringRE involves
ipsi- or contralateral S1. Indeed, we found that, while contralateral S1
selectively represented the stimulus (p <0.005, uncorrected for mul-
tiple comparisons, Fig. 5a), the response pattern in ipsilateral
S1 selectively represented the outcomes during RE (LE→→RE, x = 30,
y = −36, z = 58, t(31) = 4.12, pFWE-SVC = 0.010, Fig. 5a). This result suggests
a disassociated function of bilateral S1 during tactile learning: con-
tralateral S1 is important for stimulus detection as expected, while
ipsilateral S1 is, rather unexpectedly, critical for the learning of the
stimulus-response association. Furthermore, we identified that the
response patterns in right lOFC selectively representedoutcomes after
the reversal (LE→RN, x = 38, y = 36, z = −10, t(31) = 4.94,pFWE-SVC = 0.012,
Fig. 5b) and bilateral lOFC during RE (LE→→RE, x = 50, y = 34, z = −16,
t(31) = 7.21, pFWE-SVC < 0.001, Fig. 5b).

The outcome-selectivity in S1 is related to lOFC activity
Combining the univariate and multivariate fMRI data analyses, we
demonstrated that responses in the lOFCencoded the prediction error
and represented outcome values immediately after a reversal, while
ipsilateral S1 exhibited outcome selectivity after RE. Computationally,
the function of the prediction error is to update or ‘teach’ associations
between the sensory stimulus and future outcomes, which could be
represented by the outcome selective ipsilateral S1. Given that theOFC
sends neuroanatomical projections to S1, we next testedwhether lOFC
responses have influenced the outcome-selectivity of ipsilateral S1
activity. To this end, we performed a connectivity analysis: a psycho-
physiology interaction (PPI). This analysis is based on the reasoning
that if the outcome-selective S1 activity is dependent on a top-down
‘teaching’ signal generated in the lOFC, the lOFC, identified in the RSA
searchlight analysis, must present enhanced connectivity with the
ipsilateral S1 while encoding the outcome-value during RE.

We performed two PPI analyses to test task-related connectivity
after the reversal (RN) and during RE by using two different seed
regions. The first PPI used the outcome-selective lOFC subregion
derived from the RSA searchlight analysis immediately after the
reversal (LE→RN, peak MNI coordinates x/y/z = 38/36/−10, Fig. 5b) as
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b Significantly enhanced BOLD signals in bilateral S1 during re-learning after the
reversal (RE > LE, one-sided t-test, left S1: p =0.002, right S1: p =0.005. FWE peak-
level corrected for multiple comparisons using SVC). The activations (p <0.001,
uncorrected, for display purposes only) were superimposed on sagittal, coronal,
and axial slices of a standard T1-weighted image from the Colin27 brain template
implemented inMRIcron. Chris Rorden’s MRIcron, all rights reserved. Coordinates
next to each slice indicate their location in MNI space. Red-yellow coding indicates
the t-scores of activation intensities. c The BOLD signals relative to baseline in lOFC
and S1 across the four learning phases (LN, LE, RN, RE). The y-axis indicates the z-
score of the mean beta value from lOFC and S1 as derived from the general linear
model. The error bars indicate the SEM (n = 32 participants). Source data are pro-
vided as a Source Data file.
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the seed region. The second PPI used the outcome-selective lOFC
subregions derived from the RSA searchlight analysis during re-
learning (LE→→RE, peakMNI coordinates x/y/z = 50/34/−16, Fig. 5b) as
the seed region. We found evidence for a significantly strengthened
connectivity immediately after a reversal (RN) between the outcome-
selective lOFC subregion and ipsilateral S1 (x = 20, y = −34, z = 64,
t(31) = 4.58, pFWE-SVC = 0.013, Fig. 6a). This S1 subregion largely over-
lapped with the outcome-selective S1 subregion derived from the RSA
searchlight analysis during re-learning (Fig. 5a). In the second PPI
analysis, we found no significant changes in the connectivity between
the outcome-selective lOFC subregion during re-learning and the S1
area (p > 0.05). These findings support the notion that the outcome-
selective lOFC conveys a prediction error-related ‘teaching’ signal
immediately after the reversal, which drives the functional configura-
tion of outcome-selectivity in ipsilateral S1 to support behavioral
adaptation during RN (Fig. 6b).

The specificity of lOFC ‘teaching’ signals to S1
Considering that there were other frontal areas encoding the outcome
PE, likeMFG (Fig. 2), we testedwhether the top-down ‘teaching’ signals
to S1 may have alternatively originated from MFG. To this end, we
extracted activity from the MFG mask and performed the same RSA
and PPI analyses as for lOFC. We specifically tested whether MFG
exhibits analogous neural representations and connectivity patterns
with S1 as lOFC. In the RSA analyses, we found that the response pat-
terns in MFG did not significantly represent the stimulus or the out-
come after reversals (LE→RN, Supplementary Fig. 9). However, during
re-learning, the response pattern in MFG was selective for the out-
comes (LE→→RE, signed-rank test, Z(31) = 4.31, p <0.001, permutation
test, effect size = 0.44, p =0.03), but not for the stimulus (Supple-
mentary Fig. 8). In the PPI analysis, we did not find evidence for a
significantly strengthened connectivity between the MFG and S1
immediately after a reversal (RN). Together, these findings provide
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evidence that the top-down feedback to S1 is specifically related to the
lOFC rather than MFG.

Discussion
Humans and mouse brains can associate sensory stimuli with pre-
dicted outcomes by weighing accumulated past and current evidence
and flexibly reconfigure the responsiveness to changing environ-
mental demands. Studies investigating such processes in animal
models and humans have primarily used reversal learning tasks, where
the associations between stimuli and predicted outcomes are initially
learned over a series of trials and then reversed. The ability to adapt
behavior after the rule reversal is a direct measure of behavioral
flexibility28,29. By employing a reversal-learning task paradigm, our
study elucidates a comparable computational framework underlying
adaptive behavior in mice and humans. Our findings show that at the
time of outcome presentation, the human lOFC plays a crucial role in
encoding deviations from the expected outcome value after a rule
reversal, which is essential to achieving behavioral flexibility. By con-
trast, S1 exhibits a functional dissociation, with contralateral S1 being
important for sensory detection and discrimination, whereas ipsi-
lateral S1 represents the outcome value after re-learning. Such func-
tional specialization is generally attributed tohigher-order cortices but
not the primary sensory cortex. Critically, the prediction error-related
lOFC conveys a teaching signal to implement this higher-order func-
tionality into ipsilateral S1 during the re-learning phase (Fig. 6b), per-
haps mediated through specific neuronal ensembles19. In this context,
the PPI analyses we applied are correlative and do not allow us to infer
the directionality of information exchange30. However, according to
the RSA and PPI results shown in Fig. 5 and Fig. 6, we found that
outcome-related lOFC activity immediately after the rule switch (i.e.,

reversal) closely related to the outcome-selective ipsilateral S1 signal,
that, however, occurred later in the task, after RE. In light of this time
order, it is more likely that the outcome-selectivity in lOFC is respon-
sible for shaping outcome-selectivity in ipsilateral S1 than the other
way around (Supplementary Fig. 10). Together, our findings extend
observations in mice, suggesting that lOFC is specifically involved in
assigning credit for unexpected outcomes to specific
stimulus–response associations through signaling the outcome values
to the sensory cortex, which concurrently results in behavioral
adaptation19.

The contribution of lOFC to flexible decision-making has long
been investigated31,32. Studies with lOFC lesions in monkeys and
rodents have commonly found that orbitofrontal damage does not
impair the initial learning of stimulus-response associations but
instead impairs the learning of stimulus-outcome reversals19,29. Simi-
larly, in humans, using a simple deterministic reversal learning task,
damage to lOFC was particularly associated with decreased adapta-
tions during the reversal phase of the task33. However, in a more
challenging and dynamic probabilistic environment, lOFC damage
disrupted both initial and reversal learning34. In our analysis of human
lOFC responses across all behavioral phases, we revealed its prominent
engagement in both naïve periods (LN and RN). However, in mice,
pronounced lOFCengagementwasobserved inRNbut not inLN19. This
may be due to the probabilistic nature of the reversal learning task in
humans, whereas a deterministic paradigm was applied to mice. In
probabilistic contexts, the accurate choice of actions requires the
integration of previous feedback history, titrated to the particular
reinforcement structure of the task34. The lOFC has been suggested to
play a general role in using such feedback about the outcome history
across trials to adjust behavior. In this regard, the reversal of the
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Fig. 5 | Brain regions within lOFC and S1 masks representing the stimulus- and
outcome-selectivity. a The searchlight revealed that the contralateral S1 repre-
sented the tactile stimulus during re-learning (LE→→RE, one-sided t-test,p <0.005,
uncorrected, for display purposes only), while ipsilateral S1 selectively represented
the outcomes during re-learning (LE→→RE, one-sided t-test, t(31) = 4.12, p =0.010,
family-wise error (FWE) peak-level corrected using small-volume correction (SVC)
for multiple comparisons). b The searchlight revealed that the right lOFC selec-
tively represented outcomes immediately after the reversal (LE→RN, one-sided t-

test, t(31) = 4.94, p =0.012, peak-level FWE corrected using SVC for multiple com-
parisons), while bilateral lOFC during re-learning (LE→→RE, one-sided t-test
t(31) = 7.21, p <0.001, peak-level FWE corrected using SVC for multiple compar-
isons). The results were superimposed on coronal and axial slices of a standard T1-
weighted image from the Colin27 brain template implemented in MRIcron. Chris
Rorden’s MRIcron, all rights reserved. Red-yellow coding indicates the t-scores of
activation intensities.
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stimulus–outcome association is simply one instance of a general
requirement for behavioral adjustment based on expectancy
violation35.

The topographic assignment of the ‘lOFC’ region we identified in
the context of outcome-selectivity is approximate and should be fur-
ther confirmed. In the literature, especially in macaque monkeys, who
present a comparable prefrontal architecture as humans36,37, diverse
anatomical nomenclatures were used. Rudebeck et al., for instance,
defined a broad orbital-lateral prefrontal area as ventrolateral pre-
frontal cortex38,39, which was involved in credit assignment, and which
encompasses the monkey equivalent of the outcome-selective region
we identified between the foci of OFC and lateral prefrontal cortex.
Folloni et al. also identified credit assignment-related functions in a
comparable albeit smaller ventrolateral prefrontal region40, which they
referred to as 47/120 according to Brodmann’s cytoarchitectural brain
atlas, andwhich substantially overlapswith the regionswe found in the
context of outcome-selectivity (see Fig. 2 and Fig. 5). In our study, we
referred to this outcome-selective prefrontal region as lOFC, but the
corresponding neural activity we found in this area may have slightly
extended into adjacent areas, such as the dorsolateral prefrontal cor-
tex. We cannot rule out that these areas may have also contributed to
generating decision outcome signals.

During stimulus presentation, S1 presented rather weak stimulus-
selective responses, but during the outcome phase, we found strong
stimulus- and outcome-selective S1 responses. These representations
in S1 are important for linking the outcome value to the corresponding
sensory stimulus, which is in line with previous evidence suggesting
that outcome feedback is associated with activity in sensory areas
involved in stimulus processing during outcome presentation, even in
the absence of concurrent sensory stimulation13,14,16,41. One way the
brain might perform this operation is to encode and transmit a
‘teaching’ signal, based on both positive and negative outcomes, to
sensory regions involved in stimulus processing10,11. PFC maintains
neuroanatomical connections with sensory cortices to support value-
guided decision-making3,42. In rodents, the cingulate cortex, often
considered aspart of thedorsalmedial PFC, directly influences sensory
processing in the primary visual cortex (V1) through long-range
projections43. Similarly, in primates, lesions of lateral PFC reduce
attentional modulation, suggesting that the PFC is necessary for
attention-related control of visual cortical responses44. Signals from
OFC have also been proposed to be necessary for the detection of
prediction errors, to update or ‘teach’ the associative representations
in sensory cortices when stimulus associations change9. The involve-
ment of OFC in the modulation of sensory responses also draws

support from rodent studies. Ventrolateral OFC neurons, for instance,
that maintain projections to V1 have been shown to mediate the
outcome-expectancy modulation of V1 responses to the reward-
irrelevant stimulus—a process that is required to drive visual associa-
tive learning17. Similarly, a direct connection from ventrolateral OFC to
the primary auditory cortex (A1) is capable of shaping A1 receptive
fields and thereby enhancing sound processing18. These studies show
that OFC projections to the sensory cortex are important for under-
standing how sensory representations are dynamically adjusted to
reflect changing behavioral relevance of incoming stimuli. Using the
reversal learning task in rodents, Banerjee et al. revealed that the
encoding of outcome value by the lOFC is essential to the functional
remapping of S1 neurons in support of flexible decision-making19. To
our knowledge, this has rarely been tested in humans. One previous
studyusedpatientswith lesions in theOFCand suggested that theOFC
exerts top-down attentional control to modulate auditory sensory
processing45. Here, we directly tested the notion that the lateral part of
OFC can especially influence the sensory cortex in humans, which
renders the lOFC an essential player in assigning outcome values to
sensory stimuli and facilitating the encoding of new associations in
sensory areas to adapt associated behavior9. Except for lOFC, other
prefrontal areas, such as the anterior cingulate cortex, ventromedial
prefrontal cortex, or integrative brain areas like the posterior parietal
cortex,may exert comparable or complementary interactionwith S1 in
the context of reversal learning, which can be further explored in
future studies. Our additional analyses regarding the specificity of
lOFC involvement provided insight into this question. Specifically, the
response pattern in the MFG, another frontal area encoding the PE
(Fig. 2), represented outcome-selectivity only during re-learning and,
importantly, was not related to S1 signals, unlike the lOFC (Supple-
mentary Fig. 8). Nevertheless, we hypothesize that lOFC feedbackmay
directly engage sensory areas, but comparable interactions can also
involve other integrative areas12. The involvement of these areas may,
however, be species-specific and task contingency dependent46.

Interestingly, we provide evidence for distinct functional
engagement of bilateral S1 in humans: contralateral S1 is primarily
implicated in sensory processing, while ipsilateral S1 is implicated in
post-sensory, higher-level cognitive processing. Specifically, ipsilateral
S1 receives the ‘teaching’ signal from lOFC to represent the outcome
value for the learned stimulus-response association. Ipsilateral S1
activity in response to unilateral tactile inputs has been shown in both
humans47,48 and monkeys49,50. Its role in sensory-cognitive processing,
however, remains poorly understood. Most studies interpreted this
activity as the transcallosal projection of sensory processing from
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Fig. 6 | Connectivity between outcome-selective lateral OFC and ipsilateral S1.
a Psychological-physiological interaction (PPI) shows significantly strengthened
connectivity between lateral OFC (seed region, MNI coordinates x/y/z = 38/36/
−10]) and ipsilateral S1 (peak MNI coordinates x/y/z = 20/−34/64]) immediately
after a reversal (RN > LE, one-sided t-test, t(31) = 4.58, p =0.013, peak-level FWE
corrected using SVC formultiple comparisons). The results were superimposed on
coronal and axial slices of a standard T1-weighted image from the Colin27 brain

template implemented in MRIcron. Chris Rorden’s MRIcron, all rights reserved.
Color coding indexes the t-scores in each voxel. b Schematic showing the dynamic
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contralateral S147,51. But a transcallosal routedirectly affecting area 3b is
highly unlikely because area 3b is practically free of transcallosal
connections52 even though ipsilateral area 3b can obtain tactile input
through transcallosal connections, most likely through area 2, which
has the densest transcallosal connections among all S1 areas52. How-
ever, S1 also receives projections from other higher-order cortical
regions, such as the PFC, but the top-down influences on ipsilateral S1,
especially ipsilateral area 3b, and the functional meaning of these
modulations are largely unknown. Our present study provides insights
into the functional relevance of the ipsilateral S1, which implements
computations through the dynamic interaction with lOFC to support
flexible decision-making and adaptive behavior.

Taken together, combining human fMRI with a comparable ana-
lytic framework as recently applied to neuronal population recordings
in mice19, we revealed dynamic interactions of lOFC with the sensory
cortex for the implementation of computationsmandatory for flexible
decision-making. Given that a lack of behavioral flexibility is a hallmark
ofmanymental illnesses, suchas schizophrenia, autism, andobsessive-
compulsive disorder2, our findings have implications for targeting
orbitofrontal circuits with non-invasive or invasive neuromodulation
to potentially provide a viable strategy for augmenting cognitive and
behavioral abilities in brain disorders in the future.

Methods
Participants
The required sample size was estimated using the free-source software
G*Power (version 3.1.9.2) with a two-tailed t-test between two depen-
dent samples. Based on our previous study8, we expected a large effect
size of 0.7. The error probability was set to 0.05. The predicted sample
size was 29. Considering possible exclusions of participants, we
recruited 40 participants (22 females, mean age ± SD: 24.5 ± 3.3 years).
Participants self-reported their sex. All participants were right-handed
and had normal or corrected-to-normal vision. Participants with a
history of psychiatric or neurological disorders and those taking reg-
ular medication were excluded. The study was approved by the local
ethics committee of the Ruhr-University Bochum. All participants gave
written informed consent prior to participation.

Two participants were excluded because of technical problems
with the fMRI scans, and another two were due to failed training.
Thirty-six participants successfully performed the task during fMRI
scanning. Data from four participants were excluded from further
analyses due to failed learning of the task inside the MRI scanner.
Therefore, the data from the remaining 32 participants were further
analyzed (16 females, mean age ± SD: 24.5 ± 3.5 years).

Tactile stimuli
The tactile stimuli were generated and delivered using an MRI-
compatible Braille device (Metec, Stuttgart, Germany). The device
consisted of eight plastic pins, aligned in two series of four pins (pin
diameter 1.2mm, rounded top, inter-pin spacing 2.45mm) (Fig. 1a, left
upper corner).We created eight alternative tactile stimulation patterns
(Fig. 1b), which always consisted of four raised and four lowered pins.
Stimuli were applied to the index fingertip of the right (dominant)
hand. The Braille device was controlled using the Presentation soft-
ware (version 20.1, Neurobehavioral Systems, Berkeley, CA, USA)
through the Metec Virtual Braille Device by TCP-IP commands. To
ensure that all tactile stimulation patterns were correctly perceived,
participantsperformeda tactile detection testprior to the task training
and fMRI scan. During the test, participants had to report which pat-
tern they received until they perceived and distinguished all tactile
stimulation patterns 100% correctly.

Experimental design
We employed a probabilistic reversal learning Go/NoGo task. The
task was organized in blocks of 45 trials and consisted of 3 runs,

each including four blocks. In each block, two tactile patterns were
randomly selected from the eight alternative patterns (one ‘Go’
pattern and one ‘NoGo’ pattern). In each trial, participants were
instructed to maintain central fixation. Participants received one
out of the two tactile stimulation patterns for 500ms on the index
fingertip of the right (dominant) hand. A red fixation cross was
simultaneously presented on a screen via MRI-compatible LCD
goggles (Visuastim Digital, Resonance Technology Inc., Northridge,
CA, USA). Following the tactile cue, the red fixation cross turned
green, instructing the participants to press the button (LumiTouch
keypads, Photon Control Inc., Burnaby, BC, Canada) with the index
finger of the left hand (‘Go’) or refrain from pressing the button
(‘NoGo’). Participants were instructed to press the button within
1000ms if action was needed. After the interval of 500-1500ms, the
outcomes were presented for 500ms to indicate whether the
choice was rewarded or non-rewarded. Trials were presented with
randomized intertrial intervals ranging between 1500 and 3000ms
in 100ms steps. A novel pair of tactile patterns was used on each
new block, which was presented to the participants at the beginning
of each block.

In each block, 70% of trials with one tactile pattern were assigned
to ‘Go’, and 70% of trials with the alternative tactile pattern were
assigned to ‘NoGo’. By trial and error, participants had to learn which
of the two available options (‘Go’ and ‘NoGo’ response) had the higher
reward probability for each of the two tactile patterns. Importantly, in
each individual block, the association between tactile stimuli and
responses was switched at a random trial (reversal) within a window
from trials 20 to 25. From that point on, participants had to reverse
their choice behavior to maximize reward. Participants were told in
advance that the association between tactile stimuli and response is
probabilistic and that there would be a rule switch in each block, but
they were not informed about the levels of probability or when the
switch occurs.

To enhance motivation throughout the experiment, we offered a
monetary reward of 1€ added to the general reimbursement (5€/run)
for a 5% increase in behavioral performance in each fMRI run. After
each run, participants were given visual feedback (10 s) about their
proportion of correct responses and how much money they made
during the preceding run.

Before the fMRI experiment, each subject completed a short and
easy practice blockwith 90% probability instead of 70% to ensure they
were able to follow the instructions. The fMRI experiment consisted of
540 trials overall, which we split into three runs, each lasting about
16min, resulting in a total scanning time of ~50min.

Modeling of human behavior
Weapplied four different computationalmodels to thebehavioral data
to probe how participants made choices based on previous decision
outcomes.

Model 1: Random responding. In the first model, we assumed that
participants did not engage in the task at all and simply pressed but-
tons randomly. This random behavior may occur, especially when
participants get lost or when they do not have external incentives and
motivation to perform well. Modeling such behavior can be used to
assess the chance level, which can be compared to more strategic and
practical models. To this end, we assumed that participants randomly
chose between the two options (stimulus1-Go/stimulus2-NoGo or sti-
mulus1-NoGo/stimulus2-Go in our case), probably with some overall
bias for one option over the other. This bias is captured with a free
parameter b (which is between 0 and 1), such that the probability of
choosing the two options is

p1
t =b and p2

t = 1�b: ð1Þ
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Model 2: Noisy win-stay-lose-switch. The win-stay-lose-switchmodel
is one of the simplest models that updates the decision according to
feedback. This model, as the name implies, repeats the choice if the
previous action is rewarded and switches if it is unrewarded. In the
noisy version of this model, the win-stay-lose-switch rule is applied
with the probability of 1�ε, and the free parameter ε is randomly
chosen. In the two-choice case, the probability of choosing option k is

pk
t =

1�ε=2 if ct�1 = k and rt�1 = 1
� �

or ct�1 ≠ k and rt�1 = 0
� �

ε=2 if ct�1 ≠ k and rt�1 = 1
� �

or ct�1 = k and rt�1 = 0
� �

(
ð2Þ

where ct = 1,2 is the choice in trial t, and rt�1 = 0,1 the outcome (wrong
or correct) in the previous trial.

Model 3: Rescorla-Wagner. In thismodel, participants are assumed to
learn the expected value of each choice based on the history of pre-
vious outcomes and then use the updated values of choices to make a
decision. The central idea behind the RW learning model is that it
quantifies the evaluation of a choice option updated by the difference
between the actual outcome and the expected outcome53:

Vk
t =V

k
t�1 +α rt�1 �Vk

t�1

� �
: ð3Þ

Where α is the learning rate, which takes a value between 0 and 1.
This captures the extent to which the prediction error, the difference

between the actual outcome ðrt�1Þ and the expected outcome
�
Vk

t�1

�
,

updates the value of an option Vk
t .

A simple model of how to choose the action is to assume that
participants use the updated values of an option Vk

t to guide their
decisions. This implies that the most valuable option is chosen most
frequently, but occasionally ‘mistakes’ (or exploring) occur due to
choosing a low-value option. The ‘softmax’ choice rule describes these
properties, which chooses option k with the probability

pk
t =

exp βVk
t

� �
PK

i = 1exp βVi
t

� � : ð4Þ

Where β is the ‘inverse temperature’ parameter that controls the
level of stochasticity in the choice, ranging from β=0 for completely
random choices and β=1 for deterministic choices in favor of the
highest value option. Combining the learning (Eq. 3) and decision rules
(Eq. 4) gives a simple model of decision-making in this task with two
free parameters: the learning rate, α, and the inverse temperature, β.

Model 4: Hierarchical Gaussian Filter. The Hierarchical Gaussian
Filter (HGF) consists of a perceptual and a response model, which
describes a framework where an agent receives a sequence of inputs
(stimuli) and generates behavioral responses based on Bayesian
inference. The perceptual model we used in the present study is the
two-level version of the HGF (v7.0, https://www.tnu.ethz.ch/de/
software/tapas.html), where we eliminated the third level, i.e., the
log-volatility of the environment, from the hierarchy byfixing both, the
value of log-volatility ϑ and couple strength k between second and
third levels, to zero. The two-level version of HGFmodel assumes a low
or stable volatility over the time course of the experiment, which is in
line with our experimental setting where the participants were
informed about only one reversal in each block.

The first level of the perceptual model represents a sequence of

environmental states, xðtÞ
1 . In our study, it was represented by a binary

input, with xðtÞ
1 = 1 for the stimulus1→ ‘Go’/stimulus2→ ‘NoGo’ and

xðtÞ1 = 0 for the stimulus1→ ‘NoGo’/stimulus2→ ‘Go’. The second level

xðtÞ2 represents the beliefs about the stimulus-response association, i.e.,
the conditional probability of receiving a reward when performing a

Go or NoGo response, given the presence of stimulus1. The model
assumes that the variance of the environmental hidden states depends
on the state at the next higher level changing as a Gaussian random
walk54 as follows:

p x1∣x2

� �
= sðxÞx1 ð1� sðx2ÞÞ1�x1 = Bernoulli x1;s x2

� �� �
: ð5Þ

p x tð Þ
2 ∣x t�1ð Þ

2 , x tð Þ
3

� �
=N x tð Þ

2 ;x t�1ð Þ
2 , exp ωð Þ

� �
: ð6Þ

Where t is a trial index, and s is a sigmoid function as follows:

s xð Þ= 1
1 + expð�xÞ : ð7Þ

At the second level (Eq. 6), the step size between consecutive time
steps depends on ω, which is a free parameter of the perceptual
model in HGF.

Under a variational approximation to ideal hierarchical Bayesian
learning according to the above equations, at any level i of the hier-
archy, the update of the belief on trial t (i.e., posterior mean uðtÞ

2 of the
state) at the second level is proportional to the outcome prediction
error δðtÞ

1 weighted by the precision of predictions φðtÞ
2 :

uðtÞ
2 = uðt�1Þ

2 +φðtÞ
2 δðtÞ

1 ð8Þ

The precision weight φðtÞ
2 is updated with every trial and can be

regarded as equivalent to a dynamic learning rate in reward learning
models, as follows:

φ tð Þ
2 =

1

1=φ̂ tð Þ
2 + φ̂ðtÞ

1

ð9Þ

φ̂ tð Þ
1 = û t�1ð Þ

1 1� û t�1ð Þ
1

� �
ð10Þ

φ̂ tð Þ
2 = φ t�1ð Þ

2 + eω ð11Þ

The outcome prediction error δðtÞ
1 , which drives learning at the

second level of our HGF model, is defined as the difference between
the actual outcome and its estimated probability before the outcome:

δðtÞ
1 =uðtÞ

1 � ûðtÞ
1 ð12Þ

û tð Þ
1 = s u t�1ð Þ

2

� �
ð13Þ

Therefore, while the updating in HGF learning is structurally
similar to that in the RWmodel, the HGF model differs fundamentally
from the RW in that prediction errors areweighted by time-dependent
precision weights instead of a constant learning rate55.

Notably, the sign of the outcome prediction error in contingency
space depends on the arbitrarily chosen coding of a binary input (in
our case, the assignment of xðtÞ

1 = 1 for the stimulus1→ ‘Go’/stimu-
lus2→ ‘NoGo’ and xðtÞ1 = 0 for the stimulus1→ ‘NoGo’/stimulus2→ ‘Go’).
In this study, we used the unsigned outcome prediction error (i.e.,
absolute value) that corresponds to Bayesian surprise56,57, and which is
equivalent to the prediction error we investigated in our previous
rodent study19.

The observation (response) model describes how the states or
values of the perceptualmodelmaponto responses. In theHGFmodel,
we used the unit-square sigmoid to simulate the responses, which
maps the prior belief ûðtÞ

1 onto the probabilities pk = 1
t and pk =0

t that the
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agent will choose response 1 or 0, respectively:

pk
t =

ûζ
1

ûζ
1 + 1 + û1

� �ζ
 !k

×
1 + û1

� �ζ
ûζ
1 + 1� û1

� �ζ
 !1�k

: ð14Þ

Like the softmax decision rule uses the free parameter β (Eq. 4) to
control the level of stochasticity in the choice, our decisionmodel uses
a constant free parameter ζ that captures how deterministically the
response is associated with the prior belief ûðtÞ

1 . The higher ζ , themore
likely the agent chooses the option that is more according to its cur-
rent belief. Therefore, there are two free parameters in the HGF: ω in
the perceptual model and ζ in the response model.

Model simulation, fitting, and comparison
To test how participants switched their decision strategy based on the
previous decision outcome, we first simulated the responses of four
models given a set of particular parameterswhichwere independent of
the actual behavioral responses and compared them with the partici-
pants’ actual behavioral responses. To this end, we simulated
responses across a range of parameter settings to determine how the
model-independent measures change with different free parameters.
Based on these model simulations, the parameters for the response
module in the four models (Random responding: b; WSLS: ε; RW: β;
HGF: ζ ) were determined. For the free parameters of the additional
perceptual module in the RW (α) and HGF ðωÞ model, we utilized the
‘Bayes optimal’ values, which are the optimizations that produce the
least cumulative Shannon surprise for a given input sequence μ based
on a free energy minimization approach. Therefore, an agent utilizing
these parameter settings would experience the least possible surprise
when exposed to the given inputs in the given perceptual model.
Please note that these ‘Bayes optimal’ values are independent of the
participant’s actual behavioral responses. Using the four different
models with these particular parameters, we simulated the responses
and tested one measure that captures fundamental aspects of the
flexible decision process based on prior experience: the probability of
repeating a decision, p(staying). We repeated the simulation process
1000 times and plotted p(staying) as a function of the outcomes
(correct or wrong) of the previous trial for each of the four models.

Next, we fitted two alternative models (RW and HGF) to the
participants’ actual behavioral responses to separately estimate the
maximum a posteriori estimates of the free parameters. The fitting
procedure started at a random initialization of the optimal value and
proceeded iteratively as the value converged to the solutionbasedon a
computationally efficient quasi-Newton minimization algorithm (i.e.,
the Broyden–Fletcher–Goldfarb–Shanno or BFGS algorithm) imple-
mented in the HGF toolbox. By fitting the model to the participants’
actual behavioral responses, the measures of model goodness (i.e.,
LME) were also calculated. The LME is calculated as the negative var-
iational free energy under the Laplace assumption. LMEs can be used
to calculate Bayes factors by exponentiating the difference in LME
between two models applied to the same dataset. To identify the
model that best explained participants’ behavior (RW or HGF), we
applied Bayesian Model Selection (BMS). BMS is a standard approach
inmachine learning and computational neuroimaging58 that compares
different models to infer how neurophysiological or behavioral
responses were generated. BMS assesses the relative plausibility of
competing models based on their log evidence, which represents the
negative surprise about the data given the model and quantifies the
trade-off between accuracy (fit) and model complexity. We used ran-
dom effects BMS to account for potential interindividual variability in
our dataset59 and to quantify the posterior probabilities of the two
competing models (RW and HGF). Using the subject-specific para-
meters optimized based on participants’ actual behavioral responses,

the individual PE trajectories were finally assessed using the winning
HGF model (see ‘Results’ section).

fMRI data acquisition
We collected the fMRI data on a Philips Achieva 3.0 T X-series scanner
using a 32-channel head coil. Functional scans were collected using a
multi-band echo-planar imaging (EPI) sequence with a multi-band
acceleration factor of 2. Thirty-eight transaxial slices parallel to the
anterior-posterior commissure (AC-PC) covering the whole brain were
acquired with a voxel size of 2 × 2 × 3mm3, TR = 2200ms, TE= 24ms,
flip angle = 90, thefield of view224mm, andno interslicegap. For each
participant, high-resolution T1-weighted structural images were
acquired, with 176 transversally oriented slices covering the whole
brain, to correct for geometric distortions and perform co-registration
with the EPIs (isotropic T1 TFE sequence: voxel size: 1 × 1 × 1mm3, the
field of view 240 × 176mm2).

fMRI data preprocessing and GLMs
For each run, we acquired a total of 453 EPI volumes. To allow for T1-
equilibration, five dummy scans preceded data acquisition in each run,
which were removed before further processing. Each participant’s EPI
volumes were preprocessed and analyzed with the Statistical Para-
metric Mapping software SPM12 (Wellcome Department of Imaging
Neuroscience, University College London, UK; http://www.fil.ion.ucl.
ac.uk/spm) implemented in MATLAB R2017b (MathWorks Inc.). For
preprocessing, EPI images were first realigned to the first volume and
corrected for distortion using field maps. Then, the T1w image was
normalized to the Montreal Neurological Institute (MNI) reference
space using the unified segmentation approach. Subsequently, the
resulting transformation was applied to the individual EPI volumes to
transform the images into standardMNI space and resample them into
2 × 2 × 2mm3 voxel space. Spatial smoothing with a 6-mm FWHM
Gaussian kernel was applied to the fMRI images only for the univariate
general linear model (GLM) and psychophysiological interaction ana-
lysis (see below) but not for RSA analyses. Data were high pass filtered
at 1/128Hz to remove low-frequency signal drifts. For each participant,
the preprocessed fMRI data were analyzed in an event-related manner
in threeGLMs, onedesigned for univariate analyses, a seconddesigned
for multivariate analyses (RSA), and a third designed for assessing
functional connectivity using psychophysiological interaction (PPI). In
all GLMs, six head-motion parameters as estimated during the rea-
lignment procedure, were defined as regressors of no interest to
account for motion-related artifacts during the task.

The first GLMused to analyze the univariate BOLD effect included
four regressors of interest per block, which accounted for trials in the
four different phases of the task (LN, LE, RN, RE). This univariate GLM
was used to test overall changes in BOLD responses after the reversals
(i.e., RN > LE) and during re-learning (i.e., RE > LE). To assess the pre-
diction error-related signals, we included two parametric modulators
in the univariate GLM. For each of these four main regressors, the
absolute value of trial-by-trial outcome prediction error (δðtÞ

1 ) derived
from the HGF model was defined as a parametric modulator. To con-
trol the effect of outcomes on the prediction error signals, another
parameter that accounted for the outcomes (i.e., reward/no-reward; 1/
0) was added. In this model, we switched off orthogonalization to
consider the collinearity of the two parameters. The onset was time-
locked to the outcome presentation of each trial. Two additional
regressors of no interest accounted for the presentation of the stimuli
(all trials collapsed to a single regressor, time-locked to the onset of
cue presentation) and invalid trials (i.e., late responses). All regressors
were then convolved with the canonical hemodynamic response
function in an event-related fashion. The design matrix orthogonality
in SPM showed only weak between-events correlations between the
stimulus regressor and the outcome regressors (the value of the cosine
of angle: mean± SD =0.22 ±0.05, Supplementary Fig. 11), which
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suggests that our design allowed to separate outcome-related from
stimulus-related brain responses.

The second GLM used to assess the representational similarity
between different phases of learning using RSA, consisted of the
unsmoothed fMRI data separated into 16 regressors of interest per
block. These 16 regressors accounted for trials of the four different
phases of the task (LN, LE, RN and RE), divided into the different out-
comes (HIT, Correct Rejection or CR, False Alarm or FA andMISS). The
onset of events for these 16 regressorswere time-locked to theonset of
theoutcome in each trial. The sameapplied to thefirstGLM,where two
additional regressors of no interest were included (i.e., presentation of
the stimuli and invalid trials). All regressors were then convolved with
the canonical hemodynamic response function in an event-related
fashion.

The third GLM applied to assess functional connectivity using PPI
included five regressors of interest, consisting of physiological, psy-
chological, and PPI regressors. The physiological regressor was
defined as the fMRI time series extracted from a seed region. Two
psychological regressors accounted for trials before and after the
reversal (i.e., LE&RN or LE&RE). Two PPI regressors accounted for the
interactions between the physiological variable and psychological
regressors by extracting and deconvolving the time series from the
seed region, multiplying it by the psychological regressor, and then
convolving the output with the hemodynamic response function. To
account for additional unwanted variance, we also included two
regressors representing the presentation of the stimuli and invalid
trials.

Univariate fMRI analysis
Using the first GLM for univariate analysis, the prediction error-related
parametric effects were first assessed by applying the trial-by-trial
prediction error derived from the HGF model to the four main
regressors. Next, two contrasts were assessed to reveal changes in
BOLD responses after the reversal of stimulus–response association.
First, to measure the BOLD response to the immediate effect of the
reversal, the fMRI BOLD signal during Reversal Naïve (RN) trials was
contrasted with the fMRI BOLD signal during LE trials. Second, to
measure the BOLD response to the adaptation after re-learning,
Reversal Expert (RE) trials were contrasted with LE trials. The contrast
images (i.e., “RN> LE” and “RE > LE”) were next applied to the group-
level one-sample t-test and thresholded at p = 0.05, FWE-corrected.
Based on the study in mice19, we hypothesized that the immediate
effect of the reversal (“RN> LE”) and the stable adaptation after re-
learning (“RE > LE”) is related to the lateral OFC and bilateral S1,
respectively. Therefore, we performed small volume correction (SVC)
by restricting the search volume to lateral OFC and entire S1 regions.
To this end, we created lateral OFC and S1 masks, as implemented in
the SPMAnatomyToolbox25,26. TheGLMresultswere superimposedon
sagittal, coronal, and axial slices of a standard T1-weighted image from
the Colin27 brain template implemented in MRIcron (https://www.
nitrc.org/projects/mricron).

Representational similarity analysis
To investigate whether themulti-voxel response pattern in lateral OFC
and S1 before the reversal is translated into a representation of the
same tactile stimulus (stimulus-selective) or a representation of the
same outcome (outcome-selective) after reversal, we performed an
RSA. Multi-voxel measures of neural activity are quantitatively related
to each other and to computational theory and behavior by
comparing RDMs.

Construction of model RDMs. Based on the predicted correlation
distance for trials before and after reversal, two model RDMs were
constructed to investigatewhether themulti-voxel responsepattern in
lateral OFC and S1 at the time of outcome presentation is stimulus-

selective or outcome-selective. The stimulus-selectivemodel describes
how the response pattern to a tactile stimulus before reversal shows
higher representational similarity with the trials associated with the
outcomes of the same tactile stimulus after the reversal (i.e.,
HITlearning = CRreversal). The outcome-selective model describes how
the response pattern to the outcomes before reversal shows higher
representational similarity with the trials associated with the same
outcomes after the reversal (i.e., HITlearning =HITreversal).

Construction of ROI RDMs. Based on the univariate fMRI analysis, we
defined two ROIs, lOFC and S1_3b, respectively, as derived from the
SPM Anatomy Toolbox. Using the output of t-statistic maps from the
second GLM, activity patterns were extracted from lOFC and S1_3b
masks. The relative similarity between the response patterns, elicited
in different trials, was assessed using Pearson correlation and expres-
sed as a correlation coefficient. For each participant, the response
patterns from trials before reversal were compared with the response
patterns from trials after reversal. Note that unlike a distance or a
correlation matrix, this matrix is not symmetric. To assess both the
immediate effect of the reversal and the stable adaptation after re-
learning, we compared the trials after reversal with the trials during LE
twice (immediate effect RDM: RN vs. LE; stable effect RDM: RE vs. LE),
resulting in two RDMs for each participant and for each ROI.

ROI analysis. The response pattern in S1 and lOFC during initial
learning (LE) and after the reversal (RN, RE) were compared using RSA
to establish a cross-phase representational dissimilarity matrix (RDM)
as described above. We also estimated the mean ‘similar’ (black ele-
ments in model RDMs) versus the mean ‘dissimilar’ (white elements in
model RDMs) for both the immediate effect RDM and the stable effect
RDM of each ROI separately. Summary statistics were tested at the
group level using two approaches: (1) one-sidedWilcoxon signed-rank
test across participants; (2) one-sided permutation test where the null
distribution was generated by estimating the group average 10,000
times, after permuting the identity of trials in the RDM on each
iteration.

Searchlight analysis. We also conducted a searchlight analysis with a
radius of 6mmrelative to the center voxel within the entireOFC and S1
ROI using the RSA toolbox. Across t-statistic maps, the extracted
voxels were correlated using Pearson correlations and expressed as a
correlation coefficient. The RDM was then constructed as described
for the ROI RDM analysis above. A summary statistic was then gener-
ated for each searchlight sphere using the model RDM to estimate
stimulus or outcome selectivity. The summary statistic of interest was
then mapped back to the central voxel in the searchlight sphere and
saved. The sphere was then shifted, and the whole procedure was
repeated until complete for the entire ROI mask. This yielded two
separate descriptive maps per participant—one for the immediate
effect of the reversal (LE→RN) and the other for the stable adaptation
after re-learning (LE→→RE). Each participant’s correlation maps with
the model RDMs were spatially smoothed with a 6-mm FWHM Gaus-
sian kernel and entered into the second-level random-effect analysis
performed in SPM12 across the group. The statistical significanceat the
group level was thresholded at p <0.05 with a voxel-level FWE small-
volume correction within the lateral OFC and S1 ROIs.

Psychophysiological interaction
PPI was used to assess context-related differences in functional con-
nectivity between a given seed region and the rest of the brain. We
performed PPI analyses to assess changes in connectivity between
trials before reversal (LE) and after the reversal (RN and RE) using the
generalized PPI (gPPI) toolbox. Since RSA results revealed that the
response pattern of lateral OFC and ipsilateral S1 were outcome-
selective, we applied three PPIs, the first using the OFC as the seed to
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investigate the immediate effect after the reversal (RN vs. LE) and the
second and third using either ipsilateral S1 or OFC as the seed region
respectively to investigate the stable period after re-learning
(RE vs. LE).

Individual time series of each seed region were extracted from
ROIs that were identified with the RSA searchlight analyses of the
outcome-selective lateral OFC and ipsilateral S1 within a radius of
12mm from the group maximum. The first Eigenvariate was then cal-
culated across all voxels survivingp =0.05, uncorrected,within a 6mm
sphere centered on the individual peak voxel. The resulting BOLD time
series were adjusted for effects of no interest (e.g., invalid trials and
movement parameters) and deconvolved to generate the time series
required for constructing first-level GLMs for the PPIs as described in
the “fMRI data preprocessing and GLMs” section.

First, we examined the immediate effect of the reversal on lOFC
connectivity. To this end,first-level contrast imageswerecreated using
the PPI regressor of the interaction between the physiological variable
and LE trials, as well as the interaction between the physiological
variable and RN trials. Next, the contrast images (i.e., RN > LE) were
applied to the group-level one-sample t-test. We hypothesized that the
immediate effect of reversal was related to interactions between the
OFC and S1. Therefore, we performed a small volume correction by
restricting the search volume to the S1mask. Second, to test the stable
period of re-learning after the reversal, two PPIs were performed using
either S1 orOFCas the seed region, respectively. For eachROI, thefirst-
level contrast images were created using the PPI regressor of the
interaction between the physiological variable and LE trials, as well as
the interaction between the physiological variable and RE trials. The
contrast images (i.e., RE > LE) were next applied to the group-level one-
sample t-test. Small volume correction was used by restricting the
search volume to either the OFC or the S1_3b mask with a threshold at
an FWE-corrected peak level of p < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral data and processed fMRI data have been deposited at
Sciebo and are publicly available as of the date of publication. The raw
imaging data is not publicly available due to restrictions related to the
individual information that could compromise the privacy of research
participants. Source data are provided in this paper.

Code availability
The custom codes for data analysis have been deposited in a GitHub
repository. The version of the codeused in this studywas also archived
in the Zenodo repository60.
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